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Abstract

Systems evaluatingpotential treatmentmethods for Parkinson’s disease and chronic
pain conditions, using rodent experimental models, are highly needed. Currently
used systems are aiming to evaluate these kinds of treatment methods by ana-
lyzing the animal’s motor behavior. These systems either generate binary data or
multifaceted data for when the rodent is spatially limited or data for when the ro-
dent is less spatially limited, i.e. moving in an open field, that are less faceted. In
this thesis a setupwas built by combining setups from the currently used systems,
to enable high faceted data for when the rodent is moving in an open field. Fur-
ther, the data generated from this setup was interpreted by evaluating and com-
paring image analysis methods, using two different software. The interpretation
of the data aimed to generate parameters describing the rodent’s motor behav-
ior by detection and classification of the rodent and its various body parts and
paws. The first image analysis method is based on blob detection and was evalu-
ated using MATLAB. This method resulted in insufficient parameter values, but
with potential for development regarding the evaluation of the pressure load of
the paws. Further, this method showed great potential in classifying the rodent’s
body parts and paws. This method therefore has the potential to be used with
the built setup as a tool in motor behavior analysis, such as gait pattern and body
posture analysis. The second image analysis method is deep learning based seg-
mentation, object tracking, and classification and was evaluated using DeepLab-
Cut. This method resulted in insufficiency in the detection and classification of
the rodent’s paws, but showed potential in the detection and classification of the
body parts. This method therefore has the potential to be used as a tool in mo-
tor behavior analysis when analyzing the rodent’s body posture and movement
pattern, for instance, in combination with the first method.
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Populärvetenskaplig sammanfattning:
Kvantifiering av motoriskt beteende hos råttor i fri rörelse

Cirka 10miljonermänniskor världen över levermedParkinsons sjukdomoch cirka
40 % av världens befolkning lever med långvarig smärta. Den här avhandlingen
handlar om att implementera ett system för att hjälpa till att utvärdera behandlin-
gar för dessa tillstånd, såsom djup hjärnstimulering (DBS).

System somanvänds för att förbättraDBS, det vill säga elektrisk stimulering av
djupa hjärnstrukturer, för att behandla patienter som lider av Parkinsons sjukdom
och för att utvärdera DBS som en potentiell behandling för långvarig smärta är
mycket nödvändiga. Aktuella tester involverar analys av gnagares motoriska be-
teende vadgäller till exempel gångmönster och kroppshållning när djuret påverkas
av smärta eller experimentellamodeller avParkinsons sjukdom, samt när dedjupa
hjärnstrukturerna hos djuret stimuleras. Nackdelen med dessa tester är att de
antingen ger begränsad information omdjuretsmotoriska beteende, eller germång-
facetterad information om det motoriska beteendet, men där djurets motoriska
beteende istället begränsas på grund av uppställningens design.

I detta examensarbete har ett system implementerats som inte begränsar djurets
motoriska beteende, där en råtta rör sig i ett öppet fält. Vidare har tre metoder för
att hämta mångfacetterad information från denna uppställning implementerats,
utvärderats och jämförts. Uppställningen genererar en videoinspelning av råt-
tan som rör sig i det öppna fältet och de tre metoderna involverar bildanalys av
videoinspelningen. Den första metoden innefattar bildanalys baserad på blob-
detektering och de två andra metoderna innefattar bildanalys baserad på djupin-
lärningsbaserad segmentering.

Jämförelser avdessa tremetoder visar attmetoden baseradpå blob-detektering
är denmest kompatiblamedden implementerade öppet fält-uppställningen. Kom-
binationen av öppet fält-uppställningen och blob-detekteringsmetoden germång-
facetterad information om råttansmotoriska beteende när den rör sig relativt obe-
gränsad. Detta system kan därför ge mer exakta undersökningar av råttans mo-
toriska beteende än system som används idag.

Metoderna baserade på djupinlärningsbaserad segmentering visade otillräck-
lig noggrannhet. Utvärderingarna av dessa metoder visade dock på potential för
utveckling och de kan därför fungera som ett potentiellt komplement till systemet.

Att använda systemet bestående av den implementerade uppställningen med
bildanalys baseradpå blob-detektering kommer förhoppningsvis att förbättra utvärderingar
av DBS som en behandling, använt för sig självt eller möjligen i kombination med
djupinlärningsbaserad segmentering.
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Introduction

1.1 Background
About 10 million people worldwide live with Parkinson’s disease (PD) and about
40 % of the world’s population experience long term pain at some point in life.
Commonly used treatment methods for PD are medication as well as traditional
deep brain stimulation (DBS). These treatmentmethods often improve the quality
of life for the patient, but with the cost of undesirable side effects. The traditional
pain treatment is by medication, often opioids. This treatment can have undesir-
able side effects that can be expensive for both the patient aswell as society. Evalu-
ations to improveDBS as a treatmentmethod for PD, aswell as evaluations of DBS
as a potential treatment method for long term pain, are therefore highly needed.
Evaluations to improve DBS as a treatment method for PD can be performed by
inducing an experimental model of PD using a unilateral 6-hydroxydopamine (6-
OHDA) lesion. This is a lesion, where the placing of toxin in the brain area of
dopamine cell bodies or their ascending fibers is done, to cause a lateralized de-
struction of dopamine neurons and lateralized loss of striatal dopamine innerva-
tion [4]. Further, evaluations ofDBS as a potential treatmentmethod for long term
pain can be performed by inducing pain in a rodent using nociceptive stimulus.

Evaluation of a pain condition or 6-OHDA lesion in rodents with subsequent
treatments can then be performed by studying the rodent’s motor behavior. A be-
havioral assessment evaluating motor deficits in rodents, e. g. rats, in experimen-
tal models of Parkinson’s disease, is the cylinder test. This test method evaluates
the forelimb use asymmetry in the rat by placing it in a glass cylinder andmeasur-
ing the number of times it rears up and touches the cylinderwall [1]. However, the
rat, and therefore its natural behavior, is limited by the cylinder glass and the test
requires manual, human evaluation, which is time consuming. Also, this kind of
test evaluates only quantity and not quality regarding the rat’s use of its forelimbs.

To examine how motor behavior in rats is affected by pain or experimental
models of Parkinson’s disease and how it can be normalized with different types
of treatments, a system called Catwalk XT can be used. With this system, the rats’
gait pattern can be characterized by filming the rat from below when it passes
over a glass plate, through a small tunnel [2]. This system can give information
about, for instance, the pressure distribution of the rat’s paws in addition to quan-
titative measures. However, this system requires the rat to be trained of going in
the tunnel and it also requires the rat to be able to move relatively unimpeded.
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These requirements constitute a major limitation in cases where the spontaneous
behavior of the rats in open field is to be examined.

An openfield setting, used to evaluate possible side effects of deep brain stimu-
lation with microelectrode clusters, has been performed by placing a rat provided
with an accelerometer and two LED’s in a box and filming it from above [4]. This
setting gives movement data with information about the rat’s position in a less
limited environment. However, this setting lacks information about the rat’s gait
pattern and the pressure distribution of its paws.

A system that enables time stamped information of the rat’s position, posture
and loading of paws in open field would therefore be desirable. This could enable
amore truthful evaluation of treatment of Parkinson’s disease and pain treatment,
such as stimulation in deep brain structures.

1.2 Aim
In this project, the aim is to implement a systemwhere the behavior of rats, in open
field, can be analyzed by means of video recording and image analysis. Further,
the aim is to evaluate and compare different image analysis methods, using two
different software; image analysis usingMATLABbased on blob detection, aswell
as image analysis using DeepLabCut based on deep learning based segmentation,
object tracking and classification.

1.3 Structure of the report
The report consists mainly of the parts ‘Theory’, ‘Methods’, ‘Results’, ‘Discussion’
and ‘Conclusion’. In ‘Theory’ and ‘Method’ the underlying theory and methods
used are described. ‘Results’ contains findings made when analyzing the meth-
ods. In ‘Discussion’, these findings are evaluated and the analyzed methods and
possible improvements of them are discussed. A summation of the findings is
done in ‘Conclusion’.
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2

Theory

2.1 Rat gait

To analyze a rat’s motor behavior, its gait pattern can be analyzed and charac-
terized. A characteristic trait in the gait pattern of rats is that its paw’s initial
contact with the surface, when initializing stance phase, is typically evenly dis-
tributed over the entire paw. This can be compared with, for example, humans
whose foot’s initial contact with the surface is typically distributed only over the
heel. During the stance phase, the pressure over the paw is then gradually moved
forward to the toes before the paw is lifted. This parameter is typical of rats, re-
gardless of walking or running speed. Parameters that are affected by walking or
running speed are step length (distance between the position of initial contact of
one paw and the position of initial contact of the next paw), which increases with
increased speed, and the stance time (time period when one or more paws are in
stance phase), which decreases with increased speed.

