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Abstract

Determining how proteins interact with each other to form complexes is very important for

understanding both disease and cellular functions, but experimentally determining the

structures of these complexes is both tedious and slow, which is why a great number of

protein-protein docking algorithms have been developed to predict them. To this day,

conformational changes in protein backbones have been one of the largest challenges when

making docking predictions. The recently developed docking algorithm EvoDOCK aims to

resolve this challenge by making use of a memetic algorithm that combines an evolutionary

algorithm with Monte Carlo optimisations while also performing swaps of the backbone

structures with conformer ensembles to simulate flexibility. In this thesis, a docking

benchmark evaluating the performance of EvoDOCK against a standard Monte Carlo

optimization based algorithm was constructed and performed along with evaluations of the

algorithm’s backbone flexibility strategy. The results showed an improvement of prediction

quality for EvoDOCK as measured by iRMSD, DockQ and CAPRI for most of the

benchmark complexes, with slightly better results when using a more exploratory set of

evolutionary parameters. However, the predictions were more computationally costly than the

standard method and only made efficient use of a small part of the backbone ensemble

libraries, although showing clear room for optimisations and improvements of the

methodology.
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Acronyms

FFT Fast Fourier Transform

MC Monte Carlo

MCM Monte Carlo + Minimisation

MDS Motif Dock Score

EA Evolutionary Algorithm

DE Differential Evolution

NMA Normal Mode Analysis

ACS Adaptive Conformer Selection

RMSD Root Mean Square Deviation

iRMSD Interface Root Mean Square Deviation

CAPRI Critical Assessment of Predicted Interactions

REU Rosetta Energy Units
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1  Introduction

The wide range of biochemical processes and functions carried out by cells are in most

instances not performed by individual isolated proteins, but rather by multisubunit complexes

made up of multiple interacting proteins (Alberts and Miake-Lye, 1992). Disturbances of the

interactions forming these complexes caused by for example mutations can have disastrous

effects on the functions carried out by them, giving rise to various diseases (Ideker and

Sharan, 2008). This is one of the reasons why understanding how proteins interact and bind

with each other becomes an objective of high priority not only for medicine, but for all of

molecular biology (Lensink et al., 2020).

Charting these protein-protein interactions, referred to as the interactome, has been done

experimentally but only to a limited extent due to the vast number of interactions to study and

the limitations of the experimental methods (Kastritis and Bonvin, 2010). To circumvent

these problems, a large number of algorithms have been developed to computationally predict

how proteins would bind with each other to form complexes. However, the goal of

performing accurate docking predictions is not an easily achievable one due to the massive

amount of possible binding modes, each with their own unique set of electrostatic and

intermolecular interactions giving rise to complex and rugged energy landscapes. On top of

these interactions, docking algorithms also have to take into account the conformational

changes made by the side chains and backbones of proteins during complex formation. Many

docking algorithms fail to produce accurate docking models for complexes with highly

flexible backbones, leaving the problem in urgent need of solutions (Lensink et al., 2017).

The recently developed protein docking algorithm EvoDOCK aims to take on the challenge

of conformational flexibility through the use of side-chain packing and pre-generated

backbone conformers. The algorithm combines the exploratory strengths of an evolutionary

algorithm with the optimising capabilities of a Monte Carlo algorithm (Varela et al., 2022).

1.1  Aims of the study

The primary aim of this study is to benchmark the performance of EvoDOCK against one of

the standard methods, RosettaDOCK, for a set of 10 flexible complexes categorised as

difficult by the Docking Benchmark v5 (Vreven et al., 2015). The parameters used for the

evolutionary component of the EvoDOCK algorithm are also to be tested, along with
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evaluations of computational efficiency and precision, especially in terms of the flexible

backbone component.

2  Background

2.1  Fundamental docking principles

Protein-protein docking is in its essence the process of algorithmically predicting the

structure of a complex formed by two interacting proteins, either entirely based on their

three-dimensional structure or with some additional knowledge of their binding site (Vakser I.

A., 2014). These two docking categories are referred to as global and local docking, where

global docking is generally more computationally expensive due to the much larger search

space in comparison with the area specific local docking.

The solutions to the protein-protein docking problem consists of four essential components: a

way of representing the proteins, an energy function to mathematically score the free energy

of the interactions, a search algorithm making use of this energy function to make docking

predictions and lastly a way of dealing with conformational flexibility. The conformational

flexibility can be split into side-chain and backbone flexibility, with the latter only being used

in what is referred to as unbound (or flexible) docking, in which the structural conformations

of the proteins in their bound state is unknown. In contrast, bound (or rigid-body) docking

uses the same conformations for the starting docking partners as the ones found in the native

complex. This reduces its usability for many actual cases but still proves useful for the

development and testing of methods intending to solve the docking problem.

In rigid-body docking the predictions exist as positions in a search space containing six

degrees of freedom, three for describing the translational distance and three for describing the

orientation of the ligand protein in relation to the statically located receptor protein. The same

is true for flexible docking except with a much larger search space due to the complexity

brought about by variations in side-chain and backbone conformations. Figure 1 depicts an

example of rigid-body docking along with arrows representing each degree of freedom.

6



Figure 1: Visual representation of the docking process. Image a) depicts a possible starting position and

orientation of the moving ligand protein (colored cyan) next to the static receptor protein (colored green) of the

1acb complex. The red arrows represent the three axes (x, y and z) of translational movement and the grey

curved arrows represent the orientational axes (θx, θy and θz). Image b) depicts the experimentally determined

native binding mode of the 1acb complex.

