
MASTER’S THESIS 2022

Improving Tearing in a
Modelica Compiler
Oskar Kari

ISSN 1650-2884
LU-CS-EX: 2022-16

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-16

Improving Tearing in a Modelica Compiler

Förbättra tearing i en Modelica kompilator

Oskar Kari

Improving Tearing in a Modelica Compiler

Oskar Kari
oskarkari93@gmail.com

Mars, 2022

Master’s thesis work carried out at Modelon AB.

Supervisors: Niklas Fors, niklas.fors@cs.lth.se
Filip Stenström, filip.stenstrom@modelon.com

Markus Olsson, markus.olsson@modelon.com

Examiner: Görel Hedin, gorel.hedin@cs.lth.se

mailto:oskarkari93@gmail.com
mailto:niklas.fors@cs.lth.se
mailto:filip.stenstrom@modelon.com
mailto:markus.olsson@modelon.com
mailto:gorel.hedin@cs.lth.se

Abstract

Modelica is a simulation language for systems containing electrical, mechan-
ical, thermal and other components. The Modelica code is compiled to an equa-
tion system containing both algebraic and differential equations which is then
simulated using numerical solvers. Tearing is a dimensionality reduction tech-
nique applied on this equation system and is important both for optimization of
the runtime code and for accuracy of the simulation. Developing a Tearing al-
gorithm is hard. Several things must be considered such as numerical properties
of the equation system and how to maximally reduce the dimension, the latter
problem is NP-complete. In this thesis I will develop two tools to mitigate bad
decisions taken by the algorithm. The first tool allows the user to manually do
parts of the Tearing while the second tool will provide input from the user to the
algorithm.

Keywords: Tearing, Method of Tearing, Diacoptics, Optimization, Compiler, Modelica

2

Acknowledgements

I would like to thank Filip Stenström, Markus Olsson and Agnes Ramle at Modelon for all
the help with this thesis and thanks for having me at Modelon.

I would also like to thank Niklas Fors, my supervisor at LTH, for all the advice with the
project and for the help with the report.

3

4

Contents

1 Introduction 7

2 Background 9
2.1 Modelica . 9
2.2 The Compiler Pipeline . 10

2.2.1 Alias Elimination . 11
2.2.2 BLT . 11

3 Tearing 15
3.1 The need for Tearing . 15
3.2 A Simple Tearing Example . 16
3.3 Node Tearing . 17
3.4 Automatic Tearing . 20

4 Contributions to Tearing 23
4.1 Start Values . 23
4.2 HGT for Dynamic Systems . 24
4.3 Unpaired Tearing . 25

5 Implementation 27
5.1 Hand Guided Tearing for Dynamic System 27
5.2 Unpaired Tearing . 28
5.3 Alias Elimination . 31

6 Evaluation 33
6.1 HGT for Dynamic Systems . 33
6.2 Unpaired Tearing . 34
6.3 Linear Blocks . 35
6.4 Compile time and Runtime . 35

5

CONTENTS

7 Discussion 37
7.1 Uneven Unpaired Tearing . 37
7.2 The two Models from Modelon . 38
7.3 Linear Blocks . 38
7.4 Selection of MSL Models . 39
7.5 Tearing in OpenModelica . 39

8 Conclusion 41

References 43

6

Chapter 1

Introduction

Modelica is a modeling language in which it is possible to build and simulate complex models
for systems containing electrical, mechanical, thermal and other subcomponents [11]. Exam-
ples of such systems can be airplanes, automotive powertrains, air conditioners etc. There
are two different kinds of models; steady state and dynamic systems. Steady state systems
are described using a system of algebraic equations (AE system). Dynamic systems consists
of a combination of algebraic equations and differential equations. These combined systems
are called Differential Algebraic Equations (DAE). A Modelica compiler must translate the
Modelica code to either an AE system or a DAE system. After this several optimizations
on the system are performed because models of physical systems often put a lot of demand
on computer power during simulation. Furthermore the compiler must make sure that the
system can be solved and simulated during runtime and there are several transformations on
the system that can be done for this purpose.

The company Modelon has developed a compiler for Modelica that will be modified in
this thesis. In this report it will be called the OCT compiler. In this compiler there are sev-
eral optimization steps being conducted. The last of these optimization steps and the focus
of this thesis is an optimization called BLT. In this step the equation system is partitioned
into smaller blocks that can be solved semi-independently. On each of these blocks an op-
timization called Tearing is then done. In this thesis I will do contributions to this Tearing
optimization.

Tearing is done mainly for two reasons; to make the simulation faster during runtime and
to increase the likelihood that it is possible to solve the equation system with the generated
runtime code. What Tearing does is to make the problem that needs to be solved smaller.
First the equation system is partitioned into smaller blocks, then Tearing is applied to each
of these smaller parts to break them into even smaller blocks.

The first step in the Tearing algorithm is to pick variables and equations in the equation
system. We call the variables that are picked for iteration variables and the equations that are
picked for residual equations. The iteration variables and the residual equations must form
pairs, so an equal number of residual equations and iteration variables must be picked and

7

1. Introduction

each iteration variable must be paired with a residual equation. The pairing affects numerical
properties of the tearing problem.

When picking iteration variables and residual equations there are several things that must
be taken into consideration. One important goal is to make the resulting blocks after tearing
as small as possible. Unfortunately picking the optimal residual equations and iteration vari-
ables that fulfills creates the smallest blocks is a NP-complete problem [9]. In addition to this
other properties must be taken into consideration like numerical properties of the system.
Sometimes domain knowledge of the system can also give insight in how to select iteration
variables and residual equations. An other factor that is relevant when picking iteration
variables is if the variables have start values and how good these start values are.

In the OCT compiler there is an algorithm called automatic tearing that will attempt to
pick the best iteration variables and residual equations. However as this is a very hard prob-
lem to solve this algorithm will occasionally pick very bad variables or equations. Therefore
it is important to have an option for the modeller to pick iteration variables and residual
equations manually. This will be called Hand Guided Tearing (HGT) in this thesis. Cur-
rently the OCT compiler only has a rudimentary support for HGT where only steady state is
supported. In this HGT algorithm the user must specify both the residual equations and the
iteration variables. Since the equations and variables must form pairs the user must specify
an equal number of equations and variables.

In this thesis the support for HGT is expanded. First the current HGT will be extended
to also support dynamic systems. Then a new kind of HGT is implemented that is a mix
between the current automatic tearing algorithm and HGT. In this new HGT algorithm the
user only needs to specify variables or equations. It is also possible to specify an unequal
number of equations and variables. The algorithm will then match the surplus equations or
variables with the best possible match.

The evaluation of the two different HGT algorithms developed in this thesis shows that
both works as intended and provides no statistical significant increase to compile time.
Futhermore I will also use these algorithms to solve two problems that could not previously
be solved.

In Chapter 2 I will give a background to concepts in the OCT compiler that are neces-
sary to understand this thesis excluding tearing. The background to tearing will be given in
Chapter 3. In Chapter 4 I will give some additional motivation for tearing and also describe
my own contributions in detail. In Chapter 5 I will describe the implementation of my own
contributions and in Chapter 6 the implementation will be evaluated in different ways. The
discussion takes place in Chapter 7.