A parameter that can be used to distinguish walking from running is the duty
factor, defined as the total stance time for all the paws of the entire step cycle di-
vided by the time period of the entire step cycle. If the value of this parameter
is equal to or higher than 0.5 the rat is considered to be walking and at values
lower than 0.5 it is considered to be running. In order to distinguish different
movements in detail, methods for detecting and determining the number of paws
being in stance phase at the same time can be used. A rat can have four different
gaits and in addition three different combinations of paws in stance phase. Walk-
ing is characterized by three paws being in stance phase at the same time. Running
can be divided into three different categories; trot, amble and gallop. Trot is char-
acterized by two diagonal paws in the stance phase simultaneously and amble is
characterized by two lateral paws in stance phase simultaneously. Whether a rat
is most likely to show amble or trot has been shown to be individual. Some in-
dividuals prefer trotting and others ambling. Galloping is characterized by one
paw at a time in stance phase, followed by no paw being in stance phase (aerial
phase). If the rat is standing still, this is characterized by four paws being in stance
phase. Furthermore, both hind paws or both front paws can be in stance phase at
the same time, either because the rat jumps or because it cleans or eats, amongst
other things. Also, the parameters swing time and stance time can be used by
themselves or in relation to each other when analyzing gait. Swing time is the
time elapsed between one of the paw’s time for take-off until the same paw’s next
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touch down. Stance time is the time elapsed throughout a paw in stance time, i.e.
the time elapsed between the paw being in anterior extreme position (AEP) until
it is in posterior extreme position (PEP).

Additional parameters that can bemeasured to analyze gait patterns are stance
linearity index and footprint clustering. Stance linearity index is a measure of the
difference between the actual stance trail of the paws and a smear of that stance
trail. The stance linearity index can reflect the amount of body wobbling during
stance phase, since paws in stance phase can be seen as the paws being anchored
at the glass plate, relative to the body. Footprint clustering corresponds to the
standard deviation of the mean values of the coordinates of AEP, i.e. the position
of the paw (relative to the body) in touchdown, and PEP, i.e. the position of the
paw (relative to the body) in take-off. This is a measure of how much spatial
variation there is in the position of the paws, measured to all the times they are in
AEP respectively PEP, which gives a cluster. A large cluster gives the result that
the variation is large and vice versa. For rats, this parameter has been shown to
be greater for PEP than AEP [5].

2.2 Pain

Around 40% of theworld’s population experience long termpain at some point in
life. The most commonly used treatment method for this condition is medication,
such as opioids which relieves the pain. However, the use of opioids often comes
with side effects with a negative impact on the patient and a great cost to soci-
ety. Nociceptive pain occurs through the stimulation of specialized nerve cells,
nociceptors, in an organ or tissue. The area from which each individual nocicep-
tor can be activated is called the receptive field. Stimulation of a receptive field
activates the nociceptor, which via the spinal cord leads the nerve signal to the so-
matosensory cortex (SI) in the cerebral cortex. Nociceptors can be of myelinated
type, Aδ-fibers, which gives a high conduction velocity. Nociceptors that are not
myelinated are of C-fiber type, which has low conduction velocity. Aδ nocicep-
tors are therefore responsible for initial, sharp pain that gives the body signals of
possible danger, while C-fiber nociceptors are responsible for long term, blunted
pain.

Furthermore, SI is topographically organized, meaning the nociceptors being
activated by adjacent areas in a tissue or organ also activates adjacent areas in SI.
This allows rapid processing of stimuli of adjacent nociceptors. Most nociceptors
have relatively large receptive fields, as it is of greater importance and benefit that
the brain registers pain in itself than it registers the exact location from where
the pain occurred. Repeated stimulation of a nociceptor may cause a greater out-
come, although stimuli do not increase. This is called hyperalgesia and provides a
stronger sensation of pain and can also affect areas around the stimulated area, re-
sulting in secondary hyperalgesia [6]. A way to induce hyperalgesia in animals is
to burn the skin with ultraviolet B (UVB) irradiation followed by applying stimuli
in the form of a CO2 laser, causing secondary hyperalgesia, to the area of interest
[7]. This can also be analyzed and measured by applying UVB irradiation to the
pad of a rat’s paw followed by an evaluation test of how its gait pattern possibly
is affected in terms of use of the paw and/or pressure load of the paw.
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2.3 Parkinson’s disease
Over ten million people worldwide suffer from Parkinson’s disease (PD), a pro-
gressive neurodegenerativemovement disorder caused by the deprivation of dopamin-
ergic neurons in a part of the brain called substantia nigra. This can cause tremors,
bradykinesia, dystonia, postural instability, dyskinesia and festination amongst
other symptoms. All these symptoms can have an impact on the movement, e.g.
gait pattern, in the person having the disease. An available treatment method for
those living with PD is deep brain stimulation (DBS), where deep brain struc-
tures involved in motor functions are stimulated by electrical impulses through
electrodes [3].

2.4 Methods for measuring motor behavior
Current methods for evaluation of motor behavior under the influence of noci-
ceptive pain and pain treatment include either testing the response of an animal
in form of reflexes or analyzing the movement pattern of the animal. The first
mentioned method is limited, as the animal’s response is binary, i.e. it either does
or does not occur. In addition, it has been shown that this type of response is not
specific to pain, as other non-painful stimuli such as touch also can give rise to the
same response in the animal [8]. A current method used to examine experimental
models of PD and subsequent therapeutic effects of antiparkinsonian treatments
in rodents is the cylinder test. Here, the rodent is placed inside a glass cylinder
where it is video recorded from above and from the side. The video recording
is then evaluated and scored by an experimenter, counting the number of times
the rodent rears up and touches the cylinder wall with its right respectively left
forelimb or both forelimbs at the same time. The procedure is then repeated after
the rodent is injected with 6-OHDA unilateral in the striatum, substantia nigra
pars compacta to simulate PD and again after the rodent has antiparkinsonian
treatment. Since it has been shown that unilaterally lesioned rodents exhibit the
preferential use of the forelimb ipsilateral (i.e. opposite side relative to) the le-
sion, the cylinder test can be used to examine possible forelimb use asymmetry
[1]. Although the cylinder test gives easily interpreted results with high accu-
racy, it, like the previously mentioned method, only gives binary data, describing
whether the rodent uses a forelimb or not. Also, it lacks information regarding
the rodent’s motor behavior when moving freely.

Other methods to examine motor behavior in rodents, under the influence of
pain or 6-OHDA lesion, are the CatWalk XT and MouseWalker systems, by uti-
lizing frustrated total internal reflection and image analysis. In the CatWalk XT
and MouseWalker systems a rat is filmed from below as it moves on a glass or
plexiglass plate through a tunnel [2] [5]. This method enables examination and
analysis of the motor behavior of the rat in an unaffected state versus when it is
affected by pain or an experimental model of PD, possibly in combination with
subsequent pain relief or PD treatment. It also gives information about, for in-
stance, the pressure load of each paw. However, this system partially restricts the
rat from moving freely since, in order to obtain meaningful and valid data, the
rodent needs to comply to specific requirements when carrying out the task of
moving across the plate. To examine DBS as a treatment and how it can be im-
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proved studies have been made including examination and evaluation of rodents,
e. g. rats, in an open field. A proven method is to place a unilateral 6-OHDA
injected rat in a relatively large box. The rat is provided with a head-mounted
3-axes accelerometer, provided with two LED’s, allowing detection of the head’s
position and direction. The rat is video recorded from above and the video record-
ing is evaluated and scored, using measurements of the displacement of the rat’s
head during electrical stimulation of deep brain structures. A large displacement
score is associatedwith the ratmoving freely, i.e. reversing the symptoms induced
by the unilateral 6-OHDA injection [4]. This method gives information about the
rat’s movement pattern when moving freely. However, this method does not pro-
vide any information on the rat’s gait pattern, the pressure load on each paw or
the placement of the body relative to the paws.

2.5 Frustrated total internal reflection
When light beams reach an interface between two media with different optical
densities, the light beam can be transmitted, reflected or both. If the light travels
from a medium, m1, with higher optical density, n1, to a medium, m2, with lower
optical density, n2, the light will be reflected if the angle of incidence of the light
is greater than the critical angle for total reflection, where the critical angle, θ, is
given by Snell’s law, see equation 2.1.

θ = sin−1(
n2

n1

) (2.1)

In equation 2.1 n1 is the optical density of the medium having the highest opti-
cal density and n2 is the optical density of the medium having the lowest optical
density (figure 2.1a).

Figure 2.1: (A) Snell’s law. (B) Frustrated internal reflection.

If the incident light strikes the interface in such a way that no light in the beam
is transmitted, but all light is reflected back into mediumm1, total internal reflec-
tion occurs. If a third medium, m3, with higher optical density than medium m1

is close enough to the surface of medium m1, the light will no longer be fully re-
flected but will be partially transmitted. Medium m3 is then being hit by some
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of the light due to evanescent wave coupling (figure 2.1b). This phenomenon is
called frustrated total internal reflection and is used, for instance, in certain touch
screens, where incident light from the medium having the highest optical density
is calculated to determine the location of the object touching the screen (figure
2.2). The closer mediumm3 is to mediumm1, the more the light will be transmit-
ted across the interface and vice versa. This enables an estimate of the distance
between medium m1 and m3 by measuring the light intensity of the light trans-
mitted and thus illuminating medium m3 [11]. Furthermore, this can be used to
estimate the paw use and pressure load of a rat’s various paws in systems like
CatWalk XT (Noldus Information Technology 2022).

Figure 2.2: Illustration of the principle frustrated internal reflection in a touch screen
[13].

2.6 Image analysis

2.6.1 Blob detection & classification
A video recording can be seen as a chronologically ordered sequence of time
stamped images (frames). Frame-by-frame analysis refers to the analysis of the
video recording frame by frame. For the detection of objects (e.g. paw prints and
body) in an image, blob detection can be used, by analyzing the image in order
to detect regions that show similarities. These similarities can be values related
to the pixel values of the image, which can be translated as the color of the pixel.
Further, the color of the pixel often is described as the intensity of the pixel in
the RGB dimension, where R means red, G means green and B means blue. This
method of detection can be seen as segmentation of the image, which divides the
pixels of the image into two sets; background and foreground pixels.

