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Abstract

Eigenvalue analysis has been a key tool to science and engineering for several

decades. Eigenvalues can predict the behaviour of many mathematical systems

of equations but alone they cannot fully explain phenomena such as stability

or stiffness. Together, eigenvalues and pseudospectra can give a better under-

standing of several phenomena such as instability in nonnormal matrices or

operators.

In this thesis, the basic concepts of pseudospectra are utilized to assist in un-

derstanding how pseudospectra can better explain the stability of PDE dis-

cretizations, the stability of the method of lines, the stiffness of ODEs and the

GKS-stability of boundary conditions.

It has been based on the book of Lloyd N. Trefethen and Mark Embree, "Spec-

tra and Pseudospectra The Behavior of Nonnormal Matrices and Operators"

[Trefethen and Embree, 2005]. Despite that, it tries to explain in a more an-

alytical manner certain points of the book. Using also other references, we

attempt to clarify some more aspects of pseudospectra. The code for the figures

has been based on Lloyd N. Trefethen [Trefethen, 1999] and is presented in the

Appendix. For more on MATLAB codes for solving problems using spectra and

pseudospectra, see [Trefethen, 2000].
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Introduction

In different fields of applied mathematics, eigenvalue analysis has been an im-

portant part. This is true when the matrices are normal or close to normal.

Eigenvalues alone fail to explain the behaviour of matrices when the matrices

are far from normal. In this thesis, we introduce and explain how pseudospectra

can fill in the gap that occurs in nonnormal cases.

In Chapter 1, we present an example where eigenvalues fail to predict the sta-

bility of a numerical method for solving an ordinary differential equation. We

define the terms pseudospectrum, pseudoeigenvalue, pseudoeigenvector and give

an example on pseudospectra.

Differential equations are the most common type of mathematical model in

fields of quantitative study and especially in science and engineering. The most

common categories differential equations are classified into are the ordinary

differential equations (ODE) and the partial differential equations (PDE).

The numerical solution of differential equations is implicitly connected to matri-

ces. This is due to the fact that discretizing a differential equation (for example

on a time-space grid), a linear operator appears, which of course can be ex-

pressed in a form of a matrix. Nonetheless, in many cases, the matrices or

operators are not close to normal.
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Because of the limitations of the eigenvalues to explain not expected phenomena

such as stability and stiffness, we use the pseudospectra to better explain these

phenomena. In Chapter 2, we explain, through a series of examples, how the

pseudospectra can give a different perspective in concepts such as stability and

stiffness.

Although computation of pseudospectra can be applied on small matrices fast,

there are some difficulties when the matrices are large. In Chapter 3, we intro-

duce ideas to speed up the computation of pseudospectra.
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Chapter 1

Pseudospectra

1.1 Spectra of matrices

Eigenvalues are one of the most important tools in mathematics. Given an

N × N matrix A with complex coefficients, a nonzero complex column vector

v and a complex number λ, v is an eigenvector of A and λ its corresponding

eigenvalue, if Av = λv. The spectrum of A is the set of all its eigenvalues,

denoted by σ(A). The spectrum is also defined as the set of z ∈ C where the

resolvent matrix (z −A)
−1 does not exist. We use z−A as shorthand for zI−A,

where I is the identity.

For matrix A, let Λ be the diagonal matrix of its eigenvalues and V the matrix

of all its corresponding eigenvectors. Assuming all eigenvalues are distinct,

all eigenvectors are linearly independent and V is nonsingular. Then, we can

diagonalize matrix A, AV = V Λ ⇒ A = V ΛV −1.

An important property that a matrix may have is normality. The reason is
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that the matrix V that diagonalizes a normal matrix may become unitary after

normalization. Thus, normal matrices have good behaviour in many cases.

Definition. A square matrix A is normal if AA∗ = A∗A.

A normal matrix has a complete set of orthogonal eigenvectors. If every eigen-

vector is normalized, the matrix V becomes unitary (or orthogonal in the

real case) with V −1 = V ∗, where V ∗ is the conjugate transpose of V and

∥V ∥2 = ∥V −1∥2 = 1. Note that a Hermitian matrix, A = A∗, is a special case

of a normal matrix.

Suppose now that V is invertible and ∥ · ∥ a matrix norm induced by a vector

norm. The condition number of V with respect to the norm ∥ · ∥ is defined as

κ(V ) = ∥V ∥∥V −1∥. Note that κ(V ) ≥ ∥V V −1∥ = ∥I∥ = 1. In the case of a

normal matrix A, if we assume that V is the matrix with the eigenvectors of

A as columns and ∥ · ∥ = ∥ · ∥2, then V and V −1 are unitary, V ∗ = V −1 and

κ(V ) = ∥V ∥∥V −1∥ = 1. (∥V ∥ = ∥V −1∥ = 1 because a unitary matrix preserves

the Eucleidian norm, i.e ∥V x∥ = ∥x∥ for every vector x). On the other hand

a matrix A such that κ(V ) >> 1, is considered to be ’far from normal’. So,

the condition number is somewhat a measure of the distance of the matrix from

normality.

Eigenvalues give insight into how a system behaves, but this does not hold al-

ways when a ’far from normal’ matrix appears. We will now state a case where

an eigenvalue stability condition fails. It is from an article by J. L. M. Van Dors-

selaer, J. F. B. M. Kraaijevanger and M. N. Spijker [Van Dorsselaer et al., 1994].

Consider a large system of ordinary differential equations of the form U ′(t) =

AU(t)+b(t) with A ∈ CN×N (A is t-independent) and initial conditions U(0) =

u0. Applying a Runge-Kutta numerical method with step size equal to h > 0,

we arrive at a discrete process un = ϕ(hA)un−1 + bn to approximate U, i.e. un

approximates U(nh). The rational function ϕ depends on the particular Runge-
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Kutta method under consideration, but not on the given A, b or the initial

conditions. We define the method as stable if a small perturbation equal to v0

on the initial conditions implies a small perturbation on vn for every n ≥ 1. For

the rest of the section ∥ · ∥ stands for ∥ · ∥2.

First, note that vn+1 = ϕ(hA)vn, therefore vn = ϕ(hA)nv0, n ≥ 1. The eigen-

value condition for stability states that if σ(hA) ⊆ int(S), where S is the set of

z ∈ C such that ϕ(|z|) ≤ 1, then ∥ϕ(hA)n∥ are uniformly bounded by a constant

c0. (S is called the stability region of the method). Indeed, if σ(hA) ⊆ int(S),

then using the spectral mapping theorem, one has σ(ϕ(hA)) = ϕ(σ(hA)) ⊆

ϕ(int(S)) ⊆ D, hence limn→∞∥ϕ(hA)n∥ = 0.

Despite the fact this result seems to be satisfactory, c0 is not always small enough

for the process to be considered as stable in practice. If the matrix composed of

the generalised eigenvectors of hA has a large condition number, then c0 may

be huge, and this is something that really appears in practical problems and

not a seldom pathological situation.
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1.2 Pseudospectra of matrices

We now come to the term pseudospectrum. We give more than one definitions

and then prove their equivalence.

Definition (First definition of pseudospectra). Let A be an N × N , complex

square matrix and ε > 0.The set of all z ∈ C such that ∥ (z −A)
−1 ∥ > ε−1, de-

noted (temporarily, for purposes of clearness) by σ1
ε(A) is the ε−pseudospectrum

of A, where we consider that if z − A is not invertible (i.e. z ∈ σ(A)), then

∥(z −A)−1∥ = +∞.

