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Abstract

It is a well-known fact that in any Application Specific Integrated Circuit (ASIC)
design, verification consumes most time and resources. And when it comes to huge
designs, finding bugs can be tedious given the area and the complexity. As per
Moore’s law, the design complexity is increasing exponentially due to the growing
demand for performance. Therefore, On-Chip communication becomes crucial.
The interconnects play a vital role in communication between two Intellectual
Properties (IP) in a System-on-Chip (SOC), which makes it an utmost priority
to verify the protocol. In order to achieve this, many test-scenarios are developed
which in turn increases the debug effort and verification space. As Advanced
Microcontroller Bus Architecture (AMBA) protocol is most commonly used as a
communication protocol, the Design Under Test (DUT) for this thesis is Advanced
Peripheral Bus (APB), a member of the AMBA family.

This thesis aims to investigate the applications of Machine Learning (ML) to
reduce the overall verification time and effort. Basic classifiers such as K-Nearest
Neighbors (KNN), Decision Trees (DT) are explored and studied, along with two
types of Neural Networks, such as the FeedForward Neural Network (FFNN) and
Recurrent Neural Network (RNN). These algorithms were trained overtime with
various datasets along with fine-tuning their respective parameters. The Long
Short Term Memory (LSTM) model, a variant of the RNN is the preferred among
other models as it is capable of learning the complete behavior of the APB. From
the results obtained, the LSTM was able to classify the write, read and the failed
transactions with an accuracy of 90%. The results also discusses the accuracy
obtained by other models and compares the time and effort taken to implement
all of them. The study is concluded with a belief that ML can be a method in
verification with suggested improvements. The ideas for future studies have been
briefly presented as well.

Keywords : Machine learning, SOC Verification, AMBA, Neural Networks, Deep
Learning, Assertions.
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Popular Science Summary

Having an implemented design and its specification on the same page is the crux
of any given ASIC. This desired overlapping is achieved by scrutinizing the design
at every stage of its design cycle. Verification of an ASIC has grown extensively
over the years from basic functional stimulus verification to formal verification
standards and etc., and this alone has resulted in various verification method-
ologies, one such being Assertion Based Verification (ABV). Unlike earlier days,
verification engineers now have a huge demand in the industry. With growing de-
sign complexities, it is important to verify the hardware with various tests before
tape-outs in order to avoid any possibility of a bug post tape-out.

Verifying large circuits comes with many challenges. Huge number of signals
spanning over millions of clock cycles and monitoring their behaviour is laborious
and time consuming. Although, assertions come in handy in highlighting the bugs,
writing assertions are not as simple as it looks. The complexity of the design is
directly proportional to the complexity of writing assertions.

On the other hand, with the advent of Machine Learning (ML), its extensive
usage in the development of newer technologies and simplifying existing practices
over the years has proven itself to be flexible and reliable. The ability to learn
features and either classify the nature or perform mathematical calculations and
predict the behavior in quantitative terms has paved a path for many industries,
engineers and students. Few of the examples where ML is dominating are Image
Processing, Robotics, Medical Engineering and Statistics. With various ML algo-
rithms ranging in their complexities and the nature of predictions, understanding
their behavior with regards to hardware design and verification can be helpful in
determining their competence and need for it. Presently, very few articles and
journals have been published as many leading industries such as Ericsson, ARM,
Cadence, Accellera, Xilinx are currently researching in this field.

Taking note of these challenges and approaches, the aim of this thesis is to
study and apply the concepts of machine learning in the field of hardware verifica-
tion to understand how it improvises the current state-of-the art methodologies.
A comparative study has been performed listing out its advantages and disadvan-
tages along with the results of various algorithms explored.
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Glossary

1. Checker
A checker is a block in the simulation based verification environment used
against a DUT to compare and verify the obtained data with the expected
data..

2. Code Coverage
Code coverage is a measure which describes the degree of which the source
code of the program has been tested.

3. Coverage
Coverage is a metric to assess the progress of any verification activity. Few
types of coverage are code coverage and functional coverage.

4. Driver
A driver is a block used in a simulation based verification environment that
collects and sends data to the design.

5. Functional Coverage
Functional Coverage is the determination of how much functionality of a
design has been exercised by a verification environment.

6. Machine Learning
Machine learning is the study of computer algorithms that can improve
automatically through experience and by the use of data[20].

7. Mass Erase
A flash memory consists of several blocks which store data. A mass erase
operation will erase the data stored in all blocks hence clearing out the entire
flash memory..

8. Monitor
A monitor is a block used in a simulation based verification environment
that monitors the data from the design to the scoreboard..
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9. Page Erase
A page is the smallest programmable memory unit in a flash memory. A
number of pages clubbed form a block. Once each page unit is written with
data, performing a page erase operation then will clear out all the pages in
a block..

10. Scoreboard
A scoreboard usually consists of a reference block that calculates the ex-
pected output from the design. It also consists of a comparison logic com-
pares the obtained output from the design with the expected output..

11. Stimulus
Stimulus are packets of data usually in the form of transactions that are
generated to be fed as either input data sequence and/or control sequence
to a register component or control unit from the testbench.
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Acronyms

12. ABV Assertion Based Verification.
13. AHB Advanced High Performance Bus.
14. AI Artificial Intelligence.
15. AMBA Advanced Microcontroller Bus Architecture.
16. APB Advanced Peripheral Bus.
17. ASIC Application Specific Integrated Circuit.
18. AXI Advanced Extensible Interface.

19. CNN Convolutional Neural Network.

20. DL Deep Learning.
21. DT Decision Trees.
22. DUT Design Under Test.

23. EL Ensemble Learning.

24. FFNN FeedForward Neural Network.

25. IP Intellectual Property.

26. KNN K-Nearest Neighbors.

27. LSTM Long Short Term Memory.

28. MDP Markov Decision Process.
29. ML Machine Learning.
30. MSE Mean-Squared Error.

31. NB Naive-Bayes.
32. NLP Natural Language Processing.
33. NN Neural Network.

34. RNN Recurrent Neural Network.
35. RTL Register-Transfer Level.
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36. SAPD Supervised Anomalous Path Detection.
37. SOC System-on-Chip.
38. STA Static Timing Analysis.
39. SVA SystemVerilog Assertions.
40. SVM Support Vector Machine.

41. VIP Verification Intellectual Property.
42. VLSI Very Large Scale Integration.
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Chapter 1
Introduction

Verification plays a critical role in the design flow, where the design is verified
against its specification. With the increasing demand to innovate and the tech-
nology node shrinking, verification takes about 70% of the overall time [12].

As the modern designs are more generalized and are no longer used for just
one product but will be used across multiple generations of the same product.
The main focus is to achieve functional correctness of the design before the tape
out because any undetected bugs can lead to additional costs and also affect the
time to market. To achieve this, industries have a dedicated team of verification
engineers who spend their time planning, developing, and debugging System-On-
Chips(SOC). Figure 1.1 shows a pie chart of the estimated time spent by verifi-
cation engineers [10]. 22% of the total time is spent on developing test benches
and creating test simulations, while 14% is dedicated to planning the test process.
Whereas, the highest percentage, 39% is allotted to debugging the errors or bugs
in the design.

Figure 1.1: Pie Chart [10]
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2 Introduction

Figure 1.2: Verification Cycle [19]

Figure 1.2 illustrates the basic verification cycle. The cycle includes four
phases:

• Develop: This phase includes a verification plan which lists procedures
and methods that are used for verification, and a verification environment
that can be formal or simulation based. The formal based environment
consists of assertions that are statements used to validate the behavior of
the system and simulation based environment consists of testbench and test
cases created using UVM, C or systemverilog[5].

• Simulate: In this phase, the test cases developed are simulated using the
EDA tools such as Incisive from Cadence, Questasim from Mentor Graphics,
and emulators such as Palladium from Cadence.

• Debug: It is a crucial step in the cycle that includes debugging failures of
the test cases or assertions on a transaction level, signal level, and etc.

• Cover: This step is to check the obtained coverages such as Functional
Coverage5 and Code Coverage2 as defined in the verification plan , if not
then it is fed back to the development phase to re-iterate the test cases with
a different stimuli to achieve 100% coverage.

As the complexity of the design increases each of the above steps becomes
challenging, along with higher possibility of bugs in the design.



Introduction 3

1.1 Communication Protocol

In current era, modern System-on-Chip (SOC) designs consist of several Intellec-
tual Properties (IP) [26] and one of the challenges is the on-chip communication
between different IPs. To facilitate this communication, IP cores are designed with
different interfaces and internal protocols, which can be problematic in integrating
them into a SOC. To avoid this problem, standard on-chip bus protocols were
developed. Some of the publicly available bus architectures from leading manu-
facturers are CoreConnect from IBM, AMBA from ARM, and SiliconBackplane
from Sonics. The designs typically have one or more microcontrollers or micropro-
cessors along with several other components such as internal memory or external
memory bridge, DSP, and other peripherals like USB, UART, PCIE, I2C, etc, all
of which are integrated on a single chip.

For the desired functionality of the SOC, the communication between the IPs
plays a vital role[3]. Any failure of the protocols will lead to the failure of the
complete functionality of a SOC. A few key points to consider when verifying a
protocol are stated below [19] :

• Functional Correctness and Verification Completeness: The verifi-
cation environment should generate the correct Stimulus11, Checkers1, and
Coverage3 of systematic transactions between the multi-layered intercon-
nect. As the design complexity increases, it becomes very crucial to have
a mechanism that can check every transaction from one point to the other,
with different protocols, and also parallel executions.
Functional correctness and verification completeness go hand in hand. To
make sure that interconnect is functionally correct, all the possible corner
cases, error scenarios should be covered. To achieve this goal, a robust
stimulus generator, a response checker, and a coverage model to counter the
challenges of functional correctness of the interconnect should be created.