Effective segmentation requires a clear difference between the pixel values
being background and pixel values being foreground and therefore parameters,
such as contrast and saturation in the image,mayneed to be adjusted. Whenpossi-
ble, the settings of the video camera and also external factors, such as lighting, can
be adjusted. Thereafter, one ormore threshold values, indicating values for which
the algorithm is to sort as background respectively foreground, are evaluated and
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optimized. When the image is segmented into background and foreground, the
foreground may be filtered to reduce noise and other disturbances in its pixel val-
ues. When the pixel values belonging to the foreground are optimized, the object
or objects are detected and ready to be analyzed and classified [9].

Analysis of the detected objects can consist of defining features and values of
these in order to divide similar objects into different subgroups, called classes, by
classification. Features of an object can be shape, size, pixel values, position in
the image and position relative to other objects in the image. Classification can
therefore be used in examining the motor behavior of rats by analyzing a video
recording showing a rat in motion using the frame-by-frame method, where the
rat’s various body parts, such as paws, tail and body, each belong to different
classes. Furthermore, the rat’s different paws can be distinguished and defined
separately by analyzing their respective position to the rat’s body in combination
with other features. This can give the paws four different class affiliations; right
hind, left hind, right front or left front paw.

2.6.2 Kalman filter

To enhance the ability to track and follow a detected object, which belongs to a
certain class, over time, the Kalman filtering method can be used. The center of
the object in a frame is determined and the Kalman filter is then used to predict
the position of the object’s center in the next frame, which is done by recursive
prediction and correction. First, the movement of the object is detected, second,
the object is tracked in the next frame and third, the movement of the object is
analyzed. This allows the same object to be tracked and followed throughout the
video recording and reduces the risk of the object being detected and classified as
two or more objects during the video. Kalman filtering also enables the detection,
classification and tracking of more than one object at the same timestamp of the
video. Factors increasing the risk of incorrect detection, classification and tracking
of an object are light changes and noise in the image, complex movement patterns
of the object and complete or partial loss of the object [9]. An example of this
could be the paws of a rat, which are completely lost from the frame when the
paw is in swing phase during walk, if FTIR-enabled detection is used. Also, the
paws will be partly lost during parts of the stance phase, since not the entire area
of the paw is touching the glass plate throughout the entire stance phase. This
will lead to the paw print changing form, visually.

2.6.3 Deep learning based segmentation & object tracking

Another potential method for detecting and tracking an object in a video record-
ing is by deep learning based segmentation and object tracking. This can be done
using, for instance, DeepLabCut (DLC) [10]. DLC is a software package using
deep learning, developed to be used for tracking movement patterns in animals.
Deep learning is a subcategory of machine learning, which is a method of teach-
ing a computer to solve a task, by training the computer to detect and store in-
formation from input data, without the computer being programmed with rules
for that particular task. Furthermore, deep learning is a method that is based on
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algorithms using many process layers with complex structures to solve the task.
Deep learning is a common method in image classification.

Using DLC, image analysis such as segmentation and blob detection of the
frames is not required. The workflow is instead structured in such a way that the
user selects a number of video files containing video recordings of the same or
similar type of object which are then to be detected and tracked in one or more
video recordings. A subset of the frames is extracted from the video files andwith
the help ofDLC’s graphical user interface, the object andpossibly the various parts
of the object can be classified by providing objects and/or sub-objects with labels.
The deep learning network is then trained and its performance is evaluated. The
procedure is repeated until a satisfactory result is achieved. The inference can then
be used to detect and track objects and/or sub-objects in novel video recordings
[10].

As when using blob detection to classify objects in an image the deep learning
network requires a clear difference between the pixel values being background
and pixel values being foreground. Therefore, parameters such as contrast and
saturation in the image, may need to be adjusted. When possible, the settings of
the video camera and also external factors, such as lighting, can be adjusted.

2.7 Ethics
The principle ‘3R’ is an important application when working with experimental
animals. 3R is an abbreviation for the words ”replace”, ”reduce” and ”refine”.
Replacement aims to replace animal experiments with amethod or a combination
of several methods where animals are not used, in case it gives a result with an
equal or greater amount of information. Reducing aims to reduce the number of
animals used in an experiment or to get more information from one and the same
animal without increasing the animal’s suffering, in case it gives a result with an
equal or greater amount of information. Refining aims to reduce pain or other
sufferings in an animal in an experiment, in case it gives a result with an equal or
greater amount of information [12].
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3

Methods

This project aims to set up a system that enables time stamped information of the
rat’s position, posture and loading of paws in an open field by combining setups
used in CatWalk XT and MouseWalker with the open field setting described in
section 2.4. Furthermore, three different methods will be compared in the subse-
quent image analysis.

3.1 Setup & data collection
The setup, see figure 3.1a-c consists of a glass plate of dimension 80·80 cm and
thickness 1 cm resting on top of a table in steel, where the glass plate forms the
tabletop 73 cm above the floor. A LED strip is attached around the edges of the
glass plate using duct tape, making the light rays from the LED strip only propa-
gate into the glass plate and not the surroundings. The color of light of the LED
is selected green. Underneath the table, in the middle of the glass plate and 17
cm above the floor, a GoPro Hero8 Black is placed. A box with the outer dimen-
sions of 28·52·52 cm an 1 cm thick walls is placed on top of the glass plate. The
box consists of four walls of plexiglass, covered in matte black paperboard, with
no bottom or top. The rat is placed inside the plexiglass box and a dark cloth is
placed above the box to create a dark background. The reason why a black cloth
is used and not a lid is so that the electrical stimulator, see figure 3.1a, can be used
in future experiments. The room in which the setup is placed is dimmed out and
data collection is made by video recording at 30 fps of the dimension 2160 · 3840.
After about five minutes, the data collection is stopped by turning the camera off.

3.2 Image analysis in MATLAB
A program is created inMATLAB R2021b (TheMathworks, MA, USA) to analyze
the collected data by loading the video file, read it frame by frame and follow the
workflow seen in figure 3.2.

3.2.1 Background subtraction & noise reduction
To reduce static disturbance in the images caused by, for instance, dirt on the glass
plate, a background subtraction is made, where an average value of all frames in a
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Figure 3.1: The setup and the electrical stimulator. (A) The electrical stimulator (white
arrow) for future experiments with the setup below. (B) The setup seen from above.
The white arrow is here showing the placing of the camera, below the glass plate. (C)
The setup seen from the side, where 1. is the plexiglass box, 2. is the glass plate with
attached LED strip and 3. is the camera placed on a stand.

video recording is subtracted from each frame. To reduce the risk of interference
caused by objects outside the plexiglass box, each frame is cropped to dimensions
determined by visual analysis of the video recording, see figure (figure 3.3b). Fur-
thermore, noise reduction is done with an area opening operation, removing ob-
jects less than a certain size.

3.2.2 Blob detection
The blob detection is done in three levels; detection of the rat’s body, its paws, and
its paw parts, using different threshold values. The rat’s body does not touch the
glass plate, but is at such a distance from the glass plate that some of the light
beams from the LED are subject to frustrated internal reflection. This means the
pixels within the region of the rat’s body have the highest intensity in the green
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Figure 3.2: The workflow of the MATLAB program, showing the most essential steps of
the segmentation.

dimension, albeit relatively low intensity. In order to detect the area forming the
rat’s body, a subtraction is therefore made, where the grayscale of each frame is
subtracted from the green color band of each frame. Since the rat’s body is visually
light green, the frames are then binarized with a relatively high threshold value
and filling operations may be performed. Having each frame containing only one
blob, see figure (figure 3.3c) the region being the rat’s body, features of the region
are determined and saved, such as area, coordinates of the region’s center of mass
and orientation of the region’s major axis.

The next level of detection is the detection of the rat’s paws. The area of the
paws is here defined as the area of the pad, toes and adjacent areas as they touch
the glass plate or are at a significantly shorter distance from the glass plate than the
rat’s body is. This means the pixels within the region of the paws have a relatively
high intensity in the green dimension, but also in the grayscale and therefore no
extraction of the green color band is required. Instead, the frames are binarized
directly from grayscale with around 20 times higher threshold than the threshold
used when detecting the rat’s body, see figure (figure 3.3d). In the same way as
for the region of the rat’s body, the features of the regions forming the paws are
determined and saved. Each paw print is also assigned an identity number (paw
ID) chronologically ordered.

The third and last level of detection is the detection of the different parts of
the paws, which are defined as pads and toes touching the glass plate. The pixels
within these regions therefore have higher intensity than some of the pixelswithin
the regions of the body or the entire paw. To determine and save properties of the
paw parts, a mask is made on each frame, one paw ID at a time. Themask consists
of pixels with pixel values equal to zero and the pixel values of the pixels inside
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the region of the paw are equal to or above zero. The frame is then binarized with
a threshold value approximately 1.4 times higher than the threshold value of the
paw detection, see figure (figure 3.3e). For each paw part, features of the region
are determined and saved. Also, the paw parts are connected with its belonging
paw ID.

Figure 3.3: Noise reduction, artifact removal and blob detection. (A) Original image.
(B) Image after cropping, noise reduction and artifact removal. (C) Blob detection of the
rat’s body. (D) Blob detection of the rat’s paws, zoomed in image. (E) Blob detection of
the rat’s paw parts, zoomed in image.
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3.2.3 Temporal correction
The paw prints’ identity numbers are corrected and grouped so that paw prints
present in several consecutive frames are having the same identity number. A
paw print is defined as one and the same paw print if the coordinates of the mass
center of the paw print in the current frame are within the range of the boundary
box coordinates for one of the paw prints in the previous frame. If this is the case,
the paw prints in question are classified with one and the same paw ID.