2.1.1  Protein representation
Full-atomic models are the most intuitive way of representing the proteins involved in the

docking process, but simulating each individual atom comes with the drawback of often

being computationally expensive, especially for large or flexible proteins. An alternative to

full-atom modelling is using a low resolution coarse-grained model which represents groups

of atoms with larger “pseudo-atoms” or beads (Roel-Touris et al., 2019). Such representations

reduce the computational cost and also smoothen the energy landscape to avoid the search

algorithm getting stuck at a local energy minima, although at the cost of reduced precision.

2.1.2  Energy functions
Docking algorithms move and reorient the protein models with the goal of reaching the

lowest possible energy binding mode, which in theory should converge with the native

(real-world) binding mode of the complex. The traversal of these often complex and jagged

energy landscapes to find the global energy minima is guided by scoring functions; functions

that estimate the free energy of a binding mode through predictions of various interactions.

Such predictions can for example include force-field scoring based on non-bonded terms such

as electrostatic and van der Waals potential or intermolecular factors such as hydrogen bonds,

hydrophobicity and hydrophilicity of residues (Sunny & Jayaraj, 2022). Scoring can also

make use of statistical knowledge of protein interactions, machine learning or combinations
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of multiple different factors. Due to the nature of these energy functions, their applicability

varies based on the model of representation and choice of search algorithm.

2.1.3  Search algorithms
There are many different search algorithms making use of energy functions to explore the

search space, each with their own advantages and disadvantages. A notable approach to

rigid-body docking that gained a lot of popularity after its introduction in the early 90s makes

use of FFTs (fast Fourier transformations) to produce very computationally fast results

through the use of correlation functions upon geometric molecule representations

(Katchalski-Katzir et al. 1992).

Monte Carlo (MC) algorithms are another class of search algorithm used for protein-protein

docking. These algorithms rely on repeated instances of random sampling to approach a

solution, often making use of a Metropolis criteria. In those cases changes brought upon by

random perturbations are kept if they lead to a decrease in energy, but even if the energy was

not decreased there is still a chance that the change might still be kept based on a certain

criteria referred to as a Metropolis criteria. The probability of that happening however gets

exponentially smaller the higher the new energy is (Metropolis et al. 1953). In protein

docking the randomness introduced consists of changes in orientation and relative position of

the docking partners. MC search algorithms are by themselves fairly inefficient at exploring a

very large search space such as during global docking and can often be considered more

suited for local search. Their utility for more exploratory tasks can however be increased by

for example performing a large number of searches using a coarse-grained protein

representation and larger perturbations, as seen in the RosettaDOCK algorithm (Gray et al.,

2003).

Population-based algorithms are a third type of search algorithm used in docking, one which

actually excels at exploration of large search spaces (Sunny & Jayaraj, 2022). The name

stems from the existence of multiple candidate solutions spread out over the search space

simultaneously, leading to an expedited exploration of it. These population-based strategies,

often referred to as metaheuristics are often inspired by nature. Examples of this include the

particle swarm optimization used in SwarmDOCK (Li et al., 2010), and the many

metaheuristics making use of Evolutionary Algorithms (EA), so called due to their inspiration

from biological evolution and genetics. Through multiple generations, evolutionary

algorithms iterate the evolutionary process of letting the individuals (candidate solutions) be
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subject to random mutations, recombine with each other and then be selected as parents for

the next generation based on their fitness (Coello Coello, 2005).

2.1.4  Conformational flexibility
Many techniques have been developed to tackle the problem of conformational flexibility

during complex formation. Some of these techniques involve reducing the resolution of the

docking, sacrificing precision for a smoother energy landscape and higher tolerance for

structural inaccuracies and uncertainties (Vakser et al., 1999). Another approach consists of

accounting for the conformational flexibility of the side-chains, for example through the use

of backbone-dependent rotamer libraries (Wang et al., 2005). A backbone-dependent rotamer

library contains statistically determined information about how frequencies and dihedral

angles of side-chains vary based on the dihedral angles of the backbone (Gregorii et al.,

2009). Optimisations of side-chain conformations, while very useful, leaves the challenging

problem of backbone flexibility unresolved (Marze et al., 2018). A general approach to

incorporating backbone flexibility into docking is detailed in section 2.4, along with how this

method has been employed by the two docking algorithms benchmarked in this report:

RosettaDOCK and EvoDOCK.

2.2  RosettaDOCK

The protein-protein docking algorithm RosettaDock was introduced in 2003 as a MC based

method that expanded the Rosetta protein modelling software to the field of protein docking

(Gray et al., 2003). The method uses a coarse-grained centroid stage followed by an all atom

refinement stage which also optimises side chain conformations. Since then, multiple new

versions and benchmarks have been made for the sake of improving the algorithm, most

notably in terms of improvements to the scoring function (Chaudhury et al., 2011; Marze et

al., 2017) and ability to accommodate for backbone flexibility (Chaudhury and Gray, 2008;

Marze et al., 2018).

In spite of these changes, the underlying algorithmic framework remains mostly the same

even up to the most recent version, RosettaDock 4.0 (Marze et al., 2018). Each of the trials

start with the ligand protein at a random relative orientation and position around the larger

receptor protein to create a glancing contact between them. As is shown in Figure 2, the

algorithm follows with a 500-step low-resolution MC search using a coarse-grained

representation and a scoring function referred to as Motif Dock Score (MDS). The MDS
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function makes use of a pre-generated table of the lowest full-atom energies for all possible

residue pair interactions and combines them with the translational and orientational distances

from these ideal positions for each of the interacting side chains to create a score. The lowest

energy structure is then subjected to 50-steps of high-resolution, full atom MCM (Monte

Carlo + Minimization), which performs small random perturbations followed by orientational

rigid-body energy minimizations, side-chain conformation optimizations using rotamer

libraries and Metropolis criteria checks. The scoring function used during the high-resolution

stage primarily takes into account Van der Waals attraction/repulsion, solvation, hydrogen

bonding, statistical interactions of residue pairs, conformational energy of internal side chains

and electrostatic interactions (Chaudhury et al., 2011).

