
MASTER’S THESIS 2020

A Comparison of List
Scheduling Heuristics in LLVM
Targeting POWER8
Erik Samuelsson

ISSN 1650-2884
 LU-CS-EX: 2020-65

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2020-65

A Comparison of List Scheduling
Heuristics in LLVM Targeting POWER8

En jämförelse av olika heuristik för
instruktionsschemaläggning i LLVM på

POWER8

Erik Samuelsson

A Comparison of List Scheduling
Heuristics in LLVM Targeting POWER8

Erik Samuelsson
dat13esa@student.lu.se

December 8, 2020

Master’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Jonas Skeppstedt, jonas.skeppstedt@cs.lth.se

Examiner: Flavius Gruian, flavius.gruian@cs.lth.se

mailto:dat13esa@student.lu.se
mailto:Jonas.Skeppstedt@cs.lth.se
mailto:Flavius.Gruian@cs.lth.se

Abstract

Instruction scheduling is an important part of an optimizing compiler and the
fundamental algorithm for this task is list scheduling, which operates on one ba-
sic block at a time. List scheduling performs a pairwise comparison and utilizes
heuristics in order to decide which instruction to schedule next. While most
of the recent compiler research on instruction scheduling is focused on optimal
solutions, list scheduling continues to be widely used in practice since the algo-
rithm is fast and simple to implement.

In this thesis di�erent list scheduling heuristics, both traditional and new,
have been compared against each other, implemented in LLVM and targeting
POWER8. The heuristics were evaluated on a subset of the SPEC CPU 2017
benchmarks, and the original program order was used as baseline. A new heuris-
tic, specific to POWER8, was developed. Based around instruction dispatch, this
dynamic heuristic tries to produce a schedule which hardware can more easily
take advantage of.

Keywords: Instruction scheduling, list scheduling, optimizing compilers

2

Acknowledgements

I would like to thank Jonas Skeppstedt for introducing me to the wonderful topic of opti-
mizing compilers. I would also like to thank Flavius Gruian for his many helpful comments
on how to improve this thesis.

3

4

Contents

1 Introduction 7
1.1 Research Questions . 8
1.2 Contributions . 8

2 Background 9
2.1 Instruction Scheduling . 9
2.2 Basic Blocks . 10
2.3 LLVM . 11
2.4 Group Formation . 13

3 Approach 15

4 List Scheduling 17
4.1 The List Scheduling Algorithm . 17
4.2 Brief on the History of List Scheduling . 19
4.3 The Fundamental Algorithm for Instruction Scheduling 20
4.4 Heuristics for Scheduling a Basic Block . 21
4.5 Related Work . 23
4.6 List Scheduling in LLVM . 26

5 Implementation 29

6 Experimental Evaluation 33
6.1 Experimental Setup . 33
6.2 Evaluation of Individual Heuristics . 34
6.3 Combinations of Heuristics . 37
6.4 Evaluation of Combinations of Heuristics 39

7 Conclusion 43

References 45

5

CONTENTS

Appendix A The POWER8 Processor Core 51

Appendix B Pseudocode for the Dispatch Heuristic 55

Appendix C Individual Heuristics 61

Appendix D Combinations of Heuristics 69

6

Chapter 1

Introduction

The task of a compiler is to translate a program written in one programming language into
another. Translation is organized into phases, divided between the front-end, middle section
and back-end [17]. In short, the phases that belong to the front-end will read the program
text, analyze the syntax and semantics to make sure that the input is a correct and a valid
program. The program is then translated into an intermediate representation, as a first step
of translating the program into the target language. The translation of the intermediate rep-
resentation into target code is done by the back-end. At the very basic level, the translation
has to be correct. When correctness is maintained, we can start to think about how we could
make the translated program faster, or more e�cient. Improving the performance of the code
that is being generated is the task of an optimizing compiler. Various metrics can be used to
measure performance, such as execution time, static code size, energy consumption and so on
[24]. In this thesis we are concerned with execution time. There are numerous optimizations
which a�ect execution time, many of these are applied as code transformations in the middle
section, but some of the most important optimizations with regards to execution time can be
found in the back-end. The reason for this is that these optimizations are operating closer to
the hardware, and while it is possible to write code at this low level, in most cases compilers
are more suitable for this task [24].

In this thesis we will look at instruction scheduling, which is an optimization that be-
longs to the back-end. The purpose of instruction scheduling is to increase instruction level
parallelism or ILP, that is, the number of instructions that the processor executes in paral-
lel. Instruction scheduling is an important task of any optimizing compiler, but finding an
optimal schedule is an NP-complete problem [9]. The traditional approach to instruction
scheduling uses heuristics to find a good schedule and the fundamental algorithm for this
task is list scheduling [7, 28]. It is a simple algorithm which is straightforward to implement,
but the outcome of the schedule relies on the chosen heuristics. A heuristic returns either a
numerical or Boolean value and essentially there are two ways to use heuristics to select which
instruction we should schedule next [5, 26]. For example, we can have a function which takes
as input an instruction, and assigns to it a value which depends on one or more heuristics.

7

1. Introduction

Then, during scheduling we simply select the instruction which has the highest value of all
the available instructions. Or, we can have a number of heuristics in a hierarchical order and
then during scheduling, every time that we are faced with multiple instructions to select from,
we do a pairwise comparison of the instructions. We compare the instructions against the
heuristics, one heuristic at a time, and whenever a heuristic is able to di�erentiate between
two instructions, one instruction is marked as being the best candidate to schedule next. This
candidate is then compared against the next instruction and so on. The latter approach is the
one that is used in this thesis. Many heuristics have been suggested for instruction schedul-
ing, and sometimes their use is overlapping, which makes it possible to organize them into
categories [26]. This can be useful when comparing existing heuristics or when developing
new ones.

1.1 Research Questions
List scheduling is one of the early algorithms in the history of instruction scheduling [14, 19].
And while the focus of compiler research has moved on to other algorithms, list scheduling
is still used in state of the art compilers of today, for example LLVM. Because of this I would
like to revisit the algorithm, and specifically look into how di�erent heuristics perform on a
modern processor. The metric which we will use to evaluate the performance of a heuristic is
execution time, or more precisely, the amount of work per unit of time. In this thesis we will
compare di�erent heuristics used by list scheduling, and try to obtain new insights about the
algorithm and the heuristics. The following research questions are investigated:

• How do individual heuristics compare against each other?

• Is there any category of heuristics that seem to perform better, or worse, than the others?

• For di�erent combinations of heuristics, what can be said about the order in which the heuristics
appear? A combination of heuristics is a set of heuristics in a hierarchical structure.

1.2 Contributions
The results of the experimental evaluation can be used as a guideline by people who are
interested in developing heuristics, for example when making a choice between one heuristic
or another. It can also be used as an indication whether this type of optimization is worth
it or not, for example, in some cases it might simply be better to avoid it. The dispatch
heuristic that was implemented can be used as is, or used as a basis for further development
of heuristics specific to the POWER8 architecture.

8

Chapter 2

Background

This chapter will describe instruction scheduling in more detail and define what basic blocks
are. It will also provide some background on LLVM and POWER8.

2.1 Instruction Scheduling
A compiler is typically organized into phases where each phase except for the first one, takes
as input, the output of the previous phase [17]. The first phase, known as lexical analysis, reads
the source code and divides the program into tokens, which corresponds to keywords, variable
names, operators and so on. The next phase performs a syntactic analysis in which tokens
are parsed and organized into a syntax tree, a graph which represents the structure of the pro-
gram. The syntax tree is then semantically analyzed in a third phase to assure that the program
makes sense. Although phases are modeled sequentially, they can be weaved together, as is of-
ten the case of lexical analysis and syntactic/semantic analysis. These three phases constitute
the front-end of a compiler. The program is then translated into an intermediate representa-
tion, or IR code, independent of the target machine. This phase is referred to as the middle
section of a compiler, at this stage we can apply target-independent code optimizations to
the program [24]. The back-end of a compiler translates the IR code into target-dependent
machine code, a process known as code generation. This includes instruction selection, in-
struction scheduling and register allocation. During instruction selection the IR code will be
matched to an equivalent sequence of target-dependent instructions. These instructions are
then scheduled in a way which increases throughput, and finally variables are being assigned
to registers, during the register allocation phase.

Throughput refers to the rate at which a processor executes instructions. Execution of
an instruction is divided into stages which corresponds to di�erent parts of the processor.
Common stages in a RISC architecture are: fetch, decode, execute, memory access and write
back [10]. An instruction goes through each of these steps sequentially. The clock cycle is
a unit of time during which each part of the processor can compute, and at the end of a

9

2. Background

cycle the results are stored in registers of the chip [25]. For example, if each step requires
one clock cycle to compute, then it will take five clock cycles to execute one instruction. In
pipelined execution the processor fetch a new instruction every clock cycle. While this could
potentially mean a speed up of n times, where n is the number of stages in the pipeline, some
complications arise. If an instruction needs a register value that is currently being updated
by the previous instruction, reading the register would result in an outdated value. In order
to read the correct value the later instruction has to wait for the value to be written to regis-
ter first and we say that a pipeline stall has occurred. The purpose of instruction scheduling
is to decrease the number of pipeline stalls, thus increase the processor throughput. This is
achieved by reorganizing the instructions in a way such that independent instructions are
executed between two instructions that would otherwise cause a pipeline stall. The fact that
some instructions are requiring the same registers gives rise to three types of data dependen-
cies which constrain execution order [24]. A true dependence occurs when an instruction is
producing a value that a subsequent instruction will consume and the consumer has to wait
for the producer. An anti dependence occurs when an instruction has to read a register before
it is overwritten. The instruction that wants to write to the register in this case has to wait
until it is safe to do so. An output dependence occurs because two instructions are writing
to the same register and therefore must execute in their original order.

There is an interdependence between instruction scheduling and register allocation. A
variable is said to be live if its value is needed by a subsequent instruction. A live range of a
variable starts at a definition of the variable and ends at its last use. Instruction scheduling
performed before register allocation may increase a live range of a variable, which may lead to
more variables being live at the same time, thereby increasing the number of registers needed.
This is called register pressure. On the other hand, instruction scheduling performed after
register allocation faces another problem in that instructions may now have dependencies
between them, caused by being assigned the same registers. If the number of live variables
exceeds the number of available registers, some variables will be spilled to memory. Spill code
refers to the additional store and load instructions introduced to a program in order to move
a spilled variable to and from memory. It is possible to split a live range to avoid some spill
code. This creates a new live range that then need to be handled by the register allocator. In
cases where instruction scheduling is performed before register allocation, it may be necessary
to perform instruction scheduling afterwards as well in order to schedule possible spill code.

2.2 Basic Blocks
In addition to translating code from one programming language to another, an optimizing
compiler aims to increase the performance of the translated code. This is achieved by a series
of optimizations, or code transformations, applied to the program as it passes through the
various compiler phases. Many of these optimizations take place in the middle section [17].
The IR code of the middle section is an intermediate language, in LLVM for example, it
bears a resemblance to an assembly language, but is target-independent. The initial step
of the middle section is to create a control flow graph, or CFG, which represents the various
paths that can be taken during the execution of a procedure [24]. A procedure is composed
of a sequence of instructions, and each instruction is associated with a type that defines it.
An instruction can be for example: a branch instruction, a label, a function call, an operation

10

2.3 LLVM

and so on. Nodes in the CFG are called basic blocks. A basic block is a region of code in a
procedure, where the first instruction of the region is a label, and the last instruction is either
a branch or return instruction. In the CFG there is an arc from node u to node v if there is a
branch instruction in u, leading to the label that begins v.

The CFG is the starting point for various optimizations, including instruction schedul-
ing. However, instruction scheduling is a target-dependent optimization and so before we
can begin scheduling, the IR code of the middle section has to be translated into the interme-
diate representation of the back-end. When we schedule instructions we can either schedule
them one basic block at a time, or, we can consider instructions from di�erent basic blocks
[19]. The former is called local scheduling and it is the approach used by list scheduling. The
latter is called global scheduling, and it is out of scope for this thesis.

2.3 LLVM
LLVM is an open source optimizing compiler written in C++ [16]. In the context of traditional
compiler design it is focused around the middle section and back-end. The main front-end
is Clang, which compiles C and C++ source code into an intermediate representation called
LLVM IR. The front-end, middle section and back-end are all independent of each other and
connected via the LLVM IR. This means that various languages can be translated into LLVM
IR, via di�erent front-ends, utilize the target-independent code transformations applied by
the middle section, and then be compiled, via di�erent back-ends, to a number of di�erent
target machines. Target independent code transformations and optimizations are performed
in passes over the LLVM IR. LLVM passes operate on di�erent levels of the IR, for example
functions or basic blocks. The following two code listings shows a simple example of the
LLVM IR.

Listing 2.1: A recursive function which computes the nth number in
the Fibonacci sequence.
1 i n t f (i n t n)
2 {
3 i f (n < 2)
4 r e t u r n n ;
5 e l s e
6 r e t u r n f (n −1) + f (n −2) ;
7 }

Listing 2.1 shows a sample of C code and listing 2.2 shows the corresponding LLVM IR
of the middle section. Global identifiers are prefixed with the @ symbol, whereas local iden-
tifiers use the prefix %. Identifiers are either named, for example retval or unnamed, in which
case they are identified with an integer. In listing 2.2 we have four basic blocks, labeled as:
entry, if.then, if.else and return. A comment in the code is preceded by semicolon, the com-
ments after label names tell us the predecessor of this basic block in the CFG. Line number
4, %retval = alloca i32, align 4, allocates a 32 bit integer on the stack, pointed to
by retval. The load and store instructions are used to read to and from memory. The
br instruction is used to direct control flow. There are two types of branch instructions,

11

2. Background

conditional branches, for example the last instruction in the entry basic block (line 9), and
unconditional branches, for example the branches in the following two basic blocks (lines 14
and 25).