3.2.4 Feature extraction
During the blobdetection features of the different regionswere determined. These
features alone and features calculated and determined using these primary fea-
tures were saved as data in MATLAB tables. All features and their definition are
listed in table 3.1.

3.2.5 Paw print validation
Paw IDs belonging to paw parts having a total area of zero are removed, since
those prints hence are actually not paw part prints, but (falsely) detected paw
prints. For the same reason, paw IDs located within a large distance from the
region of the body are also removed. Paw IDs that are present in only one frame
throughout the whole video are also removed. These prints are most likely not
paw prints, since a duration of one frame in a video recorded in a frame rate of 30
fps equals a duration of only 33 ms.

3.2.6 Determination of directions
To determine the rat’s orientation in each frame, a combination of orientations is
used, which constitutes the orientation of the rat’s body together with coordinates
for the different parts of the paws, see figure 3.4. Orientation of the rat’s body is
determined on the basis of the body region’s major axis relative to the horizontal
axis, i. e. the x-axis, which gives a value between -90◦and 90◦. A value of -90◦or
90◦corresponds to the body’s major axis being directed perpendicular to the x-
axis in a northern respectively southern direction. A value of 0◦corresponds to
the major axis being directed perpendicular to the y-axis, i.e. in the eastern or
westerly direction and so on. This value is converted to directional vectors, but
these directions do not tell where the front end of the body is relative to the rear
end of the body. To determine whether the body, for instance, is directed in a
northern or southern respectively eastern or western direction, the direction of
the paws is determined.

The direction of the paws is determined by setting the mean value of the cen-
troids of the toes in relation to the value of the centroid of the pad, where the
former value is assumed to be closer to the front end of the rat than the latter
value. Once the direction of each paw print is determined, the direction within a
paw ID is determined by adding and normalizing each paw print belonging to the
paw ID, so that one and the same paw ID is having the same average directional
vector of each frame it is present in. Thereafter, the directional vectors of each paw
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Table 3.1: Overview of features extracted or calculated from the blob detection.
Features, body
Area Area of the body
Centroid Center of geometry of the body

Orientation Angle between x-axis andmajor axis of the body rang-
ing from -90◦to 90◦

Direction Directional vector of the body using its orientation
Features, paws

Bounding box Position and size of the smallest box containing the
paw

Contour area Area inside the contour of the paw
Centroid Center of geometry of the paw
Features, paw parts
Direction Directional vector of the paw from pad to toes
Pad area Area of the paw’s pad
Total Area Total area of all paw parts present in a paw print

Major axis length Maximum major axis length of the pad within a paw
ID

Minor axis length Minor axis length corresponding to major axis length
Collected direction Resultant of all paw directional vectors within a frame
Features, rat

Direction
Direction of the rat; direction of the body and col-
lected direction of paws to flip the directional vector
if needed within a frame

Relative direction Directional vector from the centroid of the body to the
centroid of each paw within a frame

Relative angle
The angle between the directional vector of the rat and
the relative directional vector of each paw within a
frame

AEP Position of paw relative to the position of the body in
paw touchdown

PEP Position of paw relative to the position of the body in
paw take off

IP Intermediate positions, i.e. the paw’s positions be-
tween the stance phase’s AEP and PEP

MSE Mean squared error of the AEP, IP and PEP to a line
fitted by the least square method in a stance phase

TMSEpF Total mean squared error of the MSE of the paws
present in a frame

IP-distance
Distances from the intermediate positions to the linear
line extending between the stances phase’s AEP and
PEP

Footprint clustering Variability in AEP’s and PEP’s respectively, for each
paw class
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ID being present in one and the same frame are added and normalized, so that
the paws are having a collected direction in each frame. The collected direction
of the paws in a frame is then combined with the directional vector of the body in
that same frame to get the rat’s direction.

To determine where a paw is located relative to the body the directional vector
from the body’s centroid to the paw’s centroid is determined, named the relative
directional vector. Thereafter, the relative angle between the body’s directional
vector and the relative directional vector is determined. This parameter can have
values between -180◦and 180◦, where values closer to 0◦indicate the paw print is
close to the rat’s front end and a value closer to -180◦or 180◦indicates the pawprint
is close to the rat’s rear end.

Figure 3.4: Illustration determination of the rat’s direction. The cross is the body’s
centroid and the dashed arrow along with the long solid arrow is the body’s major axis.
The angle a is approximate -45◦, indicating the body is being directed northeast.
However, the directions (small arrows) of the paws is suggesting the rat is being
directed southwest, which will be determined as the rat’s direction.

3.2.7 Classification of paws

The paw prints can be divided into four classes according to whether they belong
to the right hind, left hind, right front or the left front paw. To determinewhether a
paw print is belonging to a right or left paw its relative angle is used. If its relative
angle is< 0◦, the paw print is classified as belonging to a left paw and if its relative
angle is> 0◦, the paw print is classified as belonging to a right paw, see figure 3.5.
Whether the paw print belongs to a front or hind paw is determined by the size of
its pad area. A pad area above a certain value leads to the paw print belonging to
a hind paw and a value below that certain value leads to the paw print belonging
to a front paw. Once all paw prints are classified, each paw print belonging to the
same paw ID is corrected if necessary. This is done by assigning each paw print
in that paw ID the most commonly occurring class affiliation within the paw ID.
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Figure 3.5: Illustration showing relative angles. The cross is the body’s centroid, the
center arrow is its directional vector. The two smaller arrows are directional vectors from
the rat’s body’s centroid to the paws’ centroids. The angles a and b are the relative
angles, where a is approximately 45◦(the rat’s right side) and b being approximately
-135◦(the rat’s left side).

3.2.8 Extraction of video sequences
Since gait patterns canmainly be analyzedwhen the ratmoves in a gait, the frames
showing the rat sitting down or standing still are discarded. Sitting is defined as
the region of the rat’s body being below a certain value in area. To determine if
the rat is standing still or moving in a gait, frames are extracted and analyzed in
sequences of 10 consecutive frames. Whether the rat moves in a gait or stands still
within the frame sequence is defined by the average displacement of the coordi-
nates of the body mass center between two consecutive frames. If the average dis-
placement, in either the x- or y-direction, exceeds a certain value, all frameswithin
the sequence are saved to a separate table only containing features of frameswhere
the rat is walking. Otherwise, all frames within the sequence will be left out from
that separate table.

3.2.9 Correction of classes within frames
Once the data exclusively contains frames visualizing the rat moving in a gait and
the paw prints are classified, the data is searched and corrected if needed. The
classified paw prints are analyzed one frame at a time to see if any frame contains
an irrational set of paw classes. For instance, a frame cannot contain more than
four paw prints, more than two left paw prints, more than two hind paw prints
and so on. In case a frame has five or more paw prints, the paw print with the
smallest pad area is removed. In case a frame has more than two left, right, hind
respectively front paws the duplicates’ features are compared to each other and
the most likely to be false are compared to the other paw classes in the frame. If
the frame has a paw print with features close to its opposite class, this paw print
and every paw print in the paw ID it belongs to is corrected.
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3.2.10 Stance linearity & footprint clustering analysis

The parameter relative directional vector is used to determine, i.a. the parameters
anterior extreme position (AEP) and posterior extreme position (PEP) and also
different measures of stance linearity, based on the parameter stance linearity in-
dex. To get a graphical overview of the amount of body wobbling over time the
total mean squared error per frame (TMSEpF) is computed for each frame. To get
the TMSEpF the MSE of each stance phase is first calculated. A stance phase is
defined as the AEP to the PEP including all the intermediate positions (IP). The
coordinates of the AEP, PEP and IP are all fitted to a line, using themethod of least
squares, see dashed line in figure 3.6a, and theMSE of the stance phase is then cal-
culated. This gives an average value of the linearity in this particular stance phase,
i.e. the amount of body wobbling relative to the paw being in stance phase. The
TMSEpF is then calculated by adding the MSE of all paws being in stance phase
in this particular frame. In addition to TMSEpF giving a value to the total amount
of wobbling in a frame, it also gives the possibility to graphically estimate time
periods of when the rat is sitting or standing still. This arises due to the fact that
a rat sitting or standing still during a certain number of frames is equal to the rat
being in the one and same stance phase during that number of frames. Therefore,
this time of periods can be identified in a plot as plateaus when TMSEpF is plot-
ted against time or frame number. Figure 3.6b is an example of this, showing the
TMSEpF plotted against time, e.g. frame number 1-300. To estimate possible body

Figure 3.6: (A) A graphical example of stance linearity showing the anterior extreme
position (AEP), intermediate positions (IP) and posterior extreme position (PEP) with
an appurtenant curve fitted using the least square method, as well as a linear line from
AEP to PEP during one stance phase. (B) Graphical view of total mean squared error
over the time period frame number 1 to 300, i.e. during 10 seconds of a video recording,
showing plateaus when the rat is sitting or standing still.

wobbling during a period of time where the rat is sitting or standing still in one
stance phase, the spatial variation is calculated by computing the distances of its
different IP paw prints to a linear line drawn between the stance phase’s AEP and
PEP, see solid line in figure 3.6a. The IP-distances are calculated using equation
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3.1:
d =

|ax1 + by1 + c|√
a2 + b2

, (3.1)

where d is the IP-distance, i.e. the distance between an intermediate position,
positioned at coordinates (x1, y1), to the linear line, ax + bx + c = 0, going from
the AEP to the PEP. These distances can be used to estimate total body wobbling
per frame during frames where the rat is sitting or standing still. They can also
give an estimation of which paw is causing which amount of wobbling, i.e. give
an estimation of tightness of motor control in that particular paw limb.