8

Chapter 2

Background

2.1 Modelica
Modelica is a declarative, object-oriented simulation language [11]. Models in Modelica can
be described by a mathematical system of algebraic, differential or discrete equations. A
model can describe different physical components like electrical components, mechanical
components, thermal components etc. By using several models it is possible to describe large
and complex physical systems that have many different kinds of subcomponents. One ex-
ample of a simple system programmed in Modelica can be seen in Listing 2.1. This model is
called BouncingBalls and describes two balls that bounces. The model has two subcomponents
b1 and b2 that are both instances of the model Ball which describes a ball.

The two balls have different coefficient of restitution witch results in different bounce
heights even if the drop hight is the same. The result when simulating this model can be seen
in Figure 2.1.

Listing 2.1: Modelica code describing two bouncing balls
model BouncingBalls

Ball b1(e = 0.9);
Ball b2(e = 0.8);

end BouncingBalls ;

model Ball
parameter Real e " Coefficient of restitution ";
parameter Real h0 = 1.0 " Initial height";
Real h "Height";
Real v(start = 0, fixed = true) " Velocity ";

initial equation
h = h0;

equation

9

2. Background

v = der(h);
der(v) = -9.81;
when (h < 0) then

reinit(v, -e * pre(v));
end when;

end Ball;

Figure 2.1: The simulation results when simulating the model of the two balls described in
Listing 2.1. The height of the balls in meters is plotted as a function of time.

The fact that Modelica is declarative means that the execution order does not matter. For
example in Listing 2.1 we have several different equations in the Ball model and also a discrete
when statement. The order of these equations and the when statement does not matter.

The compiler that I use in this thesis is the OCT compiler developed by Modelon but
there are other compilers as well. For example there is a compiler called OpenModelica that
is open source unlike the OCT compiler.

2.2 The Compiler Pipeline
The compiler pipeline is shown in Figure 2.2. First the compiler parses the Modelica code and
after this step we have an Abstract Syntax tree (AST) [12]. An AST is a tree like datastructure
that describes source code. Later in the compile pipeline there is a step called flattening. In
this step a new AST called Flat-AST is built and the old AST is thrown away [12]. The Flat-
AST has thrown away all object oriented structure and only contains one single model. This
single model is one big equation system with variables and equations.

10

2.2 The Compiler Pipeline

The OCT Compiler

Modelica
Code

Parsing Flattening
AST

Trans-
forma-
tionsFlat

AST

Code Gen-
erationAST

trans-
formed

Simulation
Binary

Figure 2.2: The compiler pipeline.

After the flattening step there are several transformations that are done on the Flat-AST
for optimization purposes. Two of those will be covered below, first Alias Elimination that
is covered in Section 2.2.1 and secondly BLT which is covered in Section 2.2.2.

After these transformations the code is generated and we get a simulation binary.

2.2.1 Alias Elimination
Alias elimination is a simple transformation that checks for expressions of the form x = y or
x = −y. In this cases alias elimination simply replaces all y with x. This can be done because
Modelica is declarative so the order of the equations does not matter. This transformation in
it self is very simple but it is used as a step in other, more complex transformations such as
variability propagation. These other transformations can create aliases that for optimization
purposes should be removed.

2.2.2 BLT
BLT is the last transformation that is done [12] before code generation. It is the last step
before we have the AST transformed in Figure 2.2. This step is done to partition the model
into smaller parts that can be solved semi-independently during runtime. Before this step we
have a model that describes one big equation system. BLT splits this equation system into
smaller equation systems that must be solved in a specific order. What determines the size
of these smaller equation systems is usually circular dependencies between variables. In the
OCT compiler this step also contains Tearing which is the topic of this thesis.

BLT is short for Block Lower Triangular. A lower triangular matrix is a matrix elements
where all elements above the diagonal are 0. Non-zero elements are only allowed on the
diagonal and below.

A block matrix is a matrix that has been partitioned into blocks using vertical and ho-
risontal lines. A BLT is a matrix where every block above the diagonal only contains 0 ele-
ments. An example of a BLT matrix with the blocks marked is shown in Figure 2.3b. This
BLT matrix can also be written as shown in Figure 2.3c, here we have for example

B6 =

1 0 1
1 1 1
0 1 1

 .
Before the BLT transformation step we have one model. Because of flattening there can-

not be more than one single model. This model can be described using a matrix. For example

11

2. Background

a b c d e
f1 1 0 0 0 0
f2 1 1 0 1 1
f3 0 0 0 1 1
f4 0 1 0 0 1
f5 1 0 1 0 0

(a) The incidence matrix
that results from the example
code in 2.2. Our goal is to
write this matrix on BLT
form.

a c b d e
f1 1 0 0 0 0
f5 1 1 0 0 0
f4 0 0 1 0 1
f2 1 0 1 1 1
f3 0 0 0 1 1

(b) The incidence matrix writ-
ten on BLT form.

B1 0 0
B2 B4 0
B3 B5 B6

 .
(c) The same
matrix as in 2.3b
but written with
the blocks instead.

Figure 2.3: An incidence matrix that describes the model in Listing 2.2. This incidence matrix
is then transformed to an incidence matrix written on BLT form. This BLT form is also shown
using blocks.

the code in Listing 2.2 is represented by the matrix in Figure 2.3a. This matrix is an incidence
matrix that marks the relationship between variables and equations. The goal of the BLT
step is to transform this matrix into BLT form.

Listing 2.2: Modelica example
model SimpleEx

Real a, b, c, d, e;
equation

sqrt(a) = 65 " Equation f1";
d = a/(b*e) " Equation f2";
e = d^3 " Equation f3";
b = sqrt(e) " Equation f4";
0 = a^2 + c " Equation f5";

end SimpleEx ;

To find the BLT form of a matrix we must first find the blocks. Once the blocks are
known it is very simple to rewrite the matrix to BLT form.

To find blocks that allows the matrix to be rewritten on BLT form the first step is to
make a Bipartite graph from the code. A Bipartite graph is a graph that can be divided into
two sets, A and B, so that every edge connects one element in set A with one element in set
B. So we cannot have any edges that connects elements in the same set.

The code in Listing 2.2 results in the Bipartite graph in Figure 2.4a. One of the sets
contains the equations and the other contains the variables. There is an edge connecting the
equations with every variable that exsists in that equation.

Once we have this Bipartite graph then the goal is to get a perfect maximum matching in
this graph. A matching is a subset of the set of edges so that no two edges contains the same
node. An example of a matching can be seen in Figure 2.4b. As can be seen no edge in the
matching subset contains the same equation or variable as an other edge in this subset.

A maximum matching is a matching that contains the maximum number of edges possi-
ble. So all other matching that are possible contains either fewer or the same number of edges.
Figure 2.4c shows an example of a maximum matching. A maximum matching is called per-

12

2.2 The Compiler Pipeline

fect if every equation has an edge to a variable and every variable has an edge to an equation.
As can be seen the maximum matching in 2.4c is perfect. There are usually several different
perfect maximum matchings.

If it is not possible to create a perfect maximum matching the problem is unsolvable and
an error is returned. If we have a perfect maximum matching then every equation is matched
with a variable.

Once we have the perfect maximum matching it is possible to find the blocks from this.
This is done using an algorithm called tarjan’s strongly connected components algorithm [1].
This algorithm takes as input the perfect maximum matching and also the bipartite graph
shown in 2.4a. The output is the diagonal blocks and also the order in which the blocks are
to be solved.