• Stress Verification: To obtain the highest verification degree, random-
izing and firing all the triggering points at the same time is important as
this stresses the interconnects for functional verification and performance
verification. Once the functionality of the interconnect has been verified
with subsystem, it’s time to fire all the subsystems at the same time, to
mimic the real-life scenario. This will not only stress the interconnect for
functional verification but also for its latencies and performance verification.
This type of verification can be performed using the following approaches :

– Write and Read Tests: This is a register access test, where a value
is written into the register and read from the same. Any discrepancy
is either a bug in read/write logic or the interconnect.

– Protocol Checkers: This scenario is where all the checkers for a
protocol are applied using assertions, these assertions will catch the
protocol bugs for example control bit handling and delay logic.

• Functional Errors due to Latencies and Security Management: In
this process, the unmatched bandwidth of read-write cycles and also the



4 Introduction

latencies from request to request, response to response should be checked.
All the latest interconnects include security management features, the main
functionality of this is to forbid any unsecured transactions targeted to mem-
ory space. This security feature is to prevent software attacks causing ille-
gal instruction execution. The verification environment should check each
transaction requested by initiators and abort with an error response if that
transaction is targeting a protected area.

The Design Under Test (DUT) considered for thesis work is Advanced Periph-
eral Bus (APB) which is part of the Advanced Microcontroller Bus Architecture
(AMBA) family. AMBA bus protocol is a set of interconnect specifications from
ARM that standardizes on-chip communication between various IP blocks for de-
signing a high-performance SOC. The primary goal of AMBA protocol is to have a
standardized and efficient way to interconnect these IPs[1]. APB is a simple non-
pipelined protocol which is used for connecting low bandwidth peripherals [1]. A
detailed functionality of APB is explained in chapter 4.

1.2 Machine Learning

Machine Learning6 is the study of computer algorithms that improve automatically
through experience and by the use of data[20]. It aims to find natural patterns in
the data and learn them in order to produce outputs. Some of its applications are
in image processing, finance and stock market trading, medicinal engineering, text
prediction and etc. With the constant support and improvements in ML over the
years, it has proven itself to be flexible and reliable. Briefly, implementation of ML
can be broken down into 3 parts. The first part being the type of prediction such
as Classification or Regression. The second part is the type of algorithm to be
employed under each prediction type. The algorithms studied and implemented
in this thesis are Decision Trees (DT), K-Nearest Neighbors (KNN), FeedForward
Neural Network (FFNN) and Long Short Term Memory (LSTM) to predict the
behavior of APB. The third part is the selection of features. Features generally are
data points required to feed the algorithm. These data points are mainly of two
types, input data points and output data points. This data put together defines
the behavior of an application. The data to any system can take various forms
mainly such as numerical data, categorical data, text or time series data. The
general idea is to teach the algorithm with some percentage of data(training data)
and then test it against unseen data(test data) to determine how accurate the
system is, this is usually done in iterations to strengthen the learning. Chapter 3
discusses the ML and its concepts in depth.

1.3 Motivation

With the advancements in the field of Very Large Scale Integration (VLSI), verifi-
cation becomes bottleneck as millions of transistors are integrated on a single chip.
One of the main challenges is to speed up the verification process while ensuring
the verification quality. As the complex hardware involves more than a million



Introduction 5

lines of code. Test cases created to verify the Register-Transfer Level (RTL) gen-
erate a large amount of data after each simulation which can be a tedious job for an
engineer to analyze [27]. Machine learning, a powerful technique has the potential
to analyze enormous data and provide the expected results/predictions. The type
of algorithm to be used can be determined by looking closely at the problem.

The common methods used to verify a design are by using formal verifica-
tion[24] or by developing a systemverilog verification environment[23]. An asser-
tion is a formal property check which is defined with the expected behavior of a
design and is tested against the same design[4]. When an assertion fails, it could
indicate an error in the design. A verification engineer writes the assertions based
on the design specification. Likewise, a simulation environment is a type of test en-
vironment which is instantiated with the top module of a DUT. This environment
usually consists of various components such as a Stimulus11 , Driver4, Monitor8,
Scoreboard10 among many others[5].

Few of challenges faced by verification engineer during the development of
either of the environments are :

• Formal Verification Environment : Formal Verification is a compu-
tationally expensive step in the verification of today’s complex hardware
designs[8]. In such an environment, a lot of time is spent on developing or
writing assertions itself and this is due to three contributing factors[4].

1. Verifying a larger design could require multiple assertions to cover all
probable functional scenarios and corner cases of interest.

2. Verifying a complex functionality of a design could require writing
complex assertions as well.

3. Lastly, it is important that all the assumptions or design specifica-
tions are considered carefully as missing out on these might lead to an
incomplete assertion. This will result in assertion failures.

• Simulation Verification Environment : The simulation based verifi-
cation has existed for many years and is considered as the backbone for
verifying DUTs, but it has its challenges. For complex SOC designs, creat-
ing and integrating a testbench environment is a lengthy process in order
to support all the types of testcases that cover multiple scenarios of a DUT
[20], where the quality of the test is measured by coverage metrics [6].

With an intent to address the aforementioned challenges with a feasible so-
lution, the application of ML to verify a APB protocol has been investigated in
this thesis work. The investigation proposes four types of classification based
ML algorithms which could suit to learn the functionality of the APB and verify
the same efficiently. The four algorithms studied and implemented are K-Nearest
Neighbors (KNN), Decision Trees (DT), FeedForward Neural Network (FFNN)
and Long Short Term Memory (LSTM). A reference model using SystemVerilog
Assertions (SVA) against random constrained stimuli of the APB control signals
was created to train the models. The proposed study mainly investigates the
trade-off between various algorithms such as the time taken to implement along
with the complexity of the model, the nature of the datasets selected as features
to train the model and most importantly, the accuracy of the models.
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1.4 Thesis Structure

The following chapters in the report are organized as follows. Chapter 2 briefly ex-
plains work done in the related field. Chapter 3 provides the theoretical knowledge
of ML, the APB protocol, the concepts of SVA and constrained random stimuli
generation. Chapter 4 presents the implementation of the various ML algorithms
and chapter 5 discusses the overall results obtained. Lastly, chapter 6 summarizes
the thesis work along with future scope.



Chapter 2
Background Study

This chapter briefly talks about earlier work done in verifying a bus protocol.
Studies done on how ML algorithms have been implemented to verify various
aspects in a SOC have been discussed as well.

The work done by Gurha and Khandelwal in "SystemVerilog Assertion Based
Verification of AMBA-AHB" [24] provided a basic introduction to Advanced High
Performance Bus (AHB) protocol and how they are verified using SVA. The au-
thors define a few key concepts such as Properties and Sequences which constitute
an Assertion. A sequence can be defined as a set of Boolean expressions which
are assessed on the same clock cycle or over a period of clock cycles. Multiple
sequences can be merged/combined together to form a property which are then
verified or asserted during a simulation. Chapter 5 provides a detailed explana-
tion about SVA. Gurha and Khandelwal’s implemented design consisted of the 3
masters and 4 slaves and was verified against various properties. These properties
were described with the behavior of the handshaking of signals between various
masters and slaves. The assertions are declared in a separate file and are then
bound to respective instances using the ’Bind’ function. This has two advantages,
first advantage is to ensure both the processes of design and verification progress
in parallel and second advantage is that they can be verified without having a
control over the RTL files. For this work, various write and read transactions were
initiated, the simulations were performed using ModelSim. Gurha and Khandelwal
conclude the work by tabulating their observations for each assertion detecting the
number of failed and passed transactions. Their results also claim that the overall
coverage increased with the increase in the number assertions. For example, with
4 assertions they obtained a coverage of 28% and as they increased gradually to
20 assertions they were able to improve the coverage to 80%.

Similarly using the AHB protocol as the DUT, in another academic study [23],
Perumalla and Choudhary verify the write and read behavior of the protocol by
developing a verification environment in systemverilog. The DUT consisting of
1 master and 4 slaves is interfaced with the verification environment. This en-
vironment includes a Generator which generates randomized values for the data,
address and control signals. These values are then driven to the DUT and the
Scoreboard by a Driver simultaneously. The scoreboard obtains two sets of data,
one from the DUT through the monitor and the other set of data from the driver
which is used to calculate the expected output. A Scoreboard is used to compare
the data obtained from the DUT with the expected data and decide if the transac-

7
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tion has passed or failed. Perumalla and Choudhary used QuestaSim to simulate
and verify the protocol and obtain both functional and code coverages. From
their coverage reports, they claim that they obtained 100% functional coverage
but, they believe by improvising the testplans and the constraints for generation
of random constraints, a 100% code coverage could be obtained.