Figure 2: Flowchart of the RosettaDock 3.2 algorithm’s two stages (Chaudhury et al., 2011).
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2.3  EvoDOCK: A memetic docking algorithm

The memetic docking algorithm EvoDOCK also makes use of RosettaDOCKs full atom

MCM steps to perform local searches, although in this case interspersed between global

searches performed by an EA. Memetic algorithms are a class of algorithms which combine a

global search using the explorative population-based approach of EAs with a local search

algorithm that can exploit, i.e. optimise the solutions created during the global search

(Moscato, 1989). The computational time saved by making use of an efficient EA allows for

both of the global and local searches to be performed using full-atomic protein

representations for an increased accuracy and level of detail.

The evolutionary component of EvoDOCK consists of a Differential Evolution (DE)

algorithm; a population-based method which has gained a lot of popularity thanks to its

ability to solve a wide range of complicated optimization problems. A defining feature of a

DE algorithm is the population of solution candidates which are all represented as

D-dimensional, real-valued vectors where each dimension of the vector corresponds to a

dimension of the search space (Storn and Price, 1997). This representation is a great fit for a

docking algorithm since each solution can be represented as a point in a 6-dimensional search

space and thus as a 6-dimensional vector.

Figure 3 shows the docking methodology carried out by EvoDOCK. The initial population

consists of 100 individuals, each existing as a vector representing a random position and

orientation of the ligand protein around its static docking partner (Varela et al., 2022). For

each of these individuals, three other candidate solutions: two random and the lowest scoring

one, are selected as parents and are combined with the target individual at a magnitude

controlled by the scaling factor F (usually 0 ≤ F ≤ 2) in order to create an offspring. For each

of the 6 docking degrees of freedom, a parameter of the target individual is replaced by the

corresponding parameter of the mutated offspring at a rate determined by the crossover rate

CR (usually 0 ≤ CR ≤ 1). The following local search stage starts by sliding the moving

molecule towards the static one until they come into contact. What follows is two cycles of

MCM (as described in the 2.2 RosettaDOCK section) for the sake of resolving clashes and

reaching a more energy optimised state in terms of rigid-body position, orientation and side

chain conformation. The final stage of each generation involves comparing the fitness, i.e. the

energy of the offspring solution with the original target solution using the full-atom scoring

function used by RosettaDOCK. If the energy is lower, the offspring replaces the target
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individual as a part of the population in the following generation. The best scoring model of

the population is selected as an output and the process is repeated for 100 generations. The

100 independent docking trajectories performed during the benchmark detailed in this report

therefore create a total of 10 000 predictions.

Figure 3: Schematic representation of the EvoDOCK protein-protein docking methodology (Varela et al.,

2022). The figure shows the steps taken in each generation by the EvoDOCK algorithm along with the

3-dimensional structures of the participating protein models. The static receptor protein is colored green, the

target candidate solution is grey, the other parents orange, blue and red, and the offspring is colored cyan.

2.4  Flexible backbones

The previously described RosettaDOCK and EvoDOCK algorithms both have modes

allowing for backbone flexibility through the use of variations of a method which was

originally developed for RosettaDOCK in 2008 (Chaudhury and Gray, 2008). The method

makes use of a conformer library, referred to as a backbone ensemble, which aims to mimic

the possible conformational changes made during complex formation. These ensembles are

pre-generated from the unbound structures of the ligand and receptor and are then “swapped”

in during the docking process in the hopes of scoring a lower energy and providing a better fit

(Marze et al., 2018).
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2.4.1  Backbone ensemble generation methods

The backbone ensembles used by both EvoDOCK and RosettaDOCK contain 100

conformers for each of the two docking partners, each generated using three different

methods for the sake of providing diversity (Marze et al., 2018). Rosetta FastRelax protocol

packs side-chains and minimises energy through many iterations with gradually increasing

van der Waals repulsion, Normal Mode Analysis (NMA) combines the FastRelax protocol

with movements along normal modes and Rosetta Backrub protocol packs side-chains while

performing backrub moves that involve rotating segments of the protein backbone around

certain pivot points. Figure 4 shows examples of what the structures of these backbone

ensembles look like for two of the benchmark complexes.

Figure 4: Example of ligand protein structures used in the backbone ensembles. The figure displays the

structures of the 100 ligand ensemble conformers created for each of the two complexes with PDB (Protein Data

Bank) ids of 1acb and 1jk9. The conformers are colored based on their method of generation: blue for the 30

Relax conformers, orange for the 40 NMA conformers and green for the 30 Backrub conformers.

2.4.2  RosettaDOCK with backbone flexibility
The backbone conformation swaps in RosettaDock are performed repeatedly during the

coarse-grained centroid stage using a method referred to as Adaptive Conformer Selection

(ACS). ACS aims to save computational cost by increasing the probability for conformer

swaps when the acceptance rate is lower than 30% and raising it when it is above (Marze et

al., 2018).
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2.4.3  EvoDOCK with backbone flexibility
EvoDOCK performs backbone swaps for the ligand and receptor in a similar way as

RosettaDOCK, but does it at the end of each generation as determined by a static “swap

probability” (Varela et al., 2022). The swap with the ensemble is followed by a local search

and a selection step where the old backbone is replaced by the new one if the energy has been

improved.