Tarjan’s algorithm gives the following diagonal blocks

B1 =
[
1
]
,

B4 =
[
1
]
,

B6 =

1 0 1
1 1 1
0 1 1

 .

This gives the BLT form shown in Figure 2.3b. The reason why B6 is of size 3x3 is because
there is a circular dependency between the variables b, d and e. All blocks of size 1x1 contains
no circular dependency, but the blocks of bigger size contains a circular dependency which
makes these blocks bigger.

From the BLT form in Figure 2.3b it is now possible to solve the equation system by
solving the diagonal blocks one at a time. First solve B1, then B4 and finally B6. The individual
blocks can be solved using an optimization algorithm such as Newton optimization. However
in almost all cases these blocks are going through a transformation called tearing before the
runtime code is generated and the optimization takes place. Tearing is a method to reduce
the dimension of the optimization problem.

13

2. Background

f1 a

f2 b

f3 c

f4 d

f5 e

(a) The bipartite graph
that results from the exam-
ple code in 2.2.

f1 a

f2 b

f3 c

f4 d

f5 e

(b) A matching in the bi-
partite graph.

f1 a

f2 b

f3 c

f4 d

f5 e

(c) A maximum perfect
matching in the bipartite
graph.

Figure 2.4: A bipartite graph with different matchnings.

14

Chapter 3

Tearing

First invented by Gabriel Kron [8] is a method he called Diacoptics. In the scientific literature
this method goes under two different names. Sometimes it is called Diacoptics and sometimes
Tearing. These words essentially means the same thing. Coptics is latin and means to tear and
Dia is a pre-fix that augments the word that follows. So diacoptics means to tear strongly in
latin. In this thesis I will use the word Tearing because this seems to be the most common
name in computer science literature.

Gabriel Kron was an electrical engineer who used Tearing to optimize power lines. Since
then Tearing has found uses in a wide variety of fields including chemistry [9], physics [9],
computer science [4] and a wide variety of fields in electrical engineering [7].

Tearing in the OCT compiler is applied on diagonal blocks that are bigger that 1x1. So
in the example code from Listing 2.2 tearing is only applied on block B6.

3.1 The need for Tearing
In this section I will use Newton optimization. In Newton optimization we need to calculate
a Hessian matrix. This matrix contains all the second derivatives. For an introduction to
newton optimization see [13].

Tearing reduces the dimension of the optimization problem. Without tearing the Hessian
in Newton optimization gets the same dimension as the block that we are trying to solve.
There are several downsides of this. First of the elements in this matrix takes a lot of computer
power to calculate as the elements must be numerically approximated. For real problems
there can be hundreds of variables in each block and since the size of the Hessian is increasing
with O(n2) even small reductions of the number of variables n can cause big reductions in
the number of elements in the matrix.

Secondly the optimizer generally has a harder time to find good values for the variables
when number of iteration variables grows. This is especially true if the iteration variables
also have very different magnitude. For many real models used at Modelon the magnitude

15

3. Tearing

between variabels can be very big. This is especially true in thermodynamics where differ-
ences as large as 1015 are common.

Tearing is often very effective. For most real models it reduces the size of blocks of over
a hundreds of variables to fewer than a dozen.

3.2 A Simple Tearing Example
Tearing works by breaking algebraic loops. Often blocks are caused by algebraic loops. That
is the case in the earlier example in Figure 2.3.

Lets take a very simple example

a = f1(b)
b = f2(a)

Here we have a algebraic loop shown in Figure 3.1. Our goal is to somehow break this
loop as is shown in 3.2.

b

a

f2f1

Figure 3.1: A graph that represents the equation system. From the graph it is easy to see the
circular dependency of the system. The variable b is used as input to function f1. This gives
variable a that is then used as input to function f2. This gives variable b and so on.

A simple tearing algorithm is described in [3]. We simply use the graph in Figure 3.2c to
write the problem as

bi = bi+1.

The graph then gives the following equation

f2(f1(b)) = b.
this allows us to write the problem on the following format

b − f2(f1(b)) = 0.
This can now be solved using a Newton optimizer where b is the variable that is being

optimized for. The dimension of the optimization problem has been reduced from 2 to 1.
However this rewritting only works when we have a very simple graph with only a single

linear dependency. We need a more general way of doing tearing. The one used by the OCT
compiler is Node Tearing from [3].

16

3.3 Node Tearing

b

a

f2f1

(a) The edge between node
f2 and node b is marked for
tearing.

bi

a

f2f1

bi+1

(b) The edge marked for tear-
ing is torn which creates a new
graph.

bi f1 a f2 bi+1

(c) The torn graph is unfolded into a line. This is done to
make the graph more readable.

Figure 3.2: An illustration of the simple tearing algorithm.

3.3 Node Tearing
Assume that we have the equation system

g1(a, b) = 0
g2(a, b) = 0

The goal is now to rewrite the problem so that it is possible to find a solution by only
optimizing for one variable. A first step towards this is to calculate the inverse of one of the
functions, let’s say g1, with respect to one of the variables, let’s say a. We get

g1_INVa(b) = a
g2(a, b) = 0

It is now possible to solve the above system using by a one dimensional optimization
algorithm in the following way. First we have a start value for b. This start value is then used

17

3. Tearing

as input to g1_INVa(b) to get a new value for a. We can then use this new value as input to g2.
By using this value in g2(a, b) we turn g2 from a two dimensional function to a function in
one dimension, g(b). We can then find a new value for b by using an optimization algorithm
on g(b) so that the function value gets as close to 0 as possible. This new value for b can then
be used as input in g1_INVa(b) to get a new value for a and the process can then be repeated
until the new value for b is the same or very similar to the value of b in the previous iteration.
The process can be shown using a graph as can be seen in Figure 3.3. Here bi is called an
iteration variable and g2 is called a residual equation. The variable ai is called a torn variable and
the equation gi is called a torn equation. These have basically been torn from the optimization
problem.

In Figure 3.3 the equation g1 and variable ai forms a torn pair. We use g1 to calculate
ai . Similarly bi and g2 forms a pair. All residual equations must be paired with an iteration
variable that contributes to the equation. All variables can only be paired with one equation
and vice versa.

bi

g1 ai

g2 residual

ne
w

b

Figure 3.3: An illustration of node tearing.

It is also possible to solve larger equation systems than the above using this method. For
example assume that we have a system of three equations. Two possible tearings for a system
of three equations are shown in Figure 3.4.

For a system of two equations there is only one way the tearing graph can look. If the
number of equations are increased to three there are suddenly more options. We might have
one or two residual equations. If we have two residual equations like in Figure 3.4b then
we also have two iteration variables, in this case called a and b. The opimization problem
becomes two dimensional and the Hessian is a 2x2 matrix.

There are several reasons why there might be more than one residual equation. In Figure
3.4b we see that gi and ci makes a torn pair. For such a torn pair to be possible two things
must be true. First the variable must of course exist in the equation. Secondly the variable
must be linear in the equation. The reason for this is that the OCT compiler cannot calculate
the inverse of an equation with regards to a variables that is not linear. For example ai and bi
in 3.4b might not occur linearly in any of the equations. In that case we have no choice but
to have two residual equations.