With the same concepts of the systemverilog verification environment de-
scribed in the above work[23], in another study, Han ke et al. design an AMBA
Verification Intellectual Property (VIP) which includes an AHB master and an
AHB monitor [12]. Likewise, they aim to reduce the time spent on visual in-
spection of waveforms by using a reference model which is used to compare the
behavior of DUT with the expected behavior. Han ke et al. believe that their
VIP can be reused to verify any AMBA protocol. The DUT in this study consists
of two masters and four slaves. One master is the DMA and the other master is
the VIP. The slaves are Flash memory, an SRAM, a ROM and a bridge that is
connected to the APB protocol. In this paper [12], han ke et al. intend to verify
the transactions between the VIP master and two of the four slaves which are the
SRAM, and the Flash memory respectively. To verify the flash memory, initial
write and read transactions were performed where the data values were stored in
respective addresses. Then, the memories were cleared out by performing the Page
Erase9 and Mass Erase7 erase operations which write 16’hFFFF to all the memory
locations. Likewise, the write and read transactions in sequence were initiated to
the SRAM. The reference model designed by the authors mimic the behavior of
the SRAM and Flash memory to compare the responses obtained from the slaves
to determine if the transaction has passed or failed. Han ke et al. conclude their
study with their results and a drawback. From their results, a report was gener-
ated which highlighted the failed testcases. For example, in flash memory, three
out of nine mass erase testcases had failed. Authors in Han ke et al. believe
that their VIP can be used to verify the AMBA protocol and can reduce the time
spent on waveform inspection but the main drawback being the design of reference
model which is modelled specifically to mimic certain components. Improving the
flexibility of the reference model was considered for future work.

Lida Bai and Lan Chen propose the idea of employing ML models for tim-
ing prediction in SOC physical design process [2]. A physical design flow mainly
begins with importing netlists, creating floor-plan, placement and optimization
of standard cells, clock tree synthesis, routing and design signoff. As the design
advances in each stage, the static timing analysis is important to fix any tim-
ing violations. STA is used to validate the timing performance of the design by
checking all the possible timing violations in the path however no functionality
check is performed. The process of physical design in general is tool intensive,
complex and time consuming. Their work involves the study and implementation
of the ML learning models such as the Backpropogation neural network, Support
Vector Machine, Ensemble Learning and a hybrid model which is a combination
of the aforementioned models. The authors use these learning models to predict
the slack right after the floor-plan has been established. For each of the learning
models, various parameters such as the clock period, transitive fanout, standard
cell utilization and many more have been extracted as features from the netlist,
constraint and the floor-plan files. These features are the data sets used to train
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and test against the above-mentioned models. The authors Bai and Chen claim to
have generated around 500 samples of data sets where 60% of the data was used
for training while the rest was used to testing. They conclude their work with the
result showing that the hybrid model has better prediction accuracy even with a
few mispredictions in comparison with the rest of the learning models. With this
result, the authors believe that their model can provide better guidance for timing
closure effectively by reducing the time consumed in the process of physical design.

To ensure the ASIC design integrity, the authors in [21] have formulated an
ML model to quantify variations in the RTL or the Graphic Design System II
formats. In order to measure these variations, the timing delays are studied. The
issue the authors address in their work is Static Timing Analysis (STA), by itself
does not have the capability to detect design path variations among STA instances
within the same SOC. Static timing analysis is done to detect timing violations
for all possible paths in a design. STA is a crucial step in the process of physical
design as it validates timing performance. Their work proposes a semi-supervised
learning approach by employing Supervised Anomalous Path Detection (SAPD)
to identify these variations by comparing the paths with various STA instances.
Two sets of databases were created by considering various timing parameters and
capacitances as features. The main difference between the databases is the ran-
dom path variations in them in order to simulate unintended design modifications.
From the experimental analysis, the authors claim that the algorithm was able to
effectively detect path variations between STA instances and they believe that for
future research, their algorithm can be utilized to develop self-correcting anoma-
lous paths.

According to the work done in “Optimizing Random Test Constraints Using
Machine Learning Algorithms” by Stan Sokorac[27] modern designs are extremely
complex. It is impossible to manually come up with all the stimuli necessary to
completely validate the design. To solve this problem, verification engineers rely
heavily on constrained random simulations. By writing a set of constraints and
generating random streams of transactions, one could hit both common and un-
common design corners. Stan states that random testing is also very inefficient and
expensive, as it involves running millions of random simulations to find the corner
case bugs. In this paper, he presents two ideas to make the random simulation
more effective at finding these bugs. The first idea is a new type of coverage which
is toggle-pair coverage is designed to provide feedback that is likely to expose bugs.
The toggle-pair coverages is a metric that is created by monitoring all the flop tog-
gles and extracting all toggle pairs with the total number of bins is n2, where n is
the number of flops in the design. The second idea is to select and tune random
tests by using the coverage feedback with the help of machine learning algorithms.
In this study, two machine learning algorithms that are used are genetic algorithm
and clustering, and the comparison of these two is done in the end. The author
claims that the results are promising with optimized regressions that have failed
consistently more than the non-optimized ones, and have uncovered a larger num-
ber of unique failures. To conclude the author states that this methodology can
be effective at producing higher rates of failures in a smaller number of simulation
cycles, while simultaneously exposing new bugs, through new unique fails.



10 Background Study



Chapter 3
Theory

3.1 Machine & Neural Networks

An application of Artificial Intelligence (AI) where a system(often seen as a black-
box) is trained to understand the characteristics of a given object in the form of
data can be briefly defined as Machine Learning. It aims to find natural patterns
in the data and learn them in order to produce outputs. The data to any system
can take various forms mainly such as numerical data, categorical data, text or
time series data. Some of its applications are in image processing, finance and
stock market trading, medicinal engineering, text prediction and etc.

Machine learning branches out in three ways of learning, Supervised Learning,
Unsupervised Learning and Reinforced Learning. In supervised learning, for a
given set of input parameters also called as Predictors there is an output assigned
to it, Response. Taking these sets of data, a model is built by first training it with
certain percentage of data and then the new unseen data is introduced and tested
against this model to check its predictive accuracy. In short, supervised learning
is used when the outputs to the inputs to be trained are known or given.

Supervised learning branches out in two techniques, Classification and Regres-
sion. The method of arranging a group of objects into its respective categories
based on similar characteristics can be defined as Classification. Similarly, data
can be organized into categories or classes based on a similar pattern. Few of the
generic examples of classification problem includes classifying whether a person
has a heart disease or not, or a given image is a cat or a dog and so on. Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), Naive-Bayes (NB), Decision
Trees (DT) are some of the basic and commonly used classification algorithms. Re-
gression on the other hand is employed when your output is a continuous numeric
data, as in outputs that cannot be classified, but instead need to be calculated. Ex-
ample, calculating the temperature, or predicting the runs per game in a cricket
match or even the stock market values for a company. Some of the regression
algorithms are Linear model, Regularization, Step-Wise Regression and etc.

Unsupervised Learning basically works on the principle of self learning by
finding patterns and grouping them without pre-existing labels. Clustering is one
of the most common technique. K-Means, Self Organizing Maps, hidden Markov
models and etc are some of the clustering algorithms. Reinforced Learning is when
a model trains itself and makes a decision on the correctness of output and based

11
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on that it will reward itself. Markov Decision Process (MDP) is one of the most
common algorithm used.

Apart from these, Deep Learning (DL) is a special type of machine learning
which are based on Neural Networks. They are complex in nature consisting of
various layers that contain information. The advantage of DL is that they can
achieve higher accuracy and also can handle large data-sets.

As our study is based on classification approaches, this chapter will concentrate
on various classification models employed.

3.1.1 Classification

Classification is a process where for a given set of features (inputs or data points),
a class (output) is predicted. In other words, predicting a label for a set of data can
be termed as classification. Classification of various species of a Iris flowers [9] is a
classic example. In this example, there are four features namely sepal length,sepal
width, petal length, petal width. There are three classes or labels, Setosa, Verisicolor
and Virginica and have more than 100 observations recorded for these features.
With the combinations incorporated with various algorithms, a classification was
made.

Similarly, these concepts can be established in the field of hardware design and
verification. As the aim is to classify the behavior of the DUT, several classification
based algorithms that are implemented in this thesis study have been explained
in this chapter, the implementations and the results are discussed in 4 & 5.

3.1.1.1 K-Nearest Neighbors

K-Nearest Neighbors is a type of classification algorithm widely used in pattern
recognition. It works on a simple assumption of similarity. When a new observa-
tion to be classified is introduced, the classifier first searches for the nearest known
observation(s) and based on that, categorize the new observation with that of the
known one. The known observations within its vicinity are termed as Neighbors
and the term ’vicinity’ is what defines K. The minimum value of K is 1, which
means that for a new data point, it’ll only search for 1 nearest neighbor as seen
in figure 3.1. The disadvantage of having K as 1 is the probability of the new
observation being misclassified is high. To overcome this, K needs to be assigned
with a value greater than 2. Now, for example, when K is defined as 3, the new ob-
servation now looks for 3 known observations or neighbors and then the majority
class among these neighbors will be assigned as the class of the new observation.
But when the algorithm searches for the neighbors, the distance between the test
vector and a neighbor is measured. This distance is another deciding factor when
assigning a class to a test observation. There are many techniques to measure
the distance which are Euclidean Distance, Manhattan Distance, Hamming Dis-
tance, Minkowski Distance, Chebychev and etc [16]. Euclidean Distance is the
most commonly used distance measure. It is the square root of the sum of the
squared differences between the known data point and the unknown data point in
n dimensions starting from i = 1 . It is given by the formula,
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distance(xk, xuk) =

√√√√ n∑
i=1

(xunknown − xknown)2 (3.1)

Figure 3.1: KNN algorithm with K = 1
[15]

Figure 3.1 depicts how the KNN algorithm works when it the number of neigh-
bors are defined as 1. The blue, red and green points on the graph represent 3
different classes while the pink point is a test vector which is yet to be assigned a
class.