2.5  Quality measures of docking predictions

Prediction quality measurements are an absolutely crucial part of the development of docking

algorithms. There would not be much of a point in developing a method blindly without any

knowledge of how its predictions compare to the experimentally determined real-world

results, which is the main objective of benchmarking. Thankfully, many different measures

exist for this exact purpose. Root-mean-square deviation (RMSD) is a common way to

measure the average distance between the coordinates of each, or often a subset, of the atoms

in two molecular structures (Zemla et al. 1999). In protein docking these structures consist of

the predicted complex and the native one, with the distances often measured in angstrom (Å).

Interface RMSD (iRMSD) is another popular alternative that only compares the atoms

located in the proteins’ interface residues, i.e. the interacting residues. RMSD can also be

useful for measuring the magnitude of conformational changes, such as the ones made during

backbone ensemble generation.

The Critical Assessment of Predicted Interactions (CAPRI) community has played an

important role in the development of docking algorithms and methods for measuring their

quality (Lensink and Wodak, 2013). Through the use of three different quality measures they

rate the quality of docking models in four categories: Incorrect, Acceptable, Medium or High

quality. The quality measure DockQ has later on expanded this to a score in the range [0,1],

allowing for better comparisons between docking algorithms (Basu and Wallner, 2016).

Deciding which predictions to assess the quality of is guided by their energies as determined

by the scoring function since that is the only known metric after performing a docking

simulation. A simple way of assessment can be to check the iRMSD of the solution with the

lowest energy; another to compare the best CAPRI or DockQ scores out of the 100 lowest

energy solutions.
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3  Results

3.1  Setup of experiment

The benchmark experiment as summarised in Figure 5 consisted of the following steps:

Selection and preparation of protein complex structure files in the PDB (Protein Data Bank)

format, generation of conformer ensembles, packing of side chains (prepacking) and running

the EvoDOCK and RosettaDOCK docking protocols. A more technical description of the

methods along with the command lines and scripts used can be found in the method section

(section 5).

Figure 5: Flowchart of the methodology used in the benchmark experiment.

3.1.1  Selection of protein complexes
The 10 protein complexes chosen for the experiment were selected from the complexes used

in the RosettaDOCK 4.0 benchmark (Marze et al., 2018) that were classified as difficult by

the Docking Benchmark v5 (Vreven et al., 2015). They were selected based on length, lowest

estimated computational time for ensemble generation and minimal difference in residues

between their unbound and bound state PDB files (the PDB structure files did in many cases

contain missing residues and even whole missing segments due to imperfections of

experimental methods for structure determination). The complexes used in the experiment

(shown in Figure 6) had the following PDB names in the protein data bank: 3f1p, 1r8s, 1eer,

2ido, 1pxv, 1fq1, 1acb, 1jk9, 1rke and 1f6m.
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Figure 6: Benchmark protein complex structures. The structures of the 10 protein complexes used in the

benchmark labelled by their PDB id. The receptor proteins are colored green and the ligand proteins cyan.

3.1.2  Preparation of PDB structure files
A great number of crashes occurred when attempting to run the ensemble generation, prepack

and docking protocols. These crashes were attributed to a number of factors in the PDB files

such as missing residues between the bound and unbound proteins, small molecule ligands,

multiple chain names and inconsistent residue numbering. These issues were all resolved

through the use of a pipeline script detailed in method section 5.1.

3.1.3  Ensemble generation and prepacking
For each ligand and receptor of the 10 protein complexes, 100 backbone conformers were

generated to form an ensemble: 30 using the relax protocol, 40 using NMA method and 30

using the backrub protocol. The side-chains on the generated conformers and the unbound

and bound versions of the complexes were packed to reduce energy in preparation of

docking.

3.1.4  Running the docking protocols
The EvoDOCK algorithm performed unbound, global docking using two sets of DE

parameters: a mutation rate (F) of 0.3 and crossover probability (CR) of 0.9 for a more

exploitative search, and a F of 0.9 and CR of 0.3 for a more explorative search. Each of these

two runs created 100 trajectories with a population size of 100 and ran for 100 generations,

creating a total of 10 000 docking predictions per run. The same number of unbound global

docking predictions were also created using the RosettaDOCK algorithm.
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3.2  Main benchmark results

The results of the docking experiment are visually summarised in the scatter plots of Figure

8, where the interface RMSD difference between the native and predicted models are plotted

against their score in Rosetta energy units (REU).  It can be seen in the zoomed-out scatter

plots that the models produced by EvoDOCK often have a significantly smaller range of both

iRMSD and especially energy in comparison with RosettaDOCK. The RosettaDOCK results

are spread out along the y-axis for most of the benchmark complexes with energies stretching

into the positives, signifying a struggle in finding energy minima for many of the independent

runs. EvoDOCK on the other hand can be seen exploiting the search space around the best

scoring result and with the exception of the 3f1p complex, always scoring under -500 REU

and in some cases under -1000 REU. It can also be noted that the plots for both of the

docking algorithms show a “wall”-like shape, with the vast majority of solutions having an

iRMSD over a certain value, which often lies between 2 Å and 6 Å, although regularly higher

for the RosettaDOCK results. In the zoomed in plots of Figure 8, EvoDOCK can on many

occasions be observed finding and honing in on energy minima with improved iRMSD

values that RosettaDOCK was unable to find. It can however struggle with discerning

between these minima, giving rise to the multiminima shapes apparent in the 1f6m, 1pxv and

2ido plots. In contrast, the plots for the complexes 1eer, 1rke and especially 1jk9 display a

more desirable funnel-like shape, meaning a repeated decrease in energy correlating with a

lowered iRMSD. The 1jk9 complex is by far the most successful one of the benchmarks with

its two very clean funnel shapes, each with a low iRMSD solution at the bottom. The success

of the predictions is reflected in the striking similarities that can be observed when aligning

the structure with the native one (Figure 7). Furthermore, the distribution of the final lowest

energy individuals of each EvoDOCK trajectory (shown as blue dots in Figure 8) show an

often high concentration of predictions around certain energy minima, showcasing the

algorithm's ability to make predictions with a consistent quality.
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Figure 7: Best docking prediction made by EvoDOCK for the 1jk9 complex. The lowest energy model

obtained by EvoDOCK for the 1jk9 complex (dark cyan for ligand and dark green for receptor) aligned with its

native structure (light cyan for ligand and light green for receptor).