For normal matrices, the norm of the resolvent is large when z is around an

eigenvalue of A. For matrices with a very large condition number, the resolvent

may be large even when z is far from any eigenvalue of A. Another definition

of the ε− pseudospectrum is related to perturbation theory.

Definition (Second definition of pseudospectra). The ε − pseudospectrum of

A is the set σ2
ε(A) of z ∈ C such that z ∈ σ(A + E) for some N-dimensional,

complex, square matrix E with ∥E∥ < ε.

Definition (Third definition of pseudospectra). The ε − pseudospectrum of A

is the set σ3
ε(A) of z ∈ C such that ∥ (z −A) v∥ < ε for some v ∈ CN with

∥v∥ = 1.
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Theorem (Equivalence of the definitions of pseudospectra). For any matrix

A ∈ CN×N , the three definitions of ε − pseudospectra are equivalent, therefore

we will use the notation σε(A) from now on.

Proof. σ2
ε(A) ⊆ σ3

ε(A)

Consider z ∈ σ2
ε(A). Suppose that (A + E)v = zv for some E ∈ CN×N with

∥E∥ < ε and some nonzero v ∈ CN and ∥v∥ = 1. Then ∥ (z −A) v∥ = ∥Ev∥ < ε.

σ3
ε(A) ⊆ σ1

ε(A)

Consider z ∈ σ3
ε(A). If z ∈ σ(A), then ∥(z − A)−1∥ = +∞ > ε−1. If z /∈ σ(A),

then suppose (z −A) v = su for some v, u ∈ CN with ∥v∥ = ∥u∥ = 1 and s < ε.

Then (z −A)
−1

u = s−1v, so ∥ (z −A)
−1 ∥ ≥ s−1 > ε−1.

σ1
ε(A) ⊆ σ2

ε(A)

Consider z ∈ σ1
ε(A). If z ∈ σ(A), then z ∈ σ(A+E) with E the N-dimensional

zero matrix. If z /∈ σ(A) and ∥ (z −A)
−1 ∥ > ε−1, then (z −A)

−1
u = s−1v

and consequently zv − Av = su for some v, u ∈ CN with ∥v∥ = ∥u∥ = 1 and

s < ε. To establish that z ∈ σ(A + E) it is enough to show that there exists

a matrix E ∈ CN×N with ∥E∥ = s and Ev = su. Then v is an eigenvector of

A + E with eigenvalue z. E can be taken to be a rank-1 matrix of the form

E = suw∗ for some w ∈ CN with w∗v = 1. If ∥ · ∥ is the 2-norm, this is evident

by taking w = v. In the case of an arbitrary norm ∥ · ∥, Hahn-Banach theorem

guarantees the existence of a bounded linear functional L on CN with ∥Lv∥ = 1

and ∥L∥ = 1. Left multiplication by w corresponds to the operation of L.

From these definitions follows that the pseudospectra are nested sets. σε1(A) ⊆

σε2(A), 0 < ε1 ≤ ε2 and that the intersection of all pseudospectra is the spec-

trum,
⋂

ε>0 σε(A) = σ(A).

The elements of ε− pseudospectrum are called the ε− pseudoeigenvalues z and

v is a corresponding ε− pseudoeigenvector to z.
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In the case of a complex Hilbert space, we equip it with the inner product

(u, v) = v ∗ ū and ∥v∥ = ∥v∥2 =
√
v ∗ v̄. The norm of a matrix is its largest

singular value and the norm of its inverse is the inverse of its smallest singular

value. ∥ (z −A)
−1 ∥ = [smin (z −A)]−1, where smin (z −A) is the smallest sin-

gular value of z−A. This leads to a fourth and last definition of ε−pseudospectra.

Definition (Fourth definition of pseudospectra). For ∥ · ∥ = ∥ · ∥2, σε(A) is the

set of z ∈ C such that smin (z −A) < ε.

This definition is equivalent to the previous three in the complex Hilbert space

equipped with the inner product.

We now define the condition number of an eigenvalue of a matrix. Suppose

A ∈ CN×N is a matrix with N distinct eigenvalues. This implies the existence

of left and right eigenvectors determined up to scaling. u∗
jA = λju∗

j , Avj = λjvj

for j = 1, . . . , N . The condition number of λj is defined as κ(λj) =
∥uj∥∥vj∥
|u∗

jvj | .

The condition number is 1, when ∥uj∥∥vj∥ = |u∗
jvj |, i.e., when uj and vj are

collinear (for equality to hold in Cauchy-Schwarz inequality). This is always

true when A is a normal matrix since left and right eigenvectors can be taken

to be the same.

Are pseudospectra affected under unitary similarity transformations? Sim-

ply note that ∥ (z − UAU∗)
−1 ∥ = ∥[U (z −A)U∗]−1∥ = ∥U (z −A)

−1
U∗∥ =

∥ (z −A)
−1 ∥,∀z ∈ C. Thus, the resolvent norm is invariant to the unitary

similarity matrix U . That implies, σε(A) = σε(UAU∗),∀ε ≥ 0.

An important characterization of normality is the following: A matrix A ∈

CN×N is normal if and only if it has a complete set of orthogonal eigenvectors,

that is, if it is unitarily diagonalizable, A = UΛU∗, where U is unitary and Λ is

a diagonal matrix of eigenvalues.

We will now prove a theorem that geometrically connects the spectrum with

8



the ε− pseudospectra. Consider the Minkowski sum σ(A) +Bε = {z ∈ C : z =

z1 + z2, z1 ∈ σ(A), z2 ∈ Bε} = {z ∈ C : dist(z, σ(A)) < ε}, where Bε = {z ∈

C : |z| < ε}. We will use the following observation: For a normal matrix, all

eigenvalues have condition number 1; equivalently the resolvent norm satisfies

∥ (z −A)
−1 ∥ = 1

dist(z,σ(A))
, where dist

(
z, σ(A)

)
is the distance of point to a

set in the complex plane, i.e. dist
(
z, σ(A)

)
= infζ∈σ(A)dist(z, ζ).

Theorem. For any A ∈ CN×N , σε(A) ⊇ σ(A) +Bε,∀ε > 0

If ∥ · ∥ = ∥ · ∥2, then, A is normal if and only if σε(A) = σ(A) +Bε,∀ε > 0.

Proof. If z is an eigenvalue of A, then z + δ is an eigenvalue of A + δ for any

δ ∈ C; since ∥δI∥ = |δ|, this establishes σε(A) ⊇ σ(A) +Bε,∀ε > 0.

If A is normal, it can be assumed without loss of generality to be diagonal

without any effect on norms if ∥ · ∥ = ∥ · ∥2, with diagonal elements aij equal to

the eigenvalues λj . In this case the resolvent is also diagonal which implies that

it satisfies ∥ (z −A)
−1 ∥ = 1

dist(z,σ(A))
and ∥ (z −A)

−1 ∥ > ε−1 implies that this

is equivalent to σε(A) ⊆ σ(A)+Bε,∀ε > 0. Combining the above, we have that

if A is normal, then σε(A) = σ(A) +Bε.