Figure 3.2: KNN algorithm with K = 3
[15]
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Figure 3.3: New observation assuming the class of majority.
[15]

As explained above, figures 3.2 & 3.3 depict when the neighbors are set to 3.
The latter shows the previously pink colored test vector assumes the class of the
red ones due to majority presence of the class.
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3.1.1.2 Decision Trees

Decision Trees (DT) are a type of supervised learning based classification algo-
rithm. As the name suggests, they’re trees in hierarchical fashion but instead of
branching out upwards they branch out in downward direction based on every de-
cision they make. The principle operation behind a DT is that it splits the given
working set into subsets repetitively till it reaches a point where the working set
can no longer be split. It creates a top down structure with conditions answered
with a ’yes’ or a ’no’. Functionally, they are quite similar to flowcharts and are
simple yet a powerful algorithm. Decision trees are known for their high accuracy
as they have the ability grow deeper in order to make better decisions.

Figure 3.4: A simple binary decision tree.

Figure 3.4 gives us a basic representation of a two-class decision tree. A deci-
sion tree has roughly three main components.

• Root : This is the origin of the tree. As mentioned earlier, from this point
on wards, the tree begins to split grows downward.

• Node : These are intermediate conditional points in the tree where certain
decisions are made which contribute to the depth of the tree and as well as
the outcome.

• Leaf : A leaf is basically considered as the last stage of the branch which
basically holds the outcome for that respective branch.
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3.1.2 Neural Networks

A Neural Network is a chain of neurons connected to each other in the form of
layers which perform certain mathematical operations on the inputs provided and
produce an output. It is modelled to operate in a way the human brain performs.
They are the building blocks of any given neural network. There are various types
of NN as of today. The most common NN is Convolutional Neural Network (CNN)
due to its ability to solve complex problems. Its mainly utilized and favored in the
field of Image processing. The other NN that has been gaining recognition is the
Recurrent Neural Network (RNN), often used for Natural Language Processing
(NLP) such as text and speech recognition.

x1 w1

x2 w2 Σ fact

Activation
function

y
Output

x3 w3

Weights

Bias
b

Inputs

Figure 3.5: The inside of a simple neuron.

Figure 3.5 shows the basic architecture of a single neuron. Each input to the
neuron is first multiplied by a parameter called weight. These two products are
later added with a bias value.

p = (x3 × w3) + (x2 × w2) + (x1 × w1) + b (3.2)

For a given set of predictors, it’s respective numerical quantity/value can pos-
sibly vary in ranges which can be of a major challenge for the model to learn the
behavior. To overcome this, the sum, p is passed through an activation function
such that all the numerical values are now translated with in a fixed range, i.e.,
between -1 to 1. Sigmoid functions are the most common functions used.

y = f(p) (3.3)

The sigmoid function of this neuron is,

y = 1
1+e−(p) (3.4)

Once the transfer function is calculated, the networks are trained and tested to
measure the correctness of the model. The incorrectness or the error in prediction
can be called as Loss. For any given network, it is very crucial to know how well
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the network has learned. Cross-Entropy and Mean-Squared Error (MSE) are some
of the loss functions used.

In order to calculate the error for a classification problem, a square of the
comparison between true output and predicted output which is called the squared
error is performed. The Mean-Squared Error, an average of all the squared errors
is computed which is given by,

MSE =
1

n

n∑
i=1

(yTrue − yPred)
2 (3.5)

where, ’n’ stands for the samples or observations, while yTrue and yPred indicate
the true output and the predicted output.

In the next section, FeedForward Neural Network have been discussed briefly.

3.1.2.1 FeedForward Neural Network

...

...
...

x1

x2

x3

xn

h1

hn

y1

yn

Input
layer

Hidden
layer

Ouput
layer

Figure 3.6: A simple feedforward network

They are a basic type of a neural network. It is alternatively termed as Forward-
Pass Computation or a Multilayer Perceptrons. The basic structure consists of
input neurons which are basically dependent on the features. There is a mini-
mum of 1 hidden layer consisting of several hidden neurons. As the name states,
this layer is invisible. The structure ends with an output layer consisting of out-
put neuron(s). Both the input and the output layers are visible. FeedForward
Neural Network (FFNN) are usually applied to text data, image data and most
importantly for us, the time series data.
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FFNN is a two step process. From figure 3.6, the first step is to calculate
the values of the hidden layers with the help of the weights and the inputs. The
second step is to calculate the values of the output layer with the help of the
freshly calculated weights and the synapses form the hidden layers.

With reference to the formula 3.2,

pn = xi,j × wi,j (3.6)

And lastly, for the output layer,

yn = f(hi, hj) (3.7)

The output activation function can be either a Softmax function or a Linear
function. Usually, for a classification problem, a softmax function is preferred.
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3.1.2.2 Recurrent Neural Network

As machine learning and deep learning are about performing certain computations
on matrices, the basic and yet complex NNs such as the FeedForward Neural
Network and Convolutional Neural Network (CNN) treat every row in a given
matrix as an observation along with its respective output.

Unlike the traditional method, there are few use cases where a class is to be
assigned to a group of observations. That is, when the observations on row n are
dependent on the (n-1 ) row, this can form a group of rows or can be seen as a batch
of data which describe a certain behaviour. It is safe to say that the aforemen-
tioned networks are not quite capable of remembering or retaining the previous
information which brings us to Recurrent Neural Network (RNN).Recurrent Neu-
ral Network (RNN) have addressed this issue of long-term dependencies, particu-
larly the Long Short Term Memory (LSTM) networks. First introduced by Sepp
Hochreiter & Jürgen Schmidhuber [11], they’re designed to remember the previ-
ous information. The basic working principle behind this network is to produce
an output for a group of interdependent data.

3.1.2.3 Long Short Term Memory

Figure 3.7: A basic architecture of LSTM.
[22]

The idea behind a Long Short Term Memory network is similar to that of an
RNN, with their outputs feedback. They are copies of the same network cascaded
together as shown in figure 3.7. Each network in an LSTM architecture consists
of several layers each having a specific operation. There are three gates namely
forget gate, input gate and an output gate, and a memory cell in this network [22]
that contribute to remembering the previous sequences and predicting an output
as shown in figure 3.8.

With reference to figures 3.8, the top most horizontal path is called the cell
state. It is basically a channel that carries information provided to it by the gates.
All the gates are sigmoid function layers. The input gate controls the amount of
new information that should be stored in the memory cell, while the forget gate
decides how much of information should be discarded from the memory based on
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the previous and current inputs, and as well as the memory information from the
previous network.

(a) The forget gate. (b) The input gate.

Figure 3.8: The operation of forget and input gates
[22]

The sigmoid function for the forget gates is described by the formula :

ft = σ(Wf × ([Ht−1], xt) + bf ) (3.8)

Wf represents the weight of the forget gate, while Ht-1 and Xt represent the
output of the previous network and the input to the current network. Lastly, bf is
the bias value of the forget gate. This formula will output either a ’1’ or ’0’ which
will then later get multiplied with Ct-1 to determine whether the value from the
previous cell state should be retained or not. Similarly for the input gate,

it = σ(Wi × ([Ht−1], xt) + bi) (3.9)

Since the input gate controls the information to be added, the inputs to the
network are passed through a hyperbolic tan function which generates a new set of
information, C’t which is later multiplied with the sigmoid function of the inputs.
In other words,

C ′
t = tanh×(Wc × [Ht−1, xt] + bc) (3.10)

Equations 3.9 and 3.10 now update the cell state of the current network as
seen in equation 3.11 and figure 3.9a,

Ct = (it × C ′
t) + ((ft × Ct−1) (3.11)
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(a) cell state. (b) output gate

Figure 3.9: Updating cell state and predicting output
[22]

Now with information present in the cell state, the network needs to output its
prediction and this is done through the output gate. As seen in the figure 3.9b, the
information in the cell state is first passed through a hyperbolic tan function and
in parallel, the inputs the network are passed through another sigmoid function
with respective weights and biases. Finally, the output of this sigmoid function
and the output of the hyperbolic tan function are multiplied. This product, Ht is
the output prediction of the network which will then be sent to the next network.
Equations 3.12 and 3.13 explain the same mathematically.

Ot = σ(Wo × [ht−1, xt] + bo) (3.12)

Ht = Ot × tanh(Ct) (3.13)

To summarize, a theoretical understanding of basic classifiers implemented
were explained. An introduction to neural networks such as feedforward and re-
current neural networks were provided along with why the need for it. With
reference to this, the practical implementation in the MATLAB environment has
been done in chapter 4. The following chapter will discuss about the Advanced
Peripheral Bus protocol. Lastly, all the equations in this subsection were referred
from [22].
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3.2 Advanced Peripheral Bus

Figure 3.10: APB Master Interface.

Image source: [1]

Advanced Peripheral Bus (APB) [1], a member of the Advanced Microcontroller
Bus Architecture (AMBA) family, is a bus architecture which handles write and
read operations. Each operation is sampled at the rising edge of the clock and
takes a minimum of two clock cycles. An APB consists of a Master and a Slave
interface. Few of the main features are low power consumption, low-cost interface
and low complexity and is mainly used to interface for low bandwidth peripher-
als. Apart from the APB, Advanced High Performance Bus (AHB) and Advanced
Extensible Interface (AXI) along with their respective variants are also a part of
the AMBA family.
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Figure 3.11: APB Slave Interface.
[1]

The operation of the APB is explained in detail in the next section.