The DockQ, iRMSD and CAPRI prediction quality data displayed in Table 1 confirm the

previous observations, with EvoDOCK giving a better DockQ score than RosettaDOCK for 8

out of 10 benchmark complexes. Despite these improvements, the CAPRI score of the

benchmark shows that the scores produced are not very high for either of the methods, with

most complexes only having an acceptable quality, two (or one for RosettaDOCK) with

medium quality and one classified as being incorrect. This is however to be expected due to

the very large search space of flexible docking.
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Figure 8: Benchmark results using exploitative differential evolution parameters for EvoDOCK. For each

of the 10 benchmark complexes, the 10,000 predicted models created by EvoDOCK (shown as red dots) and

RosettaDOCK (shown as grey triangles) had their iRMSD in Å (x-axis) plotted against their score in Rosetta

energy units (REU, y-axis) with a zoomed in version of the plot in the upper left corner. The lowest energy

individual of each EvoDOCK trajectory is colored blue and the lowest energy model produced by

RosettaDOCK is colored black. The parameters used for the DE component of EvoDOCK during the

benchmark were F = 0.3 and CR = 0.9.
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PDB id
EvoDOCK (F = 0.3, CR = 0.9) RosettaDOCK

DockQ iRMSD CAPRI DockQ iRMSD CAPRI

3f1p 0.55 2.76 Medium 0.48 2.61 Acceptable

1r8s 0.19 5.41 Incorrect 0.05 7.93 Incorrect

1eer 0.43 2.67 Acceptable 0.33 3.37 Acceptable

2ido 0.29 4.75 Acceptable 0.39 3.63 Acceptable

1pxv 0.24 4.48 Acceptable 0.36 3.69 Acceptable

1fq1 0.48 3.32 Acceptable 0.43 3.54 Acceptable

1acb 0.45 2.66 Acceptable 0.40 2.98 Acceptable

1jk9 0.58 3.04 Medium 0.54 3.05 Medium

1rke 0.36 5.41 Acceptable 0.31 5.51 Acceptable

1f6m 0.27 5.99 Acceptable 0.24 6.12 Acceptable

Table 1: Quality assessment of EvoDOCK and RosettaDOCK results. Column 2-4 shows the DockQ score,

lowest iRMS and CAPRI grading for the lowest energy models produced by the 100 EvoDOCK (with F = 0.3

and CR = 0.9) trajectories for each of the benchmark complexes in Column 1. Column 5-7 shows the same

metrics for the 100 lowest energy models produced by RosettaDOCK. The highest DockQ score per complex is

colored red.

3.3  Evaluation of differential evolution parameters

The scatter plots displaying the results of using a more exploratory set of DE parameters

(Figure 9) show an increased scattering compared to the plots in Figure 8, most likely due to

the more significant changes brought about by mutations. This can especially be seen in the

1jk9 complex having a more diffuse and blurry funnel shape when compared with the results

when using the previous parameters. There have however been some noticeable

improvements for the 1rke and 1r8s complexes as seen in their plots, showing even more

funnel-like shapes. Apart from those cases, the plots tell a similar story as the previous ones,

with similar looking funnels and multiminima.

This is further reinforced by the data in Table 2 showing very similar energy and DockQ

scores across all complexes, with a difference in DockQ score of only ± 0.03 for all

complexes except for 1jk9 having a 0.23 points higher score (40% increase) when using the

exploratory method. The table also shows a better ability to achieve a lower iRMSD of its

lowest energy solution in 8 out of 10 complexes, in some cases even significantly lower such

as for the 1pxv complex with a change of almost 10 Å.
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Figure 9: Benchmark results using more explorative differential evolution parameters for EvoDOCK. For

each of the 10 benchmark complexes, the 10,000 predicted models created by EvoDOCK (shown as red dots)

and RosettaDOCK (shown as grey triangles) had their iRMSD in Å (x-axis) plotted against their score in

Rosetta energy units (REU, y-axis) with a zoomed in version of the plot in the upper left corner. The lowest

energy individual of each EvoDOCK trajectory is colored blue and the lowest energy model produced by

RosettaDOCK is colored black. The parameters used for the DE component of EvoDOCK during the

benchmark were F = 0.9 and CR = 0.3.
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PDB id
EvoDOCK (F = 0.3, CR = 0.9) EvoDOCK (F = 0.9, CR = 0.3)

DockQ min score
(iRMSD)

DockQ min score
(iRMSD)

3f1p 0.55 -406.8 (12.8) 0.52 -403.3  (10.4)

1r8s 0.19 -1000  (9.76) 0.18 -1008  (6.7)

1eer 0.43 -1508  (4.58) 0.45 -1484  (5.36)

2ido 0.29 -674.7 (10.5) 0.27 -674.5  (7.35)

1pxv 0.24 -880.8 (14) 0.21 -876.7  (4.07)

1fq1 0.48 -1404  (5.82) 0.47 -1406  (5.18)

1acb 0.45 -840.8 (5.53) 0.46 -839.7  (4.54)

1jk9 0.58 -1140 (2.75) 0.81 -1135  (2.82)

1rke 0.36 -1043  (6.6) 0.35 -1050 (5.63)

1f6m 0.27 -1320 (9.4) 0.28 -1320  (7.8)

Table 2: Quality assessment of using the two sets of differential evolution parameters. Table comparing the

results of the two sets of DE parameters for each protein complex in Column 1. Column 2 and 4 show the

DockQ score, while Column 3 and 5 show the lowest energy solution achieved by each method together with

the iRMSD of that solution in parenthesis. The lowest DockQ score per complex is colored red.