The parameter footprint clustering, which can give an estimation of tightness
of motor control in touchdown respective take-off of the respective paw limbs, is
calculated using a paw’s every AEP’s respective every PEP’s during a period of
time. This gives a cluster of the paw’s AEP’s respective PEP’s, hence the name.
The footprint clustering of a paw is then calculated by computing the standard
deviation of the respective clusters, using their relative angles in these positions.

3.3 Deep learning based segmentation, object tracking
& classification of body parts

Deep learning based segmentation is done with DeepLabCut (The A. and M.W.
Mathis Labs) (DLC)viaAnaconda (Anaconda Inc), followedby analysis and clas-
sification in MATLAB, see the workflow in figure 3.8a.

3.3.1 Image processing
The image processing is done using MATLAB. To increase the run time efficiency
during the trainingprocess inDLC, the video recording is downsized to 1920·1080-
pixel format and reformatted from a MP4 file to an AVI file. To reduce the risk of
interference caused by objects outside the plexiglass box, each frame is cropped
to dimensions determined by visual analysis of the video recording. Also, the
brightness in each frame is increased, to enhance the possibility of the software
identifying, detecting and following the rat’s body.

3.3.2 Labeling & training
The labeling process is done using DLC’s graphical user interface. A new project
is created in DLC and the processed video recording is imported. Approximately
every 40 frames are extracted, which are then provided with labels for the rat’s
head, belly, rear end and four paws respectively, see figure 3.7. The labeled frames
are saved and checked visually before a training data set is created. The training
data set is trained with 150.000 iterations. Once the data set is trained, it is eval-
uated visually and by using values for parameters of the loss function, extracted
from DLC. In case the values for training and test errors are not satisfactory, the
training data set is trained with additional iterations or the training data set is ex-
panded with additional frames. Otherwise, another video recording is analyzed
in DLC, which has undergone downsampling, an increase of brightness and re-
formatting to an AVI file. Then, using DLC, a novel video is created with labels of
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the analyzed video with an appurtenant H5 file containing information about the
different labels’ position in each frame and their likelihood of being present in a
certain frame at that certain position.

Figure 3.7: Screenshot of DeepLabCut’s graphical user interface,during labeling process.

3.3.3 Determination of directions
The H5 file is reformatted to a CSV file using python via Anaconda and the CSV
file is loaded in MATLAB. The CSV file now contains coordinates of the positions
for all body parts respectively, frame by frame, as well as a likelihood value. All
values appurtenant the rat’s belly, head or rear end are added to a table. The like-
lihood value is a measure of the likelihood of a certain body part being in a certain
frame at a certain position, valued in a range from 0 to 1. All body parts’ labels
having a likelihood below 0.9 are assigned the average coordinate- and likelihood
values of the body part in question found in the neighborhood frames. Then, body
parts’ labels still having a likelihood below 0.9 are removed from the table. The
directional vector of the rat is determined by the number of labeled body parts
present in the frame in the order of priority:

1. Three labels present: resultant of the directional vectors of head relative to
the belly, belly relative to the rear end and head relative to the rear end in
the frame in question.

2. Two labels present: belly relative to the rear end or else the head relative to
the rear end or else the head relative to the belly, depending on which of the
body parts has a label in the frame of question.

In those cases a frame contains less than two labeled body parts, the directional
vector is given by the direction of the neighborhood frames.
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3.3.4 Classification
The respective paws are classified as in the previous section, using relative angles
and size of pad area. The relative angle is the angle between the directional vector
of the body and the directional vector of the paw print relative to the body, where
the directional vector of the paw print relative to the body is imported from the
table made in the previous section. The angle of the paw print relative to the
body is then used to determine whether each paw print belongs to a right or left
paw. Also, as in the previous section, each paw print is determined to belong to
a front or hind paw using the paw prints size of the pad area, where the pad area
is imported from the table made in the previous section. When all paw prints
are classified each paw print belonging to a certain paw ID is corrected if needed,
making all paw prints within the same paw ID belonging to the same paw class.
At last, correction of classes within frames is done if needed, as in the previous
section.

3.4 Deep learning based segmentation, object tracking
& classification of paws

Deep learning based segmentation and classification is done with DeepLabCut
(DLC) via Anaconda, see the workflow in figure 3.8b.

3.4.1 Image processing
Image processing of the video recording is done according to the procedure de-
scribed in the previous section, see section 3.3.1.

3.4.2 Labeling & training
Labeling and training of the data are done according to the procedure described in
the previous section, see section 3.2.2. A data set is created, trained and evaluated
and a novel video is createdwith labels of the analyzed videowith an appurtenant
H5 file containing information about the different labels’ position in each frame
and their likelihood of being present in a certain frame at that certain position, as
in section 3.2.2.

3.4.3 Classification
The H5 file is reformatted to a CSV file using python via Anaconda and the CSV
file is loaded in MATLAB. All values appurtenant the rat’s paws, being the co-
ordinates and likelihood of each detected paw print frame by frame, in the CSV
file are added to a table. All paw prints’ labels having a likelihood below 0.9 are
removed from the table.
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Figure 3.8: (A) The workflow of the DeepLabCut software in combination with the
MATLAB program. (B) The workflow of the DeepLabCut software.
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4

Results

4.1 Setup & data collection
The setup worked and generated data as intended. The rat was able to move un-
hindered and video recordings of high image quality were generated.

4.2 Image analysis in MATLAB
Themainmilestone of this project is to be able to use any of the proposedmethods
to classify the paws with satisfactory accuracy.

4.2.1 Classification
The image classification method done by analysis in MATLAB, described in sec-
tion 3.2 resulted in approximately 93 % accuracy in classifying a detected paw
print ID belonging to the correct paw class, with the results of manual classifica-
tion as ground truth. The error rate of 7 % included 0 % of incorrect front or hind
classification, approximately 6 % of incorrect right or left classification and 1 % of
incorrect detected body parts. As described previously, the classification of paws
as left or right paws and front or hind paws was based on the pad area and the
relative angle. A class division according to these terms can be seen in figure 4.1,
where the paw prints’ relative angles are plotted against their pad areas. This plot
shows the paw prints form 4more or less distinguished clusters. In particular, the
front and hind paw prints are showing a clear division; below respective above
approximately 800 pixels in area, which is the pad area threshold value chosen
for this particular rat and video recording. A division can also be seen between
right and left paw prints; above respective below 0◦, although it is not as distinct
as between the front and hind pawprints. Whether a paw print’s pad area is equal
to or greater than 800 px is decided based on the requirement that the paw print’s
paw ID contains at least one paw print with a pad area equal to or greater than
800 px. This requirement causes some of the hind paw prints to be visually out-
side their proper cluster. Also, the paw ID correction, described last in section
3.2.7 and the correction of classes within frames, described in section 3.2.9 causes
paw prints to be visually outside their proper cluster, hence the overlap of clusters
representing left and right paw prints in figure 4.1. The duration of the respective
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Figure 4.1: Scatter plot showing paw prints appurtenant the four paw classes; right hind
paw, left hind paw, right front paw and left front paw divided according to the paw
prints pad area and its angle relative the rat’s body.

paw classes relative to each other, i.e. the total number of frames a paw appur-
tenant a certain paw class is being present in relation to the number of frames all
paws are being present in total is shown in table 4.1. The duration and number of

Table 4.1: Table showing duration of the paws appurtenant the respective paw class, in
relation to all paw classes, during all sequences respective walking sequences. Also, the
number of times the paws appurtenant the respective paw class is used, in relation to all
paw classes during all sequences respective the walking sequences are shown.

Duration [%] All sequences Walking sequences
Right hind 33.90 29.35
Left hind 34.07 34.80
Right front 16.78 18.27
Left front 15.25 17.59

Number of touchdowns [%] All sequences Walking sequences
Right hind 19.25 25.71
Left hind 18.53 26.60
Right front 32.14 22.70
Left front 30.08 25.00

touchdowns of each paw class are also shown in histograms (figure 4.2a-d). Here,
‘number of touchdowns’ is the number of paw IDs belonging to the paw class in
question and ‘duration’ is the total number of frames a paw belonging to the paw
class in question is present, not in relation to all paw classes. Also, here 1 equals
right hind, 2 equals left hind, 3 equals right front, 4 equals left front. The aver-
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Figure 4.2: Histograms showing duration and number of touchdowns of each paw class;
1 = right hind, 2 = left hind, 3 = right front, 4 = left front. (A) Duration of the paw
classes, counted in number of frames, for all sequences. (B) As (A), but for only the
sequences where the rat is walking. (C) Number of touchdowns of the paw classes, for
all sequences. (D) As (C), but for the walking sequences.

age stance and swing time, mentioned in section 2.1, was calculated for the hind
paws during walking sequences. Corresponding values for the front paws were
not calculated, due to insufficiency in detection. The stance time is computed by
dividing a paw class’ duration by the number of touchdowns for that paw class,
divided by the frame rate of the video recording in milliseconds. The swing time
is the difference in frame number from a paw class’ paw ID to the paw class’ next
paw ID, divided by the frame rate of the video recording in milliseconds. These
calculations resulted in the values shown in table 4.2.