Listing 2.2: LLVM IR corresponding to the C code in listing 2.1.
1 ; F u n c t i o n A t t r s : n o i n l i n e nounwind o p t n o n e
2 d e f i n e d s o _ l o c a l s i g n e x t i 3 2 @f (i 3 2 s i g n e x t %n) #0 {
3 e n t r y :
4 % r e t v a l = a l l o c a i 3 2 , a l i g n 4
5 %n . a d d r = a l l o c a i 3 2 , a l i g n 4
6 s t o r e i 3 2 %n , i 3 2 * %n . addr , a l i g n 4
7 %0 = l o a d i 3 2 , i 3 2 * %n . addr , a l i g n 4
8 %cmp = icmp s l t i 3 2 %0 , 2
9 br i 1 %cmp , l a b e l % i f . then , l a b e l % i f . e l s e

10
11 i f . t h e n : ; p r e d s = % e n t r y
12 %1 = l o a d i 3 2 , i 3 2 * %n . addr , a l i g n 4
13 s t o r e i 3 2 % 1 , i 3 2 * % r e t v a l , a l i g n 4
14 br l a b e l % r e t u r n
15
16 i f . e l s e : ; p r e d s = % e n t r y
17 %2 = l o a d i 3 2 , i 3 2 * %n . addr , a l i g n 4
18 % sub = sub nsw i 3 2 %2 , 1
19 % c a l l = c a l l s i g n e x t i 3 2 @f (i 3 2 s i g n e x t % sub)
20 %3 = l o a d i 3 2 , i 3 2 * %n . addr , a l i g n 4
21 % s u b 1 = sub nsw i 3 2 %3 , 2
22 % c a l l 2 = c a l l s i g n e x t i 3 2 @f (i 3 2 s i g n e x t % s u b 1)
23 %add = add nsw i 3 2 % c a l l , % c a l l 2
24 s t o r e i 3 2 %add , i 3 2 * % r e t v a l , a l i g n 4
25 br l a b e l % r e t u r n
26
27 r e t u r n : ; p r e d s = % i f . e l s e , % i f . t h e n
28 %4 = l o a d i 3 2 , i 3 2 * % r e t v a l , a l i g n 4
29 r e t i 3 2 %4
30 }

Instruction scheduling operates on machine basic blocks. These blocks are the result of
going from the target-independent LLVM IR, to a target-dependent intermediate represen-
tation. A machine basic block is a collection of machine instructions, and a machine basic
block correspond to a LLVM IR basic block. In LLVM instruction scheduling is performed
before, and after, register allocation. The heuristics in this thesis are implemented as part of
the scheduling done pre-register allocation.

12

2.4 Group Formation

2.4 Group Formation
The dispatch heuristic that was implemented is specific to POWER8, and it is based on a
part of instruction execution known as group formation. It is not necessary to know how
instructions are executed by the processor to understand group formation, however, readers
who are unfamiliar with the process might want to look at appendix A which provides an
overview of the POWER8 processor core. We say that the processor executes instructions
out-of-order if instructions can be executed in an order that is di�erent from the order they
appear in the program code. Instruction dispatch and group formation represents the last
in-order part of the pipeline before out-of-order execution [23]. Instructions are organized
into groups before dispatch. Instructions within the same group enter the out-of-order part
of the processor in parallel. Depending on how many threads are currently active, there can
be either one or two dispatch groups. In single thread mode the size of a group can be up to
eight instructions, where group slots are numbered from 0 to 7. There can be up to six non-
branch instructions, placed in slots 0 to 5. Slot 6 and 7 are used for branch instructions. In
simultaneous multithreading mode with 2, 4 or 8 active threads, there are two dispatch groups,
group 0 and group 1. These groups can contain up to three non-branch instructions and
one branch instruction each. For group 0, non-branch instructions are placed in slots 0 to 2,
branches in slot 6. For group 1, slots 3 to 5 are used for non-branches, and slot 7 for branches.
When instructions are fetched from the instruction cache they are placed in bu�ers, before
group formation. These bu�ers has 32 rows, and each row is four instructions wide. During
group formation, in single thread mode, all instructions must come from the oldest two
entries in the instruction bu�er. With more than one active thread the, the bu�er is divided
between the threads and instructions must come from the oldest two entries per thread, but,
a thread can only empty one quadword per cycle [13]. In other words, the instructions in
group 0 and group 1 comes from di�erent threads.

Group formation follows a set of rules. Some instructions are marked First, these must
start a group. Likewise, some instructions are marked Last, these must end a group. Some
instructions cannot be executed in a single internal operation, these instructions are cracked
into multiple simple internal operations [13]. Cracked instructions are either two-way cracked,
or three-way cracked and requires two, respectively three non-branch slots. It is possible to go
beyond the first branch to pick up more instructions, however no floating point operations
are allowed in a group after a branch. Instructions with three source operands can go into
slot 0 or 1 and reserve slot 2 for the third operand. Or similarly, use slot 3 or 4 and reserve slot
5. Three-source operations are not allowed in slots 2 or 5. If a branch and link instruction
updates the Link Register, it is marked as Last. If a conditional branch is followed by cer-
tain fixed-point or store instructions, that are allowed to be predicated, the bc instruction
is marked as First. This transformation of the branch into predicated execution is known as
instruction fusion, two adjacent instructions are fused into one internal operation. Another
type of instruction fusion involve add-immediate instructions and certain load instructions.
To be adjacent it is necessary that the two instructions are in the same dispatch group.

In single thread mode, instructions that are two-way cracked takes up slots 0 and 1. It
is possible to fill out a second cracked instruction in the same group if the two instructions
appear next to each other in the code stream. In that case, the second instruction takes up
slots 3 and 4. A three-way cracked instruction takes up slots 0, 1 and 2. It also ends the group.
In simultaneous multithreading mode, two-way cracked instructions takes up slots 0 and 1

13

2. Background

for group 0, and for group 1, slots 3 and 4. Likewise, three-way cracked instructions fills
out slots 0, 1 and 2, or slots 3, 4 and 5. Some complex instructions require more than three
internal operations, these are handled by the microcode engine, which is shared between
the two dispatch groups. It is possible for one half to stall the other if they both require
microcode at the same time.

After dispatch, the instructions are placed into issue queues, associated with the di�erent
functional units. There are three di�erent issue queues, one queue for branch instructions,
one for condition register instructions and one queue for all the other instructions. The third
queue, the unified issue queue is divided into two halves, UQ0 and UQ1. A steering policy
determines in which of the queue halves an instruction is placed [13]. In single thread mode,
instructions are steered to alternating queue halves. Instructions in slots 0, 2, 4 opposite
of instructions in slots 1, 3, 5. For example, if the instruction in slot 0 is steered to UQ0,
then the instruction in slot 1 will be steered into UQ1, and the instruction in slot 2 to UQ0.
Depending on how many instructions are assigned to a queue half in a dispatch cycle, the
one that had fewer instructions assigned to it will receive the first instruction of the next
group. In simultaneous multithreading mode, instructions are steered depending on thread
set. Instructions in slots 0, 1 and 2 are assigned to UQ0 and slots 3, 4 and 5 are assigned to
UQ1. Each queue half is associated with its own set of functional units, and in each cycle
both halves select four instructions to be issued, one for each execution pipeline.

14

Chapter 3

Approach

The topic of this work is comparison between di�erent list scheduling heuristics. The com-
piler we are using is Clang/LLVM and the target which we are compiling for is POWER8.
Initially I would focus on each of them, one at a time, starting with list scheduling. After
acquiring some basic knowledge of instruction scheduling, list scheduling and heuristics, I
moved on to the LLVM back-end. The LLVM code base is in general very well documented,
however, due to its massive size it was not always easy to navigate. For example, while adding
new heuristics can be done simply by implementing a new scheduling strategy, getting the
back-end to register said strategy requires editing around seven source files. As a side note
with regards to working with the LLVM back-end, unlike the middle section for which new
optimizations can be loaded and tested via the opt tool, in order to see any changes it is neces-
sary to recompile the involved source files. Depending on your computer this might be more
or less time consuming. On my personal laptop it could sometimes take upwards twenty to
thirty minutes to recompile using Make. Using Ninja on POWER8, after some tweaking of
cmake settings, I was able to get it down to five seconds for recompiling and a little under
twenty minutes for a clean install. Once I felt comfortable enough with LLVM I shifted my
focus towards POWER8. I found that this article [23] was very useful when trying to make
sense of this intricate topic. For more specific details regarding POWER8, the user manual
[13] held the answers.

The initial phase, consisting of literature study and understanding LLVM, resulted in
chapter 4. The intention of this chapter is to describe how list scheduling is used to solve the
instruction scheduling problem of finding a schedule that increases performance, measured
in execution time. In order to understand the problem, why it is di�cult, and why it is
interesting, it was placed into a historical context. After introducing the algorithm, focus
was shifted towards various heuristics.

For the comparison of heuristics I decided to start with the heuristics presented in [26]
and compare them against the heuristics already implemented in LLVM. As I was imple-
menting the heuristics I tested and compared them on small loops and toy programs using
the Linux time command. For most cases I did not see any di�erence, which was most likely

15

3. Approach

due to the code examples I was testing on. However, two heuristics did pique my interest as
they would produce slightly better times: latency weighted critical path and alternating instruc-
tions. In the first case I was testing on a matrix multiplication, nested inside a loop with a
high iteration count. In the second case there was 90 randomly ordered arithmetic operations
inside a loop.

After implementing the traditional heuristics I turned towards implementing a heuris-
tic of my own. I named it the dispatch heuristic as it was based on group formation and
instruction dispatch, specific to the POWER8 processor. After this point I started testing
on a subset of the SPEC CPU 2017 benchmarks. The experimental setup and evaluation is
described in chapter 6.

16

Chapter 4

List Scheduling

This chapter describes the list scheduling algorithm, di�erent heuristics, related work and
how the algorithm is implemented in LLVM. The intention of this chapter is to understand
the algorithm and its limitations in order to develop useful heuristics.

4.1 The List Scheduling Algorithm
The basic list scheduling algorithm is given by listing 4.1, it is a local scheduling algorithm
that works within one basic block at a time [28, 7].

Listing 4.1: The basic list scheduling algorithm.
1 f o r e a c h B a s i c B l o c k :
2 b u i l d _ d a g
3 c o l l e c t _ c a n d i d a t e s
4
5 wh i l e c a n d i d a t e s not empty :
6 s e l e c t cand from c a n d i d a t e s u s i n g h e u r i s t i c s
7 f o r e a c h s u c c i n cand . s u c c e s s o r s :
8 d e c r e m e n t i n c o m i n g a r c s by 1
9 i f a r c s == 0 :

10 add s u c c t o c a n d i d a t e s
11
12 remove cand from c a n d i d a t e s
13 s c h e d u l e cand

The first step upon visiting a basic block is to create a directed acyclic graph, or dag.
Each instruction in a basic block is represented by a node in the dag and arcs between nodes
represent dependencies between instructions. For any two nodes u and v such that there is a
path from u to v in the dependency dag, it follows that u must execute before v to preserve

17

4. List Scheduling

correctness of the procedure. For example in figure 4.1, there is a path from node a to node d,
and node a must be scheduled before node d. An arc between two nodes is commonly associ-
ated with a weight in form of instruction latency and each node is assigned a priority based
on some heuristic. The goal is to find a topological ordering that increase performance. Any
topological sort of the dependency dag is of course valid [7], and the outcome of the schedule
relies on the chosen heuristic. The dag is constructed in either a forward or backward pass
of the basic block. To determine whether two nodes shall have an arc between them can
e�ectively be done either in a compare node by node fashion, with a worst case of O(n2), or
through table building based on definitions and uses of a resource, such as registers or mem-
ory. Table building keeps track of the instruction that last modified a resource along with a
set of current uses [26]. The order in which instructions of a basic block are scanned doesn’t
matter and to compute certain heuristics it may be necessary to perform a second pass in the
opposite direction.

Once the dependency dag has been constructed list scheduling processes the dag in either
top-down or bottom-up topological order [4]. In a top-down approach each node with no
incoming arcs are collected in a set of candidates which constitute a set of instructions ready
to be scheduled next. Once an instruction has been scheduled, it is removed from the set of
candidates, and any successor node that may now be ready is added to the set. This process
continues until the set of candidates is empty. Likewise, in a bottom-up scheduler the nodes
that are candidates are those whose successors have all been scheduled.

Figure 4.1: The dag of the expression: d = (a + b)/c.

Listing 4.2: A possible schedule of the dag in figure 4.1.
1 lwz 3 , − 1 2 (1)
2 lwz 4 , − 1 6 (1)
3 add 3 , 3 , 4
4 lwz 4 , −20(1)
5 divw 3 , 3 , 4
6 s tw 3 , −24(1)

18

4.2 Brief on the History of List Scheduling

Listing 4.3: Another possible schedule of the dag in figure 4.1.
1 lwz 3 , − 1 2 (1)
2 lwz 4 , − 1 6 (1)
3 lwz 5 , −20(1)
4 add 3 , 3 , 4
5 divw 3 , 3 , 5
6 s tw 3 , −24(1)

As an example, the dag of the expression d = (a + b)/c is given by figure 4.1. The two
listings, 4.2 and 4.3, show assembly code for two possible schedules of the dependency dag.
We can see that lines 3 and 4 are switched between the two schedules. On POWER8 a fixed-
point load instruction has a latency of three cycles between load and use, which means that
the second schedule will execute slightly faster. On the other hand, we see that in the first
schedule we are able to reuse register 4. At line 2 we use register 4 to load b, and on line 4
we use the register again to load c. In the second schedule we need three registers to load all
the variables before the arithmetic operations. This is a simple example of how instruction
scheduling increase the register pressure.