For the converse, σε(A) = σ(A) + Bε,∀ε > 0 implies that each eigenvalue of A

has condition number 1. If ∥ · ∥ = ∥ · ∥2, an eigenvalue having condition number

1 means (as mentioned before) that uj and vj are collinear, therefore each right

eigenvector of A is also a left eigenvector. This implies that A and A∗ have the

same eigenvectors. Therefore A is normal.

The following important theorem states that the condition number measures

how much ’larger’ than the spectrum an ε-pseudospectrum is possible to be, as

a function of ε of course.

Theorem (Bauer-Fike). Suppose A ∈ CN×N is diagonalizable, A = V ΛV −1,

where the columns of V are the eigenvectors of A. Then for each ε > 0, with

9



∥ · ∥ = ∥ · ∥2, σ(A) +Bε ⊆ σε(A) ⊆ σ(A) +Bεκ(V ).

Proof. The first inclusion was established in the previous theorem. For the sec-

ond, (z − A)
−1

=
(
z − VΛV−1

)−1

= [V (z − Λ)V −1]−1 = V (z − Λ)
−1

V −1

which implies ∥ (z − A)
−1 ∥2 ≤ κ(V)∥ (z − Λ)

−1 ∥2 = κ(V)
dist(z,σ(A)) . The first def-

inition of pseudospectra, ∥ (z − A)
−1 ∥ > ε−1, leads to dist

(
z, σ(A)

)
< εκ(V),

which completes the proof.

For purposes of completeness, we mention here some basic properties of pseu-

dospectra [Trefethen and Embree, 2005].

Theorem (Properties of pseudospectra). Let A ∈ CN×N and ε > 0 be arbitrary.

1. σε(A) is nonempty, open and bounded with at most N connected compo-

nents, each containing one or more eigenvalues of A.

2. If ∥ · ∥ = ∥ · ∥2, then σε(A
∗) = σε(A).

3. If ∥ · ∥ = ∥ · ∥2 and A1 ⊕A2 =

A1 0

0 A2

, then σε(A1 ⊕A2) = σε(A1) ∪

σε(A2).

4. For any c ∈ C, σε(A+ c) = c+ σε(A).

5. For any nonzero c ∈ C, σ|c|ε(cA) = cσε(A).
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1.3 Pseudospectrum of a Toeplitz matrix

Our goal now is to present an example where we check the sensitivity of the

eigenvalues under perturbations of the original matrix. We start with a simple

definition.

A Toeplitz matrix is a matrix of the form

A =



a0 a−1 . . . a1−N

a1 a0 a−1

...
. . . . . . . . .

... a0 a−1

aN−1 . . . a1 a0


, a1−N , . . . , a0, . . . , aN−1 ∈ C.

The function f(z) =
∑

k akz
k is called the symbol of the Toeplitz matrix A.

In [Ekström and Serra-Capizzano, 2018] the eigenvalues of a Toeplitz matrix of

the form

A =



a0 0 . . . 0 a−ω

0 a0
. . . . . . . . . . . .

...
. . . . . . . . . . . . . . . a−ω

0
. . . . . . . . . . . . . . . 0

aω
. . . . . . . . . . . . . . .

...
. . . . . . . . . . . . a0 0

aω 0 . . . 0 a0



,

are λk(A) = a0 + 2
√
aωa−ωcosω

kπ
N+1 , 1 ≤ k ≤ N .
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Let A =



0 1

1
4 0 1

. . . . . . . . .
1
4 0 1

1
4 0


The eigenvalues of A are λk(A) = cos kπ

N+1 , 1 ≤ k ≤ N . To test the sensitivity

of the eigenvalues of A we consider a perturbation of A, A + E, where E is

a random matrix with ∥E∥ = ε. The image of the circle |z| = ε
1
N under the

symbol of A, f(z) = z−1+ 1
4z, is an ellipse, the interior of which is approximated

by the ε-pseudospectrum of A, when ε increases. Without going into details,

we mention that this is due to the fact that if z lies in the interior of the image

of the unit circle, then ∥(z −A)−1∥ grows exponentially as N grows, whereas it

is uniformly bounded for z outside this curve.

Although the eigenvalues of A are on the real axis, the eigenvalues of A + E

move close to the ellipse of the ε-pseudospectra of A as seen in Figure 1.1. The

sensitivity of the eigenvalues becomes clearer as N increases.
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Figure 1.1: Boundaries of pseudospectra σε(A), ε = 10−2, 10−3, . . . , 10−8, for

the matrix A of dimension N = 64. The dashed ellipse is the image of the unit

circle under the symbol f(z) = z−1 + 1
4z.

For a particular example, consider E to be the matrix with ε at the bottom

left cell, and 0 everywhere else (probably ∥E∥ = ε). If we symmetrize the

matrix A by the diagonal similarity transformation DAD−1 = S with D =

diag(2, 22, . . . , 2N ), matrix S has the same eigenvalues as A.

S =



0 1
2

1
2 0 1

2

. . . . . . . . .
1
2 0 1

2

1
2 0



After applying the same similarity transformation to A+ E,

we obtain D (A+ E)D−1

13



D (A+ E)D−1 =



0 1
2

1
2 0 1

2

. . . . . . . . .
1
2 0 1

2

2N−1ε 1
2 0



As A and S have the same eigenvalues, it is now clear that we have two matrices,

on the one hand A+ E and on the other hand D (A+ E)D−1 = S +DED−1,

whose spectra match in the same time that their difference grows exponentially

with N .
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Chapter 2

Numerical solutions of

differential equations

2.1 Differentiation matrices and their pseudospec-

tra

In scientific computing, the derivative of a function is often approximated (in

some grid, after discretization) by a differentiation matrix which multiplies a

vector of data. When the grid is not periodic, the differentiation matrix is

usually nonnormal and its nonnormality grows exponentially as the number

of grid points increases. Nonnormality of a matrix A is measured by v(A) =(
∥A∥2F −

∑
j |λj |2

)1/2

, where ∥·∥F is the Frobenius norm (see [Higham, 2020]).

In this section, we work on Chebyshev and Legendre spectral differentiation

matrices where the eigenvalues are sensitive to perturbations. Such behaviour

of nonnormal matrices affects numerical stability.
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To demonstrate such an application, we consider the example of Chebyshev

spectral differentiation on the interval [−1, 1] with N + 1 Chebyshev points

xj = cos
(
jπ/N

)
, j = 0, 1, . . . , N . The spectral differentiation method uses

a polynomial p to interpolate a given function u on the grid xj and differenti-

ate the polynomial to define a discrete derivative w = (wj)0≤j≤N . We use the

notation x = (xj)0≤j≤N , uj = u(xj) and u = (uj)0≤j≤N

• Let p be the unique polynomial of degree at most N with p(xj) = uj ,

0 ≤ j ≤ N .

• Set wj = p′(xj) and wj approximates u′(xj).

Since the differential operator is linear, instead of constructing the polynomial

explicitly, we use an (N + 1)×(N + 1) matrix DN , w = DNu. Spectral methods

manipulate these matrices explicitly to solve problems of ordinary or partial

differential equations with no boundary conditions.