In both the examples in Figure 3.4 all the variables exists in all the equations. This is
typically not the case. Usually equation systems in Modelica are sparse. For real models a
block can contain hundreds of variables and equations but a typical equation often contains
just a handful of variables. This puts a big constraint on how to do tearing because only a
few if any variables are eligible to be torn variables for a specific equation.

One important goal when deciding how to do tearing is to reduce the number of residual

18

3.3 Node Tearing

ai

g1 bi

g2 ci

g3 residual
(a) An example of tear-
ing in an equation sys-
tem of three equations.

ai

bi

g1 ci

g2

g3

residual

residual
(b) An other example of
a such system.

Figure 3.4: Two examples of tearing of systems of three equations.

equations as much as possible. This is the main reason why we do tearing; to reduce the
dimension of the optimization problem. Unfortunately this problem is NP-complete [9].
There is also an other aspect of the tearing problem that is very important and that is the
numerical properties of the torn system. For example as mentioned earlier the magnitude of
the variables in newton optimization should be as close to each other as possible. It might be
worth it to pick a solution that has more residual equations if the iteration variables are closer
to each other in magnitude. This is just one of a magnitude of numerical considerations that
must be taken into account.

In OCT there is an algorithm called Automatic Tearing that tries to selects iteration
variables and residual equations as well as possible.

19

3. Tearing

3.4 Automatic Tearing
The automatic tearing algorithm in the OCT compiler contains many steps [10]. Most of
them are not relevant for this thesis however there are a few things that are. The automatic
tearing algorithm takes in one block at a time. One of the first steps in the automatic tearing
algorithm is a bipartite matching of the equations and variables in the block. A new bipartite
graph g is created and with the variables and equations that exists in the block. As in all
bipartite graphs there are two sets of nodes, in this case one set consists of variables and the
other of equations. In this graph g a new bipartite matching is done.

e1 a
0/1

e2

0/1

b

0/1

e3

0/1

c
0/1

Source

0/1

0/1

0/1

Sink

0/1

0/1

0/1

(a) First the graph is made to a network flow problem by giving all edges the capacity of 1 and
adding a sink and a source.

e1 a
0/1

e2

1/1

b

1/1

e3

0/1

c
1/1

Source

1/1

1/1

1/1

Sink

1/1

1/1

1/1

(b) Secondly the max flow is found by some algorithm for example the ford fulkerson algorithm.
The edges with flow in them (red edges) that connects a variable with an equation marks a match-
ing.

Figure 3.5: An illustration of solving the bipartite matching problem using network flow.

All variables and equations have already been matched before automatic tearing. How-
ever unlike before in this new graph g equations and variables can only match if they can be
torn pairs. For example if a variable occurs non-linearly in an equation they cannot match
because the variable cannot be torn from that equation as it cannot be solved analytically by
the OCT compiler.

There are two steps in this matching. First there is a greedy algorithm that iterates the
equations and tries to match the equation with the first eligible variable in that equation. If
there are still unmatched equations then a network flow algorithm is applied as is shown in
Figure 3.5. Note that when solving the max flow problem augment flows are often used in
the algorithm so that matchings from the greedy algorithm might be changed.

20

3.4 Automatic Tearing

After these two matching algorithms there are usually equations that remains unmatched.
These are gathered in a data structure with the variable name SUME. If an equations exists in
this data-structure then this is a strong indication that it might be a good residual equation.
For an example an equation with all variables non-linear will always end up in this data-
structure because non of the variables can be torn.

In addition to this there is an algorithm than for a given equation compares two variables
in this equation to see which is the best pairing. This algorithm has many heuristics and most
of these heuristics checks numerical properties. There is also a similar algorithm that for a
variable compares two equations.

21

3. Tearing

22

Chapter 4

Contributions to Tearing

As seen in the previous chapter it is very hard to select good iteration variables and residual
equations. Finding the maximum dimensionality reduction is a NP-complete problem. Fur-
thermore numerical properties of the equation system must be take into account. In addition
to this it is often important to pick iterationvariables that has good start values.

There are many complex problems that the automatic tearingalgorithm must solve and
therefore it is important for the user to manually be able to select iteration variables and
residual equations. Two different methods for this will be developed in this thesis. Both
these methods can be used together with automatic tearing. The user selects some iteration
variables and residual equations and the automatic tearing algorithm selects more if neces-
sary.

4.1 Start Values

In addition to decreasing the dimensionality as much as possible and select iteration vari-
ables and residual equations with good numerical properties it is also important to take into
consideration start values. For most but not all equation systems it is important that the vari-
ables selected as iteration variables has good start values. Most variables have start values but
sometimes it is hard for the modeller to determine good start values for variables. It is also
a lot of work to find good start values for all variables so if HGT makes it possible to avoid
doing this work for a lot of variables then that is a good thing. If start values are bad then
the system might not converge. If the start value for a variable is absent then the algorithm
must find a good start value automatically and for some variables and equations they have
numerical properties that makes it possible to find good start values automatically, but often
this is not the case.

23

4. Contributions to Tearing

4.2 HGT for Dynamic Systems
HGT stands for Hand Guided Tearing. It means that the user manually can affect the selec-
tion of iteration variables and residual equations instead of letting the Automatic Tearing
algorithm do all the work.

A part of this thesis is to make it possible to use HGT on dynamic systems. This is im-
portant because the vast majority of models are not steady state but contains a combination
if algebraic and differential equations. For an example the code in Listing 4.1 is not a steady
state model as there is a differential equation in that model. As can be see in this model the
last equation must be a residual equation because none of the variables can be solved analyt-
ically by the OCT compiler. If c is the iteration variable paired with this equation then this
is the only iteration variable necessary because a can be solved in the second equation and b
in the third.

Listing 4.1: HGT example
model SimpleEx2

Real x;
Real a;
Real b;
Real c;

initial equation
x = 5;

equation
der(x) = 1 - x;
0 = x/c^2 - a;
0 = sqrt(c) + a^2 - b;
0 = a^2 + b^2 + c^2 annotation(__Modelon (

ResidualEquation (iterationVariable =c)));
end SimpleEx2 ;

Unlike steady state all equation that have circular dependency are not a part of this block.
Only algebraic equations with circular dependency forms a block that we can do tearing on.
In the model in Listing 4.1 the differential equation forms its own block. This block also
looks different in the inital system and in the DAE. In the initial system x is always 5 but in
the DAE the differential equation must be solved at every time step to get a value for x in
that time step to feed into the block that we do tearing on.

Because the initial system and DAE has different properties the user might want to to
tearing differently in these two systems. Therefore a part of this thesis is also to make it pos-
sible for the user to do different HGT tearing decisions for the initial and the DAE systems.
To allow the user to do this a new system annotation should be introduced. For example if the
user want a tearing pair to only be for the initial system the the user can use the annotaion in
Listing 4.2. If the user wants it only for the DAE then the user can use the annotation in List-
ing 4.3, and if the user wants it for both then the user can use the annotation in Listing 4.4.
The default is both so if the user does not write anything like in Listing 4.1 then it defaults
to both.

Listing 4.2: Annotation for inital system only.