4.2 Brief on the History of List Scheduling
Before instruction scheduling, list scheduling was used in the microcode compaction opti-
mization problem [6, 15]. A microprogram is a sequence of microinstructions. A microinstruction
is a set of microoperations. The objective of the microcode compaction problem is to find a
semantically equivalent microprogram with a minimized execution time. This is achieved by
making better use of the available pipeline slots in each cycle. There are many similarities be-
tween microcode compaction and instruction scheduling and although the two optimization
exists independently, the microcode compaction problem was in many ways the forefather
of modern instruction scheduling.

The instruction scheduling problem as we think of it nowadays, grew out of the necessity
to prevent the execution of a machine instruction before the instruction’s operands are avail-
able. This hazard can also be handled by hardware through the use of pipeline interlocks. A
pipeline interlock is a, relatively, time consuming mechanism to detect and stall an instruc-
tion from executing before the instruction’s operands are available. Instruction scheduling
o�ered an alternative to this complex hardware mechanism, by rearranging the instructions
in such a way as to avoid the hazard, or to reduce the number of interlocks.

In the early days of instruction scheduling, there were two approaches to solving the
problem. Either instruction scheduling was performed during code generation, or it could
be performed afterwards, on generated code in a postpass. In case of scheduling during code
generation, another problem arose: Whether to schedule before, or after, register allocation.
This problem is known as the phase ordering problem [4]. When scheduling prior to register
assignment the number of interlocks introduced by false dependencies can be minimized. A
false data dependence is a dependence between two instructions that only exists because they
happened to be assigned the same register, or name, by the register allocator. For this reason
anti and output dependencies are sometimes referred to as name dependencies [10]. However,
a scheduler that schedules too aggressively may introduce spill code that could have been
avoided. On the other hand, a register allocation without any spill code, may put unnecessary

19

4. List Scheduling

constraints on the scheduler due to name dependencies.

Hennessy and Gross [9] described an algorithm for a postpass code reorganizing opti-
mization and discussed some of the interdependence between this approach and preceding
optimization phases. For example the scheme by which the register allocator reuses regis-
ters. Should the register allocator reuse registers as they become available it might prevent
the postpass to reorganize some of the instructions. In that case, a round-robin method for
selecting available registers might be more useful.

While rearranging code in a postpass was more general and independent of the generated
code, performing instruction scheduling during code generation tended to produce better
quality of code [9]. Code generation might require several passes which could potentially be
very time consuming, and so the choice of approach would reflect the need of the system.
The IBM PL.8 compiler [1] is an example of an early optimizing compiler that implemented
instruction scheduling as part of the code generation phase. It performed scheduling before
register allocation, as well as afterwards to accommodate for any spill code introduced by the
allocator.

4.3 The Fundamental Algorithm for Instruc-
tion Scheduling

In the algorithm described by Hennessy and Gross [9] conflicting instructions, that is, in-
structions with some form of dependency between them, were able to block each other from
being scheduled. To avoid these deadlocks the algorithm used lookahead. The algorithm had
a worst-case runtime of O(n4) for a basic block with n number of instructions. The code
reorganization algorithm presented by Gibbons and Muchnick in [7] improved on this time
complexity by using a dag with more restrictions, which removed the need for lookahead,
thereby giving the algorithm a O(n2) worst-case runtime. Their algorithm assumed a ma-
chine which employed hardware pipeline interlocks, which meant that the algorithm did not
need to detect every pipeline hazard, unlike Hennessy and Gross whose algorithm targeted
machines without this mechanism. The di�erence in time complexity allowed list scheduling
to be e�cient even on basic blocks with a larger number of instructions.

Warren [28] described an algorithm for scheduling instructions on the IBM RISC Sys-
tem/6000. The algorithm was a redesign of a previous scheduling algorithm used in the PL.8
Compiler. Similar to Gibbons and Muchnick, Warren used a dag to represent the scheduling
constraints between instructions. An arc between two nodes in the dependency graph indicates
that the predecessor must execute before the successor and with each arc is associated a delay.
Scheduling is done by selecting from instructions that are ready, that is, all predecessors have
been scheduled and enough time has elapsed to account for the required delay. There is no
lookahead and in order to select among multiple ready instructions the algorithm relies on
heuristics. The fundamental algorithm for instruction scheduling is list scheduling and is due
to these two papers [7, 28].

20

4.4 Heuristics for Scheduling a Basic Block

4.4 Heuristics for Scheduling a Basic Block
Instruction scheduling of a basic block is essentially done in two parts: Build a dependency
dag of the instructions in the basic block, and schedule the dag in some topological order-
ing. As finding an optimal schedule is an NP-complete problem, the scheduling relies on
heuristics. In this thesis we decide which instruction to schedule next based on a pairwise
comparison of the instructions in the set of candidates. For example, Gibbons and Muchnick
[7] used the following three heuristics:

Interlock with an immediate successor, instructions which may cause interlocks should be
scheduled early on where there are more available instructions which can be scheduled
after them.

The number of immediate successors, instructions with a larger number of immediate suc-
cessors will cause more instructions to become available for scheduling.

The length of the longest path from the instruction to any leaf node. Selecting an instruc-
tion based on the length of the path to a leaf node helps to balance the progress of
di�erent paths towards di�erent leaves.

The order of the heuristics is important as it determines the priority of each heuristic. We
say that the heuristics are hierarchical. Given two instructions, we compare them against each
other, one heuristic at a time. If the heuristic cannot decide which instruction to schedule,
we move on to the next heuristic and so on. As another example, the heuristics applied
by Warren [28] selects instructions based on the following. Among the instructions in the
set of candidates, select those whose earliest time has arrived, that is, enough time has elapsed
between the instruction and its predecessors, or if there are none then those with the smallest
earliest time. The algorithm will favor instructions of opposite type to the one which was
previously scheduled. Of these instructions it will select the ones with maximum delay from
the instruction down to any leaf node. Next it selects the instructions which has minimum
liveness weight, followed by uncovering and finally, should there still be multiple instructions
to choose from, it selects which ever came first in the original program order.

The liveness weight, described in [28], is a simple priority based scheme to reduce the
number of register spills. It assigns a weight to an instruction based on the following. Move-
register gets assigned the lowest weight as keeping this instruction close to the instruction
that defines the source of the move will benefit the register allocator with coalescing. Next
are instructions without targets as they may free up register, though they never increase the
number of live registers. Most instructions sit in the middle of the weights, then come load
instructions and finally instructions with no source registers, which get the highest weight
since they increase the number of live registers without freeing any.

Smotherman et al. [26] conducted an extensive survey which included 26 heuristics ap-
plied in local scheduling. These heuristics were divided into categories, reflecting their in-
tended purpose. These categories will be useful later on when we compare heuristics. The
following categories were used in [26]:

Stall Behavior: Heuristics in this category prioritize instructions to avoid stall cycles. For ex-
ample earliest execution time [28] which ensures that enough time has elapsed between

21

4. List Scheduling

scheduling two dependent instructions. Interlock with an immediate successor [7] indi-
cates if an immediate successor of an instruction will be able to execute within the
next cycle or not. Execution time [21] is the operation latency of a node. Interlock with
immediate successor and execution time are two heuristics similar to each other, both
of them attempt to choose instructions with long delays first.

Instruction Class: Similar to Stall behavior, this category of heuristics tries to avoid stall
cycles by better utilizing the functional units in a superscalar processor. Alternate type
[28] is a simple heuristic that prioritizes instructions that have a di�erent type than
the last scheduled instruction, allowing more instructions to be issued in each cycle.
In this thesis, this category is included in stall behavior.

Critical Path: The longest path through a dag is called the critical path and it constitutes the
shortest amount of time needed to execute the program [5]. Heuristics in this category
tries to balance progress through various paths in the dag. The maximum path length
to a leaf [7] counts the number of arcs between a candidate node and the leaf node
furthest away from it. Maximum delay to a leaf [28] is the sum of the delays of the arcs
from a candidate node to the leaf furthest away from it. Maximum path length from root
and maximum delay from root are analogous to previous two heuristics except that they
move upwards in the dag [26].

The earliest start time [26] of a node is the maximum of earliest start time of p plus latency
of p over all immediate predecessors p. The latest start time [26] is the minimum of latest
start time of s over all immediate successors s minus the latency of the node. The slack
[26] of a node is defined as the di�erence between latest and earliest start time. It is an
indication as to how much the execution of a node can be delayed, without delaying
the final execution time of the program. A node with a slack of zero is on the critical
path.

Uncovering: Uncovering heuristics attempt to expose more scheduling opportunities by in-
creasing the number of nodes in the set of candidates. The number of immediate succes-
sors [7] is a naive estimate of how many nodes would be uncovered if an instruction is
scheduled. Sum of delays to immediate successors [26] includes the arc delay as a weight.
Number of nodes with a single immediate predecessor [26] gives a slightly more accurate es-
timate to the number of nodes that would be uncovered, this heuristic may also include
delays as weights. The number of uncovered immediate successors [28] is a combination of
the two heuristics. It gives a better estimate by only considering arcs with a delay of
one.

Structural: The purpose of a structural heuristic is to balance progress through a dag. While
critical path heuristics attempt to balance progress along longer paths, structural heuris-
tics aim to balance progress across the dag. Number of immediate predecessors is an ex-
ample of a structural heuristic which gives an indication of how many instructions
must complete before a candidate. This was used as a tie-breaking heuristic by Shieh
and Papachristou [21] for determining the priority of a node. It was used as an inverse
heuristic, meaning that a node with a larger number of immediate predecessor would
be assigned a lower priority. Number of successors [26] is considered a structural heuris-
tic though it expands on the idea of uncovering. This heuristic may also include delays
as weights.

22

4.5 Related Work

Register Usage: Heuristics in this category aim to reduce the register pressure by decreas-
ing the number of registers that are live simultaneously. The reason why register pres-
sure is so important is because unnecessary spill code needlessly degrades performance.
The interdependence between instruction scheduling and register allocation makes it
a di�cult task to balance. Recall that spill code inserts store and load operations.
Sometimes spill code cannot be avoided. In those cases, heuristics attempts to prevent
the scheduler from increasing the register usage. Number of registers born and number
of registers killed can be used to indicate whether scheduling an instruction should be
postponed or not due to register pressure. For example liveness, as defined by Warren,
includes both heuristics for registers born and killed in order to determine the weight
of an instruction. According to Warren [28] they tried some more elaborate schemes
but the liveness weight seemed to have been working as well as any of them.

Apart from these categories, heuristics can also be divided between static and dynamic
heuristics. Not to be confused with static and dynamic scheduling, which is scheduling per-
formed by the compiler as opposed to scheduling performed by hardware. A static heuristic
can be determined by traversing the dag. For example the critical path which is calculated in
a pass over the dag. A dynamic heuristic depends on the schedule ordering. An example of
a dynamic heuristic is the earliest execution time which is maintained by the scheduler and
updated for an instruction when its immediate predecessor gets scheduled.

Heuristics can also be divided between general and specific heuristics. A general heuristic
is for example the maximum path to a leaf node. As this heuristic only depends on counting
the number of arcs on the critical path, it does not take into consideration any target specific
details. On the other hand, maximum delay to a leaf node takes the arc delays into consideration
and these delays are specific to the target, based on some assumptions such as a cache hit for
example, making this a specific heuristic. Any sort of hardware related heuristic falls into
the category of specific heuristics, for example, the number of registers or functional units of
the processor.

4.5 Related Work
In order to learn more about the behavior of list scheduling, Cooper et al. [5] performed
an experimental evaluation of the algorithm. Mainly they were trying to identify possible
scenarios where list scheduling underperforms. In their experimental setup the compiler
did not perform register allocation. The motivation for this was that, by eliminating the
interaction between instruction scheduling and register allocation, it isolates the impact of
scheduling. They used the latency weighted depth of a node to determine its priority. A tie
between two nodes was broken arbitrarily.

They presented two alternatives to their list scheduling algorithm: Random tie breaking
and backward list scheduling. Instead of breaking ties arbitrarily, the idea of random tie
breaking is to run the list scheduler several times, each time breaking any ties randomly and
potentially generating more and better solutions. The backward list scheduling works by
reversing the directions of the arcs in the dependency graph, operations are scheduled based
on finish times. Backward list scheduling tend to cluster instructions towards the end of a
basic block rather than at the beginning. They used these two alternatives to develop a new
technique which they called RBF, or randomized backward and forward list scheduling.

23

4. List Scheduling

RBF schedules a basic block M times forward, and M times backward. Ties between
instruction with equal priority are broken randomly rather than arbitrarily. This gives 2M
schedules, of which the best one is kept. Three metrics were used in the evaluation of list
scheduling. Minimum schedule length, which was used to identify optimal schedules. Avail-
able parallelism within a basic block, defined as the sum of latencies of all instructions in the
dag divided by the length of the critical path and the number of list schedules, an attempt to
quantify the number of possible list schedules.

They compared list scheduling against RBF and another scheduling technique called it-
erative repair scheduling. In general, iterative repair will schedule a basic block so that each
instruction is scheduled as early as possible, without any consideration towards resource con-
straints. Then, the algorithm will repair the schedule by identifying resource conflicts, and
reschedule one of the conflicting instructions. This process is continued until no resource
conflicts exist. Similar to RBF this algorithm is run a number of times and the best schedule
is selected.