3.4  Computational time observations

The total computational time taken by each of the two algorithms to create 10,000 docking

models for each of the benchmark complexes is shown in Table 3, where it becomes apparent

that EvoDOCK in most cases takes about 2-3 times the computational time RosettaDOCK

does. This is not a massive difference but it is still reason enough to try optimising the

algorithm. The difference in time was hypothesised as being a result of EvoDOCK

performing more frequent backbone sampling and scoring than RosettaDOCK, motivating a

small change in the EvoDOCK code to reduce the probability of sampling new backbones to

30% from 100%. The 1eer complex had the highest computational time of all complexes at

2309 hours and was therefore selected for improvement. The impact in precision of using the

modified algorithm on the 1eer complex (Figure 10) was not very large, with lowest energy

solutions having about the same iRMSD as before and the largest discernable difference

being a higher upper limit for the energy range. The computational time showed a 20,4%

improvement as a result of the change, going from 2309 to 1837 hours for 10,000 models.
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PDB id
RosettaDOCK EvoDOCK (F = 0.3, CR = 0.9) EvoDOCK (F = 0.9, CR = 0.3)

time (hours) time (hours) ratio time (hours) ratio

3F1P 251.39 770.78 3.1 : 1 611.28 2.4 : 1

1R8S 566.67 1081.5 1.9 : 1 1061 1.9 : 1

1EER 724.24 2309.1 3.2 : 1 1924.8 2.7 : 1

2IDO 173.33 491.65 2.8 : 1 531.66 3.1 : 1

1PXV 276.35 628.29 2.3 : 1 639.28 2.3 : 1

1FQ1 616.47 1205.3 2 : 1 1209.1 2 : 1

1ACB 354.22 686.77 1.9 : 1 700.49 2 : 1

1JK9 360.2 1059.4 2.9 : 1 866.7 2.4 : 1

1RKE 421.64 1325.6 3.1 : 1 1326.9 3.1 : 1

1F6M 503.16 1020.7 2 : 1 938.67 1.9 : 1

Table 3: Computational time comparisons between EvoDOCK and RosettaDOCK. Column 2 shows the

total amount of hours required to create 10,000 docking predictions for the complexes in Column 1 using the

RosettaDOCK algorithm. Column 3 and 5 show the corresponding time taken by EvoDOCK to create the same

number of predictions using the different DE parameters, while Column 4 and 6 show the ratio between the

computational time of Rosetta and EvoDOCK.

Figure 10. Results of the 1eer complex using a modified version of EvoDOCK. The plot shows the

distribution of 10,000 predicted docking models of the 1eer complex created by RosettaDOCK (shown as grey

triangles) and a modified version of EvoDOCK (shown as red dots) that reduces the frequency of swapping and

scoring new backbones. The iRMSD in Å (x-axis) of each model plotted against their score in Rosetta energy

units (REU, y-axis) and a zoomed-in version of the plot is placed in the upper left corner. The parameters used

for the DE component of EvoDOCK during the benchmark were F = 0.3 and CR = 0.9.
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3.5  RMSD difference between ensemble and native

backbones

It is also important to take the backbone ensemble used during docking into consideration

when evaluating the benchmark results and docking performance of EvoDOCK. Figure 11

shows that the difference in RMSD between the conformers of the larger molecule (usually

but not always the receptor) and their native bound-state counterparts was generally quite

large. In some cases this difference was very large, such as the receptor protein in the 1f6m

complex, showing a lowest RMSD of over 6.5 Å. However, the smaller, often ligand

complexes displayed a much smaller minimum RMSD closer to 1 Å. The range between the

largest and smallest RMSD for the conformers was mostly between 0.5 and 1 Å, with the

exception of the 1f6m and 2ido complexes displaying greater ranges.

The distributions shown in Figure 12 and 13 display a lack of correlation between the RMSD

and energy of the conformers, meaning that the lowest energy backbones aren’t usually the

ones most similar to the native backbone. The figures also showed that the relax protocol

consistently produced the lowest energy conformers, with the backrub protocol often giving

much higher scores; in the case of the ligand of the 1eer complex, more than 600 REU higher.

These findings are reinforced by EvoDOCK log files showing which of the backbones were

kept during the conformer library swapping in EvoDOCK. The logs showed that the

algorithm settled for backbone conformers created by the relax method after just a few

generations. It is also worth noting that the early selected conformers were often kept

throughout the rest of the generations without being successfully swapped with new ones.

Figure 11: Distribution of RMSD difference with native structure for all benchmark ensemble conformers.

The ensemble conformers are distributed along the y-axis according to their RMSD in Å when aligned with their

native (bound state) counterpart. The receptor conformers are colored green and the ligand conformers cyan.
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Figure 12: RMSD and energy distribution of receptor conformers generated using the different methods.