On small grids one can even compute manually p and use it to demonstrate

DN , but of course this makes no sense in practice. For a trivial example,

with N = 2, x0 = 1, x1 = 0, x2 = −1, and using divided differences we

easily find p(x) = u0 + (u0 − u1)(x− 1) + u2−2u1+u0

2 x(x− 1), therefore p′(x) =

u0 − u1 + (u2 − 2u1 + u0)x− u2−2u1+u0

2 = u0−u2

2 + (u2 − 2u1 + u0)x, and after

calculating w0, w1 and w2, we arrive at D2 =


3
2 −2 1

2

1
2 0 − 1

2

− 1
2 2 − 3

2

.

In practise, matrix DN is determined analytically by the following formula

[Trefethen and Embree, 2005]: The off-diagonal entries of DN are Dij =
ci
cj

(−1)i+j

(xi−xj)
,

i ̸= j, i, j = 0, . . . , N , where c0 = cN = 2 and ci = 1 otherwise. The diagonal

entries are defined by the condition that each row sums to zero.
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For instance, D3 =


19
6 −4 4

3 − 1
2

1 − 1
3 −1 1

3

− 1
3 1 1

3 −1

1
2 − 4

3 4 − 19
6

.

The following theorem states the nonnormality of these matrices.

Theorem. For any N, ∥DN∥ > N2/3 but (DN )
N+1

= 0.

Proof. The upper left corner of DN is (2N2 +1)/6 which is greater than N2/3.

The same must be true of ∥DN∥.

To see this, consider the vectror u ∈ RN+1 with 1 as its first entry and zeros ev-

erywhere else. As ∥u∥ = 1, it follows that ∥DNu∥ ≤ supv∈RN+1,∥v∥=1∥DNv∥ =

∥DN∥. But DNu contains a number greater than N2/3 as its first entry and

zeros everywhere else, so ∥DNu∥ > N2/3.

We now prove the nilpotency. The definition of DN implies that for any vector

u, DNu is the vector containing the values of the derivative of p evaluated at

the grid x, where p is the polynomial of degree at most N that interpolates the

function u at the grid. Left-multiplying by DN N more times gives the values

of the (n+ 1)− th derivative of p at the grid. Therefore, the result will always

be zero regardless of u. Thus (DN )
N+1 is the zero matrix.

The cleanest results are obtained when we consider the normalized matrices

AN = N−2DN . Increasing N , the ’nonnormality’ of the matrices increases. In

figures 2.1a and 2.1b, one may see the growth of the lack of normality as N

grows: AN is nilpotent, so σ(AN ) = {0}, meaning that its ε− pseudospectrum

should be something like a disc of radius ε if AN was close to normal, but this

seems to be far from truth as N increases.

For N large enough, the ε-pseudospectra of AN appear converging to a figure
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at which ∥ (xI − AN )
−1 ∥ grows approximately in proportion to 1.8

1
x , as x → 0.

(a) N = 8 (b) N = 24

Figure 2.1: ε-pseudospectra of Chebyshev differentiation matrix AN , with

ε = 10−2, 10−4, . . . . Of course, as in all pseudospectra images, the external

curve corresponds to the boundary of the ε-pseudospectrum with the largest ε,

i.e. 10−2. Obviously, as ε shrinks to zero, the pseudospectrum shrinks to the

spectrum, something expected.

We now adjust DN for applications with boundary conditions, a situation that

appears more often in practice. Assume that the condition u0 = 0 is imposed

at the point x = 1. This condition is imposed by deleting the first row and the

first column of the matrix DN creating an N ×N matrix D̃N and respectively

ÃN = N−2D̃N . The matrix no longer has any eigenvalue equal to zero. The

eigenvalues and the pseudospectra for different dimensions of the matrix ÃN

are shown in Figures 2.2a and 2.2b. The norms of AN and ÃN , as N → ∞,

converge to 0.5498 and 0.0886, respectively.

The objective of spectral differentiation is to provide a ’spectrally accurate’

approximation of exact differentiation by fast decreasing the errors of approxi-

mation. In the example that we have mentioned, we saw a ’spectrally accurate

pseudospectrum’: The right edge of each ε− pseudospectrum is a vertical line

segment in the complex plane, something that also holds true for the differen-
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(a) N = 8 (b) N = 24

Figure 2.2: ε-pseudospectra of Chebyshev differentiation matrix ÃN , ε spanning

over the same range as in figure 2.1

tial operator d
dx on [−1, 1] with the aforementioned boundary condition. On the

contrary, as one may see in both figures, the eigenvalues do not present such a

behaviour.

Repeating the example with Legendre instead of Chebyshev points, consisting

of x = 1 and the zeros of the N -degree Legendre polynomial PN (x), results in

shrinking the eigenvalues of the matrices D̃N (see figure 2.3, where the large

magnitude eigenvalues disappear). One could assume that such a discretization

would allow an increase in stable time step sizes for time-dependent PDEs, a

great advantage for applications. But this was proven not to be the truth: The

pseudospectra of the matrices ÃN near the origin, are almost the same as those

for the Chebyshev points (compare figures 2.3 and 2.2) and the same vertical

lines appear.

It was proven that it is the pseudospectra and not the spectra that determine

the spectral accuracy. This explains why the Legendre grids do not permit

increased time steps.
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(a) N = 8 (b) N = 24

Figure 2.3: ε-pseudospectra of Legendre differentiation matrix ÃN , for various

ε.

2.2 Discretization of the advection equation and

Lax-stability

In time-dependent partial differential equations some finite-difference discretiza-

tions are stable and others are unstable, giving useless results. In this section we

introduce the phenomenon of Lax-stability of such discretizations. We consider

the advection equation ut = ux, x ∈ (−1, 1), t ≥ 0 with initial data

u (x, 0) =


cos2

(
π
(
x− 1

4

))
,

∣∣x− 1
4

∣∣ ≤ 1
2

0, otherwise

boundary data u(1, t) = 0 for all t and no boundary data for x = −1.

Assuming the problem is approximated numerically on a regular ∆x−∆t grid,

we use the notation un
j for the discrete approximation at x = −1 + j∆x, t =

n∆t, and also write un = (un
j )0≤j≤ 2

∆x
. Now, using centred differences in x,

∂u
∂x (j∆x, n∆t) ≈ (Dun)j where D is the tridiagonal matrix such that (Dun)j =

20



un
j+1−un

j−1

2∆x and the third-order Adams-Bashforth formula in t, un+1
j = un

j +

∆tD
(

23
12u

n
j − 16

12u
n−1
j + 5

12u
n−2
j

)
, we test the stability of the method.

We consider N = 60, ∆x = 2/N , un
N = 0, un

0 = un
1 and initial values u0

j , u
1
j , u

2
j ,

(1 ≤ j ≤ N − 1) taken from the exact solution u(x, t) = u(x + t, 0). It can be

proven that the numerical solution is stable if and only if ∆t
∆x is less than about

0.724.

Now consider the same example on a grid of N Legendre points (xj)0≤j≤N−1.

(Remember that these are the roots of the N-th degree Legendre polynomial).

We interpolate un
j , 0 ≤ j ≤ N−1 at these points and the boundary value un

N = 0

for all t by a polynomial pN of degree N , i.e. pN (xj) = un
j for 0 ≤ j ≤ N − 1

and pN (1) = 0 (the polynomial is well defined since all together the points are

n+1). The approximate spatial derivative is the derivative of the polynomial.