While the experiment was based on some generalizations, such as only using one heuristic
to determine priority, and breaking ties arbitrarily or at random, it did lead to some interest-
ing results, in particular those on random graphs. List scheduling performs better on certain
levels of available parallelism. The observation that was made indicated that list scheduling
would perform well on low, as well as, high levels of parallelism, with somewhat worse per-
formance on moderate levels of parallelism. When the list scheduler has only a few choices to
make, the probability of making a less than optimal tie-breaking choice is low. To explain the
performance on higher levels of parallelism, they suggested that most tie-breaking decisions
led to schedules that, while di�erent, were of the same length.

Even in cases where the available parallelism is low, if the scheduler has to break many ties,
the probability of finding a non-optimal solution increase. In a practical implementation of
list scheduling there will be a set of heuristics for breaking ties, rather than breaking them
randomly, this experiment shows the importance of good heuristics for tie-breaking as well
as it gives an idea as to why the hand-crafting approach is so time consuming.

The size of a basic block can be a limiting factor for list scheduling. The fact that list
scheduling often finds optimal schedules for small basic blocks does not mean that there
cannot exist a better schedule of the whole procedure. Because list scheduling operates on
one basic block at a time, it does not consider scheduling across basic block boundaries.
Modern processors are superscalar, and in order to keep all functional units busy, it is nec-
essary to achieve a certain amount of ILP. For large basic blocks this is not a problem for
list scheduling, but in control intensive programs, that is, programs with many branches, list
scheduling might struggle to find enough available instructions. Global instruction schedul-
ing techniques, for example scheduling of superblocks [3] overcome this by allowing schedul-
ing across boundaries. A super block is a trace of basic blocks, such that entering the trace can
only happen at the top. A super block can have more than one exiting branch. Exit branches
except the last one are called side exits. The scheduling process in [3] consists of trace selection,
forming superblocks, building a dependence graph and performing list scheduling.

Another area where list scheduling shows limiting performance are loops, since it cannot
schedule instructions from multiple loop iterations. In loop bodies with few instructions,
list scheduling will not be able to find enough instructions to keep the processor busy. This
becomes a bigger concern when iteration count is high. To overcome this, modulo scheduling,
a form of software pipelining, can be used [24]. In list scheduling, each loop iteration waits

24

4.5 Related Work

on the previous to finish before it starts. The idea of modulo scheduling is to overlap loop
iterations in order to increase throughput. In [11] Hu� presents a bidirectional approach to
scheduling in the context of lifetime sensitive modulo scheduling. He notes that traditional
list scheduling has a tendency to unnecessarily stretch lifetime intervals, either by scheduling
loads too early, or stores too late.

While the list scheduling algorithm itself is fairly simple, it o�ers a lot of variation
through the use of heuristics. Many heuristics have been developed over the years and it
continues to be an interesting research topic [26, 20]. Of the six categories described in sec-
tion 4.4, the heuristics in the critical path category have traditionally been the most popular
[14, 26]. Their aim is to identify instructions which should be scheduled as early as possible.
Another popular category is register usage. Register pressure heuristics are only interesting
for scheduling done pre-register allocation and their aim is to shorten live ranges in order
to decrease the number of variables live simultaneously. Register pressure heuristics has a
bigger impact if the basic block is large [8].

Modern processors employ register renaming to support out-of-order execution. Register
renaming is the act of assigning logical registers to physical registers. Since the set of physical
registers is larger than the set of logical, register renaming can eliminate anti and output
dependencies. Silvera et al. [22] described an algorithm that would reorder instructions
to reduce register pressure without negatively a�ecting ILP, i.e by letting the out-of-order
mechanism break the name dependencies. The algorithm takes as input, the output of a
traditional list scheduler. It was one of the first papers focusing on the relationship between
instruction scheduling and register allocation on targets with out-of-order execution. The
benefit of reducing register pressure especially for targets with out-of-order execution was
also noted by Valluri and Govindarajan in [27] in which the phase ordering problem was
studied and di�erent techniques evaluated.

Heuristics are often handcrafted, and developing good heuristics is a time consuming
process which requires both experience and great knowledge of the target [18]. An alternative
approach, in order to speed up the process, is to make use of machine learning techniques.
For example, Malik et al. [20] used a decision tree learning algorithm, a form of supervised
learning, which is used for classification of data, to automatically learn good heuristics. A list
scheduling algorithm use heuristics to choose between two instructions at a time. In order to
express this as a classification problem it is su�cient to be able to return true if instruction
i should be scheduled before instruction j, or false otherwise.

According to [20] they started out with 60 features. In machine learning, a feature is
some form of measurable characteristic. In our context a feature is a heuristic, and a set
of features is what we think of as a list of priorities. From this point I will use the word
heuristic instead of feature. These 60 heuristics included all of the ones surveyed in [26]
except for those regarding register usages and some heuristics subsumed by others. Some
novel heuristics were constructed by means of applying functions to existing ones, functions
such as the maximum of two or the average of multiple. Unfortunately there is no listing of
all of these heuristics. As [26] only accounts for less than 26 of the heuristics, it would have
been interesting to note what else was tried.

Of the 60 heuristics 17 remained after filtering, a preprocessing step by which heuristics
that are deemed less useful are deleted. Filtering can improve the e�ciency of the learn-
ing process, as well as improve the quality of heuristics that are learnt. The 17 remaining
heuristics were then ranked according to their usefulness in classifying data. Three ranking

25

4. List Scheduling

methods were used, and the value of a heuristic was determined by the average. Of the 17
heuristics, all but the last four were static heuristics. The critical path distance to a leaf node was
ranked as number five. According to [20] they were surprised by this, suggesting that because
of its popularity it was expected to rank higher. However, I think it is worth mentioning that
the highest ranked heuristic was the maximum of the novel resource-based distance to leaf node
and critical path distance to a leaf node. The resource-based distance to leaf node incorporate a
balance between critical path distances to successors, instruction classes and critical paths of
successors to leaves, and it was ranked as number two. Furthermore, path length to leaf node,
which is also a critical path heuristic, was ranked as number three. The heuristic with rank four
was number of successors of an instruction, a structural heuristic, and the heuristic ranked six
was slack. In other words, five of the six highest ranked heuristics were some form of critical
path heuristics. Each category of heuristics had at least one representing heuristic among the
17 most useful heuristics, apart from register usage obviously.

It is interesting, and perhaps a bit more surprising, to see that the heuristic with rank
seven was the order of the instruction in the original instruction stream as this one is usually the
last tie-breaker (for obvious reasons) in a series of heuristics, should all the previous attempts
to prioritize one instruction over the other have failed. This peculiarity was also noted by
Beaty et al. [2], who commented that critical path heuristics are widely held to be the most
important heuristic while lexical order is consider relatively unimportant.

4.6 List Scheduling in LLVM
The default instruction scheduler in LLVM, targeting POWER8, is called the Generic Sched-
uler. It has access to target specific details such as information on instructions and processor
registers. Two important concepts of the scheduler are scheduling units and scheduling dependen-
cies. Scheduling units are basic blocks, and scheduling dependencies are arcs between basic
blocks. The di�erent kind of dependencies are: Data, Anti, Output and Order. The first
three are familiar to us since before, the Order dependence constitute the following depen-
dencies: Barrier, MayAliasMem, MustAliasMem, Artificial, Weak and Cluster. Dependencies
are either strong or weak. A strong dependence must be respected by the scheduler, with the
exception of artificial dependencies which may be removed, but only if they are redundant
with regards to another strong dependence. A weak dependence may be violated, but only
if it can be proved by the scheduling strategy, or scheduling algorithm, that it is correct to
do so. Each dependence is associated with a latency, which is an estimate of the minimum
number of cycles that must elapse between two instructions, given that one is the immediate
predecessor of the other. The depth of a node is the maximum, latency weighted, path from
that node up to any root node. The height of a node is the maximum, latency weighted, path
from that node down to any leaf node.

The scheduler takes as input a machine function, that is, a function which has been trans-
lated down to the target-dependent intermediate language. Each machine basic block is vis-
ited in function order. Each block is associated with a scheduling region, essentially a struct
which holds the first and last instruction in the region. After each region has been deter-
mined, the scheduler will begin scheduling. The first step is to build the dag and set up
trackers for register pressure. In LLVM register pressure is computed for one scheduling re-
gion at a time. If live intervals are available they are used for recording the boundary of the

26

4.6 List Scheduling in LLVM

tracked region. A tracker only operates on one machine basic block at a time, in order to
track pressure across larger regions, the register pressure is stored at block boundaries, and
then adjusted to account for live-in and live-out register sets. Three types of pressures are
recorded: Excess, which is the pressure beyond the targets limit, critical maximum and cur-
rent maximum, which records the largest increase that exceeds the critical or current limit
on some pressure set. Register pressure sets are used to keep track of register usage. Once the
dag has been built, the scheduling strategy initializes ready queues and hazard recognizers
for the top and bottom halves of a region.

Each region is divided into two halves, top and bottom. The default scheduler schedules
instructions bottom-up, but via a scheduling policy, a scheduling strategy can force either
top-down, bottom-up or bidirectional scheduling. Each half is associated with a ready queue
which is updated when an instruction is scheduled. If a node from the top half is scheduled,
each of its immediate successors will have the number of incoming branches decremented.
Once all predecessors have been scheduled, the node is released. This means that the node
becomes visible to the heuristic function and can now itself be scheduled. Likewise for the
bottom half, when a node is scheduled, each immediate predecessor will have its number of
outgoing branches decremented. Initially the root and leaf nodes are released for top and
bottom half respectively.

For PowerPC back-ends the bidirectional approach is used as this can provide a more
balanced schedule, according to a comment in the LLVM source code. Assuming there are
nodes available from both halves’ ready queues, the best node in each half is selected. Then,
the best between the two nodes is selected and scheduled. In a top-down or bottom-up
approach it is easy to see that the schedule is correct, to see that it is correct for bidirectional
scheduling as well, let us consider a node from the top half, for example a root node. When
the node is scheduled, the scheduler is aware that it came from the top half queue, and any
successor that now became ready, is put into the top half Pending queue, later to be moved into
the top half Available queue, where it can be selected by the heuristic function. The scheduler
maintains a reference to the current top and current bottom. An instruction from the top queue,
can only be moved to become the current top. Likewise, instructions coming from the bottom
queue can only be moved to become the current bottom. The name current bottom is a bit
of a misnomer, in fact the current bottom is the top of the bottom half. Ultimately these two
variables are moving towards each other, shrinking the unscheduled zone. In other words,
a node enters a queue once its dependent nodes have been scheduled. Depending on which
queue it enters, it gets scheduled either to the top or bottom half of the scheduling region.
In the final schedule, because every instruction in the top half comes before instructions in
the bottom half, dependencies between instructions from di�erent halves, will be respected.

The heuristic function takes as input two candidates of which one is currently the best
candidate, and a reference to the current zone being scheduled. The zone is either top or
bottom, or in case the two candidates are from di�erent zones, such as can happen when
comparing two candidates in a bidirectional schedule, the zone is null. Heuristics in LLVM
are hierarchical, essentially working like tie-breakers. The currently best candidate is asso-
ciated with a reason for picking that candidate. Reasons are ordered by their priority. The
generic scheduler prioritize candidates which reduce register pressure. For candidates that
come from di�erent boundaries, only a subset of the heuristics are used for comparison. For
example, heuristics regarding resource usage are only compared for candidates of the same
zone. In case all heuristics turn out equal, candidates of the same zone fall through to node

27

4. List Scheduling

order, whereas, if the candidates are from di�erent zones, the scheduler will favor the bottom
zone.

28

Chapter 5

Implementation

This chapter will detail the heuristics that I chose to implement. Of the heuristics surveyed
in [26] I implemented the following fifteen, these included at least one heuristic from each
category.

Stall behavior: Execution time, this heuristic was implemented using the, in LLVM available,
node latency. Alternate types, this heuristic was implemented by simply looking at the
operation code of the previously scheduled instruction and favor a di�erent one. In
the dispatch heuristic, described below, alternate types was refined to consider the
required functional unit of the previously scheduled instruction.

Critical path: The heuristics in this category was computed by traversing the dag in a depth
first manner. For path length the number of arcs was counted, and for delay the latency
of the arc was counted instead.

• Maximum path length to a leaf.

• Maximum path length to a root.

• Maximum path delay to a leaf.

• Maximum path delay to a root.

• Earliest start time.

• Latest start time.

• Slack. (Computed as latest start time - earliest start time.)

Uncovering: The heuristics in this category was implemented using the, in LLVM available,
set of immediate successors.

• Number of immediate successors, the size of the set of immediate successors.

• Sum of the delay to immediate successors, the sum of latencies of the arcs leading to
the immediate successors.

29

5. Implementation

• Number of uncovered immediate successors, counts the immediate successors that
only have one incoming arc, with a latency of one.

Structural: Both of the heuristics in this category were implemented by traversing the dag
in a depth first manner and counting the arcs and their latencies.

• Number of descendants.

• Sum of execution time of descendants.

Register usage: Warren’s liveness weight was implemented from the description in [28]. In-
structions are assigned a weight depending on what type of instruction it is. For exam-
ple, instructions with no target register is assigned a lower weight than instructions
with no source registers. The former have uses, but no definitions, and so there is a
chance that they might free a register, but they will never increase register pressure.
Instructions without source registers increase the register pressure, without freeing any
registers.

I also implemented the resource-based heuristic due to Malik et al. [20]. The resource-based
heuristic is defined as: rb(i) = max{r1(i, t) + r2(i, t) + r3(i, t)}, over t [20]. The values r1,
r2, and r3 are calculated for a node i as:

• desc(i, t): Descendants of i with type t in the dag.

• cp(i, j): Critical path distance between i and j .

• r1(i, t): min{cp(i, j) | j ∈ desc(i, t)}

• r2(i, t): | desc(i, t) | /k(t), where k(t) is the number of execution units that can execute
instructions of type t.