3.2.1 State Machine

Figure 3.12: State machine of an APB.
[1]

The operation [1] of the APB mainly begins with the IDLE state every time a
transfer request is raised it goes to the SETUP state. For every APB, there
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can be multiple slave interfaces and in order to initiate with the transfer request,
the master needs to select a respective slave and to do so, a handshaking signal,
PSELECT is triggered HIGH. Consequently in the next rising edge, APB enters the
ACCESS state. When in this state, the master triggers another signal, PENABLE
which enables the slave. PENABLE signal should be HIGH only when in access state.
Also during this state, a signal from the slave to the master, PREADY is triggered
LOW as long as the transaction is in progress. Once the slave has completed
the transaction, the PREADY signal is triggered HIGH indicating that it has one,
completed the transfer and two, is ready for the next transfer request. Also, during
that one clock cycle, PENABLE will remain HIGH. If there are no further transfers
then the APB returns to the Idle state or returns to Setup for further transfer(s)
and the process repeats. These three signals define the behavior of the slave. The
following sections will explain the type of each transaction with the help of another
important signal, PWRITE.

3.2.2 Write Transaction

3.2.2.1 No-Wait Condition :

Figure 3.13: A Write Operation with No-Wait.
[1]

To execute a write transaction request, the corresponding signal PWRITE needs
to be triggered HIGH which can be observed at clock cycle T1 from figure 3.13.
Also at T1, PSELECT (PSEL) is triggered HIGH while the PENABLE is LOW. So, in
comparison with figure 3.12 the APB at clock cycle T1 is in Setup state.

During the clock cycle T2, signals PREADY and PENABLE are triggered HIGH.
This indicates that the APB is now in Access state and since PREADY is HIGH,
the write transaction ends here. The PWDATA gets written in the respective PADDR
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(Address) value. The minimum number of clock cycles required for an APB trans-
action is two.

3.2.2.2 Wait Condition :

Figure 3.14: A Write Operation with Waits.
[1]

The Wait condition works in similar fashion as compared to the No-Wait condi-
tion. The APB enters the Setup state in clock cycle T2 as shown in figure 3.14.
In the consequent clock cycles, PENABLE goes HIGH and PREADY is LOW from T2
till T4. Therefore, for two clock cycles the APB is waiting to complete the trans-
action. At T4, PREADY goes HIGH indicating that the slave has completed the
write transaction. While the minimum number of clock cycles for a transaction to
complete is two, there is no fixed number of maximum clock cycles it requires to
complete the transaction.

If there exists any undesired toggling during the transaction, the APB protocol
breaks and hence the transaction fails.
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3.2.3 Read Transaction

3.2.3.1 No-Wait Condition :

Figure 3.15: A Read Operation with No-Wait.
[1]

3.2.3.2 Wait Condition :

Figure 3.16: A Read Operation with Waits.
[1]

The read operations for both No-Wait and Wait condition is similar to the write
operation, the only difference is in the PWRITE signal. While the write operation
requires the PWRITE signal to be HIGH, for a read operation, it is expected to be
LOW. PSELECT, PENABLE and PREADY have the same behavior as that of the figure
3.13.
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3.3 SystemVerilog Assertions

3.3.1 Constrained Random Stimulus Generation

One of the traditional approaches of verifying a given hardware is to construct
directed tests with tailor made stimulus to check the functionality of the same.
These input stimuli are later simulated and verified manually through waveforms
to compare the obtained results with the expected ones [28]. Generating input
stimuli manually can be cumbersome for huge hardwares with complex logic. It
requires not only time and labor, but the knowledge of all the possible inputs
combinations. Generally in such situations, the chances of missing out on verifying
the corner cases are quite high.

This is where randomization of input vectors comes into picture. Unlike, di-
rected tests, randomized tests not only generate random stimuli, but the chances
of testing the corner cases are quite high and lastly, this opens up new types of
bugs that wouldn’t have been covered with the traditional method. But again,
completely randomizing the input vectors might slower the process of verification
due its wide range of possible combinations [28].

initial
begin

repeat (300)
begin
@(posedge clk);

psel = $urandom_range (0,1);
pwrite = $urandom_range (0,1);
penable = $urandom_range (0,1);
pready = $urandom_range (0,1);

end
end

In the above listing, our four main signals of interest are randomly generated.
They have been defined to toggle either LOW or HIGH with the help of the
SystemVerilog function $urandom_range. This function returns a flat distribution
of bits in the unsigned format [28].

Constraining these random vectors with weights helps fasten the process [28].
In other words, these weights dictate the percentage of times a particular bit should
occur. This increases the hits without sacrificing on other combinations.

// generating randomized values with weights.

initial begin
repeat (300)
begin
@(posedge clk);
std:: randomize(psel) with {psel dist {0 := 1, 1 := 9} ;};
std:: randomize(pwrite) with {pwrite dist {0 := 4, 1 := 6} ;};
std:: randomize(penable) with {penable dist {0 := 5, 1 := 5}

;};
std:: randomize(pready) with {pready dist {0 := 5, 1 := 5} ;};
end
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end

In the above listing, the four signals are randomly distributed with respective
weights for each bit. For example, psel has been defined such that the ’0’ occurs
10% while ’1’ occurs 90% of the simulation time. Similarly, pwrite has been
defined with 40% of ’0’ and 60% of ’1’ occurrences. This is crucial as it is important
to capture both types of the APB transaction, the write and read. By varying
either of the percentages for pwrite will affect the number of writes and reads
occurring during that simulation run. Likewise, psel, penable and pready will
affect the number of occurrences of either of the transactions.

With these random inputs generated automatically with constraints, verifying
them manually is very laborious. A simple yet, powerful and most used verification
methodology, SystemVerilog Assertions can be put to use to capture the nature of
every output obtained.

3.3.2 SystemVerilog Assertions

Simply put, assertions are way to check and debug the behavior of a design by
defining constraints, conditions and checkers against the given specification over
a period of time to ensure it never violates the same [19], [29], [4]. They are one
of the extensively used verification methodologies to find bugs in designs as they
have the ability to find the root of the problem. Assertions are written by design
engineers and verification engineers, both. SimVision by Cadence and ModelSim
are few of the tools that monitor assertions. Cadence SimVision was used to debug
assertions for the thesis work. With reference to its user guide, the tool follows
a state machine to output the status of the assertions. The states are Inactive,
Active, Finished and Failed. These following states have a certain priority defined
from Failed having the highest priority to Inactive having the least.

SystemVerilog Assertions (SVA) are two types, Immediate assertions and Con-
current assertions. The main difference is that, immediate assertions neither de-
pend on clock or reset while concurrent assertions do. With concurrent assertions,
they not only check the condition on every clock, but once triggered they can be
constrained to check for a certain number of consequent clock cycles as seen in
figure 3.17.

Figure 3.17: A simple waveform of APB with assertions.

Properties, Sequences, Implication, Functions and Operators are the main com-
ponents for any given SVA [7]. For basic understanding, the following components
have been explained.

• Property: Properties are a way of defining a condition based on sequences
defined that if condition A has occurred then check if condition B has oc-
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curred in either the same clock cycle or in the next clock cycle(s). The
following listing gives a brief understanding of the same.

// Definition of a property.

property example;
@(posedge clk) A |-> B;
endproperty

ExProp : assert property(example) else $warning("This
property has failed.");

In the above listing, a property named ’example’ has been defined. ’A’ is
called the Antecedent and ’B’ is called the Consequent. The operator ’|->’,
known as overlapping operator in between them implies that if an event ’A’
has occurred at clock cycle T1(say) then event ’B’ will also occur at the
same clock cycle T1. Similarly, instead of ’|->’, a non-overlapping operator
’|=>’ can be used to check if the consequent occurs in following clock cycles
after the occurrence of the antecedent. The assert keyword will check this
property at every rising edge of the clock. A given property will be executed
only if it is asserted. If the assertion fails then a warning message will be
displayed on the console.

• Sequence: Sequences, as the name states, it is a definition of the behavior
of certain signals.

// Declaring sequences.

sequence A;
aa and !(bb);
endsequence

sequence B;
cc and dd;
endsequence

From the above listing, a sequence A has been defined indicating that the
signal aa has to be HIGH while signal bb has to be LOW at the same clock
cycle. SVA allows you to define multiple signals within a sequence with the
help of certain functions and operators with logical and being one of them.
These sequences can later be in properties as shown in previous listing.

• Functions: SVA has certain defined functions that relate to toggling of bits
of any given signal.

– $rose : This function states that, for a given clock cycle, the signal
should have toggled HIGH from LOW with respect to the previous
clock cycle.

– $fell : Similar to $rose, $fell checks if the signal has been toggled to
LOW from HIGH with respect to the previous clock cycle.
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– $stable : This function checks if the signal is stable for certain period
of time. If there is any undesired toggling, it will output a fail.

The idea of using assertion based verification approach was one, to understand
and compare their effectiveness with respect to machine learning algorithms and
two, as the task was a classification based problem, assertions were implemented
against the behavior of APB to generate an output label for the training data.

As effective as they are, writing assertions aren’t simple. As the complexity
of the design increases, defining properties and sequences become quite tricky due
to various behavioral constraints and most importantly, identifying and verifying
corner cases is quite tedious.

Please refer to the appendix for the SystemVerilog Assertion code written for
this thesis work.