In this example, for a finite t, the numerical solution shows a good behaviour

near the boundary x = 1, whereas, near the other boundary x = −1, there is a

terrible instability and the smooth image of a wave moving left as time passes

(the exact solution of the PDE with the aforementioned initial conditions) is

destroyed. Why does this happen?

The Adams-Bashforth formula can be written in the following form, using 3N×

3N block matrices:

S =


I 0 0

I 0 0

0 I 0

+ ∆t
12


23D −16D 5D

0 0 0

0 0 0

,

where D is the Legendre differentiation matrix. Matrix S maps (un,un−1,un−2)T

to (un+1,un,un−1)T . This formula corresponds to un+1 = (I + 23∆t
12 D)un −

4∆t
3 Dun−1 + 5∆t

12 Dun−2.
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Stability is now investigated by the norms of powers of S. This is what we call

Lax-stability : An iterative numerical method for solving a PDE is defined as

Lax-stable if the norm of the matrix involved is uniformly bounded as ∆x,∆t

converge to 0.

An important theorem that finds lower bounds for the norms of the powers of

the iteration matrix is the following (see [Trefethen and Embree, 2005]):

Theorem. Assume that A is a matrix or bounded operator and there exists

a constant K > 1 such that ∥(z − A)−1∥ = K/(|z| − 1) for some z of radius

|z| = r > 1. Then, supk≥0∥Ak∥ > K.

We now return to our example with the Legendre grid. The method is proven

to be Lax-stable only if ∆t = O
(
N−2

)
as N → ∞ and will converge to the

exact solution if there are no rounding errors. That it will indeed converge is

a consequence of the famous Lax-equivalence theorem, which states that if we

have a consistent finite difference method for a well-posed linear initial value

problem, then the method converges to the exact solution if and only if it is

Lax-stable.

On the contrary, if ∆t = O
(
N−1

)
as N → ∞, although the eigenvalues remain

in the unit circle, the scheme is no longer Lax-stable. To see this, we focus on

Figure 2.4. According to the previous theorem, for z = −1.1, since ∥(z−S)−1∥ ≈

106 = 105

|z|−1 , we have supk≥0∥Sk∥ > 105. Therefore we do not have Lax-stability,

so we do not expect convergence.

Discretization for large time simulations is not possible. In the example, it

seemed that it was possible because we considered a constant-coefficient linear

problem with no rounding errors. If perturbations of any kind occur, the in-

stability is no longer transient (i.e. present only for short time simulations and

disappearing as t grows), but global.
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Figure 2.4: Pseudospectra of the matrix S with N = 20, ∆t = 0.4N−1 with

ε = 10−2, 10−4, . . . . Observe that the boundary of a pseudospectrum with

ε = 10−6 intersects the negative real semiaxis at a point z of radius r ≈ 1.2.

2.3 Stability of various discretizations of the ad-

vection equation with the method of lines

For the discretization of a time-dependent PDE, we use the method of lines.

We can discretize the PDE first with respect to its spatial variables and then

discretize the resulting system of coupled ODEs in time.
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We consider the advection equation ut = ux on [−π, π] with periodic boundary

conditions and initial data u (x, 0) = f(x). Applying the method of lines, we dis-

cretize the spatial variable by an ’upwind’ approximation and the time variable

by the forward Euler formula. So, we have, on the grid x = −π+ j∆x, t = n∆t,
∂u
∂x ≈ uj+1−uj

∆x , and the problem is deduced to the following system of ODEs:
duj(t)

dt =
uj+1(t)−uj(t)

∆x , n ∈ N. Finally we arrive at un+1
j = un

j +
un
j+1−un

j

∆x ∆t. This

can be of course wrirren down as un+1 = Aun, where

A =



1− σ σ

1− σ σ

. . . . . .

1− σ σ

1− σ


, σ = ∆t

∆x .

For a normal or nearly normal spatial discretization operator, the discretization

is stable if all eigenvalues of this operator lie in the stability region of the time

discretization operator.

In the example, the stability region of the forward Euler formula is the disc with

centre at −1 and radius 1 (an elementary fact from Numerical Anaysis). The

eigenvalues of the spatial discretization operator lie in the circle of center −∆t
∆x

with radius ∆t
∆x . To see this, consider the Fourier modes un

j = λnϵikj∆x, where

k are arbitrary wave numbers and i the imaginary unit. Since the operator that

performs the spatial discretization is un
j+1−un

j

∆x , this implies eik(j+1)∆x−eikj∆x

∆x =

λeikj∆x and after dividing by eikj∆x we arrive at λ = eik∆x−1
∆x . Now, multiplying

with ∆t to adjust the time scale, we have the scaled eigenvalues λ = ∆t
∆x (e

ik∆x−

1). Note that the operator is normal, so pseudospectra are not necessary here

for the stability to be checked. Therefore, the discretization is expected to be

stable if ∆t ≤ ∆x.

Considering another example of the advection equation without periodic bound-
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ary conditions and different discretizations for x and t, we discretize the spatial

variable by a ’centred’ approximation which gives imaginary eigenvalues and the

time variable by the third-order Adams-Bashforth formula which has a different

stability region than the forward Euler formula. Here, the eigenvalues of the

spatial discretization operator are in the stability region if ∆t
∆x ≤ 0.724, making

the computation stable. The discretization matrix here is not normal but it is

close to normal, so spectral analysis is sufficient for stability predictions.

On the other hand, if we want to study, for instance, the stability of the Legendre

spectral discretization, the discretization operator is far from normal, hence the

need to examine the ε− pseudospectra arrises. Here, although the eigenvalues

of the example are in the stability region, the pseudospectra protrude outside,

therefore, we do not expect stability of the method.

The corresponding stability condition now is:

The discretization is stable if the ε-pseudospectra of the spatial discretization

operator lie within a distance of O(ε) from the stability region of the time dis-

cretization operator, when ε −→ 0.

Consider another example of the advection equation ut = ux on [−1, 1], with

boundary conditions u (1, t) = 0 and initial data. For the matrix A (see previous

page), its eigenvalues for σ < 2 satisfy |λ| < 1. Nevertheless, the norms of the

powers of A for 1 < σ < 2 will grow exponentially before decaying, so we do

not expect stability. The ε− pseudospectra confirms the results as they extend

outside the stability region for 1 < σ < 2. The discretization is stable only for

σ ≤ 1 as we see in Figures 2.5a and 2.5b.
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(a) σ = 0.6 (b) σ = 1.2

Figure 2.5: Pseudospectra of matrix A (blue), along with the stability region

of the time discretization operator (pink). Observe that, in (a), the distance

between the boundary of ε-pseudospectra and the boundary of the stability

region converges fast to zero. On the contrary, in (b), this does not happen,

indicating instalility.

2.4 The concept of stiffness in ODEs

A concept that needs to be explained when one is dealing with numerical solu-

tions of ordinary differential equations is that of stiffness. There is no precise

definition of stiffness. See, e.g. [Söderlind et al., 2015], for a historical recursion

on the attempts for defining a problem as stiff. Some commonly-recognisable

characteristics of a stiff problem are:

1. The problem contains widely varying time scales.

2. Stability is more of a constraint on the time step than accuracy.

3. Explicit methods do not work.

A problem is stiff when it includes some terms that make the solution manifest

a transient behaviour. To explain the relationship between these statements

and the concepts of spectra and pseudospectra we work on an example. We
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consider the initial value problem u′(t) = −100
(
u(t)− cos(t)

)
−sin(t), u(0) = 1

with exact solution u(t) = cos(t). The constant −100 has a major effect on

the solution for other initial data. Comparing the solutions computed for a

given time with the second-order Adams-Bashforth (AB2) and the backward

differentiation (BD2) formulas for different time steps ∆t, we observed that

BD2 behaved much better than AB2. BD2 converged smoothly for any time

step, AB2 generated such behaviour only for small enough ∆t. Although AB2

converged to the correct solution, it required much more computation steps

than BD2. That is one of the reasons stiffness is of importance to the numerical

solution of ODEs. For other equations, the AB formulas would be preferable

since they are explicit and do not require an iterative solution at each time step.