• r3(i, t): min{cp(j, l) | j ∈ desc(i, t)}, where l is a leaf node.

I was interested in the resource-based heuristic as it was the only novel heuristic that
remained after feature filtering [20]. I implemented two versions of it, one according to the
definition given above and one which also considered if a candidate would increase register
pressure or not. As mentioned in section 4.6 LLVM keeps track of register pressure, and
pressure changes are available for each candidate node.

I also wanted to try to implement a heuristic of my own. Two things intrigued me about
the alternating heuristic, firstly, despite it being a rather trivial heuristic it proved adequate
when compared to some more elaborate ones. Secondly, it is the simplest form of manipulat-
ing multiple functional units. Another interesting aspect is the relation between static and
dynamic scheduling. If a heuristic takes the dynamic scheduling into consideration, it may
produce a schedule which hardware can take advantage of and improve further.

The dispatch heuristic is an attempt to order instructions in a way that will benefit group
formation. Since instructions are dispatched on a group basis, the idea is to schedule in-
structions that can go into the same group, together or in close proximity of each other. One
of the reasons why instruction dispatch and group formation is of particular interest to the
static scheduler is because this stage represents the last in-order part of the pipeline until
completion. After this point it becomes very di�cult to tell beforehand in which order the
instructions will be executed.

30

Listing 5.1: Algorithm of the dispatch heuristic for the top half.
1 I f a t t h e s t a r t o f a new g r o u p t h e n
2 p r i o r i t i z e 2−way c r a c k e d
3 o v e r 3−way c r a c k e d i n s t r u c t i o n s
4
5 Try t o g e t f u s e a b l e i n s t r u c t i o n s i n t o t h e same g r o u p
6
7 I f both i n s t r u c t i o n s a r e marked a s L a s t t h e n
8 l e t a n o t h e r h e u r i s t i c d e c i d e
9

10 I f we a l r e a d y s t a r t e d a new g r o u p t h e n
11 p r i o r i t i z e an i n s t r u c t i o n t h a t i s n ’ t c r a c k e d
12 o r marked a s F i r s t o v e r one t h a t i s
13
14 I f one i s L a s t and t h e o t h e r one i s n ’ t t h e n
15 I f i t i s d i s p a t c h s l o t 1 o r 4 t h e n
16 we s h o u l d p r i o r i t i z e t h e i n s t r u c t i o n
17 t h a t i s n ’ t marked a s L a s t
18
19 I f n e i t h e r i n s t r u c t i o n s a r e marked a s L a s t t h e n
20 we s h o u l d t r y t o a l t e r n a t e be tw ee n t y p e s
21
22 We s h o u l d t r y t o s c h e d u l e i n s t r u c t i o n s
23 t h a t h a s m i c r o c o d e i n t h e same g r o u p

Listing 5.2: Algorithm of the dispatch heuristic for the bottom half.
1 I f both i n s t r u c t i o n s a r e marked a s L a s t t h e n
2 l e t a n o t h e r h e u r i s t i c d e c i d e
3
4 I f o n l y one i s marked a s L a s t t h e n
5 go w i t h t h a t i n s t r u c t i o n
6
7 I f e i t h e r i s 3−way c r a c k e d t h e n
8 l e t a n o t h e r h e u r i s t i c d e c i d e
9

10 Try t o g e t f u s e a b l e i n s t r u c t i o n s i n t o t h e same g r o u p
11
12 I f we h a v e a l r e a d y f i l l e d o u t s l o t 5 o r 2 t h e n
13 we want t o e i t h e r c o m p l e t e t h e g r o u p
14 w i t h a 2−way c r a c k e d i n s t r u c t i o n
15 o r t r y t o f i l l o u t s l o t 4 , o r 1
16
17 We s h o u l d t r y t o a l t e r n a t e be tw ee n i n s t r u c t i o n t y p e s
18
19 We s h o u l d t r y t o s c h e d u l e i n s t r u c t i o n s
20 t h a t h a s m i c r o c o d e i n t h e same g r o u p

31

5. Implementation

Instructions are dispatched on a group basis, meaning that, instructions within the same
group enter the out-of-order part of the processor in parallel. Ideally we would like the groups
to balance the instructions between the execution units. The dispatch heuristic is based on
the rules of group formation. It makes a decision about an instruction, depending on the
previously scheduled instruction. Since the PowerPC back-end in LLVM schedules instruc-
tions bidirectionally, the pickNode function was extended to keep track of which instruction
was last scheduled and to which half, bottom or top, it was scheduled. Pseudocode of the
dispatch heuristic can be found in appendix B, listing 5.1 and 5.2 give the general algorithm.
Essentially the top half algorithm schedules instructions in a forward approach, starting by
filling out slot 0 of group 0. In contrast the bottom half algorithm starts by filling out slot
5 in group 1. However, there are some subtle di�erences between them. For example, when
the bottom half selects an instruction that must come first, it may end the group prema-
turely. Likewise, the top half algorithm may end the group prematurely when it selects an
instruction that must come last.

When starting a new group, the top half algorithm will prioritize instructions that must
come first and instructions that are two-way cracked, in hopes that a later instruction will
fill out the remaining group slot. The algorithm also tries to place instructions that can
benefit from instruction fusion in the same group. If a group has already been started, it will
prioritize instructions that does not have to come first. Then, if neither instruction has to
come last, we consider whether the instruction will use the same functional unit as the other
instructions in the group. Or whether the instruction, or any of the instructions in the other
group, will require the microcode engine.

For the bottom half, at the start of a new group, the algorithm will favor instructions that
must come last. Since a three-way cracked instruction takes up all the non-branch slots in a
group, we let another heuristic decided determine the best candidate. If a group has already
been started, we can either complete it with a two-way cracked instruction, or try to fit two
instructions in the remaining slots. Again we want to alternate between instruction types,
and place instructions that require microcode into the same group.

32

Chapter 6

Experimental Evaluation

This chapter will describe the experimental setup and then discuss the results of the two
experiments.

6.1 Experimental Setup
In order to compare heuristics against one another, two sets of experiments were performed.
In the first set of experiments, each heuristic was used in isolation. In the second set of
experiments di�erent combinations of heuristics were used to select between instructions.
In LLVM heuristics are ordered in a hierarchical structure. A combination of heuristics in this
context is therefore a set of heuristics which are given a priority relative to each other. These
combinations were selected from a subset of the heuristics from the first experiment. In both
sets of experiments, if the heuristics were unable to di�erentiate between two instructions
from the same region half, the original program ordered was used. In case the candidates
were from di�erent region halves, the bottom half was favored when a draw occurred. Use
of the original program order as a tie-breaker seemed to me to be the most unbiased, while
favoring the bottom half is in line with LLVM’s generic scheduler. In both sets of experiments
the original program order was used as a baseline, and LLVM’s generic scheduler was used as
reference.

Experiments were carried out on a subset of the SPEC CPU 2017 benchmarks. SPEC
CPU 2017 consists of 43 benchmarks and a benchmark is organized into one of four suites
depending on which metric, SPECrate or SPECspeed, is used and if it is an integer or floating
point benchmark. The benchmarks are written in C, C++ and Fortran. There are 23 bench-
marks for the SPECrate metric. Only the benchmarks written in C or C++ were selected.
Of these Clang/LLVM failed to compile one, and of the benchmark that compiled, all but
one produced the correct results. This left nine integer benchmarks and five floating point
benchmarks. The SPEC runcpu tool used to perform tests provides two types of metrics,
SPECrate and SPECspeed. For the experiments conducted in this work only the SPECrate

33

6. Experimental Evaluation

metric was used, as it is a measure of throughput and the purpose of instruction scheduling
is to increase the number of instructions executed per unit of time. SPECrate is computed as
the Number of copies * (Time on the reference machine / Time on the system under test). There are
two ways which the runcpu tool can run benchmarks. Either each benchmark is run three
times and the tool use the median time. Or each benchmark is run twice, and the tool use
the time of the slower of the two runs. In this thesis the latter approach was used for the final
tests. Both approaches were tried, but due to time constraints it was decided that running
each benchmark twice was preferred. When running the SPECrate benchmarks the number
of copies that are run in parallel can be specified. More copies means more workload, but
also potential for more throughput. For testing individual heuristics, the number of copies
was set to one which is the default configuration. When performing the second experiment,
the number of copies were set to 10, the number of CPUs on the target machine.

Each benchmark was compiled with the -O3 optimization level, the -fgnu89-inline
and -fno-strict-aliasing compiler flags. Even though only the 500.perlbench_r bench-
mark required the -fno-strict-aliasing flag, and likewise only the 502.gcc_r benchmark
required the -fgnu89-inline flag, each benchmark were compiled with these two flags as
required by the SPEC CPU 2017 base metric. SPECrate can be run either as base, or peak
metric. In base mode, each benchmark is required to be run with the same optimization
flags.

SPEC CPU 2017 consists of various programs which perform computational intensive
tasks which makes them suitable for testing the performance of CPU, memory and com-
pilers. The benchmarks come from a variety of application areas: Programming languages
and compilers, scientific programs, simulation, planning, scheduling, search, compression,
graphics. Most of the benchmarks are derived from real-world applications which makes
them more interesting than synthetic benchmarks, which may still be interesting in their
own right.

6.2 Evaluation of Individual Heuristics
In the first experiment individual heuristics were compared with one another. Figure 6.1
shows the result of experiments on the integer benchmarks, and figure 6.2 shows the result
of experiments on the floating point benchmarks. These results are produced by the SPEC
runcpu tool. Appendix C contains the results on individual benchmarks.

Perhaps the most interesting result shown in figure 6.1 is that only two heuristics, RP
excess and RP critical, had a positive di�erence to baseline. It was hinted at in the end of
section 4.5, that program order is a relatively strong heuristic, and since there were only two
other heuristics, dispatch and RP max, that showed similar results as baseline, this belief is
further reinforced. For the rest of the heuristics results vary from -2 % to -6 %. If we look
at the graphs over specific benchmarks, figures C1 through C9, the heuristics that yield the
better results in figure 6.1 tend to stay ahead of the rest of the heuristics with only a few
exception. Likewise, the heuristics that yield a worse result overall, also tend to perform
worse in the specific cases, with a few exceptions. LLVM’s register pressure heuristics, RP
excess, RP critical and RP max, perform best overall, with RP critical being the most stable.
The dispatch heuristic, though it shows a bit of variance in its performance, is not too far
o� from the RP heuristics. If we look at LLVM’s generic scheduler, which estimated around

34

6.2 Evaluation of Individual Heuristics

Figure 6.1: Integer benchmarks, results of the Est. SPECrate 2017 int
base metric. The y-axis indicates the heuristic, and the x-axis indi-
cates the di�erence, in percent, between the heuristic and baseline.
Baseline is the original program order. A negative result means that
the heuristic was slower than baseline.

-2.5 percent, with up to -6 percent di�erence on some benchmarks, we can see the benefit
of using the original program order as a tie-breaker, and to break ties early on. The generic
scheduler, which incorporate the RP heuristics, use a combination of 12 heuristics, of which
the original program order is the last.

After register usage and dispatch, the next category in terms of performance is stall be-
havior. Execution time and alternate type had similar results on the integer benchmarks, with
execution time being slightly better. The alternating heuristic is naive in its implementation
since it only considers the most recently scheduled instruction. The dispatch heuristic ex-
pands on this idea by considering the most recently scheduled instructions within the same
group. Stall behavior is followed by critical path, then structural and last uncovering.

The category that shows the most variation within itself is the category of critical path
type heuristics. Apart from it being the most represented group in the experiment, this
variation is likely due to the fact that the category includes heuristics that are opposites to
each other, those that express the length to a root node, rootDelay and pathRoot, and those that
express the length to a leaf node, leafDelay and pathLeaf. It also includes the earliest start time
or est, and the latest start time or lst, which are used to compute the slack, but may also be
used as heuristics on their own. In these cases, the values given by est and lst were compared

35

6. Experimental Evaluation

as greater than, and also as less than.
Structural heuristics are useful to balance progression through a dag when there are mul-

tiple long paths. It is interesting to compare the two structural heuristics, number of descen-
dants and sum of execution times of successors, with the two critical path heuristics maximum path
length to a leaf and maximum delay to a leaf. Each of these heuristics aim to balance progress
between various paths in a dag. In the case of critical path it appears to be more beneficial to
count the number of arcs, without consideration of latency, whereas, in the case of the struc-
tural heuristics it appears to be the opposite. Compare pathLeaf with numDesc, and leafDelay
with execSucc. When considering all of the descendants of an instruction, it is more beneficial
to consider the sum of their delay, rather than just counting them.

Uncovering heuristics provide more options to the scheduler by expanding the list of
candidates. As such they are more supportive in nature, as they themselves don’t really take
advantage of this increase in opportunities. This could explain their poor performance when
compared individually. According to [26], the number of descendants is an extension of the
number of uncovered immediate successors. Both of these heuristics aim to provide flexibility,
and so rely on other heuristics to make use of this added freedom.

Figure 6.2: Floating point benchmarks, results of the Est. SPECrate
2017 fp base metric. The y-axis indicates the heuristic, and the x-
axis indicates the di�erence, in percent, between the heuristic and
baseline. Baseline is the original program order. A negative result
means that the heuristic was slower than baseline.

The result of the floating point benchmarks show more variance around baseline. Apart

36

6.3 Combinations of Heuristics

from RP critical and RP excess, all of the heuristics performed better on the floating point
benchmarks than they did on the integer benchmarks. The critical path category, with path-
Leaf and leafDelay, and the structural category, with numDesc and execSucc, showed the best
performance overall. Again we can see that between the two critical path heuristics con-
cerned with the path to a leaf, it is better to disregard the latency of the path. And for the
two structural heuristics, it is better to include the latency in the computation. That is to
say, when counting arcs, the number of arcs is more interesting than the sum of the latency
and when counting descendant nodes, it is worthwhile to include the latency of the node.