24

4.3 Unpaired Tearing

annotation(__Modelon (ResidualEquation (iterationVariable =
c, system = "init")));

Listing 4.3: Annotation for DAE system only.
annotation(__Modelon (ResidualEquation (iterationVariable =

c, system = "DAE")));

Listing 4.4: Annotation for both initial and DAE system.
annotation(__Modelon (ResidualEquation (iterationVariable =

c, system = "both")));

4.3 Unpaired Tearing
In unpaired tearing the iteration variables and residual equations are selected individually as
can be seen in Listing 4.5. Unlike normal HGT we do not specify the residual equation and
iteration variable pair. We only specify which equations should be residual equations and
which variables that should be iteration variables.

This can be used in combination with normal HGT. The OCT compiler requires there
to be an equal number of unpaired iteration variables and residual equations selected in the
OCT compiler. At compile time the unpaired tearing algorithm uses heuristics to match
the unmatched HGT variables with the unmatched HGT equations. With HGT variables
I simply mean an iteration variable used in HGT and for HGT equation i mean a residual
equation used in HGT.

Listing 4.5: Unpaired tearing example
model SimpleEx3

Real x;
Real a;
Real b;
Real c annotation(__Modelon (IterationVariable));

initial equation
x = 5;

equation
der(x) = 1 - x;
0 = x/c^2 - a;
0 = sqrt(c) + a^2 - b;
0 = a^2 + b^2 + c^2 annotation(__Modelon (

ResidualEquation));
end SimpleEx3 ;

As for normal HGT this only works for steady state systems and a part of this thesis
is to expand support so that it also works for dynamic systems. An other goal is to make
unpaired tearing work even if the number of unpaired HGT variables and HGT equations
are not the same. For example the modeller might only pick unpaired iteration variables or
only unpaired residual equations. When the variables and equations are different we call this
uneven unpaired tearing.

25

4. Contributions to Tearing

Unpaired tearing is often used at Modelon as something in-between automatic tearing
and normal HGT. The user has some information about how to do tearing but not enough
to know the best pairs. As such it is very useful to rewrite the Unpaired algorithm to make it
possible to select an uneven number of HGT variables and HGT equations. For example the
user might know several iteration variables that are good but not as many residual equations
or not any residual equations at all. Instead of having to pick the same number of residual
equations it is good if it is possible to rewrite the algorithm automatically can find suitable
residual equations.

The new system annotations that was added for normal HGT were also added for unpaired
HGT.

26

Chapter 5

Implementation

In this chapter I will describe the implementation of the two tools for HGT described in
Section 4.

All code where written in Java. Sometimes the Java meta-compilation tool JastAdd [6]
was used. JastAdd was mostly used for front-end changes in the OCT compiler that were
necessary to create and propagate the new annotations. All the code for the algorithms in 1,
2, 3 are written in plain Java.

5.1 Hand Guided Tearing for Dynamic Sys-
tem

To make HGT for dynamic systems possible many small changes were necessary. Instead of
mentioning many very minor code changes I will describe the one major change that was
necessary. The major change was to make the init/DAE/Both annotation possible. As the
code was written originally it made no difference between initial and DAE because there is
no DAE part for steady state. It was not just the HGT algorithm that made no such difference
but also a lot of methods from other classes that are used in this algorithm.

Instead of rewriting a lot of code I made a resetting algorithm and the same algorithm
could then be called two times. This resetting algorithm marks a HGT pair for resetting if
certain conditions are true. For example if the algorithm is called on the initial system and
the HGT variable in the pair has the annotation init then the entire pair must be reset no
matter if the equation has the annotation init or both. The variable should not be a HGT
variable in the DAE system and the equation must be paired with an other variable.

27

5. Implementation

5.2 Unpaired Tearing
The first step was to rewrite the current algorithm that pairs unpaired HGT variables and
equations. This was rewritten so that it works even if the number of unpaired HGT variables
and unpaired HGT equations are not the same. Several minor changes had to be made for
this to work.

Algorithm 1 Graph matching

1: procedure get_sume_sumev(g) ▷ g is a graph that describes the equation system
2: <Greedy matching in g>
3: <Network flow matching in g>
4: SUME ← all unmatched equations in g
5: SUMV ← all unmatched variables in g
6: end procedure

The next step was to write an algorithm that can identify good potential equations and
variables that can be paired with the remaining unpaired HGT variables or equations. In this
step I took a lot of inspiration from the automatic tearing algorithm, section 3.4. The same
kind of greedy matching was first done followed by the same flow algorithm. The equations
that where still unmatched after this were gathered in a datastructure with the variable name
SUME. I also find the unmatched variables which where gathered in SUMV. The pseudocode
for the second step can be seen in Algorithm 1.

The third step is to try to match the unpaired HGT variables or equations with those
in SUME or SUMV using a greedy algorithm. If there are many options, let’s say that an
SUME equation contains many unpaired HGT variables then we use the algorithm from au-
tomatic tearing that compares variables in an equation. Similarly if we have several unpaired
HGT equations for a variable the automatic tearing algorithm that compares equations for
a variable is used. The pseudocode for this is the first procedure in Algorithm 2. If we have
unpaired HGT equations left then these are if possible paired with the SUMV variables using
a greedy algorithm. The pseudocode for this can be seen in the first procedure of 3.

At this point if there are still unpaired HGT variables or equations then we move on
two procedure two in either Algorithm 2 or in Algorithm 3. In this step we first check if
the unpaired HGT variables or equations have a matching in the graph g from Algorithm
1 after the flow algorithm. If this is the case then the unpaired HGT variable or equation
is paired with its matching in g. If the HGT variable or equation is still not paired then a
greedy algorithm is used to do the pairing as can be seen in the second part of the second
procedure in Algorithm 2 or 3. If there are still unpaired HGT variables then a compiler
error is returned.

The Init/DAE/Both annotation was implemented in the same way as for normal HGT.
The first procedure in Algorithm 2 and 3 is a weighted bipartite matching. Unlike Figure

2.4 the goal is not to make a perfect maximal matching but to match the surplus equations or
variables. Furthermore the problem is weighted, i.e. the elements in the other set has different
weights. If we have more variables then the eligible equations have different weights as they
are not all equal good.

28

5.2 Unpaired Tearing

Algorithm 2 More variables

1: procedure greedy_pairing_of_sume_equations(g, SUME)
2: for <e← next eqn in SUME> do ▷ Iterate all equations in SUME
3: bestIter ← null
4: for <v ← next variable in e> do ▷ Iterate all variables in e
5: if <v is an unpaired HGT var> then
6: if <v is better than bestIter> then
7: BestIter ← v
8: end if
9: end if

10: end for
11: if <bestIter ̸= null> then
12: <Pair bestIter with e>
13: end if
14: end for
15: end procedure
16: procedure greedy_pairing_of_remaining_unpaired_hgt_variables
17: for <v ← next unpaired HGT var> do ▷ Iterate all remaining unpaired HGT

vars
18: e← v:s matching in g
19: if <e ̸= null> and <e ̸= paired HGT eqn> then ▷ If v:s matching in the

graph g exists and is not paired to a HGT var
20: <Pair v with e>
21: <BREAK>
22: end if
23: for <e← next eqn containing v> do ▷ Iterate all equations that contains

the variable v
24: if <e ̸= paired HGT eqn> then
25: <Pair v with e>
26: <BREAK>
27: end if
28: end for
29: end for
30: end procedure