We can test whether a formula has a time step constraint and what that con-

straint is if we apply the formula to the linear test equation w′ = λw. In our ex-

ample, if u(t) is any solution to the problem u′(t) = −100
(
u(t)− cos(t)

)
−sin(t),

we set w(t) = u(t)− cos(t) and the problem becomes w′ = λw, λ = −100.

When we apply the AB2 formula to the linear test equation, we get the char-

acteristic polynomial of the recurrence formula. The roots of the characteristic

polynomial p(z) = z2 − ( 32λ∆t+ 1)z + 1
2λ∆t are obviously real and the smaller

of them is z1 = 3
4λ∆t + 1

2 − 1
4

√
9(λ∆t)2 + 4λ∆t+ 4. So, z1 < −1 if and only

if λ∆t < −1, which implies that for stability to be achieved one should choose

∆t ≤ 1
λ = 1

100 , otherwise the formula will amplify any truncation errors.

When we test the BD2 formula the same way, we find that all the roots of its

characteristic polynomial are stable, regardless of the choice of ∆t.

The method of lines discretizes time-dependent partial differential equations

reducing them to a system of ordinary differential equations. In the general

case of a system of ordinary differential equations, u′ = f(u, t) where u(t) is

an N -vector for each t and f is in general nonlinear, we can do an eigenvalue
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analysis through a process of four steps.

To determine whether the problem of computing a particular solution u∗(t) near

a particular time t∗ is stiff we follow the four steps below:

1. The first step is to discretize the time-dependent PDE turning it into a

system of ODEs.

2. The second step is to linearize the system of equations.

We set u(t) = u∗(t) + w(t) assuming w(t) is small, making stability and

stiffness depend on w(t). If f is differentiable with respect to the com-

ponents of u, A(t) is the Jacobian matrix of f with respect to u, we

have f(u, t) = f(u∗, t) +A(t)w(t) + o
(
∥w∥

)
. Since u′ = f(u, t), we obtain

w′(t) = u′(t)−u′∗(t) = f(u, t)−f(u∗, t) = A(t)w(t)+o
(
∥w∥

)
≈ A(t)w(t)

for small w(t). Changing variables leads to u′ = A(t)u(t).

3. The third step is to freeze coefficients.

Stability and stiffness appear at some times t∗. Setting A = A(t∗) at a

fixed time t∗, we obtain u′ = Au.

4. Finally, if A is diagonalizable, we diagonalize it and we get a set of N

scalar, linear, constant-coefficient model problems u′ = λu.

We can view the rough conditions of stability and stiffness through the eigen-

value analysis.

1. Eigenvalue characterization of stability. A numerical ODE formula is sta-

ble for computing u∗(t) near t∗ if ∆t is small enough that for each eigen-

value λ of A(t∗), λ∆t lies inside or close
(
O (∆t)

)
to the stability region.

2. Eigenvalue characterization of stiffness. An ODE is stiff for the solution

u∗(t) near t∗ if the largest eigenvalue modulus |λ| of A(t∗), is much greater
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than (u∗)′(t). In our example, cos′(t) ≤ 1 << 100 = |λ| =
∣∣d(λw)/dw)∣∣,

so the problem is stiff.

On the contrary, for many ODEs, the rate of change of u(t) results from A(t).

The stiffness ratio for a solution of an ODE may be defined as the ratio of the

absolute value of the eigenvalues of A, or their real parts. For example, if the

eigenvalues of a Hermitian matrix range from −106 to −1, the stiffness ratio is

106 and the problem would be highly stiff.

Attempting to characterize stiffness by eigenvalues or stiffness ratios cannot

always be correct because stiffness is a transient phenomenon and eigenvalues

are not always linked to matrix behaviour. To address this problem, we will

view stability and stiffness through pseudospectral analysis through an example.

Assume the linear constant-coefficient matrix equation u′ = Au, u(0) = u0,

where u0 is an N -vector and A is an N ×N triangular matrix.

Let u0 =
(
1 1 . . . 1

)T

, A =


−1

−2 −1
...

. . . . . .

−2 . . . −2 −1


.

Matrix A has the single eigenvalue −1. In Figure 2.6 the pseudospectra are in

the left-half plane and extend far beyond −1. As expected, the AB2 formula

explodes for time steps greater than ∆t = O
(
10−1

)
. We can now express the

pseudospectral view of stability and stiffness.

1. Pseudospectral characterization of stability. A numerical ODE formula

is stable for computing u∗(t) near t∗ if ∆t is small enough that the ε-

pseudospectra of ∆tA(t∗) lie within a distance O (ε+∆t) of the stability

region.

2. Pseudospectral characterization of stiffness. An ODE is stiff for the so-
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lution of u∗(t) near t∗ if the pseudospectra of A(t∗) extend far into the

left-half plane as compared with (u∗)′(t).

Figure 2.6: Eigenvalue and ε-pseudospectra of the 40 × 40 matrix A.

Throughout this section, we have been working on ODEs, and we have not

mentioned the solution of PDEs, where stiffness plays an important role. Nev-

ertheless, for many time-dependent PDEs, a discretization in space leads to a

stiff system of ODEs where one can use the statements of stability and stiffness

to address such problems.
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2.5 GKS-stability of boundary conditions

So far, we have worked on numerical solutions of differential equations with

potentially explosive behaviour, such as ones with terrible instability arrising

when time step size is not small enough. A different kind of stability theory,

one that examines instability when the boundary conditions for finite-difference

discretizations of linear hyperbolic PDEs are badly chosen, is the GKS-stability

theory, named after Gustafson, Kreiss and Sundstroem who developed it in

early 1970s. As we will see, this theory can be worded in terms of the group

velocities of waves propagating in dispersion on the finite-difference grid that

we have chosen for the discretization of the PDE.

We consider the linear, scalar, hyperbolic, constant-coefficient, one-dimensional,

initial boundary value problem ut = ux, u (x, 0) = u0(x) for 0 < x < 1,

u (1, t) = 0 for t > 0, where u0 is the initial data. The analytic solution is

a wave propagating leftward at speed 1 until it is absorbed in the boundary:

u (x, t) =


u0(x+ t) for x+ t < 1

0 for x+ t ≥ 1

We discretize the problem by setting ∆x = 1/N , where N is a positive integer,

∆t = σ∆x for σ < 1 and compute the approximations vnj ≈ u (j∆x, n∆t). We

use the following formula, known as Crank-Nicolson formula:

vn+1
j −vn

j

∆t =
1
2 (v

n
j+1−vn

j−1)

2∆x +
1
2 (v

n+1
j+1 −vn+1

j−1 )

2∆x =
vn
j+1−vn

j−1

4∆x +
vn+1
j+1 −vn+1

j−1

4∆x .