On both the integer and floating point benchmarks, rb/cp, that is, the maximum of the
resource-based heuristic (rb), and the latency weighted critical path (leafDelay), performed better
than either of the two heuristics on their own. When including register pressure in this
heuristic, it gave a better result on the integer benchmarks, but worse on the floating point.

The est and lst are interesting because when used as heuristics outside of slack, their values
were compared both as less than, and greater than. The reason for this was because it was not
obvious whether it would, for example, be more beneficial to schedule an instruction with a
lesser latest start time, over one with a greater latest start time. Looking at the results it is
still not obvious. For both est and lst, greater than is better on integer benchmarks, and less
than is better on floating point.

After critical path and structural, the next category in terms of performance on the float-
ing point benchmarks is stall behavior, execTime and alternate, followed by register pressure
and dispatch. Uncovering continues to be the worst performing category. The critical path
heuristics continue to show the most variance within the same category, with path to a leaf
node (pathLeaf, leafDelay), and path to a root node (pathRoot, rootDelay) being on opposite
sides of baseline.

When we compare the two graphs we can see that some heuristics, for example register
usage and dispatch, have similar performance in relation to the original program order. On
the floating point benchmarks, most heuristics have a positive di�erence to baseline, which
means that they add some benefit to performing static scheduling. A possible explanation as
to why this is the case is because of POWER8’s inherent flexibility in scheduling fixed-point
instructions due to the LSU and LU being able to execute simple fixed-point instructions. In
other words, the dynamic scheduler outperforms the individual heuristics to a point where,
individual heuristics as the only means of di�erentiate between two instructions only leads
to a downgrade in performance.

6.3 Combinations of Heuristics
This section will detail the combinations of heuristics that were used in the second set of
experiments. A subset of the heuristics from the first experiment was used to form di�erent
combinations of heuristics. The subset consisted of the heuristics that performed best within
their category, with at least one heuristic from each category. Heuristics within a combina-
tion are ordered in terms of descending priority. Combinations are named Heuristics 1 to 22.
In general, combinations 4 to 20 aims to aid group formation, and reduce register pressure.
If the dispatch heuristic does not make a decision on which instruction to schedule, and if
register pressure is already low, the focus is on balancing the progress through the dag, while
avoiding stall cycles.

37

6. Experimental Evaluation

Heuristics 1: pathLeaf, execSucc, rb/cp. This combination consist of the heuristics from the
first experiments that yielded the best results on the floating point benchmarks.

Heuristics 2: execTime, uncover, pathLeaf. This combination was inspired by Gibbons and
Muchnick [7].

Heuristics 3: pathLeaf, dispatch, RP excess, RP critical, RP max, execTime. This combination fa-
vors instructions with long dependences chains. It uses the, in LLVM available, register
pressure heuristics and it uses them in the same order as LLVM’s generic scheduler.

Heuristics 4: RP excess, RP critical, dispatch, RP max, pathLeaf, execTime. This combination
gives less priority to the critical path category and instead focuses more on register
usage.

Heuristics 5: RP critical, execTime, execSucc, pathLeaf, dispatch. This combination tries to bal-
ance the progress through the dag, while avoiding stall cycles.

Heuristics 6: RP critical, pathLeaf, execTime, execSucc, dispatch. This combination tries to bal-
ance the progress through the dag by selecting instructions with longer dependences
chains first, and then selecting instructions with a larger total number of dependences.

Heuristics 7: RP excess, RP critical, RP max, pathLeaf, execSucc, execTime. This combination
aims to reduce register pressure, and balance the progress through the dag.

Heuristics 8: RP excess, RP critical, RP max, dispatch, pathLeaf, execSucc, execTime. This com-
bination aims to reduce register pressure and then to aid group formation.

Heuristics 9: dispatch, RP excess, RP critical, RP max, pathLeaf, execTime. This combination
aims to aid group formation, and then to reduce register pressure. It favors instructions
with long dependences chains, and tries to avoid stall cycles.

Heuristics 10: dispatch, RP excess, RP critical, RP max, pathLeaf. Same as Heuristics 9 but
without considering stall cycles.

Heuristics 11: dispatch, RP excess, RP critical, RP max, execTime. Same as Heuristics 9 but
without favoring instructions with long dependences chains.

Heuristics 12: dispatch, RP critical, execTime, execSucc, pathLeaf. This combination focuses
more on avoiding stall cycles than balancing the progress through the dag.

Heuristics 13: dispatch, RP excess, RP critical, execTime, execSucc, pathLeaf. Same as Heuristics
12 but slightly more focus on register usage.

Heuristics 14: dispatch, RP excess, RP critical pathLeaf, execTime, execSucc. Same as Heuristics
13 but it gives less priority to avoiding stall cycles.

Heuristics 15: dispatch, RP excess, execTime, execSucc, pathLeaf. Same as Heuristics 12 but it
uses a di�erent RP heuristic.

Heuristics 16: dispatch, RP max, execTime, execSucc, pathLeaf. Same as Heuristics 12 but it uses
a di�erent RP heuristic.

38

6.4 Evaluation of Combinations of Heuristics

Heuristics 17: dispatch, RP critical, RP max, RP excess, pathLeaf, execTime. Same as Heuristics
9 but it changes the order of the RP heuristics.

Heuristics 18: dispatch, RP excess, RP critical, RP max, execTime, pathLeaf. Same as Heuristics
9 but it gives higher priority to avoiding stall cycles.

Heuristics 19: dispatch, pathLeaf, execSucc, execTime. This combination aims to balance the
progress through the dag. This combination, together with Heuristics 1 and 2, are the
only ones that did not consider register usage.

Heuristics 20: dispatch, RP excess, RP critical, RP max, pathLeaf, execSucc, execTime. Same as
Heuristics 19 but it considers register usage.

Heuristics 21: dispatch, pathLeafDelay, RP excess, RP critical, RP max, uncover. This combina-
tion was inspired by Warren [28].

Heuristics 22: dispatch, pathLeaf, RP excess, RP critical, RP max, uncover. This combination
was also inspired by Warren [28].

6.4 Evaluation of Combinations of Heuris-
tics

Figure 6.3 shows the result of experiments on the integer benchmarks, and figure 6.4 shows
the result of experiments on the floating point benchmarks. Appendix D contains the results
on individual benchmarks.

In the second experiment the number of copies, that is, the number of concurrent bench-
marks run, was set to 10. LLVM’s generic scheduler, which was run in both experiments,
yielded a better result with more copies. This suggest that the value of static scheduling,
increases when the level of throughput increases. Heuristics 1, 2 and 19 were the only combi-
nations that did not include register usage. They fell behind a bit on the integer benchmarks,
which was to be expected considering the result of the first experiment, in which the register
pressure heuristics yielded the best result.

Heuristics 8 and 9 yielded the best results on the integer benchmarks, but performed
worse on the floating point. Heuristics 13 performed better than the other heuristics on the
floating point benchmarks, but fared worse on the integer benchmarks. It appears di�cult
to select heuristics suitable for both types of benchmark, indeed, a universal heuristic might
be too ambitious. However, heuristics 12 and 14 are two possibilities.

Heuristics 12, 13, 14 and 15 are useful examples to demonstrate the di�culties of se-
lecting a priority order. Starting with heuristics 12 we have: dispatch, RP critical, execTime,
execSucc, pathLeaf. The reasoning behind this combination is, pick an instruction which can
be dispatched in the same group as the previously scheduled instruction. If neither, or both,
candidates can fit into the same group, pick the one with less register pressure. Otherwise
avoid stalls, and balance the progress through the dag. Heuristics 15 replace RP critical with
RP excess, however this seem to decrease the performance. Heuristics 13 and 14 use both RP
excess and RP critical, but give di�erent priority to pathLeaf.

39

6. Experimental Evaluation

Figure 6.3: Integer benchmarks, results of the Est. SPECrate 2017
int base metric. The y-axis indicates the heuristic, and the x-axis
indicates the di�erence, in percent, between the heuristic and base-
line. Baseline is the original program order. A negative result means
that the heuristic was slower than baseline.

If we look at specific benchmarks, figures D1 through D9, there is more variance around
baseline than in the first experiment. Most of the combinations of heuristics focus on dis-
patch and register usage, giving them a high priority, based on the results from the first
experiment. The RP heuristics work best when they are used together and in the order of:
Excess, critical, max. On their own, it seem that RP critical works best in combination with
dispatch.

Figure D2 shows some interesting results of di�erences up to 30 percent. Recall that each
benchmark is run twice, and the slowest of the two runs is used to compute the results. Of
all the benchmarks, 502.gcc_r showed the most variation between the two runs. For example,
eight of the combinations had a di�erence of more than 10 percent between the two runs,
and baseline had a di�erence of 27 percent between iteration one and two. This suggests that
it might have been preferred to go with the option of running each benchmark three times
and use the median to compute the result.

A majority of the heuristics showed an increase in performance on the floating point
benchmarks, except for on the 508.namd_r benchmark on which only the generic scheduler
showed a slight increase in performance. Overall, only two heuristics showed a decrease in
performance. It is interesting to look at the heuristics that had a negative di�erence on either

40

6.4 Evaluation of Combinations of Heuristics

Figure 6.4: Floating point benchmarks, results of the Est. SPECrate
2017 fp base metric. The y-axis indicates the heuristic, and the x-
axis indicates the di�erence, in percent, between the heuristic and
baseline. Baseline is the original program order. A negative result
means that the heuristic was slower than baseline.

the integer benchmarks or on the floating point benchmarks. These heuristics do not overlap,
and it is di�cult to say if the decrease in performance is due to a common denominator.
By observing the combinations we can see that they have dispatch and pathLeaf in common,
but since these heuristics are used in a majority of the combinations, it seem unlikely that
they alone would be the reason for the decrease in performance. The following are some
observations that can be made by comparing the combinations with a negative result with
some of the combinations that had positive results.

• Heuristics 17 and 18 are permutations of Heuristics 9. In Heuristics 17, RP excess
has moved down in priority. In Heuristics 18, pathLeaf and execTime has switched
positions.

• Heuristics 10 has the same combination of heuristics as Heuristics 9, but without exec-
Time. Heuristics 11 has the same combination of heuristics as Heuristics 9, but without
pathLeaf. Heuristics 10 has worse performance than 11 on both the integer and floating
point benchmarks.

• Heuristics 12, 15 and 16 use the same combination of heuristics, except that they use

41

6. Experimental Evaluation

di�erent RP heuristics. Both Heuristics 15 and 16 have a negative result on the integer
benchmarks.

• Heuristics 21 and 22 use the same combination of heuristics, except Heuristics 21 use
pathLeafDelay, and Heuristics 22 use pathLeaf. Heuristic 22 has a negative result on
the integer benchmark.

• Heuristics 10 and 18 has pathLeaf as the least prioritized heuristic.

• Heuristics 17 change the order of the RP heuristics.

From these observations we can conclude: In general it appears that pathLeaf should be
given a higher priority than execTime, with the exception if execTime is followed by execSucc,
in which case register usage appears to have a bigger impact on the outcome of the heuristics.
The structural heuristic execSucc seem to be doing better on the integer benchmarks when it is
used in combination with register usage. This would suggest that balance across the dag leads
to more registers being live at the same time. Likewise for the uncovering heuristic uncover on
the floating point benchmarks, which was not very useful on its own. The dispatch heuristic
should be given a high priority, preferable in connection with register usage. Those heuristics
which give least priority to the dispatch heuristic, fall behind on the integer benchmarks, but
show similar results on the floating point benchmarks as those heuristics which give dispatch
the highest priority.

42

Chapter 7

Conclusion

List scheduling has a long tradition in computer science and it is the fundamental algorithm
for instruction scheduling. The intriguing part of the list scheduling algorithm is how we
decide which instruction to schedule next. When studying the literature to learn more about
list scheduling I found that Gibbons and Muchnick [7] together with Warren [28] where very
helpful in laying down the details. Gibbons and Muchnick describes how to make a previous
version of a post-pass, due to Hennessy and Gross [9], more e�cient. Their algorithm is
based on a dependency graph which prevents deadlocks and they select instructions without
lookahead. They used three heuristics to determine the "best" candidate. These heuristics
were based on two guidelines. If possible, schedule an instruction which will not interlock
with the last one scheduled. When faced with a choice, schedule an instruction which is
most likely to interlock with its successors. I.e. select instructions which are likely to cause
interlocks, but not with the instruction that follows it. Warren’s algorithm builds upon a
previous scheduling algorithm employed in the PL.8 Compiler. The leveling algorithm he refers
to is essentially a list scheduling algorithm which schedules instructions twice, once before
and then again after register allocation.

For this thesis I was particularly interested in learning about the types of heuristics that
have traditionally been employed by list scheduling algorithms. For this purpose I found
that the survey E�cient DAG Construction and Heuristic Calculation for Instruction Scheduling
by Smotherman et al. [26] was an invaluable source of information. The paper provided a
detailed list of 26 heuristics, organized into six categories. This classification of heuristics
have been very useful when reading other papers, being able to identify certain patterns or
heuristics that tend to be popular. In this thesis, 24 individual list scheduling heuristics, as
well as 22 combinations of heuristics, have been compared using Clang/LLVM and targeting
POWER8. Experiments were carried out on a subset of the SPEC CPU 2017 benchmarks,
both integer and floating point. During the experiments the categories, register usage, dis-
patch and critical path performed relatively well across both types of benchmark. In general,
a heuristic that performed better than the other heuristics on the integer benchmark, would
perform worse on the floating point benchmarks, and vice versa.