Chapter 4
Implementation

4.1 Block Diagram

Figure 4.1: Training a model

Figure 4.2: Testing a model

31
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Figure 4.1 shows the flow of the implementation. First, random sequences are
generated which are then asserted in order to obtain the output class for the
training model. The randomized sequences along with the assertion output are
used to build the training model. Based on the needs of the algorithm, these
sequences are first prepared and modified before constructing the model. Data
preparation has been explained in the following sections.

With the training model constructed, the test data is now fed to check the
accuracy.

4.2 Data Preparation

For any given machine learning application, data acts as a catalyst and is a major
contributor in building a good model. It dictates the performance and efficiency
of the same. With that being said, complex problems entails huge amount of
data, a small percentage of which might be redundant. The first step in building a
training model is to scale the critical data which forms the base of data preparation
or Feature Extraction.

4.2.1 Classifiers and FeedForward Neural Network

To begin with, randomly generated waveforms asserted with the APB behavior
are extracted from Cadence SimVision tool. As described in chapter 4, the signals
of interest are PWRITE, PSELECT, PENABLE, PREADY. The following figure shows a
waveform that has been exported to .csv format.

Figure 4.3: A simple waveform of APB with assertions.

Every signal extracted has been sampled at every rising edge of the clock.
Table 4.1 is an excerpt from one of the .CSV files exported. Each row in the table
represents nth clock cycle. Column Resp is the output response for our training
model. As seen in the table below, the output response class varies from ’1’ to
’4’. These numbers are equivalent numerical representation of the APB behavior
with respect to SVA, in other words, Classes. ’1’ stands for Inactive state, which
means that the APB is either in its idle or setup state. Access state of the APB is
represented by ’2’ and ’3’ with ’2’ representing a write transaction while ’3’ stands
for a read transaction. class ’4’ represents a fail case, the point where the APB
failed to switch to access state due to undesired toggling of bit(s) or failed to stay
in access state.
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SimTime clk pwrite psel penable pready Resp
0 1 0 1 0 0 1
5 0 0 1 0 0 1
10 1 0 1 1 1 3
15 0 0 1 1 1 3
20 1 1 1 0 1 1
25 0 1 1 0 1 1
30 1 0 1 1 1 4
35 0 0 1 1 1 4
40 1 1 1 1 1 1
45 0 1 1 1 1 1
50 1 1 1 0 1 1
55 0 1 1 0 1 1
60 1 1 1 1 1 2
65 0 1 1 1 1 2
70 1 0 1 0 0 1
75 0 0 1 0 0 1

Table 4.1: An example of the csv file.

Table 4.1 was one of the raw data obtained and from this, the important
features were extracted. The data points of interest are the classes ’2’, ’3’ and ’4’,
while the rest are noise. The columns clk and SimTime do not contribute much
to the training model as well since all the signals were sampled and extracted
at positive clock edges. Hence, these two columns were altogether deleted. The
resulting table is as shown below.

pwrite psel penable pready Resp
0 1 0 0 1
0 1 1 1 3
1 1 0 1 1
0 1 1 1 4
1 1 1 1 1
1 1 0 1 1
1 1 1 1 2
0 1 0 0 1

Table 4.2: Modifying the table.

Simulation time ranging from 0 nanosecond to thousands of nanoseconds were
considered for both training and testing purposes. As explained in 4, an APB
transaction consumes a minimum of two clock cycles irrespective of a wait or a no
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wait condition, there is a dependency of the nth row with the (n-m)th row, where
m ≥ 1. In other words, the values in the current clock cycle are dependent on the
values present in the previous clock cycle(s). In order to achieve this, the columns
were rearranged such that each row contained the values of the current and the
previous clock cycle as shown in table 4.3. The response variable now has the
value that of the current clock cycle and not that of the previous clock cycle. The
last step in data preparation was to remove the rows for class ’1’ or invalid class
as it training those data points had no relation with the behavior of the APB.

Current clock cycle Previous clock cyle
Cwrite Csel Cenable Cready Pwrite Psel Penable Pready CResp

0 1 1 1 0 1 0 0 3
0 1 1 1 1 1 0 1 4
1 1 1 1 1 1 0 1 2

Table 4.3: Rearranging the table.

For basic classifiers, the table 4.3 after data preparation can be fed directly
where later it is split into training and test sets. But, when it comes to FeedFor-
ward or PatternNet(section 4.3.3) in particular, MATLAB expects this table to
be converted into a matrix and the output response be converted from numerical
indices to its equivalent vectors as shown below.23

4

 =

0 0 1 0
0 1 0 0
1 0 0 0


This preparation method works well irrespective of the algorithm for a no-wait

condition of an APB operation provided it is affirmative that the protocol behaves
in such fashion constantly. On the other hand, preparing data for a wait state
condition of an APB is challenging as there aren’t any predetermined or constant
number of wait states. The only to way to proceed with this preparation method
for unknown wait states is to delete the n-intermediate wait states which is basi-
cally creating a hybrid model by forcibly converting all the wait conditions into
a no-wait condition. The main disadvantage is, the data is now quite straightfor-
ward and deterministic which overrides the need for machine learning. In order to
overcome this, an LSTM network was built.

4.2.2 LSTM

For LSTMs, the data preparation method is different when compared with the
rest. Unlike the basic classifiers and FFNN, LSTMs basically operate on batches
or groups of data. Every row and a column in a batch contributes to the learning
curve of the model. The advantage of such a network is that all important data
can be considered without any deletion.

The data for LSTM consists of 3 main components. One, the batch size. Two,
the time steps and three, feature dimension. Consider the following matrix.
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1 1 1 1 1
1 1 1 1 1
0 1 1 1 1
0 0 0 0 1


The orientation of data is from left to right, as in 1st column is the first clock
cycle, 2nd column is the second clock cycle and so on. Each column of the above
matrix is called a time Step while the number of rows represent to the feature
dimension. Each row represents a signal, PWRITE, PSELECT, PENABLE, PREADY in
that respective order. The above matrix can be compared to the following figure.

Figure 4.4: Matrix representation of the waveform.

Both, feature dimension and time steps put together result in a sequence or
batch size. The above matrix is an example of an APB write transaction with
3 wait states. The entire matrix is called a Sample or a Sequence. Similarly
multiple matrices can be sliced from the waveform and stored in an array along
with its response class. For this thesis work, such matrices were created manually
for training purposes only, with a combination of patterns. The waveforms were
extracted only for testing purposes.

4.3 MATLAB Implementation

In this section, a few important methods and functions used to implement machine
learning algorithms in MATLAB have been briefly explained.

First step is to import a complete dataset and later split the obtained data
in to training and test subsets. This process is called Cross Validation and the
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function in MATLAB is called cvpartition. It creates a cross-validation partition
for the given data [13]. General approach in order to split the data is to either
have a 60 to 40% or a 70 to 30% ratio of train versus the test data. The HoldOut
is an input name-pair argument for the cvpartition function where the user can
input the desired ratio as shown in the following listing.

%% Defining the splitting method.
mytable = readtable(’apb_nowait.csv’)

pt = cvpartition(mytable.Resp , ’HoldOut ’, 0.65);
traindata = mytable(training(pt) ,:);
testdata = mytable(test(pt) ,:);

In the above listing, the .csv file is first imported. The cvpartition function
is called to split the data. The ’mytable.Resp’ denotes the response column and
based on that, 65% of the data is split for training while the remaining 35% is for
testing. The data is split randomly. The training and test returns the respective
indices and stores them in the defined variable.

Due to its randomized nature of splitting, this method turns out to be a
disadvantage. Our required data for training purposes will get mixed with test set
which will reduce the quality of the model. The approach for this thesis work in
terms of data preparation is to have one separate set for training that should be
altered only when desired and a separate set of testing data.

In order to overcome this, data was prepared separately in forms of table and
directly exported as explained in section 4.2

4.3.1 KNN

In MATLAB, to build a classifier model, the function fitc* is used. ’*’ here rep-
resents various types of classification algorithm. For KNN, fitcknn is a function
that fits a k-nearest neighbor classification model. For example,

%%% Defining a knn model
myKNN = fitcknn(PredictorTable , ResponseVariableName);

Here, myKNN creates a KNN model taking account of the predictors from the
table, PredictorTable containing various observations with respect to the response
variable, ResponseVariableName which were obtained during the data preparation
stage. There are several optional parameters that can defined one such being
NumNeighbors. This parameter controls the search vicinity around a new test
observation as explained in chapter 3, section 3.1.1.1.

%%% Defining a knn model with max number of neighbors.
myKNN = fitcknn(PredictorTable , ResponseVariableName , ’

NumNeighbors ’, 5);

Here the maximum number of neighbors has been defined as 5 which means the
classifier will search for 5 nearest neighbors and based on the search and the ma-
jority of the classes, the class will be assigned. As described in 3.1.1.1, Distance,
an optional input name pair describing the distance measure between the unknown
and the known point can be defined.
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%% Defining distance measure
myKNN = fitcknn(PredictorTable , ResponseVariableName , ’

NumNeighbors ’, 5, ’Distance ’, ’euclidean ’);

Using the above training model, myKnn, predictions can be made using the defined
function predict for the test data which has been previously held out.

%%% Predicting outputs
PredOutput = predict(model , testdata);

For any given model, there exists some amount of loss, both for training and test.
resubLoss in MATLAB stands for Resubsitution Loss. It calculates the training
loss of the model defined, i.e, myKNN

%% Calculating the train loss
trainLoss = resubLoss(model);
disp([’The training error is : ’, num2str(trainLoss)])

Likewise, the Loss function calculates the test loss of the test data with respect
to the training model defined.