It is not the ideal formula for this equation, nevertheless it is more convenient

for the example.

To complete the numerical method, we need to define vn+1
0 . For the example,
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we consider the extrapolation from the interior. We examine two cases (a)

vn+1
0 = vn1 , (b) vn+1

0 = vn2 .

The procedure of moving from step n to n + 1 is linear, therefore a matrix A

exists such that:

(
vn+1
0 , vn+1

1 , . . . , vn+1
N−1

)T

= A
(
vn0 , v

n
1 , . . . , v

n
N−1

)T

.

A necessary and sufficient condition for convergence to the solution as N → ∞

is the numerical method to be stable. That is ∥An∥ ≤ C for all n ≤ N where

C is a constant independent of N according to the Lax Equivalence Theorem.

As one may see in Figures 2.7a and 2.7b, the eigenvalues of matrices A are in

close positions for both choices of boundary conditions, so spectra analysis does

not reveal any difference in stability of the two choises. Nevertheless, the ε-

pseudospectra analysis of the matrices A for the two cases gives an insight into

their stability. The plot of the ε-pseudospectra of the matrix A for case (b) in

Figure 2.7b reveals a bulge near z = 1, which is not present in case (a) in Figure

2.7a, indicating instability if vn+1
0 = vn2 . On the other hand, ε-pseudospectra in

Figure 2.7a extend past z = 1, but the distance of their boundary from z = 1 is

a linear function of ε, indicating stability.

The plot of the norms of An for the two boundary conditions confirms the

instability in case (b) (Figure 2.8).

To visualise instability working on certain initial data, consider

u0(x) = e−100(x−1/2)
2

These data represent a Gaussian with value u0(1) ≈ 1.39 × 10−11 at the right

boundary, so we can approximately assume that it also satisfies the boundary
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(a) vn+1
0 = vn1 (b) vn+1

0 = vn2

Figure 2.7: Eigenvalue and ε-pseudospectra of the 60 × 60 matrix A.

condition u0(1) = 0. If we plot the solutions for 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1 for the

two boundary conditions, the instability in case (b) is reaffirmed. In case (a),

the plot is a wave propagating leftward with velocity −1 which dies out once it

hits the left-hand boundary, i.e. the correct analytical solution. The instability

of case (b) takes the form of a saw-toothed reflected wave of similar amplitude

travelling rightward with group velocity +1. In the example, the unstable wave

is vnj = (−1)j . Refinement of the mesh could not solve the problem.

Figure 2.8: Norms ∥An∥ for the two boundary conditions, confirming instability

in case (b).

Reconsidering the example but with the leap frog approximation, writen out as

vn+1
j −vn−1

j

2∆t =
vn
j+1−vn

j−1

2∆x ,
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the procedure is equivalent to multiplication by a 2N × 2N matrix:

(
vn+1
0 , . . . , vn+1

N−1, v
n
0 , . . . , v

n
N−1

)T

= A
(
vn0 , . . . , v

n
N−1, v

n−1
0 , . . . , vn−1

N−1

)T

.

The boundary conditions are: (a) vn+1
0 = vn1 , (b) vn+1

0 = vn+1
1 .

The ε-pseudospectra of the matrix A reveals a bulge in case (b) at z = −1 but

not in case (a). The plot of the norms of ∥An∥ for the two boundary conditions

confirms the instability in case (b). In this example, there is also a reflected wave

vnj = (−1)n, travelling rightward at group velocity +1, therefore a departure

from the analytical solution, affirming instability.

(a) vn+1
0 = vn1 (b) vn+1

0 = vn+1
1

Figure 2.9: Eigenvalue and ε-pseudospectra of the 60 × 60 matrix A.

The concept of this section is not as simple as it may appear. The example that

we considered showed that instability is connected with a bulge of pseudospec-

tra near the edge of the unit circle, but the problem under consideration had

many simplifying assumptions: it was linear, scalar, constant-coefficient and

one-dimensional. In fact, a bulge in the pseudospectra guarantees instability,

however, the lack of a bulge guarantees stability only under certain circum-

stances but not in general.

In their classical work [Gustafsson et al., 1972], Gustafson, Kreiss and Sund-

stroem, gave a, rather complicated, definition of this kind of stability (now
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called GKS-stability) and proved that it is equivalent to the absence of right-

going waves.

In particular, GKS-instable methods have the following features:

1. a bulge in the pseudospectra near a point z0 on the unit circle.

2. growth of the norms ∥An∥ at a non-negligible rate.

3. existence of a wave that propagates from the boundary to the interior.
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Chapter 3

Computation of

pseudospectra

3.1 Basic pseudospectra computation

The pseudospectra of a given matrix or operator are non-empty sets in the

complex plane. Since pseudospectra are norm-dependent, we have to choose a

norm prior to constructing an algorithm for plotting them. We use the 2-norm

(which is derived from the Eucleidian inner product).

With this choise in mind, remember the fourth definition of pseudospectra as

the set of z ∈ C such that smin (z −A) < ε, and a method for pseudospectra

computation and hence plotting arrises immediately: The algorithm finds the

set of singular values of the matrix z − A for each point z on a grid in the

complex plane (this is possible when the dimension N of A is small enough).

Following that, it checks the smallest singular value and if it is smaller than ε
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it lies within the ε-pseudospecrtrum of A, otherwise it lies outside. Finally, the

algorithm sends the results to a contour plotter.

Producing pseudospectra in this plain way is sufficient only for small matrices

that appear when we discretize problems in small grids, i.e. ones with large

time or space steps. For large matrices, the speed of the method and appear-

ance of the contour plots are unsatisfactory. An improvement of the method is

necessary.

38



3.2 Computational speed improvement

The first thing that would improve the speed of the calculation of the method

is to avoid regions of the complex plane where the resolvent norm is small and

not interesting.

A second idea to speed up the computation of pseudospectra is triangularization

followed by inverse Lanczos iteration. Our goal is to compute the smallest

singular value of the resolvent z − A and not the set of all singular values.

To achieve that, we first apply a Schur decomposition on A, i.e. we factorize

A = UTU∗, where T is upper triangular and U is unitary. Since, for the 2-

norm, σε(A) = σε(T ), (see section 1.2), we just have to compute the smallest

singular value of the upper triangular matrix z − T , which is the square root of

the smallest eigenvalue of (z−T )∗(z−T ). This is equal to the smallest positive

eigenvalue of the block matrix

 0 z − T

(z − T )∗ 0



Adverse iteration is a method for finding this eigenvalue: We apply the so-called

power method which generates values that converge to the largest eigenvalue of

((z − T )∗(z − T ))−1 through iterations. The desired eigenvalue is then simply

the inverse. Lanczos iteration linearly combines these iterations to speed up

convergence, not asymptotically, but, in practical terms, significantly.

Nonetheless, for matrices with very large dimension (N >> 1000), complexity

remains a serious problem (for example Schur decomposition is not that simple)

and the aforementioned methods still fail, so other techniques are demanded.

A way out in this case is to reduce the dimension of the matrix by orthogonal

projection on a subspace of smaller dimension. There are several choises of
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subspaces for the matrix to be projected on. This method does not find the

exact ε-pseudospectrum, but for most applications, the results are satisfactory.