43

7. Conclusion

• How do individual heuristics compare against each other? There was not one definite
heuristic, better than the rest. This might not come as a surprise since heuristics, by
their definition, are not optimal. In general it seemed that the dynamic heuristics, dis-
patch, RP excess, RP critical and RP max, had the most stable performance. For example,
while some static heuristics would show a lot of variation between di�erent bench-
marks, the dynamic heuristics did not deviate too much from baseline. It is di�cult
to say what makes one heuristic better than another. When developing the dispatch
heuristic it became clear that the more knowledge the compiler has about the proces-
sor, the better it can make decisions. If this is true also in the case of static heuristics,
or heuristics that are not target specific, I don’t know.

• Is there any category of heuristics that seem to perform better, or worse, than the others?
The uncovering heuristics fell behind the rest of the heuristics on both the integer and
floating point benchmarks. Heuristics in the critical path category showed the most
variation among themselves.

• For di�erent combinations of heuristics, what can be said about the order in which the heuris-
tics appear? The original program order, used as a baseline, proved to be a good heuris-
tic, and since there is no ambiguity in program order, it serves as the final heuristic in
any combination. In this sense, a good combination of heuristics, should not contain
too many heuristics, preferably a few heuristics which can easily di�erentiate between
two instructions, and fall back on program order early on. All but three of the combi-
nations ordered the dynamic heuristics, dispatch, RP excess, RP critical or RP max, before
any of the static heuristics. And only one combination, Heuristics 3, which contained
both dynamic and static heuristics gave higher priority to a static heuristic. I think this
is unfortunate because, while it appears that it is more beneficial to order the dynamic
heuristics before the static, this can not be concluded from the results.

The results of the second experiment suggest that static scheduling, in the form of list
scheduling, still has a vital role to play. At least on the floating point benchmarks a majority
of the combinations had a positive di�erence to baseline. However, as processors evolve, so
does dynamic scheduling. For example, on the integer benchmarks we see a lot more variance
around baseline across the di�erent combinations. Many of the aspects of local scheduling are
better performed by dynamic scheduling. A too aggressive, or careless, list scheduling heuris-
tic may end up degrading the performance. This relationship between static and dynamic
scheduling is interesting, how the choices of the static scheduler a�ect the opportunities for
the dynamic scheduler.

Future Work
Many things had to be left out simply due to time constraints. The number of permutations
of di�erent combinations of heuristics quickly becomes unmanageable, and only a small sub-
set could be tested. Besides more heuristics it would have been interesting to compare, for
example, bottom up, and top down scheduling approach[4] to the bidirectional approach
used by the PowerPC back-end. It would also be interesting to compare list scheduling to
other scheduling techniques, for example a global approach.

44

References

[1] M. Auslander and M. Hopkins. An Overview of the PL.8 Compiler. SIGPLAN Not.,
17(6):22–31, June 1982.

[2] S. Beaty, S. Colcord, and P. Sweany. Using genetic algorithms to fine-tune instruction-
scheduling heuristics. Proc. of the Int’ Conf. on Massively Parallel Computer Systems, 1996.

[3] P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen, and W. . W. Hwu. The importance of
prepass code scheduling for superscalar and superpipelined processors. IEEE Transactions
on Computers, 44(3):353–370, 1995.

[4] G. Chen. E�ective Instruction Scheduling with Limited Registers. PhD thesis, Harvard Uni-
versity, Cambridge, MA, USA, 2001. AAI3011341.

[5] K. D. Cooper, P. Schielke, and D. Subramanian. An experimental evaluation of list
scheduling. Rice Computer Science Technical Report 98-326, Department of Computer
Science, Rice University, Houston, Texas, USA, September 1998.

[6] J. A. Fisher, D. Landskov, and B. D. Shriver. Microcode compaction: Looking backward
and looking forward. In Proceedings of the May 4-7, 1981, National Computer Conference,
AFIPS ’81, page 95–102, New York, NY, USA, 1981. Association for Computing Ma-
chinery.

[7] P. B. Gibbons and S. S. Muchnick. E�cient instruction scheduling for a pipelined ar-
chitecture. SIGPLAN Not., 21(7):11–16, July 1986.

[8] J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation in large basic
blocks. In ACM International Conference on Supercomputing 25th Anniversary Volume, pages
88–98, New York, NY, USA, 2014. ACM.

[9] J. L. Hennessy and T. Gross. Postpass code optimization of pipeline constraints. ACM
Trans. Program. Lang. Syst., 5(3):422–448, July 1983.

[10] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative approach. Elsevier
Science, 2011.

45

REFERENCES

[11] R. A. Hu�. Lifetime-sensitive modulo scheduling. SIGPLAN Not., 28(6):258–267, June
1993.

[12] IBM. Power ISA version 2.07, May 2013.

[13] IBM. POWER8 Processor User’s Manual for the Single-Chip Module, version 1.3, March 2016.

[14] S. M. Krishnamurthy. A brief survey of papers on scheduling for pipelined processors.
SIGPLAN Not., 25(7):97–106, July 1990.

[15] D. Landskov, S. Davidson, B. Shriver, and P. W. Mallett. Local microcode compaction
techniques. ACM Comput. Surv., 12(3):261–294, September 1980.

[16] LLVM Compiler Infrastructure. LLVM source code documentation. URL:
https://llvm.org/doxygen/index.html; accessed 19-May-2020.

[17] T. Æ. Mogensen. Introduction to Compiler Design. Undergraduate Topics in Computer
Science. Springer London, 2011.

[18] E. Moss, P. Utgo�, J. Cavazos, D. Precup, D. Stefanovic, C. Brodley, and D. Schee�.
Learning to schedule straight-line code. In Proceedings of the 10th Conference on Advances
in Neural Information Processing Systems (NIPS), Denver, Colorado, 1997.

[19] B. R. Rau and J. A. Fisher. Instruction-level parallel processing: History, overview, and
perspective. J. Supercomput., 7(1–2):9–50, May 1993.

[20] T. Russell, A. M. Malik, M. Chase, and P. van Beek. Learning basic block scheduling
heuristics from optimal data. In Proceedings of the 2005 Conference of the Centre for Ad-
vanced Studies on Collaborative Research, CASCON ’05, pages 242–253. IBM Press, 2005.

[21] J.-J. Shieh and C. Papachristou. On reordering instruction streams for pipelined com-
puters. SIGMICRO Newsl., 20(3):199–206, August 1989.

[22] R. Silvera, J. Wang, G. Gao, and R. Govindarajan. A register pressure sensitive instruc-
tion scheduler for dynamic issue processors. In Proceedings of the 1997 International Con-
ference on Parallel Architectures and Compilation Techniques, PACT ’97, page 78, USA, 1997.
IEEE Computer Society.

[23] B. Sinharoy, J. A. Van Norstrand, R. J. Eickemeyer, H. Q. Le, J. Leenstra, D. Q. Nguyen,
B. Konigsburg, K. Ward, M. D. Brown, J. E. Moreira, D. Levitan, S. Tung, D. Hrusecky,
J. W. Bishop, M. Gschwind, M. Boersma, M. Kroener, M. Kaltenbach, T. Karkhanis, and
K. M. Fernsler. IBM POWER8 processor core microarchitecture. IBM Journal of Research
and Development, 59(1):2:1–2:21, 2015.

[24] J. Skeppstedt. An Introduction to the theory of optimizing compilers with performance mea-
surements on POWER. Skeppberg, 2016.

[25] J. Skeppstedt and C. Söderberg. Writing e�cient C code : a thorough introduction. Skepp-
berg, 2016.

46

REFERENCES

[26] M. Smotherman, S. Krishnamurthy, P. S. Aravind, and D. Hunnicutt. E�cient dag
construction and heuristic calculation for instruction scheduling. In Proceedings of the
24th Annual International Symposium on Microarchitecture, MICRO 24, pages 93–102, New
York, NY, USA, 1991. ACM.

[27] M. G. Valluri and R. Govindarajan. Evaluating register allocation and instruction
scheduling techniques in out-of-order issue processors. In 1999 International Conference
on Parallel Architectures and Compilation Techniques (Cat. No.PR00425), pages 78–83, 1999.

[28] H. S. Warren, Jr. Instruction scheduling for the IBM RISC system/6000 processor. IBM
J. Res. Dev., 34(1):85–92, January 1990.

47

REFERENCES

48

Appendices

49

Appendix A

The POWER8 Processor Core

This section will give a brief introduction to the POWER8 processor core by looking at
how an instruction goes from assembler output to being executed on the machine. In the
context of instruction scheduling, one of the more interesting aspects of POWER8 is its
innate ability to achieve ILP. POWER8 is a superscalar multiprocessor and can have up to
twelve cores enabled per chip. It is worth noting that parallelism, achieved by having multiple
cores, is not the same as when we talk about ILP, even though parts of a program is certainly
executed out of order and in parallel. For an introduction to the Power architecture see for
example [25], for information specific to POWER8, the user’s manual [13], and for details
about instruction set architecture, the Power ISA [12].

Starting from memory, instructions flow through di�erent issue queues on their way to
the functional units. The memory hierarchy of the core consists of a 32 KB L1 instruction
cache, a 64 KB L1 data cache and a 512 KB L2 cache. The core has a long pipeline design,
up to 23 stages from I-cache access to write back for most floating point operations [13].
The multi-threaded design of the core allows for a single thread mode, ST, or simultaneous
multithreading, SMT, two, four or eight way. The structure of the pipeline consists of a
master pipeline and several execution unit pipelines. The master pipeline will feed the mapping,
sequencing and dispatch functions with instructions in-order, speculatively. The execution
unit pipelines can issue both speculative and non-speculative operations out-of-order. These
pipelines execute independently from each other, as well as from the master pipeline [23].

The first stages involves instruction fetching and branch prediction, decoding and pre-
processing. Each core has an instruction fetch unit, IFU, with a 32 KB, 8-way set-associative
instruction cache. Instructions are read from the unified L2 cache, into the I-cache, either
as demand loads due to an I-cache miss or instruction prefetches. There can be up to eight
outstanding read requests. Prefetches are not guaranteed and instruction prefetching is only
supported in ST, SMT2 and SMT4 modes. In SMT8 mode there is no instruction prefetching
in order to save on memory bandwidth [23].

In each cycle up to eight instructions can be fetched from the I-cache and placed in in-
struction bu�ers. Branch prediction works by scanning the fetched instructions, looking

51

A. The POWER8 Processor Core

for branches and via branch history tables, do bookkeeping for global and local prediction.
There is also a third table, the selector table, which keeps track of which of the two predic-
tion schemes works better. In POWER8, all conditional branches are predicted, and none
of the unconditional branches are predicted. The outcome of a branch is known once the
branch has flowed through the pipeline and been executed by the branch execution unit. If
the prediction was correct the instruction completes like it would normally. In the case of
misprediction the instruction fetch logic will issue a flush.

In each cycle up to eight instructions can be taken out of the instruction fetch bu�er, to
be decoded and dispatched. In ST mode a dispatch group consists of up to six non-branch
instructions, and two branches. In SMT mode there are two dispatch groups, each can have
up to three non-branch instruction and one branch. Group formation follows a set of rules,
for example some instructions require that no other instructions follow them in the dispatch
group. These instructions will be marked as Last, and end the current group. Some complex
instructions are cracked, a process in which instructions get cracked into multiple simpler
internal operations. Cracked instructions must be the first instruction of a group.

The instruction sequencing unit, ISU, is responsible for renaming registers to support
out-of-order execution, dispatching of instructions to di�erent issue queues, and issuing the
instructions from the queues to the respective execution pipeline. In POWER8, instructions
are dispatched on a group basis. In order to dispatch a group, it is required that resources
such as rename registers and queue entries are available for each instruction in the group. In
SMT mode the two groups dispatched can be from di�erent threads. The ISU keeps track of
the instructions after dispatch via a Global Completion table.

There are three di�erent issue queues in which dispatched instructions are stored, the
Branch Issue Queue for branch instructions, Condition Register Queue for condition regis-
ter instructions and for all other instructions, the Unified Issue Queue which consists of two
halves, UQ0 and UQ1. From each queue, instructions can be issued out-of-order to the cor-
responding execution unit. Older ready instructions have a higher priority. The POWER8
core has the following sixteen functional units:

• Two symmetric load/store units, LSU.

• Two load-only units, LU.

• Two symmetric fixed-point units, FXU.

• Four floating-point units, FPU.

• Two VMX execution units.

• One Crypto unit.

• One decimal floating-point unit, DFU.

• One branch execution unit, BR.

• One condition register logical execution unit, CRL.

In each cycle a total of ten instructions can be issued to the functional units, one branch
instruction, one condition register logical, two instructions to the LSU, LU and FXU each.
The LSU and LU are capable of executing simple fixed-point operations, in addition to loads
and stores. Two instructions to the vector-scalar unit, VSU, which can be floating-point,
VSX or VMX. DFU and Crypto instructions can also be issued via VSU slots, at most one of
each per cycle.

52

Instructions are issued out-of-order, and executed speculatively. Sometimes speculative
instructions must be flushed from the instruction pipeline, for example, when branch mis-
predictions occur or, hazards due to executing load/stores out-of-order. This is handled by
the ISU. If an instruction is executed successfully, that is, without being rejected, it will be
marked as finished. A group can complete once all of its instructions have been marked as
finished, at this point the resources, held by the instructions in a group, are released and the
results of the instructions can be used by subsequent instructions.

Listing A.1: An example of PowerPC assembly, output of objdump
-d on the object file generated from the example code in listing 2.2.