29

5. Implementation

Algorithm 3 More equations

1: procedure greedy_pairing_of_sumv_variables(g, SUMV)
2: for <v ← next var in SUMV> do ▷ Iterate all variables in SUMV
3: bestEqn ← null
4: for <e← next equation containing v> do ▷ Iterate all equations

containing v
5: if <e is an unpaired HGT eqn> then
6: if <e is better than bestEqn> then
7: BestEqn ← e
8: end if
9: end if

10: end for
11: if <bestEqn ̸= null> then
12: <Pair bestEqn with v>
13: end if
14: end for
15: end procedure
16: procedure greedy_pairing_of_remaining_unpaired_hgt_equations
17: for <e← next unpaired HGT eqn> do ▷ Iterate all remaining unpaired HGT

eqns
18: v ← e:s matching in g
19: if <v ̸= null> and <v ̸= paired HGT eqn> then ▷ If e:s matching in the

graph g exists and is not paired to a HGT var
20: <Pair e with v>
21: <BREAK>
22: end if
23: for <v ← next var in e> do ▷ Iterate all variables in e
24: if <v ̸= paired HGT var> then
25: <Pair e with v>
26: <BREAK>
27: end if
28: end for
29: end for
30: end procedure

30

5.3 Alias Elimination

5.3 Alias Elimination
In addition to the BLT compilation step a small change was also necessary in this compilation
step. This compilation step was modified so that a variable that is marked for HGT cannot
be alias eliminated. The code for this was done in JastAdd.

31

5. Implementation

32

Chapter 6

Evaluation

In this chapter the implementation of HGT is evaluated. I will evaluate both the normal HGT
and Unpaired HGT. This evaluation will be carried out on three different sets of models; my
own set of test models, models selected from the Modelica Standard Library (MSL) and two
models provided from Modelon.

6.1 HGT for Dynamic Systems
To evaluate the implementation of normal HGT several things are done. First I have devel-
oped a test suit that tests HGT for many different dynamic systems. I also developed many
different tests for the system annotation. In total this test test suit contains about 50 test
cases that tests normal HGT. With the exception of one issue discussed in 6.3 and 7.3 every
test that I wrote works. The problem with these tests however is that they are all very small
models.

To test the implementation on real models I used 6 different models from the Modelica
Standard Library (MSL) these are shown in Table 6.1. Even the models that are labeled small
are far bigger than my own tests. I check if my implementation works by turning off Au-
tomatic Tearing and manually selecting the same iteration variables and residual equations
selected by Automatic Tearing. Then I check that everything is the same as for automatic
tearing including the simulation results. My implementation works for all these models.

In addition to the models from MSL I also got two models from Modelon that has prob-
lems with automatic tearing. The first model is a model of an evaporator. The problem with
this model is that automatic tearing selects an iteration variable without start value which
makes the model not converge. For some reason automatic tearing does this despite there
being a similar variable that has a start value attached. I used HGT to select this variable as
an iteration variable and pair it with the same residual equation. After this the model did
converge.

The second model that I was provided from Modelon was a model of a heat exchanger.

33

6. Evaluation

MSL Models
Model Name Type of Model Model Size
FullRobot Mechanical Very Large
ThreeTanks Fluid Small
BatchPlant Fluid Large
DoublePendulum Mechanical Small
CoupledClutches Mechanical Small
InvertingAmp Electrical Small

Table 6.1: The MSL models used. Small models have around 50-300 equations, the Large
model around 2000 equations and the very large model around 5000 equations.

2 3 4 5 6 7 8 9 10 11 12
Automatic O O O O X O X X O X X
HGT O O O O O O X O O X X

Table 6.2: Heat exchanger with automatic tearing and HGT results

The problem with this model is that the initial system does not converge with some start
values with the iteration variables and residual equations selected by automatic tearing. The
goal is to make the initial system converge for more start values by the use of HGT. In this
model there is one parameter value that is problematic. This parameter models the convec-
tion heat flux to some of the pipes in the heat exchanger. For real world applications this
parameter is in the range of 2-12. As can be seen in Table 6.2 there are 5 values for which this
does not converge.

In this heat exchanger there are over a hundred parameters for different pressures. These
pressures can have very different magnitudes. After talking with a modeller at Modelon the
most likely reason why this model has problems at converging is because automatic tearing
selects pressure parameters with to big differences in magnitude. I used HGT to reduce the
differences in magnitude as much as possible and the result can be seen in Table 6.2. As can
be seen the model converges for more start values in this interval but still has problems.

6.2 Unpaired Tearing
The Unpaired Tearing was evaluated in a similar manner as normal HGT. I developed a test
suit that checks if unpaired tearing works. The same issue as for normal HGT exists here
which will be discussed in 6.3 and 7.3.

In addition to this I tested Unpaired Tearing on the same MSL models. Unlike normal
HGT three different kinds of test were done for each model. I tried to select both variables
and equations. The same variables and equations as for automatic tearing. I also tries to
select only variables and only equations. I then tested that everything worked and that the
simulation results where the same as for automatic tearing. This was the case. I also tested
Unpaired tearing on the same two models from Modelon with the exact same result.

34

6.3 Linear Blocks

6.3 Linear Blocks
In the OCT compiler there is an optimization that gets rid of linear blocks. A linear block
is a block where every equation only contains linear variables. On these blocks normal node
tearing should not be done. Instead there are more efficient algorithms that can be applied
[3]. The optimization algorithm that removes linear blocks are done before the BLT step
and involves among other things Alias Elimination. Unfortunately the change made to Alias
Elimination in Section 5.3 means that if HGT is used in a linear block then two things can
happen; either normal node tearing is done on this block and everything works but subopti-
mally or we might get a compiler error.

6.4 Compile time and Runtime
To check how my implementation affects compile time I compiled the FullRobot model 50
times and threw away the first 20 to avoid measuring the first few runs before the cache
memory starts to have significant effects. On the 30 measurements that where not thrown
away I measured the average time and a 95% confidence interval for the average time. I did
this for Automatic Tearing, normal HGT and Unpaired Tearing, the results can be seen in
Table 6.4. Neither normal HGT or Unpaired Tearing had a statistically significant difference
from Automatic tearing. I also measured the runtime in the same manner, the result can be
seen in Table 6.3. As can be seen there is no statistical significant difference from Automatic
Tearing. It was expected that the compile time would not be affected because the tearing
algorithm is a very small part of the compiler.

Runtime
Model Mean Lower Bound Higher Bound
Automatic 0.187 0.178 0.196
Normal HGT 0.193 0.182 0.205
Unpaired vars 0.185 0.176 0.194
Unpaired eqns 0.191 0.181 0.200
Unpaired both 0.195 0.185 0.205

Table 6.3: The runtime for the different ways to do tearing on the FullRobot model. Time is
calculated in seconds. Confidence intervals are normal two sided 95% confidence intervals.
As can be seen none of the tearings are statistically significantly different from automatic
tearing because all the mean values are within the confidence interval of automatic tearing.

35

6. Evaluation

Compile Time
Model Mean Lower Bound Higher Bound
Automatic 31.02 30.92 31.11
Normal HGT 30.93 30.85 31.02
Unpaired vars 31.04 30.95 31.13
Unpaired eqns 31.09 31.01 31.17
Unpaired both 31.08 31.00 31.17

Table 6.4: The compile time for the different ways to do tearing on the FullRobot model.
Time is calculated in seconds. Confidence intervals are normal two sided 95% confidence
intervals. As can be seen none of the tearings are statistically significantly different from
automatic tearing because all the mean values are within the confidence interval of automatic
tearing.