Table 4.2: The average stance and swing time in milliseconds for respective hind paws,
calculated from video sequences where the rat is walking.

Right hind Left hind
Stance time [ms] 307 352
Swing time [ms] 133 140

34



4.2.2 Stance linearity & footprint clustering
The stance linearity analysis resulted in the parameter total mean squared error
per frame (TMSEpF), which is graphically shown in figure 4.3a (and also in figure
3.6b), where TMSEpF is plotted against time over the time period of frame number
1 to 300. This graph shows the total measure of stance linearity per frame for all
paws being present in that frame and the time periods where the rat is sitting can
be seen as plateaus. Here, stance linearity is based on curve fitting by the least
square method and the measurement of linearity for each paw print present in
a stance phase is the mean squared error of this paw print relative to the fitted
line. To get measures of which of the paws contribute more or less to the total
mean squared error over time, the mean squared error of each paw over time is
plotted, see figure 4.3d. In these calculations, it is not taken into account whether
the respective pawprints are anAEP-, IP- or PEP-print, which leads to every stance
phase having the same totalmean square error throughout the entire stance phase.
This in turn will give rise to a graphical plateau when the one and same stance
phase occurs over several frames in a row, as when the rat is sitting or standing
still.

The average total mean square error (TMSE) and each respective paw’s aver-
age mean squared error (MSE) throughout the video recording was calculated
which resulted in the numbers:

• Average TMSE = 0.2205

• Average MSE, right hind = 0.2976

• Average MSE, left hind = 0.4621

• Average MSE, right front = 0.0863

• Average MSE, left front = 0.0359
Note, this approach gives a linearity measure partly including linearity when the
paws are actually not in stance phase, but in swing phase, since the MSE of the
AEP-print and PEP-print is included in the calculations.

If instead the stance linearity is based on a line fitted from the stances phase’s
AEP-print to its PEP-print and themeasure of that stance phase’s linearity is calcu-
lated by computing the distances fromeach IP-prints to the fitted line (IP-distance),
this will result in data possibly varying throughout an entire stance phase. An ex-
ample of IP-distances is shown in figure 4.3b, where the total IP-distances is plot-
ted against time over the time period of frame number 1 to 300. In figure 4.3c the
IP-distances over the same time period as in figure 4.3b is plotted, showing the
IP-distance per paw. In this graph, only the hind paw’s IP-distances are shown,
since the front paws are not present in video sequences where the rat is sitting
down.

A graphical view of stance linearity, in terms of IP-distances, for all respective
paws is shown in figure 4.4a-d, where IP-distances of each paw are plotted against
time.

The parameter footprint clustering of each respective paw was calculated by
computing the standard deviation of the paw’s AEP- respective PEP-positions rel-
ative the body throughout the video recording, using the relative angles for the
AEP- and PEP-prints. This resulted in the values seen in table 4.3.
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Figure 4.3: Graphs showing: (A) Total mean squared error plotted against frame
number 1-300. (B) Total IP-distances of all paws plotted against frame number 1-300.
(C) IP-distances of right hind paw versus left hind paw plotted against frame number
1-300. (D) Mean squared error of each paw plotted against time.

Table 4.3: Foot print clustering of each respective paws, of their AEP respective PEP, i. e.
the standard deviation of the positions relative the body for the AEP respective the PEP,
in degrees.

AEP [◦] PEP [◦]
Right hind 98.92 112.50
Left hind 102.22 114.16
Right front 98.91 106.14
Left front 98.49 116.60

4.2.3 Area features

Values of features regarding the area of the paws and the paw parts, which can
be of use when analyzing the pressure load of the rat’s paws, are shown in table
4.4. In this table, the different features are divided into the four paw classes for
comparison. The parameter named pad area is determined by a paw ID’s largest
occurring paw part area. The parameter named total area is the total area of a paw
ID’s paw parts, being present in one frame.
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Figure 4.4: Graphs showing IP-distances plotted against time in deciseconds: (A)
IP-distances of right hind paw plotted against time. (B) IP-distances of left hind paw
plotted against time. (C) IP-distances of right front paw plotted against time. (D)
IP-distances of left front paw plotted against time.

Table 4.4: Area features of the paws and pad areas of each paw class.
Right hind Left hind Right front Left front

Maximum total area [px] 2994 3193 2041 1303
Average total area [px] 1459 1431 681 637
Maximum pad area [px] 2816 2514 1945 1303
Average pad area [px] 1649 1598 739 667

4.3 Deep learning based segmentation & object track-
ing

The deep learning method done by deep learning based segmentation and object
tracking in DeepLabCut (DLC), described in section 3.3 resulted in an accuracy of
classifying a detected paw print ID belonging to the correct paw class of approxi-
mately 67 %, with the results of manual classification as ground-truth. The error
rate of 33% included 0% of incorrect front or hind classification, approximately 32
% of incorrect right or left classification and 1 % of incorrect detected body parts.
Due to the accuracy being significantly lower using this classification method, no
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further analysis was done.

4.4 Deep learning based segmentation, object tracking
& classification

The deep learning method done by deep learning based segmentation, object
tracking and classification inDeepLabCut (DLC), described in section 3.4 resulted
in an accuracy of classifying a detected paw print ID belonging to the correct paw
class of approximately 30 %. The method also generally resulted in a low detec-
tion rate of the paw prints, in particular the paw prints belonging to the front
paws. Due to the accuracy and detection rate being significantly lower using this
classification method, no further analysis was done.
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5

Discussion

The available methods to evaluate pain affected or 6-OHDA lesioned rats with
subsequent treatments described in section 2.4 each has its pros and cons. The
cylinder test is executed with a simple setup, requiring small resources and pro-
vides data easy to interpret. However, the interpretation of the data is time con-
suming and requires an examiner. Further, the data only gives information about
the number of usage for the respective pawwhen the rat is rearing up and touches
the cylinder wall. Thus, the data does not contain any information about, for in-
stance, pressure load on the paws, the rat’s body posture, gait pattern or other
motor behaviors.

The method used in the systems CatWalk XT andMouseWalker provides data
that is less time consuming than the cylinder test, at least in relation to the in-
formation given, and does only partly require an examiner in the interpretation
process. These systems can result in data containing information regarding the
rat’s gait pattern, the pressure load on its respective paws and the number of us-
age of its respective paws. However, a disadvantage of these systems is that the
rat has to be trained to go through the tunnel, for example done by luring the rat
with treats a certain number of times until the rat voluntarily goes through the
entire tunnel without stopping or turning around. This training process may give
a disadvantage to some extent for being somewhat time consuming and mainly
it gives the disadvantage of the rat showing a forced instead of its normal motor
behavior when passing through the tunnel and the fact that the rat and therefore
its motor behavior is limited by the walls of the tunnel is also creating a limited
motor behavior. Also, the CatWalk XT system is provided with an appurtenant
software, which the user needs to usewhen analyzing the data. This software can-
not be switched out, which means that the user cannot combine the system with
other possibly wanted systems and cannot calculate possibly wanted parameters
not being preprogrammed in the software.

The method used in the open field setup has the advantage of providing data
generated by the rat in a practically unrestricted environment. It also allows the
user to combine the setup with other possibly wanted systems. However, this
method only generates data regarding the rat’s motor behavior in general, as its
displacement, and lacks information about the pressure load of the paws and gait
pattern.

This project therefore aimed to investigate the possibility of a system that en-
hances evaluations of rats when affected by pain or 6-OHDA lesion and possible
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treatments of these conditions. This was done by combining some of the currently
used methods and setups and evaluating the possibility to analyze the data by
blob detection and classification, using MATLAB, and deep learning based seg-
mentation, object tracking and classification, using DeepLabCut.

5.1 Setup & data collection
The setup worked and generated data as intended. The data was at first to be
collected using a web camera, having the same image resolution and frame rate
recording as the GoPro later on used, but this generated video recordings having
too low reproduction of the LED inside the glass plate and too high reproduction
of the LED propagating into the surroundings. This may have to do with differ-
ences in the cameras’ exposure, whereon this parameter can be of importance for
the setup. Also, the alternative of having background light, above the rat, was
tested, but was discarded later on.

5.2 Image analysis in MATLAB

5.2.1 Classification and gait analysis
The main step stone of this project is to be able to use one or several of the meth-
ods described in chapter 3 to classify the paws with satisfactory accuracy as this
is a direct necessity when evaluating pain or 6-OHDA lesion in rats and treatment
methods for these conditions. When using gait analysis as a tool in these evalua-
tions it is important that the paw prints are correctly classified to enable identifi-
cation of how the rat uses its respective paws and identification of any difference
in paw use after pain exposure or 6-OHDA lesion with subsequent treatment. An
accuracy of 93 %may be considered high enough in this reference, if one assumes
the future amount of data being analyzed is sufficiently large and thoroughgoing.

The plot shown in figure 4.1 has paw prints located outside their visually
proper clusters. The paw prints being correctly corrected from being appurtenant
to a front paw to being appurtenant to a hind paw or vice versa can exemplify the
deficiency of the blob detection. However, it needs to be taken into account that, at
least a part of the paw prints being classified as hind paws even though their pad
area is below 800 pixels is because of the paw’s whole surface not touching the
glass plate throughout the whole stance phase. The paw prints being accurately
corrected from being appurtenant to a right paw to being appurtenant to a left
paw or vice versa can exemplify the fact that a rat’s paw not necessarily is located
on the same lateral side as it is attached to the body, but is sometimes crossed to
the contralateral side of the rat’s body.