For each of the receptor conformers in the backbone ensembles, the RMSD difference (in Å) from the native

receptor (x-axis) is plotted against the conformers energy score (y-axis). The dots are colored based on the

backbone generating method used: blue for relax protocol, orange for NMA and green for backrub protocol.
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Figure 13: RMSD and energy distribution of ligand conformers generated using the different methods. For

each of the ligand conformers in the backbone ensembles, the RMSD difference from the native ligand (x-axis)

is plotted against the conformers energy score (y-axis). The dots are colored based on the backbone generating

method used: blue for relax protocol, orange for NMA and green for backrub protocol.
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4  Discussion

The benchmark experiment proved to be successful in comparing the quality of docking

predictions made by the memetic algorithm EvoDOCK against the standard Monte-Carlo

based RosettaDOCK algorithm. The result of these comparisons showed clear improvements

in terms of prediction quality and precision when using EvoDOCK for most of the

benchmark complexes, as shown by general improvements in DockQ scores, the lower

energies and smaller iRMSD values. The plots confirm these results and additionally show

EvoDOCK as having a better ability to identify and exploit energy minima as well as produce

more funnel-like shapes for some of the complexes. The performances of the two sets of

parameters used for the population-based differential evolution component of the EvoDOCK

algorithm produced very similar results in terms of DockQ score, indicating a great

robustness of the algorithm. The exception to this trend is a benchmark complex that scored

much better when using the exploratory parameters. The exploratory approach did however

appear to have a general advantage of not getting stuck in local energy minima as frequently

due to the larger perturbations to its position and orientation brought about by its higher

mutation rate. However, merely testing two sets of crossover probabilities and mutation rates

is not enough to determine the optimal balance between exploration and exploitation. There is

a possibility that the exploratory parameters, which were determined and tested for the

original rigid-body experiments with EvoDOCK (Varela et al., 2022) does not translate as

well to flexible docking, giving cause for testing a wider range of parameters. Another

possibly advantageous change worth further investigation would be to change the

evolutionary search strategy of mutating using the best scoring solution to only use random

individuals instead. This would likely detract from the algorithm’s ability to exploit around

the area of a promising solution, but potentially carry with it the benefit of being able to get

out of local energy minima to find ones with even lower energies.

In addition to precision, efficiency is another non-negligible factor in protein-protein

docking; a docking algorithm is simply not feasible if it is too computationally expensive.

While the EvoDOCK algorithm often takes two to three times the computational time for

generating the same number of predictions as RosettaDOCK does, they are still in the same

order of magnitude and both computationally viable, although expensive. While evolutionary

algorithms are known for efficiently exploring search spaces, the sheer size of a global

full-atom docking search space with both side-chain and backbone flexibility is a likely
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contributor to the high computational cost. An attempted optimisation of the flexible

backbone component involving a reduced frequency of backbone sampling and scoring by

70% managed to reduce the computational time by 20% without impacting the prediction

quality too much for the tested complex. This optimisation shows some potential and could

be developed further to perhaps provide a more dynamic approach to backbone conformer

swapping like in RosettaDOCK’s Adaptive Conformer Selection. Furthermore, it was

observed that newly sampled conformers are only kept in the early generations and then very

rarely change throughout the preceding generations. A likely explanation for this is that the

candidate solutions of the later generations have honed in on low energy docking modes that

different backbone conformers would have too poor energy interactions to be viable for. This

renders the majority of the backbone swapping and scoring redundant and easily removable

for a reduction in computational cost without negatively impacting quality. It is also very

likely that the 10,000 predictions made by EvoDOCK are a bit excessive and that a fewer

number of trajectories would be sufficient for generating good docking predictions. This is

backed up by the high concentration of predictions made by many trajectories with good

energy and iRMSD values. Reducing the number of trajectories could therefore provide very

large improvements in computational time without much impact on the results.

There are a few observations to be made from the evaluation of the backbone conformers

used during the docking experiment. Firstly, the methods for generating the ensembles rarely

managed to produce structures with RMSDs that were that much closer to the native

structure, instead only performing more small-scale conformational changes. Despite this, the

1jk9 complex which had a moderate RMSD between the conformers and native managed to

find a binding mode with a low iRMSD, likely due to the interfacing parts of the conformer

proteins being structurally similar to the native ones. Backbone conformers with a closer

resemblance to the native proteins would most likely raise the prediction quality, but lower

RMSDs does not necessarily correlate with lower energies, as evident by the results. Instead,

the only strong correlation to be found is the one between energy and method of generation,

with the relax protocol consistently creating the lowest energy conformers and the backrub

protocol creating the highest energy ones. The energy gaps between these methods is often

large, bringing about the unfortunate effect of the EvoDOCK algorithm selecting and keeping

the lowest energy conformers (the ones generated by the relax protocol) after just a few

generations. This effectively means discarding 70% of each ensemble and backbone swap,

including some backbones with more native-like structure and better energy interactions, just
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because their free energy made them unfavourable. A possible solution to allow for the use of

a larger percentage of the ensemble conformers would be to normalise their energies by

introducing artificial energy reductions on the higher energy conformers. This would in turn

lead to a better diversity of viable conformers and likely benefit the finding of new docking

modes, but could give misleading results since some of the conformations used would be too

energetically unviable to be formed during real-world complex formation. The energy

differences between the relax and NMA methods were often not very large, so such an

approach would likely work better for them than for the higher energy backrub conformers. A

simpler alternative solution could involve just using one method of generation to avoid

wasting so many of the backbone swaps and save computational time. However, such a

solution would not add much in terms of structural diversity and consequently not help

increase the quality of the docking predictions.