The method gets rid of insignificant eigenvalues, such as ones with no physical

meaning or ones that have appeared as a result of discretization.

For example, we may project an N × N matrix A onto the subspace U ∈ CN

associated with the meaningful eigenvalues of the matrix (this of course requires

that we have first determined the regions of the complex plane that are of interest

for the particular problem). Using an N × p matrix U with colunms from U ,

the projected matrix is U∗AU and it is p × p - dimensional. It can be proven

that σε(U∗AU) ⊆ σε(A). We can choose U (i.e. the ’meaningful eigenvalues’)

in such a way that p is small enough for computations to be fast and in the

same time the ε-pseudospectrum of U∗AU to be a good enough approximation

of σε(A).
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3.3 Other ideas of increasing the speed of the

computation

Alternative ideas to speeding the computation of the method include:

• The Lanczos iteration can be improved by selective re-orthogonalization

and Chebyshev acceleration. See, e.g. [Braconnier and Higham, 1996] for

details.

• The use of multiple processors could further speed up the process of com-

puting pseudospectra. This is achievable, since the computations at each

point of the grid are independent from the computation at all other points.

Each processor needs not communicate or synchronize with the others un-

til the computation is finished: it just performs computations regarding

the points of the grid that it has been set as responsible for.

• The use of Krylov subspace iteration is a technique that could speed

up the process of computing pseudospectra. It is an alternative for or-

thogonal projection. Given an N × N matrix A, a vector x and p ≤

N , define the Krylov subspace U as the subspace of CN generated by

x,Ax,A2x, . . . , Ap−1x. Constructing an N × p matrix U with its columns

forming an orthonormal basis of U , project A as U∗AU and the eigenvalues

of the latter converge to the eigenvalues of A as p increases to N . These

approximations then give us approximations for the ε-pseudospectra of A.

• A completely different way of producing plots of pseudospectra instead of

using a contour plotter would be to trace the boundary curves directly.

This way the boundary curves can be determined to great accuracy and

with fewer evaluations of the singular values of the resolvent since no

grid is involved. How can we do this? Remember that, starting from

the first definition of pseudospectra, the contour of an ε-pseudospectrum
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is the set of z ∈ C, such that ∥(z − A)−1∥ = ε−1. Therefore, if we

stick to the 2-norm, it is just a level curve of the function C fA−−→ R,

fA(z) = ∥(z − A)−1∥ = 1
smin(z−A) . So, the main idea is the following:

Starting from a point z0 at the desired level curve, we go forward to a

point z1 performing a small step on the complex plane perpendicular to

the gradient of fA. Repeating the procedure again and again, one arrives

at the contour plot.

• Sometimes we may be interested only for finding bounds for a pseudospec-

trum rather than the pseudospectrum itself. Explicit bounds exist for

various categories of matrices (see [Gong et al., 2016]).
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Chapter 4

Conclusions

To sum up the thesis, we saw that spectra analysis is not always sufficient for the

stability of numerical methods to be guaranteed when dealing with differential

equations. The matrices that appear as differentiation operators when trying to

discretize such an equation are often ’far from normal’, and this is exactly the

situation where eigenvalues do not reveal enough information on the behaviour

of the matrices.

After setting up the basic definitions, we focused mainly (but not exclusively)

on the advection equation, because it is simple enough for technical difficul-

ties to be avoided and in the same time it is sufficient for the usefulness of

pseudospectra analysis to be observed. This way, we compared the stability of

different discretizations, as well as different time steps and different boundary

conditions. Important concepts that were also explained throughout the text

include lax-stability, GKS-stability and stiffness.

Furthermore we briefly described algorithms for pseudospectra computation

and, since the simpler of them are hopelessly slow, we mentioned some methods
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for speed improvement.

Despite the fact that pseudospectra gave us the opportunity to have very good

approximations on how the norm of iteration matrices behaves (at least much

better than spectra alone), at the present time questions on pseudospectra lim-

itations remain open. For example, it is not known whether pseudospectra

determine the behavior of the norms of nonderogatory matrices, i.e. matrices

with the property that their eigenvalues are associated each with just a single

Jordan block.

44



Appendix

Code File: Ps.m

The following code was used for the Figures to be created. It is based on Schur

decomposition for plotting eigenvalues. It uses projection onto a subspace and

inverse Lanczos iteration to find the minimum singular value of the matrices

z−A for z on a preselected grid on the complex plane and finally plots the level

lines of the function 1
smin(z−A) .

%Basic code for 2-norm pseudospectra.

%2-norm pseudospectra are computed

%with the fourth definition of pseudospectra

% Set up grid for contour plot:

npts = 1000; % Grid Resolution

s = .8*norm(A,1); % Edges of the plot as function of the norm of A

xmin = -s; xmax = s; ymin = -s; ymax = s; % Axes

x = xmin:(xmax-xmin)/(npts-1):xmax;

y = ymin:(ymax-ymin)/(npts-1):ymax;

[xx,yy] = meshgrid(x,y); zz = xx + sqrt(-1)*yy;
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% Compute Schur form and find eigenvalues as the diagonal entries of T:

[U,T] = schur(A);

if isreal(A), [U,T] = rsf2csf(U,T); end, T = triu(T); eigA = diag(T);

% plot eigenvalues on the complex plane

hold off, plot(real(eigA),imag(eigA),'.','markersize',15), hold on

axis([xmin xmax ymin ymax]), axis square, grid on, drawnow

% Reorder Schur decomposition and compress to interesting subspace.

% We are not interested in finding eigenvalues with

% large negative real part:

select = find(real(eigA)>-250); % Subspace Selection

n = length(select);

for i = 1:n

for k = select(i)-1:-1:i

G([2 1],[2 1]) = planerot([T(k,k+1) T(k,k)-T(k+1,k+1)]')';

J = k:k+1; T(:,J) = T(:,J)*G; T(J,:) = G'*T(J,:);

end

end

T = triu(T(1:n,1:n)); I = eye(n);

% Compute resolvent norms by inverse Lanczos iteration:

%initialization of minimum singular value, for every z on the grid

sigmin = Inf*ones(length(y),length(x));

%start of the loop over grid points

for i = 1:length(y)

if isreal(A) & (ymax==-ymin) & (i>length(y)/2);

sigmin(i,:) = sigmin(length(y)+1-i,:);

else

for j = 1:length(x)

z = zz(i,j); T1 = z*I-T; T2 = T1';
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if real(z)<100 % Grid Points

sigold = 0; qold = zeros(n,1); beta = 0; H = [];

q = randn(n,1) + sqrt(-1)*randn(n,1); q = q/norm(q);

for k = 1:99;

v = T1\(T2\q) - beta*qold;

alpha = real(q'*v); v = v - alpha*q;

beta = norm(v); qold = q; q = v/beta;

H(k+1,k) = beta; H(k,k+1) = beta; H(k,k) = alpha;

if (alpha>1e100), sig = alpha; else sig = max(eig(H(1:k,1:k)));

end

if (abs(sigold/sig-1)<.001) | (sig<3 & k>2) break, end

sigold = sig;

end

sigmin(i,j) = 1/sqrt(sig);

end

end

end

end

% Level lines, i.e. the boundaries of various epsilon-pseudospectra

% 10^{-20} is added for log(0) to be avoided if sigmin=0

contour(x,y,log10(sigmin+1e-20),-8:-1);
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