In figure 4.1 the clusters of front respective hind paws also show a somewhat
distinctiveness in their relative angles. The approach of classifying the paw prints
belonging to a front or hind paw dependent on their relative angle was therefore
also tested, but this generated a lower accuracywhereupon this approachwas dis-
carded. There is a possibility that this approach could generate a higher accuracy
by enhancing the method of detecting and determining the position of the rat’s
body location. The histogram in figure 4.2d is showing an insignificant difference
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between the four paw classes, which is indicating a classification accuracy high
enough. This statement is strengthened by comparing the histograms in figure
4.2a and figure 4.2b, where the relation between hind paw duration and front paw
duration is significantly higher in figure 4.2a than in figure 4.2b. This is a result
of figure 4.2a, in addition to walking sequences, also containing sequences where
the rat is sitting down and only touching the glass plate with its hind paws giving
hind paw prints a significantly longer duration than the front paw prints. This
is further substantiated by comparing figure 4.2a and figure 4.2c, since it shows
the increased proportion of hind paw duration in figure 4.2a (compared to figure
4.2b) not being caused by a higher detection ability in favor of hind paws in sitting
sequences.

The histograms in figure 4.2b and figure 4.2d shows just a slight over represen-
tation of hind paw print touchdown, but a significant over representation of hind
paw print duration. This would indicate the rat taking as many steps using its
front paws as its hind paws, but the stance phase being shorter of the front paws
than the hind paws. This is not likely, instead, this is indicating possible improve-
ment of the setup and/or the blob detection, since the hind paw prints are clearly
more visible and/or better detected. Note that the data in these histograms are
extracted from the sequences where the rat is moving, the significant over repre-
sentation of hind paw print duration can therefore not be explained by the fact
that the rat is only using its hind paws when sitting down.

Parameters related to duration and number of touchdowns are stance and
swing time, see table 4.2. These parameters were only computed for the hind
paws, given the indication of the front paw print’s lack of detection. However, the
stance and swing time can be parameters of use when analyzing the rat’s gait. A
rat affected by pain in one of its paws can give rise to a decrease in stance phase
time of that paw, due to the rat being less willing to put pressure load on the paw.
For the same reason, this could give rise to an increased stance time duration of
some or all the other paws not being affected by pain. Also, the swing phase could
be affected by pain experiences, where the swing phases of the paws not being af-
fected by pain most likely would decrease as a direct cause of the pain affected
paw’s stance time being decreased. The swing phase of the affected paw would
most likely be unaltered or possibly increased. A general and significant differ-
ence in these two parameters between the respective paws could also indicate a
general limping or abnormal gait pattern, which in turn can indicate the rat being
in pain in general or being affected by, for instance, a 6-OHDA lesion or an electric
pulse stimulation.

5.2.2 Body posture
When the rat is sitting down, the use of its paws is of less importance, since there
is no gait pattern to analyze. However, video sequences of the rat sitting down
can be of use in terms of analyzing a 6-OHDA lesioned rat’s body posture since
it, in sitting positions, may have a tendency of showing axial dyskinesia, typical
of this condition [14]. This project does not include rats that are affected by any-
thing, but only rats in their normal state. Therefore, an evaluation of this typical
body posture has not been performed, but the project has generated the param-
eters mean squared error in a stance phase (MSE), total mean squared error per
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frame (TMSEpF) and intermediate position distance (IP-distance) as suggested
parameters to use in such an evaluation. The TMSEpF can be seen as a graph-
ically, timestamped representation of whether the rat is sitting, standing still or
moving, where a sitting sequence will be seen as a plateau in the graph. The
value of the TMSEpF in this plateau can further indicate a high or low total axial
displacement of the rat, which may indicate the rat showing axial dyskinesia or
not. The MSEpF may further be used in combination with an analysis of the IP-
distances of that plateau, to identify possible frames where the rat shows signs of
axial dyskinesia, or other movement characteristics, such as tremors. Further, as
mentioned in the previous section, a comparison of the histograms in figure 4.2a
and figure 4.2b shows an increased relation between hind paw duration versus
front paw duration as a result of the histogram in figure 4.2a has sitting sequences
included. This increase can give a measure of how inclined the rat is to sit down
during a video recording. This measure in itself can give an estimation of if and
how the rat is affected by, for instance, pain or a 6-OHDA lesion.

5.2.3 Movement patterns
The video sequences showing the rat not sitting nor fully walking, but showing
its intermediate steps when switching from sitting to walking or vice versa have
the lowest accuracy in classification of the paws with the method used in section
3.2. This is most likely due to rats having a tendency in placing their front paws in
another direction than the hind paws when going from sitting to standing, before
starting to walk. This tendency causes the direction of the rat to be wrongly classi-
fied since the used method partly uses the direction of the paws to determine the
direction of the rat. As these kinds of video sequences do not contain a (full) gait
pattern to analyze they can be removed from the gait analysis, for instance using
the method described in section 3.2.8. However, the sequences showing this kind
of movement can be of use when analyzing the motor behavior during the evalu-
ation of pain or Parkinson’s treatments since a rat affected by pain or a 6-OHDA
lesion often prefers to use the paws contralateral to the lesioned or pain affected
side. This behavior can give rise to the rat turning more often to the unaffected
side than to the affected side [4]. Therefore, the data generated in these video se-
quences can be of use since it contains information on the hind paws’ direction and
position and the front paws’ direction and positions, which in turn can generate
information about which side the rat may prefer to turn.

Also, the histogram in figure 4.2cmay serve as a basis for analyzing the rat hav-
ing a possibly preferred usage of one of its front paws in these video sequences,
by comparison of the number of touchdowns of the respective front paws (bar 3
respective 4). From this point of view, these video sequences may give measure-
ments similar to those generated from a cylinder test. However, the histogram
presented in figure 4.2 is most likely deceptive regarding the comparison between
bars 3 and 4, since these are generated from the classificationmethod based on the
rat’s body’s direction, which resulted in a low accuracy in the sequenceswhere the
rat is between sitting andwalking. To get amore truthful comparison between the
number of touchdownsmade by the right respectively left front paw another clas-
sification method, for instance, one where the direction of the paws is used would
be necessary. In addition to the video sequences where the rat is between sitting

42



and walking, data appurtenant video sequences showing the rat walking also can
contain information about a possibly preferred turning side, through the use of
how the rat’s direction is changing over time.

5.2.4 Stance linearity & footprint clustering

As mentioned in section 5.1.2 the parameters (TMSEpF, MSE and/or IP-distance)
may be used as a tool when analyzing possible body axial rotation/dyskinesia in a
6-OHDA lesioned rat. These parameters, alone or in combination with each other,
alsomaybe a possible toolwhen analyzing the ratwalking as these parameters can
give an indication of the amount of bodywobbling. The amount of bodywobbling
may increase versus decrease when the rat is affected by pain or a 6-OHDA lesion
versus when the rat is affected by treatment.

Also, the parameter footprint clustering may be of use in gait analysis since it
can givemeasurements regarding the rat’s tightness of motor control in its respec-
tive paw limbs. The values presented in section 4.1.2 show a tighter motor control
of the rat’s front paw limbs (AEP) than in its hind paw limbs (PEP), which is a
general characteristic of rats [5]. The values are also indicating this particular rat
has tighter motor control in its right body half than in its left body half. This sort
of comparisonmay be a tool in future gait analysis, since these values may change
when the rat is affected by pain or 6-OHDA lesion and subsequent treatment.

Which one of these parameters or which combination of these parameters is
being of use in a gait and/or body posture analysis is to be further evaluated by
comparing data of an unaffected rat with data generated when the rat is affected
by pain or 6-OHDA lesion.

5.2.5 Area features

A readout from the table 4.4 gives that the maximum total area is equal to the
maximum pad area for the left front paw, which is not a reasonable result. This is
indicating a threshold value set too high in the pawpart detection, leading to a lack
of detection of the left front paw’s toes alternatively a threshold value set too low,
leading to the toes and pad area being merged together to one blob. Comparing
these two values of the left front paw with the corresponding values of the right
front paw though is indicating that the threshold value is set too high if assuming
the rat’s front paws and pads are of approximately the same size.

The paws were classified as belonging to a hind paw class or front paw class
according to their pad area. This threshold value was set to 800 px and the values
regarding pad area in table 4.4 are strengthening this to be a correct set threshold
value. However, themaximumpad areas of the front paws are significantly higher
than 800 px,which is indicating the classification correctionsmade in sections 3.2.7
and 3.2.9 are a necessity. From the table 4.4 one can also read that the parameter
called average total area may be of use to classify the paw prints belonging to a
front or hind paw, by itself or possibly in combination with the parameter average
pad area.
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5.2.6 Method improvements
Possibly useful parameters that can be extracted from every sequence in the video
is the amount of the paw area and also which of the paw parts are being loaded
during each stance phase. If a pawhas a pawprint area that significantly decreases
after the paw is UVB irradiated, this can be an indication of the rat experiencing
pain in that particular paw and vice versa when the rat is experiencing pain relief.
Furthermore, an analysis ofwhich of the pawpart’s area has decreased can give an
indication ofwhere the rat experiences the pain originates from. These parameters
were determined during the method described in section 3.2.2 as pad area, total
area and contour area, see table 3.1.