%% Calculating the train loss
testLoss = loss(model , testdata);
disp([’The test error is : ’, num2str(testLoss)])

4.3.2 Decision Tree

Similar to KNN, there are several MATLAB functions [17] employed to build a
decision tree. fitctree is a function that returns a binary fitted classification
tree. For example,

%%% Defining a tree model
myTree = fitctree(PredictorTable , ResponseVariableName);

Here, myTree creates a binary classification tree using the function fitctree tak-
ing account of the predictors from the table, PredictorTable containing various
observations with respect to the response variable, ResponseVariableName. As
explained in section 3.1.1.2, the depth of a given can be controlled and that it can
be done optionally with the help of the function, MaxNumSplits.

%%% Defining a tree model with maximum number of splits
myTree = fitctree(PredictorTable , ResponseVariableName , ’

MaxNumSplits ’, 5);

Here the maximum number of splits has been defined as 5 which means the max-
imum number of branch nodes will be 5. Decision trees are quite sensitive to the
data and at times tend to overfit. In order to avoid this, a method called Pruning
is used. It is a process where the size of the tree is shortened by eliminating the
branches that do not provide the power to classify instances. Prune is an optional
parameter in MATLAB, , which can be turned ’on’ or ’off’.

%%% Defining a tree model with pruning
myTree = fitctree(PredictorTable , ResponseVariableName , ’

MaxNumSplits ’, 5, ’Prune ’,’on’);
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4.3.3 Patternnet

Patternnet is a pattern recognition neural network which is a variant of the
FFNN in MATLAB. This network was used as the study was related to pattern
recognition. The following snippets will give a brief explanation on the algorithm.

First, the dataset is exported after preprocessing the .csv file extracted from
the simulations. Preprocessing or the data preparation will be explained in chapter
3.3.

load PatternAPBWriteData
XWrite = WinputsTr;
TWrite = WtargetsTr;

XWrite contributes to the input neurons. Since there are 4 features, there will
be 4 input neurons. TWrite holds the responses for respective observations from
XWrite. The classes in TWrite will define the number of output neurons. A portion
of these variables shall be later used to train and test the model.

The next step is to define the number of hidden layers and neurons by using
a MATLAB function patternnet.

%defining one hiddenlayer with ’m’ number of neurons.
WriteNet = patternnet (5);

Here, a single hidden layer with 5 neurons has been defined. If required, the
number of layers and the neurons can be varied. It is as shown in the following
snippet.

%defining two hiddenlayers with ’m’ and ’n’ number of neurons.
WriteNet = patternnet ([8 5]);

For the thesis study, only one hidden layer was chosen.
Now with the data imported and the hidden neurons defined, next step is to

select the training algorithm and the percentage of data which will be used for
training and testing.

%defining the network parameters
WriteNet.trainFcn = ’trainscg ’;
WriteNet.divideFcn = ’divideind ’;
WriteNet.divideParam.trainInd = 1:250;
WriteNet.divideParam.testInd = 251:988;

WriteNet.trainFcn defines the training function for this particular network. The
default training function is Scaled conjugate gradient backpropagation, trainscg.
WriteNet.divideFcn parameter decides how the data should be split. Here, by
using divideind the train and test data are split based on the indices or rows as
shown in the above snippet. The advantage of this over cvpartition is that data
is not split randomly. Apart from divideind, there are several other ways to split
the given data set, dividerand, divideint and divideblock are few of them.

The next step is to train and test the network using the above mentioned
parameters.

%training the network
[WriteNet , Writetr] = train(WriteNet , XWrite , TWrite);
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Here, Writetr basically holds the training record of parameters such as the data
division, performance and etc. train on the other hand, calls the training function
defined in the variable WriteNet.trainFcn which, as defined previously is trainscg
and using this function, it accesses the WriteNet.divideParam.trainInd and
WriteNet.divideParam.testInd to train and test the model. The model here is
WriteNet. Last but not the least, the outputs are extracted and the performance
is calculated.

%obtaining the outputs
Wouts = WriteNet(XWrite);
%calculating the performance.
WritePerformance = perform(WriteNet , TWrite , Wouts);

4.3.4 LSTM

In MATLAB [14], the LSTM architecture is defined layer by layer. As usual, the
data set is imported.

load trainlstmdata

XTrain = Xtrain; %% Train vectors
YTrain = Ytrain;

load testlstmdata

XTest = Xtest; %% Test vectors
YTest = Ytest;

The first layer in the architecture is the sequenceInputLayer. This layer basically
inputs the sequence data and sets the input size for the network. The second layer
is the lstmLayer which learns the long term dependencies between sequences. This
layer takes in a numeric input which defines the number of hidden units property,
NumHiddenUnits. This property corresponds to the amount of information it can
contain or remember between sequences. This layer also consists of another input
parameter that decides the type of sequence prediction i.e., OutputMode. It can
either predict an output for every sequence or for a group of sequences. In order
to select either of them, OutputMode can be toggled between sequence or last.

%% Creating layers for the network

layer1 = sequenceInputLayer (4)
layer2 = lstmLayer (30, ’OutputMode ’, ’last’)
layer3 = fullyConnectedLayer (3)
layer4 = softmaxLayer ()
layer5 = classificationLayer ()

%% Merging all the layers into one.
FinalLayer = [layer1; layer2; layer3; layer4; layer5]

Layer3 connects Layer2 and Layer1. The FullyConnectedLayer requires the
output size to be defined which is nothing but the number of classes for the net-
work to predict. In the above listing since our output classes are 3, it has been
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initialized with the same. The softmaxLayer applies the softmax function and
the classificationLayer calculates the cross-entropy loss for the given number
of classes.

Now with the basic structure built, the next is to instruct how the architecture
should behave. For that, a function called trainingOptions is used [18].

%% Defining the Options for training

maxEpochs = 70;
miniBatchSize = 5;
learningrate = 0.01;
options = trainingOptions(’adam’,’ExecutionEnvironment ’,’auto’

,’GradientThreshold ’,1,’MaxEpochs ’,maxEpochs , ...
’InitialLearnrate ’,learningrate ,’

MiniBatchSize ’,miniBatchSize ,’Shuffle ’, ’never’, ...
’SequenceLength ’, ’longest ’,’Plots

’,’training -progress ’);

An Epoch is defined as the number of times the entire dataset has been utilized
completely to train and test the model. MiniBatchSize defines how many number
of minibatches are supposed to be created. Minibatches are created to split the
training data into smaller batches to fasten the training process. The minimum
number of mini batch is 1. Due to this splitting, some sequences might get split in
halfway or need extra sequences to maintain the size and in order to handle this,
a name-value pair argument, SequenceLength is defined with either ’shortest’ or
’longest’. While ’shortest’ truncates the sequences, ’longest’ pads extra dummy
data which can act as noise. Hence, this property should be carefully used.

The most important training parameter is InitialLearnrate. As the name
suggests, it controls the rate at which information is learned over time. This
parameter also decides the time it takes to train the model. Smaller the learning
rate, longer it takes to train. There are various other optional paramters which
can be referred from [18].

With the structure and the training behavior defined, the next step is to train
and test the model as shown in the following listing.

%% Training the network
ApbNet = trainNetwork(XTrain , YTrain , FinalLayer , options);
save trainedlstm

%% Testing the network
ApbPred = classify(ApbNet , XTest ,’MiniBatchSize ’,miniBatchSize

, ’SequenceLength ’, ’longest ’);

%% Creating a confusion matrix
Result1 = confusionmat(YTest , ApbPred)

%% calculating the accuracy
acc = sum(ApbPred == YTest)./ numel(YTest)

save lstmresults
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The trainNetwork function takes in the predictors and the responses along
with the layers defined and the training options set. The training, in general
takes around 5-30 minutes based on the execution environment, number of obser-
vations in the training data, the minibatch size, the epochs and the learning rate.
With the help of this trained network, ApbNet, the test vectors are now classified
and their accuracy is calculated. A confusion matrix is also generated for better
understanding.
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Chapter 5
Results

Accuracy, as the name speaks for itself, the most important parameter that de-
cides how reliable the model is. Accuracy varies from algorithm to another by
a certain margin. For classifiers such as KNN and Decision Trees, the accuracy
is based on the percentage of the data split for training and testing and other
respective parameters such as neighbors and branches. While for neural networks,
important parameters such as epochs, learning rate and hidden neurons play an
important role apart from data partition. Figure 5.1 is a comparison of average
accuracy obtained for each implemented algorithm. For every given algorithm, the
prediction accuracy gradually increased as and when the training data along with
the various parameters were moderated.
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Figure 5.1: Accuracy.
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5.1 Classifiers and PatternNet

5.1.1 KNN and DT

Multiple simulations consisting of various APB transactions for obtaining training
and test data sets were performed. Due to the method of data preparation as
explained in chapter 4, section 4.2.1 the accuracy obtained for KNN and Decision
Trees were extremely high. For certain cases, the accuracy obtained was nearly
100%. To put in perspective, there were 0 to a few misclassifications for certain
test data. The following confusion matrix from one of the test data gives a better
understanding.
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Given the data preparation for KNN and DTs, there exists a direct mapping
of features with the class which makes it very simple for the model to classify the
new observation. Considering the following table for better understanding.

Current clock cycle Previous clock cyle
Cwrite Csel Cenable Cready Pwrite Psel Penable Pready Resp

1 1 1 1 1 1 0 1 1
0 1 1 1 1 1 0 1 3

Table 5.1: Understanding direct mapping of data.