36

Chapter 7

Discussion

7.1 Uneven Unpaired Tearing
As mentioned in Section 5.2 the unpaired tearing algorithm is a weighted bipartite matching
problem. Weighted matching of Bipartite graph is a NP-complete problem [5] but greedy
matching is the best known polynomial-time deterministic algorithm and often provides
good approximations [2]. Flow algorithms cannot solve this problem [2] unlike the non-
weighted case. However as can be seen in [2] there are stochastic algorithms that on average
performs better than greedy matching.

Ultimately I decided to use greedy matching because the stochastic methods are much
harder to implement while providing only marginal improvements. Furthermore it must be
easy for the modeller to use the unpaired tearing algorithm. If the algorithm is stochastic
there is a risk that for the very same model the algorithm will occasionally work and occa-
sionally not work. It is also possible that the very same model would have different numerical
properties for different compilations and that the simulation of the very same model would
be different.

When deciding on what algorithm to use to solve this problem I brainstormed several
options. All of them were of course NP-complete because tearing is NP-complete. The reason
why I ultimately decided to use weighted bipartite matching is because the polynomial-time
deterministic algorithm that give best approximations for the weighted bipartite matching
is simple. For the other algorithms the algorithms required are more complex that a greedy
algorithm.

If the greedy matching fails I try to match the variable or equation with its matching
in g if possible. From the tests that I did it is very rare that the variable or equation fails
to be matched in the greedy algorithm unless I intentionally picked really poor variables as
iteration variables or really poor equations as residual equations. In the cases where a variable
or equation failed to be matched in the greedy algorithm it could almost always in my tests
be matched in to its pairing in g unless I specifically constructed a problem to prevent it.

37

7. Discussion

The reason why an equation or variable that fails to be matched in the greedy algorithm
is matched with its pairing in g is that it will not mess up an other equation or variable. If
we instead would have used a greedy algorithm to do the matching then there is a risk that
it will mess up an other pair. For example if we have variable x that is a torn variable and
can only form a torn pair with equation e then there is no risk that we will match y with e.
With a greedy algorithm this risk exists. If against all odds the variable or equation is still
unmatched after this then I match it using a greedy algorithm.

7.2 The two Models from Modelon
There where only two real models that had problems working with automatic tearing. One
of the reason for this might be selection bias. For steady state OCT has had support for HGT
for a few years. For steady state there are many models that utilises HGT and in many of these
models automatic tearing is also turned off. Since model developers have had no option apart
from full automatic tearing for dynamic system it is not unlikely that they have been tweak-
ing and changing their models so that they actually work when using the automatic tearing
algorithm. HGT for dynamic systems have been requested by model developers at Modelon
so it is unlikely that it will not be used. Once there is support for this then the number of
dynamic models that have problems working solely using Automatic Tearing might start to
increase.

It is hard to determine why there are still start values for which the heat exchanger does
not converge. It could be that the magnitude difference is still too big and could be reduced
by using other variables as iteration variables. But there are a lot of different numerical
problems that can occur. Since this thesis is about implementing two different HGT tools
and not about numerical analysis it felt out of scope of this thesis to investigate the numerical
properties of the Heat Exchanger further.

7.3 Linear Blocks
There is a problem with linear blocks. Ideally HGT should not be possible to do on linear
blocks. There is no reason to do normal node tearing on linear blocks because much better
algorithms are available. However changing the optimization for linear blocks so that it
ignores HGT annotations or gives warnings would be time consuming as it would require
me to get a good understanding of an other compile step. Furthermore it is likely that a
significant rewrite would be needed because at this compile step the compiler has not yet
partitioned the model into smaller blocks. So the compiler does not know what block an
equation belongs to or if there are linear blocks. Because of that it was considered out of
scope for this thesis.

As it is now the algorithm can give compile error. However this is not considered as a very
big problem for several reasons. First it is very unlikely that the modeller would use HGT on
linear blocks. HGT is used when automatic tearing for some reason fails and since automatic
tearing is not applied to linear blocks these blocks are irrelevant. Secondly if there is an error
the error is at compile time and the modeller gets an error message that explains what is
wrong. It would be more problematic if the error was during the simulation, especially if

38

7.4 Selection of MSL Models

there is no error message. Then the modeller could get a simulation result that is wrong and
not know that it is wrong.

7.4 Selection of MSL Models
In Table 6.1 there are six models used in the evaluation. Almost all models at Modelon has
fluid or mechanical components. Therefore several fluid and mechanical models were picked.
An electrical model was also picked because electrical components are also common. Fur-
thermore it is good to have both smaller and bigger models. The benefit of smaller models is
that it is possible with a days work or so to get an overview of the entire model. So if there
are bugs in simulation or compilation it is much easier to find than if only using very large
models.

The reason why FullRobot was used to evaluate the compile time and runtime is because
this model is by far the biggest of the six MSL models and has some very large blocks. This
is especially important for the evaluation of uneven unpaired tearing because the weighted
bipartite matching problem is NP-complete. So there are methods to find approximations
to this problem would give a very large increase in compile time for big blocks.

7.5 Tearing in OpenModelica
The OpenModelica compiler also supports hand guided tearing for dynamic systems [4].
However OpenModelica only supports the selection of variables. Not equations or variable
and equation pairs.

To evaluate the usefulness of the additional capabilities of the OCT compiler it would
be necessary to find examples where we need to specify the equations. Either where it is not
enough to only specify variables but we would need to specify equations as well or an example
where only equations are to be specified and we have very little information about variables.

It can be hard to find such an example. In the two Modelon models the problems that
were fixed were numerical issues with the variables. However it was still possible but very
time consuming to fix these numerical problems with only selecting equations. I had to select
equations so that my algorithm would likely pick the correct variables.

The main benefit of being able to select both variables and/or equations are probably to
save time.

39

7. Discussion

40

Chapter 8

Conclusion

Tearing is a tool that is important in the OCT compiler for both optimization purposes
and to give equation systems good numerical properties to increase the simulation accuracy.
The problem is that it is very hard to develop a good tearing algorithm and therefore it is
helpful for the to have a way for the user to manually select tearing variables and equation.
This is called Hand Guided Tearing (HGT). In this thesis I developed two different HGT
tools. The first tool is an extension of the current HGT so that it also works for dynamic
systems. The second is a tool that is a mix of normal HGT and Automatic Tearing. The
main purpose of these tools is to complement automatic tearing when automatic tearing does
bad decisions but it is also possible to turn automatic tearing off and only use these tools.
The evaluation shows that the tearing tools works as intended and provides no statistically
significant increase to compile time.

Further work could include fixing linear blocks. It could also include replacing the de-
terministic greedy matching in unpaired tearing with a stochastic algorithm. It could also
include making the weights in the weighted bipartite matching in unpaired tearing better.
Since the maximum dimensionality reduction problem is NP-complete most of the effort
of making better weights should probably be spent on making the heuristics for numerical
properties as good as possible. This would also improve automatic tearing.