The resulting values of the first two parameters, mentioned in chapter 4, may
be a representation of these parameters to some extent. However, these values
are probably insufficient in terms of being of use in an experienced pain- and pain
relief-evaluation, since the paw part detection is insufficient in some of the frames,
where paw parts visual to the human eye are not detected. This statement is also
strengthened by a readout of table 4.4, which gives that the maximum total area
is equal to the maximum pad area for the left front paw. This is mainly due to
the threshold value of paw part detection being optimized in favor of the correct
classification of the paw classes. Choosing a lower threshold value led, in some
cases, to one ormore pawparts beingdetected as one blob. This in turn led to these
merged paw parts being detected as a false pad with a false pad area resulting in
the paw print being classified as belonging to a false hind paw.

The last-mentioned parameter, contour area, is probably also insufficient in
terms of being of use in an experienced pain- and pain relief-evaluation. Again
the threshold value was optimized in favor of correct paw classification and to
be able to have too many true undetected paw prints the threshold value was set
relatively low. This led to parts of the rat, for instance, its head and tail tip, being
falsely detected as paws. The detected blobs appurtenant the tail tip was easily
identified as false paw prints due to their large distance from the body. However,
amethod to identify a blob being appurtenant the body or the headwas notmade.
Choosing this threshold value relatively low alsomade the paw area includemore
parts of the paw than the paw parts actually touching the glass plate. This is the
reasonwhy this parameter is called contour area instead of paw area and is seen as
a tool to detect areas of possible paws and assign them the correct paw ID, rather
than a tool to be used when the actual value of the paw is of interest, as in a pain-
and pain relief-evaluation.

Possibleways to improve these four parameters include changes and optimiza-
tions of the setup and of the programwritten inMATLAB. Examples of properties
deriving from the setup can be the camera resolution, the choice of LED color and
the choice of not having a background color. The camera used in the setup (GoPro
Hero8 Black) provides two user-selectable resolutions; 1920·1080 and 3840·2160
(4K) and both of these were tested, where the lower resolution resulted in video
recordings where the paw and paw part detection was difficult to execute. There-
fore, a resolution higher than 4K may result in video recordings enhancing the
paw and paw part detection. This may lead to increased accuracy in paw and
paw part area values and it may also lead to a more correct representation of the
paw and paw parts shapes, which in turn could be a possible entry to differentiate
false paw prints arising from for instance the rat’s head. However, an increase in

44



image resolution would come at the cost of increased computational demand.
The CatWalk XT system uses a red light as a background light. The alternative

of having a red background light was also tested in this project’s setup, but this
setup resulted in video recordings where detection of the body was impracticable
in frameswhere the ratwas close to thewalls of the box. In these frames the region
of the body and the region of the walls got the same pixel value (0), making the
body detection and therefore the paw classification impossible. However, in the
frameswhere the rat was not close to the walls, the contours of the rat’s bodywere
more distinct, leading to more correct detection of the body’s position. This can
lead to a more correct paw classification since the region of the rat’s body may
get a more correct centroid value and orientation value. It could also lead to a
less insufficient paw and paw part detection and therefore a better estimation of
their respective areas since the pixel value of the region of the rat’s body versus
the regions of the paws and paw parts differs more using red background light.
To get around the problem regarding when the rat’s body is close to the walls a
solution may be to choose another color than black on the walls.

To enhance the correctness of the paws and paw parts areas and possibly other
parameters the program written in MATLAB can be changed and optimized in
several ways. The program written for this project uses the same method of de-
tection (although on three different levels) for all of the frames. Assuming this
method is optimal for the classification of the paws, another detection method is
optimal for determining the paw’s areas. A possible approach would therefore be
to use different kinds of detection methods throughout the video recording and
thereafter use one of them to classify the paws, another one to determine the paw
areas, a third one to determine differences in intensity inside the paw areas and
so on.

Another approachwould be to add one ormore cameras to record the rat from
different directions, such as from above, like in the open fieldmethod described in
section 2.4 and possibly from the sides. This would give the opportunity of gener-
ating describing and detailed data, possibly enhancing the analysis regardless of
whether the rat is standing, sitting still or moving in a gait. However, this might
make the optimization of the open field setup more challenging, since it would
need to be optimized with respect to filming both from above and underneath.

5.2.7 Kalman filter

The initial attempt to detect the region of the rat’s body included Kalman filtering.
This was done by writing a program in MATLAB. Although this approach was
fairly successful, it later on in the process was found not necessary since the pro-
gram including blob detection was sufficient to follow and detect the rat’s body.
Nevertheless, if the setupwas to be changed to having a red background light, the
problem regarding the region of the body and the region of the walls getting the
same pixel value may be solved by using a Kalman filter. This approach could be
a possible way of differentiating between the walls and the rat’s body and it could
also result in even higher correctness of the rat’s position and orientation.
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5.3 Deep learning based segmentation & object track-
ing

The method of classifying the paw prints using a combination of DeepLabCut
(DLC) and MATLAB is including the rat’s body’s direction being determined by
data generated fromdeep learning based segmentation and object tracking inDLC
and the body’s position and the paw’s location relative to the body is determined
by data generated from image analysis in MATLAB. This method generated a sig-
nificantly lower accuracy than the method where image analysis in MATLABwas
used alone. However, this combined method has several ways to be improved.
When combining the methods, it would be preferred to combine the body’s direc-
tion and position, gathered from DLC, with the positions of the paws, gathered
from MATLAB and from this, compute the relative positions between the body
and the paws. This approach was tested, but generated a lower accuracy, due to
the relatively low detection rate of the rat’s belly, when using DLC.

To increase the detection rate of the belly and also the rear end and head of
the rat an alternative would be to add further brightness to the video recording
and possibly other image processing parameters. Another alternative would be to
optimize parameters when labeling and training the video recording, using DLC.
This has not been tested and evaluated due to time limits in combination with
the training procedure being time consuming and also due to technical problems
along the way. The most effective way to optimize the prerequisites to enhance
the detection rate of DLC would probably be to change the setup for the video
recording. The optimal lighting to facilitate detection of the rat’s body is presum-
ably daylight or similar. A setup under these preferences may therefore result in a
higher detection rate, leading to higher accuracywhen determining the body’s po-
sition, which further can lead to higher classification accuracy. However, a setup
in daylight will most likely impair the FTIR-enabled detection of the paws. There-
fore, the optimal settingmay bewith red background light, as discussed in section
5.1.6, due to the more distinct reproduction of the rat’s body using this setup.

5.4 Deep learning based segmentation, object tracking
& classification

The classification method where only DLC was used to classify the paws resulted
in a low accuracy compared to the other two classification methods. This is most
likely due to DLC not being designed to track objects having a high tendency of
not being present in the frames, which is the case concerning the paws. The clas-
sification accuracy would most likely be improved with other setups, such as a
setup in daylight and no LED light, which would make the paws visible and de-
tectable at all times. However, this would only generate information regarding
the classification of the paws and no information regarding if a paw is pressure
loaded or not.
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5.5 Ethics
The ‘3R’ principle, mentioned in section 2.7 was taken into consideration through-
out the project. The experimental animals, i.e. the rats, were replaced by other
subjects during the construction of the setup when for instance the FTIR-enabled
detection of the camera was carried out. During the data collection, four rats were
video recorded since three different constellations were tested (setup including
black background recorded with lower resolution as well as higher resolution as
well as setup including red background). Also, an additional recording was car-
ried out to enable comparison between any differences between two different in-
dividuals. Except to enable such comparison, the choice of using more than one
rat was based on the fact that a rat becomes less active after spending some time in
the box. However, this choice is also following the aim of refining the experiment
since the individual rat spent less time in the box than they would if a smaller
number of rats had been used. It should also be taken into account that the rats
were not subject to any physical harm.
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6

Conclusion

The aimof this thesiswas to implement a systemallowing analysis ofmotor behav-
ior, such as gait pattern, of rats in an open field setup bymeans of video recording
and subsequent image analysis. Further, the aim was to evaluate different image
analysismethods; blob detection and classification usingMATLAB aswell as deep
learning based segmentation using DeepLabCut.

The open field setup worked and generated data as intended. The rat was able
to move unhindered and video recordings of high image quality were generated.
However, this setup was found to be inapplicable with the image analysis method
using DeepLabCut including deep learning based segmentation, object tracking
and classification of the paws. Thismethod requires a different type of setupwhen
the aim is to detect, track and classify the paws.

The image analysis method where deep learning based segmentation, object
tracking and classification of the rat’s head, belly and rear end was done using
DeepLabCut to determine the direction of the rat, was combined with detection
and classification of the paws, using MATLAB and blob detection based image
analysis was found to be insufficient. However, the deep learning based segmen-
tation, object tracking and classification of the rat’s head, belly and rear end gen-
erated acceptable results and therefore, this combination of image analysis meth-
ods has potential for development. Image analysis based on blob detection, us-
ing MATLAB was found to be the method best suited to the setup. This method
had an insufficiency in detecting the rat’s paw prints, in particular the front paw
prints, which complicates analysis regarding detailed pressure load of the paws.
However, the method resulted in relatively high accuracy in classifying the paws
detected, suggesting the system is being a possible implement to enhance gait
pattern and bodymovement analysis as well as body posture analysis. This thesis
is presenting a number of possible parameters, such as stance linearity, footprint
clustering, stance time and swing time, suitable for this purpose. Further, sugges-
tions on how to optimize detection of the paw prints and thereby enable detailed
pressure load analysis are presented. Depending on the motive for the experi-
ment one want to perform and what characteristics of the rat one want to analyze
both deep learning image analysis using DeepLabCut and blob detection based
image analysis using MATLAB can be valuable tools. The methods can, with the
presented setup, be used alone, as well as combined with each other to get a more
complete assessment when evaluating potential treatments methods for Parkin-
son’s disease and chronic pain conditions.
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