5  Methods

5.1  Preparation of benchmark PDB structure files

A small pipeline for testing all the steps of the experiment in sequence was constructed in the

mock_pipeline.py script. The script was a useful tool for finding bugs and crashes, as well as

for testing changes to see if they resolve crashes.

Another pipeline script, chain_break_pipe.py, was written for the sake of resolving the

crashes occurring during ensemble generation, prepackaging and docking. It performed the

following initial operations on the initial PDB files of each protein complex (unbound/bound

version of receptor/ligand):

- Removal of molecule ligands (such as FAD).

- Renaming of receptor chains to “A” and ligand chains to “B”.

- Running the Rosetta Backrub Protocol using "-backrub:ntrials 0".

The pipeline script then executes the following steps to resolve the problem of different

sequence lengths of the bound and unbound versions of the PDB structure files:

- Generation of bound and unbound FASTA sequences for each of the docking partners

using the pdb2fasta.py script.
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- Pairwise alignment of these sequences using Bio.pairwise2 to identify missing

residues.

- Removal of these unmatching residues.

- Renumbering of the residues.

The bound and unbound complexes were then created from the docking partner files using

the pdb_merger.py script.

5.2  Ensemble generation

A command_list.txt file was created, containing the commands required for generating the

ensembles for all of the protein complexes. For each of the receptor and ligand proteins, 30

commands were created: 10 for creating three relax conformers, 10 creating four NMA

conformers and 10 creating three backrub conformers. A SLURM script making use of this

command list and a python script for managing multiple parallel processes was created and

submitted to a cluster provided by the Swedish National Infrastructure for Computing (SNIC)

at HPC2N.

The following three command lines were used for ensemble generation:

relax.static.linuxgccrelease
-in:file:s <Unbound receptor or ligand PDB>
-nstruct 3
-relax:thorough

rosetta_scripts.static.linuxgccrelease
-in:file:s <Unbound receptor or ligand PDB>
-nstruct 4
-parser:protocol nma.xml

backrub.static.linuxgccrelease
-in:file:s <Unbound receptor or ligand PDB>
-nstruct 3
-backrub:ntrials 20000 -backrub:mc_kt 0.6

The nma.xml file used by the normal mode analysis method contained the following text:

<ROSETTASCRIPTS>
<SCOREFXNS>
<ScoreFunction name="bn15_cart" weights="beta_nov15_cart" />
</SCOREFXNS>
<RESIDUE_SELECTORS>
</RESIDUE_SELECTORS>
<TASKOPERATIONS>
</TASKOPERATIONS>
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<FILTERS>
</FILTERS>
<MOVERS>
<NormalModeRelax name="nma" cartesian="true" centroid="false"

scorefxn="bn15_cart" nmodes="5" mix_modes="true" pertscale="1.0"
randomselect="false" relaxmode="relax" nsample="20"
cartesian_minimize="false" />
</MOVERS>
<APPLY_TO_POSE>
</APPLY_TO_POSE>
<PROTOCOLS>
<Add mover="nma" />
</PROTOCOLS>
<OUTPUT scorefxn="bn15_cart" />

</ROSETTASCRIPTS>

5.2.1  Prepacking
The prepack_pipleline.py pipeline script was created for the sake of preparing and packing

the side chains on all of the backbones used during docking. It also created text files listing

the paths to the pdb files in the ensembles. An additional script provided by EvoDOCK,

prepackaging.py, was used to prepack the bound state complexes prior to docking.

The following command line was used for prepackaging of the backbone ensembles and

unbound complexes:

docking_prepack_protocol.linuxgccrelease
-in:file:s <Unbound complex>
-nstruct 1
-ensemble1 <Receptor conformer list>
-ensemble2 <Ligand conformer list>
-partners A_B
-detect_disulf true
-rebuild_disulf true
-ex1
-ex2aro

5.3  EvoDOCK docking protocol

Batch jobs executing parallel instances of EvoDOCK using the evodock.py script were

created for each of the 10 complexes and submitted to the cluster provided by LUNARC, the

center for scientific and technical computing at Lund University. The configuration files used

for running EvoDOCK had the following structure, with a more detailed set of instructions on

https://github.com/Andre-lab/evodock:

[Docking]
type=Unbound
bb_strategy=popul_library
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[inputs]
pose_input=<Prepacked unbound complex>
native_input=<Prepacked bound complex>

path_ligands=<Paths to the ligand conformers>
path_receptors=<Paths to the receptor conformers>

[outputs]
output_file=<Output log file>

[DE]
scheme=BEST
popsize=100
mutate=<Mutation rate (F)>
recombination=<Crossover probability (CR)>
maxiter=100
local_search=mcm_rosetta

The mutation rate was set to 0.3 for the first round of EvoDock and 0.9 for the second, while

the crossover probability was set to 0.9 for the first and 0.3 for the second.

5.3.1  Reducing the sampling of new backbone conformers
The following condition was added before the sampling and scoring of new backbone

conformers during the popul_library backbone strategy in line 112 of the

local_search_strategy.py script:

if random.uniform(0, 1) < 0.3:

5.4  RosettaDOCK docking protocol

Batch jobs executing the following command line on 25 separate cores were written and

submitted to the SNIC cluster for each the 10 complexes:

docking_protocol.static.linuxgccrelease

-database <database>
-out:level 500
-in:file:s <Prepacked unbound complex>
-in:file:native <Bound complex>
-nstruct 400
-ensemble1 <Receptor conformer list>
-ensemble2 <Ligand conformer list>
-partners A_B
-dock_pert 3 8
-spin
-detect_disulf true
-rebuild_disulf true
-ex1
-ex2aro
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