41

8. Conclusion

42

References

[1] Carnegie Mellon University. https://www.cs.cmu.edu/~15451-f18/lectures/
lec19-DFS-strong-components.pdf. Lecture 19: Depth First Search and Strong Com-
ponents, 2018.

[2] Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching.
Journal of the ACM, Volume 61, Issue 1, 2014.

[3] Hilding Elmqvist, Dynasim Ab, and Martin Otter. Methods for tearing systems of equa-
tions in object oriented modeling. In In ESM’94 European Simulation Multiconference,
pages 1–3.

[4] Peter Fritzson, Adrian Pop, Karim Abdelhak, Adeel Ashgar, Bernhard Bachmann, Willi
Braun, Daniel Bouskela, Robert Braun, Lena Buffoni, Francesco Casella, Rodrigo Cas-
tro, Rüdiger Franke, Dag Fritzson, Mahder Gebremedhin, Andreas Heuermann, Bernt
Lie, Alachew Mengist, Lars Mikelsons, Kannan Moudgalya, Lennart Ochel, Arunkumar
Palanisamy, Vitalij Ruge, Wladimir Schamai, Martin Sjölund, Bernhard Thiele, John
Tinnerholm, and Per Östlund. The OpenModelica Integrated Environment for Mod-
eling, Simulation, and Model-Based Development. Modeling, Identification and Control,
41(4):241–295, 2020.

[5] Xiangyu Luo Guohun Zhu and Yuqing Miao. Exact weight perfect matching of bipartite
graph is np-complete. Proceedings of the World Congress on Engineering 2008 Vol II, 2008.

[6] Niklas Fors Jesper Öqvist Görel Hedin, Emma Söderberg. https://jastadd.cs.
lth.se/.

[7] H.H. Happ. Diakoptics and Networks. Academic Press, 1971.

[8] Gabriel Kron. Diakoptics - The Piecewise Solution of Large-scale Systems. MacDonald Co.,
1963.

[9] Richard S.H Mah. Chemical Process Structures and Information Flows. Butterworth-
Heinemann, 1990.

43

https://www.cs.cmu.edu/~15451-f18/lectures/lec19-DFS-strong-components.pdf
https://www.cs.cmu.edu/~15451-f18/lectures/lec19-DFS-strong-components.pdf
https://jastadd.cs.lth.se/
https://jastadd.cs.lth.se/

REFERENCES

[10] Patrik Meijer. Tearing differential algebraic equations. Lund University, 2011.

[11] Modelica Association. Modelica specification. https://specification.
modelica.org/master/MLS.html.

[12] Paul Rizescu. Applying optimization algorithms in a modelica compiler. Lund University,
2014.

[13] Stanford University. Newton-type methods. https://web.stanford.edu/class/
cme304/docs/newton-type-methods.pdf.

44

https://specification.modelica.org/master/MLS.html
https://specification.modelica.org/master/MLS.html
https://web.stanford.edu/class/cme304/docs/newton-type-methods.pdf
https://web.stanford.edu/class/cme304/docs/newton-type-methods.pdf

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-03-31

EXAMENSARBETE Improving Tearing in a Modelica Compiler
STUDENT Oskar Kari
HANDLEDARE Niklas Fors (LTH), Filip Stenström (Modelon), Markus Olsson (Modelon)
EXAMINATOR Görel Hedin (LTH)

Förbättra Tearing i Modelica

POPULÄRVETENSKAPLIG SAMMANFATTNING Oskar Kari

I detta exjobb implementeras två olika algoritmer som gör att simuleringar i pro-
grammeringsspråket modelica får potential att bli snabbare och mer precisa. Dessa
algoritmer testas på riktiga modeller och innebär en förbättring gentemot tidigare.

En kompilator översätter programmeringskod som
människor skriver till instruktioner som hårdvaran
i datorn förstår. Det är en slags “brygga” mellan
mjukvaran och hårdvaran. Det finns flera kompi-
latorer för språket Modelica men den kompilator
som jag arbetat med i detta exjobb är en kompi-
lator som företaget Modelon utvecklat.

Modelica är ett programmeringsspråk som an-
vänds för att simulera fysiska system. Det kan
vara elektriska komponenter som exempelvis en
diod, eller mekaniska komponenter som brom-
sar. All programmeringskod som skrivs i modelica
beskriver ekvationssystem. I modelica så finns det
finns det två olika typer av ekvationssystem. Det
finns statiska system. Dessa måste lösas en gång
och förändras inte med tiden. Sen finns det dy-
namiska system. Dessa måste lösas massor med
gånger för olika tidsvärden eftersom ekvationerna
påverkas av tiden.

Ett problem med dessa ekvationssystem är att
de ibland kan vara väldigt stora. De kan ibland
innehålla tusentals ekvationer. När antalet ekva-
tioner ökar orsakar detta två olika problem. För
det första ökar tiden det tar för datorn att utföra
simuleringen markant. Det andra problemet är
att man får oftast beräkningsfel som riskerar att
växa med ekvationssystemets storlek.

Tearing är en metod som bryter ner ekvation-
ssystemet så att det blir mindre. När man genom-
för tearing på ett ekvationssystem försvinner flera

av ekvationerna och variablerna från ekvationssys-
temet och systemet blir mindre. Efter att man
löst det mindre ekvationssystemet är det möjligt
att genom tearingalgoritmen få fram värdet på de
variabler som försvann från ekvationssystemet.

Att skriva en algoritm som genomför tearing på
ett bra sätt automatiskt är mycket svårt, bland
annat är ofta domänkunskaper viktiga. Dvs om
man exempelvis bygger en model över en diod så
måste man ofta ha expertkunskaper inom elek-
troteknik för att kunna göra bra tearing.

I Modelons kompilator så finns det en algoritm
som försöker göra tearing på alla ekvationssystem
som innehåller fler än en ekvation. Problemet är
att denna algoritm ibland gör dåliga val. Av den
anledningen behövs ett sätt för den som skriver
koden att manuellt göra tearing. För några år
sedan infördes stöd för detta i kompilatorn, dock
bara för statiska system. En del av detta exjobb
är att utvidga stödet så att det fungerar även för
dynamiska system. En annan del är att införa en
ny algoritm som ligger mellan automatisk tearing
och manuell tearing. Ibland har programmeraren
viss information om hur man gör bra tearing men
inte tillräckligt för att göra allting manuellt.

Mina tearingalgoritmer testades på modeller
från företaget Modelon där automatisk tearing
inte fungerade eftersom beräkningsfelen blev för
stora. Med hjälp av mina algoritmer minskades
felen rejält.

	Introduction
	Background
	Modelica
	The Compiler Pipeline
	Alias Elimination
	BLT

	Tearing
	The need for Tearing
	A Simple Tearing Example
	Node Tearing
	Automatic Tearing

	Contributions to Tearing
	Start Values
	HGT for Dynamic Systems
	Unpaired Tearing

	Implementation
	Hand Guided Tearing for Dynamic System
	Unpaired Tearing
	Alias Elimination

	Evaluation
	HGT for Dynamic Systems
	Unpaired Tearing
	Linear Blocks
	Compile time and Runtime

	Discussion
	Uneven Unpaired Tearing
	The two Models from Modelon
	Linear Blocks
	Selection of MSL Models
	Tearing in OpenModelica

	Conclusion
	References
	Tom sida