The sequence for current clock period is [1 1 1 1] and the sequence for the
previous clock period is [1 1 0 1], the output class is ’1’ which indicates the write
operation, should there be a change in a single bit at the least, the class assigned to
it is ’3’, which is a failed transaction. Such a simple and straight forward mapping
led to high accuracy for both the classifier algorithms.
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5.1.2 PatternNet

PatternNet on the other hand, albeit had the same data preparation method, there
was a drop in the accuracy. The highest accuracy obtained for this algorithm was
97.8% with 7 hidden neurons and 57 iterations of epochs. Image 5.2 shows the
schematic of the neural network created by MATLAB along with the confusion
matrix below.

Figure 5.2: Structure of the Neural Network.

With reference to 5.1, PatternNet uses the similar type data sets where there
exists a strict direct mapping of features to classes. Comparatively, apart from
the data set, it is the structure of the algorithm itself that impacts the accuracy.
This is mainly due to the training algorithm used and neurons set. The number
of input neurons are fixed based on the features selected and the output neurons
based on the number of output classes, but the hidden neurons are to be adjusted
based on a trial and error method.

With patternNets being more complex relatively to build and train, it can
be concluded that the use-case of this algorithm for the DUT at hand in relation
with the dataset is not only unnecessary but rather an overkill. In other words, the
outputs can still be predicted with similar datasets by employing the predecessors
which are less complex in nature.
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Lastly, a main disadvantage of using the above three algorithms is the loss of
valuable data, the wait states. With the exclusion of the wait states, an incomplete
behavior of the APB is trained and predicted. This exclusion also narrows the
range of dataset which in a way or two, trains almost all possibilities of the features.

To summarize, taking note of the disadvantages, the above algorithms had to
be sidelined and the LSTM algorithm, which has the ability to handle time series
data was employed. The following section discusses the results obtained for the
same.

5.2 LSTM

From figure 5.1, the average accuracy obtained for LSTM is 90%. LSTMs are
complex in nature and many of its network paramters contribute to the accuracy.
Similar to PatternNets, hidden neurons in an LSTM matter as well. To begin
with, the training and test data set initially included small groups of both Write
and Read transactions, of both the No-Wait and the Wait state variants. The
following confusion matrix was obtained from one of the tests that were performed
with parameter values Epoch = 40, Hidden Neurons = 25 and Learning Rate =
0.001. The test data consisted a total of 60 transactions out of which 7 were
misclassified, the accuracy obtained was 88.33%.
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As the training data progressed quantitatively, the hidden neurons were ad-
justed along with the network parameters. Increasing the number of hidden neu-
rons does not always guarantee higher accuracy. At the same time, lowering the
hidden neurons does not dampen the accuracy as well. Fewer hidden neurons lead
to Underfitting while too many might lead to Overfitting. The highest percentage
of accuracy obtained was 90% for a randomly generated test data consisting multi-
ple Write and Read transactions with various wait states. This test was performed
with parameter values Epoch : 40, Learning Rate : 0.001 and Hidden Neurons :
30. The following confusion matrix briefly depicts the outcome.
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Apart from hidden neurons, few network parameters such as the epochs, learn-
ing rates, sequence length and mini-batches played an important role as well. As
explained briefly in chapter 4, epochs are the number of times the network accesses
the training data from start to end for learning while learning rates indicates the
rate at which the network learns the features as in the time taken for it learn all
the observations. Similarly mini-batches are employed to split the training data
into smaller batches to facilitate the batch-wise learning and process it faster. The
down side with mini-batches is for a given size of a training data set, if the number
of batches are too high then it might lead to data loss as it will slice it into smaller
groups.

With the LSTM neural network being the preferred algorithm, the main chal-
lenge was to improvise the accuracy of the model. The key factor for a better
accuracy is the nature of the data and in this case, it is the number of Wait states.
An important criteria of selecting the training data was to ensure that the APB
transactions of various operations were approximately equally distributed. By do-
ing so, the classifier learns the behavior in order to make a fair classification. If
there existed more number of observations for one particular class in comparison
with the rest, it would lead to improper learning as the classifier would fail to
distinguish new observations. This imbalance is called Undersampling.

Apart from accuracy and complexity, the training computation time and the
effort required to prepare the data is important too, a comparison of which can be
found in the following section.
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5.3 Comparison of Algorithms

Algorithm Complexity of ML model Data Preparation effort
KNN & Decision Trees Low Low

PatternNet(FFNN) Medium Medium
LSTM High High

Table 5.2: A brief comparison of various models.

Algorithm Implementation time Training and Testing time
KNN & Decision Trees Low Low

PatternNet(FFNN) Medium-High Medium
LSTM High High

Table 5.3: A time comparison of various models.

The complexity of various models were compared based on the number of param-
eters required to implement a trained model of APB with the nature of respective
datasets. For example, KNN was much easier to implement mainly as the data
prepared for it couldn’t capture the entire behavior of the APB. An alternative
was to exclude the wait states of APB which made the dataset simpler for KNN
model to learn requiring fewer parameters such as the number of neighbors to be
searched and the type of measuring distance between them. This resulted in lower
implementation time in terms of setting up the model and, training and testing it.

On the other hand, LSTM itself is a complex neural network which is mainly
comprised of multiple layers combined along with various training parameters as
explained in chapter 4. For such a model, preparing data consumes a lot of time
and effort as it mainly focuses on feature extraction and scaling them to meet
the model’s requirement. Based on the quality and the size of the datasets, the
network layers and the training parameters need to be adjusted in iteration un-
til the desired accuracy is obtained. For any user, a pre-requisite is to have a
considerable amount of fundamental knowledge about LSTM and its respective
parameters. This contributes to the overall implementation time of this network.

With this understanding of how machine learning can be employed in the field
of hardware verification, the following chapter summarizes the thesis work.



Chapter 6
Conclusion and Future Work

6.1 Conclusion

The aim of the thesis was to investigate how the concepts of Machine Learning
could be used to verify an APB protocol. APB protocol is widely used in modern
SOCs to facilitate the communication between IPs, hence it was chosen as the
DUT.

With the lack of prior knowledge in the concepts of SVA, ML and the function-
ality of the APB, a considerable amount of time was spent initially in the form of
background study to understand these concepts. With that, a framework of sim-
pler ML algorithms like KNN and DT were developed. A reference model of the
APB was developed to mimic its behaviour using SVA and constrained random
stimuli generation. The four control signals obtained from this reference model
pselect, pwrite, penable and pready were considered as input class and the behavior
it represented was assigned as the output class.

The dataset was split with 60% for training and 40% for testing. These mod-
els were trained without introducing the wait-state transactions which resulted in
100% accuracy. In other words, it could precisely classify the failed transactions
along with read and write. Next, training datasets with transactions containing ’n’
number of wait states were included and this was the first challenge encountered
during the study. As the APB could have an unknown ’n’ number of wait states,
preparing the dataset to meet the requirement was practically difficult. A work
around was to delete these wait states which defeats the purpose of verifying the
APB as this leads to loss of important data. This drawback lead to the implemen-
tation of a neural network, the FFNN which again posed the same challenge that
of KNN and DT.

The further study of neural networks, introduced us to another neural net-
work, the LSTM. This algorithm suited the requirements to train and verify the
full functionality of APB without the loss of important data. The advantage
of LSTM is its capability to learn and the remember the time series data. An
LSTM model was trained and tested with datasets containing various write, read
and fail transactions with various wait states. Initially, datasets with fewer num-
ber of transactions were trained, which provided promising results, but as the test
data set progressed quantitatively, the model started to provide interesting results.
Mainly, with this progression, the LSTM model could still classify the transactions
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yet the number of misclassifications began to increase. With several iterations to
improvise the model, the average accuracy obtained was 90%.

Given how expensive it is to fabricate a chip, SOCs are expected to be verified
completely considering all its functional scenarios and corner cases. With accuracy
of 90% obtained for LSTM, the gap of 10% is extremely costly. As an immediate
future work, the accuracy can be improved if the model is trained with larger sets
of data along with fine tuning the model parameters. A drawback of LSTM is that
the framework of the model itself is complex and it is required from an engineer
to have in-depth knowledge of it.

The investigation concludes this study with the belief that ML algorithms
are not far from being established as a verification methodology. Although, this
comes with a question of reliability which is directly dependent on the accuracy of
predictions provided by the built learning model. Lastly, the study also concludes
that the time taken to develop a learning model is dependent on the DUT and the
type of functionalities required to be verified. In the case of APB, KNN and DT
consumed lesser time to implement due to their simpler framework compared to
LSTM.

6.2 Future Work

With the investigation in this thesis as foundation, there is a huge scope for ma-
chine learning to be established as new verification standard. As a future study,
complex bus protocols such as the AXI and the AHB could be pre-trained with
LSTM to be used as reference models to verify the DUT. This can be further
extended to verify other DUTs by employing more ML algorithms based on the
requirement. Apart from classification based learning, other methods such as
Regression or Reinforcement based learning could be used to achieve complete
coverage by constraining the stimuli.

Another scope for the future work is to implement machine learning models in
Python instead of MATLAB. Python has been used widely to develop ML models
and for its applications in various sectors today mainly due to its extensive support
of libraries and ease of use. MATLAB is a powerful tool yet it is extremely resource
hungry and expensive. An interesting study would be to select a DUT and develop
ML algorithms on both the tools to perform a comparison. This study could be
helpful for SOC industries to determine which tool could suit them based on their
requirement.
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