0000000000000000 < f > :
0 : 00 00 4 c 3 c a d d i s r2 , r 1 2 , 0
4 : 00 00 42 38 a d d i r2 , r2 , 0
8 : a6 02 08 7 c m f l r r0
c : f 8 f f e 1 f b s t d r 3 1 , −8(r 1)

1 0 : 10 00 01 f 8 s t d r0 , 1 6 (r 1)
1 4 : 81 f f 2 1 f 8 s t d u r1 , − 1 2 8 (r 1)
1 8 : 78 0b 3 f 7 c mr r 3 1 , r 1
1 c : 70 00 d f f b s t d r30 , 1 1 2 (r 3 1)
2 0 : 68 00 7 f 90 s tw r3 , 1 0 4 (r 3 1)
2 4 : 68 00 7 f 80 lwz r3 , 1 0 4 (r 3 1)
2 8 : 02 00 03 2 c cmpwi r3 , 2
2 c : 10 00 80 40 bge 3 c < f +0 x3c >
3 0 : 68 00 7 f 80 lwz r3 , 1 0 4 (r 3 1)
3 4 : 6 c 00 7 f 90 s tw r3 , 1 0 8 (r 3 1)
3 8 : 34 00 00 48 b 6 c < f +0 x6c >
3 c : 68 00 7 f 80 lwz r3 , 1 0 4 (r 3 1)
4 0 : f f f f 63 38 a d d i r3 , r3 , −1
4 4 : b4 07 63 7 c e x t s w r3 , r 3
4 8 : 01 00 00 48 b l 48 < f +0 x48 >
4 c : 78 1 b 7 e 7 c mr r30 , r 3
5 0 : 68 00 7 f 80 lwz r3 , 1 0 4 (r 3 1)
5 4 : f e f f 63 38 a d d i r3 , r3 , −2
5 8 : b4 07 63 7 c e x t s w r3 , r 3
5 c : 01 00 00 48 b l 5 c < f +0 x5c >
6 0 : 00 00 00 60 nop
6 4 : 14 1 a 7 e 7 c add r3 , r30 , r 3
6 8 : 6 c 00 7 f 90 s tw r3 , 1 0 8 (r 3 1)
6 c : 6 e 00 7 f e8 lwa r3 , 1 0 8 (r 3 1)
7 0 : 70 00 d f eb l d r30 , 1 1 2 (r 3 1)
7 4 : 80 00 2 1 38 a d d i r1 , r 1 , 1 2 8
7 8 : 10 00 01 e8 l d r0 , 1 6 (r 1)
7 c : f 8 f f e 1 eb l d r 3 1 , −8(r 1)
8 0 : a6 03 08 7 c m t l r r0
8 4 : 20 00 80 4 e b l r

53

A. The POWER8 Processor Core

54

Appendix B

Pseudocode for the Dispatch Heuristic

The dispatch heuristic takes as input two instructions, one is the currently best candidate,
and the other is one of the instructions in the set of candidates that has not yet been compared
against the best candidate. The heuristic returns true if it thinks that it is better to schedule
one of the candidates over the other next, or false, if it does not reach a conclusion.

Listing B.1: Pseudocode describing the tryDispatchGroupTop-
function.

1 b o o l t r y D i s p a t c h G r o u p T o p (cand , t ryCand) {
2 i f (d i s p a t c h s l o t 0 i s empty) {
3 i f (t ryCand i s 2−way c r a c k e d
4 and cand i s 3−way c r a c k e d) {
5 t ryCand . Reason = D i s p a t c h ;
6 r e t u r n t r u e ;
7 }
8 r e t u r n f a l s e ;
9 }

10
11 i f (i n s t r F u s i o n (cand , t ryCand))
12 r e t u r n t r u e ;
13
14 i f (d i s p a t c h s l o t 1 i s empty
15 o r d i s p a t c h s l o t 2 i s empty) {
16 i f ((cand i s F i r s t o r cand i s Cracked)
17 and (t ryCand i s not F i r s t
18 and tryCand i s not Cracked)) {
19 i f (t r y D i s p a t c h S a m e H a l f T o p (Cand , TryCand)) {
20 TryCand . Reason = D i s p a t c h ;
21 r e t u r n t r u e ;

55

B. Pseudocode for the Dispatch Heuristic

22 }
23 }
24 i f ((t ryCand i s F i r s t o r t ryCand i s Cracked)
25 and (cand i s not F i r s t
26 and cand i s not Cracked)) {
27 i f (Cand . Reason > D i s p a t c h)
28 Cand . Reason = D i s p a t c h ;
29 r e t u r n t r u e ;
30 }
31 r e t u r n f a l s e ;
32 }
33
34 i f (d i s p a t c h s l o t 3 i s empty) {
35 i f (t ryCand i s 2−way c r a c k e d
36 and cand i s 3−way c r a c k e d) {
37 t ryCand . Reason = D i s p a t c h ;
38 r e t u r n t r u e ;
39 }
40 r e t u r n f a l s e ;
41 }
42
43 i f (d i s p a t c h s l o t 4 i s empty
44 o r d i s p a t c h s l o t 5 i s empty) {
45 i f ((cand i s F i r s t o r cand i s Cracked)
46 and (t ryCand i s not f i r s t
47 and tryCand i s not Cracked)) {
48 i f (t r y D i s p a t c h S a m e H a l f T o p (Cand , TryCand)) {
49 TryCand . Reason = D i s p a t c h ;
50 r e t u r n t r u e ;
51 }
52 }
53 i f ((t ryCand i s F i r s t o r t ryCand i s Cracked)
54 and (cand i s not F i r s t
55 and cand i s not Cracked)) {
56 i f (Cand . Reason > D i s p a t c h)
57 Cand . Reason = D i s p a t c h ;
58 r e t u r n t r u e ;
59 }
60 r e t u r n f a l s e ;
61 }
62 r e t u r n f a l s e ;
63 }

Listing B.2: Pseudocode describing the tryDispatchSameHalfTop-
function.

1 b o o l t r y D i s p a t c h S a m e H a l f T o p (cand , t ryCand) {

56

2 i f (cand i s L a s t and t r y i s L a s t)
3 r e t u r n f a l s e ;
4
5 i f (cand i s L a s t) {
6 i f (d i s p a t c h s l o t 1 i s empty
7 o r d i s p a t c h s l o t 4 i s empty)
8 r e t u r n t r u e ;
9 e l s e

10 r e t u r n f a l s e ;
11 }
12
13 i f (t r y I s L a s t) {
14 i f (d i s p a t c h s l o t 1 i s empty
15 o r d i s p a t c h s l o t 4 i s empty)
16 r e t u r n f a l s e ;
17 e l s e
18 r e t u r n t r u e ;
19 }
20
21 i f (cand i s a l t e r n a t e i n s t r u c t i o n
22 and tryCand i s not)
23 r e t u r n f a l s e ;
24 e l s e i f (t ryCand i s a l t e r n a t e i n s t r u c t i o n
25 and cand i s not)
26 r e t u r n t r u e ;
27
28 i f (d i s p a t c h s l o t < 3) {
29 i f (p r e v i o u s i n s t r u c t i o n n e e d s m i c r o c o d e) {
30 i f (cand n e e d s m i c r o c o d e)
31 r e t u r n f a l s e ;
32 e l s e i f (t ryCand n e e d s m i c r o c o d e)
33 r e t u r n t r u e ;
34 }
35 } e l s e {
36 i f (o t h e r g r o u p n e e d s m i c r o c o d e) {
37 i f (cand n e e d s m i c r o c o d e)
38 r e t u r n t r u e ;
39 e l s e i f (t ryCand n e e d s m i c r o c o d e)
40 r e t u r n f a l s e ;
41 }
42 }
43 r e t u r n f a l s e ;
44 }

Listing B.3: Pseudocode describing the tryDispatchGroupBot-
function.

57

B. Pseudocode for the Dispatch Heuristic

1 b o o l t r y D i s p a t c h G r o u p B o t (cand , t ryCand) {
2 i f (t ryCand i s L a s t and cand i s L a s t)
3 r e t u r n f a l s e ;
4
5 i f (t ryCand i s 3−way c r a c k e d
6 o r cand i s 3−way c r a c k e d)
7 r e t u r n f a l s e ;
8
9 i f (c u r r e n t d i s p a t c h s l o t i s 5

10 o r c u r r e n t d i s p a t c h s l o t i s 2) {
11 i f (t ryCand i s L a s t) {
12 t ryCand . Reason = D i s p a t c h ;
13 r e t u r n t r u e ;
14 } e l s e i f (cand i s L a s t)
15 r e t u r n f a l s e ;
16 e l s e i f ((t ryCand i s not F i r s t
17 and tryCand i s not 2−way c r a c k e d)
18 and (cand i s F i r s t
19 o r cand i s 2−way c r a c k e d)) {
20 t ryCand . Reason = D i s p a t c h ;
21 r e t u r n t r u e ;
22 }
23 r e t u r n f a l s e ;
24 }
25
26 i f (i n s t r F u s i o n (cand , t ryCand))
27 r e t u r n t r u e ;
28
29 i f (c u r r e n t d i s p a t c h s l o t i s 4
30 o r c u r r e n t d i s p a t c h s l o t i s 1) {
31 i f (t r y I s L a s t)
32 r e t u r n f a l s e ;
33 i f (c a n d I s L a s t) {
34 t ryCand . Reason = D i s p a t c h ;
35 r e t u r n t r u e ;
36 }
37 i f (t ryCand i s 2−way c r a c k e d
38 and cand i s not 2−way c r a c k e d) {
39 t ryCand . Reason = D i s p a t c h ;
40 r e t u r n t r u e ;
41 }
42 i f (t ryCand i s not F i r s t and cand i s F i r s t) {
43 t ryCand . Reason = D i s p a t c h ;
44 r e t u r n t r u e ;
45 }
46 i f (cand i s n e i t h e r F i r s t nor Cracked

58

47 and tryCand i s n e i t h e r F i r s t nor Cracked) {
48 i f (t r y D i s p a t c h S a m e H a l f B o t (Cand , TryCand)) {
49 t ryCand . Reason = D i s p a t c h ;
50 r e t u r n t r u e ;
51 }
52 }
53 r e t u r n f a l s e ;
54 }
55
56 i f (c u r r e n t d i s p a t c h s l o t i s 3
57 o r c u r r e n t d i s p a t c h s l o t i s 0) {
58 i f (t r y I s L a s t)
59 r e t u r n f a l s e ;
60 i f (c a n d I s L a s t) {
61 t ryCand . Reason = D i s p a t c h ;
62 r e t u r n t r u e ;
63 }
64 i f (cand i s n e i t h e r F i r s t nor Cracked
65 and tryCand i s n e i t h e r F i r s t nor Cracked) {
66 i f (t r y D i s p a t c h S a m e H a l f B o t (Cand , TryCand)) {
67 t ryCand . Reason = D i s p a t c h ;
68 r e t u r n t r u e ;
69 }
70 }
71 }
72 r e t u r n f a l s e ;
73 }

Listing B.4: Pseudocode describing the tryDispatchSameHalfBot-
function.

1 b o o l t r y D i s p a t c h S a m e H a l f B o t (cand , t ryCand) {
2 i f (cand i s a l t e r n a t e i n s t r u c t i o n and tryCand i s not)
3 r e t u r n f a l s e ;
4 i f (t ryCand i s a l t e r n a t e i n s t r u c t i o n and cand i s not)
5 r e t u r n t r u e ;
6
7 i f (d i s p a t c h s l o t > 2) {
8 i f (p r e v i o u s i n s t r u c t i o n n e e d s m i c r o c o d e) {
9 i f (cand n e e d s m i c r o c o d e)

10 r e t u r n f a l s e ;
11 e l s e i f (t ryCand n e e d s m i c r o c o d e)
12 r e t u r n t r u e ;
13 }
14 } e l s e {
15 i f (o t h e r g r o u p n e e d s m i c r o c o d e) {
16 i f (cand n e e d s m i c r o c o d e)

59

B. Pseudocode for the Dispatch Heuristic

17 r e t u r n t r u e ;
18 e l s e i f (t ryCand n e e d s m i c r o c o d e)
19 r e t u r n f a l s e ;
20 }
21 }
22 r e t u r n f a l s e ;
23 }

Listing B.5: Pseudocode describing the instrFusion-function.
1 b o o l i n s t r F u s i o n (cand , t ryCand) {
2 i f (one c a n d i d a t e can f u s e
3 and t h e o t h e r one can not) {
4 s e t t h e c a n d i d a t e s r e a s o n t o d i s p a t c h
5 r e t u r n t r u e ;
6 }
7 r e t u r n f a l s e ;
8 }

60

Appendix C

Individual Heuristics

This appendix include the results of individual heuristics on each benchmark. The baseline
is the original program order. The y-axis indicates the heuristic. The x-axis indicates the
di�erence, in percent, between the heuristic and baseline.

Integer Benchmarks

Figure C.1: 500.perlbench_r benchmark.

61

C. Individual Heuristics

Figure C.2: 502.gcc_r benchmark.

Figure C.3: 505.mcf_r benchmark.

62

Figure C.4: 520.omnetpp_r benchmark.

Figure C.5: 523.xalancbmk_r benchmark.

63

C. Individual Heuristics

Figure C.6: 525.x264_r benchmark.

Figure C.7: 531.deepsjeng_r benchmark.

64

Figure C.8: 541.leela_r benchmark.

Figure C.9: 557.xz_r benchmark.

65

C. Individual Heuristics

Floating Point Benchmarks

Figure C.10: 508.namd_r benchmark.

66

Figure C.11: 511.povray_r benchmark.

Figure C.12: 519.lbm_r benchmark.

67

C. Individual Heuristics

Figure C.13: 538.imagick_r benchmark.

Figure C.14: 544.nab_r benchmark.

68

Appendix D

Combinations of Heuristics

This appendix include the results of di�erent combinations of heuristics on each benchmark.
The baseline is the original program order. The y-axis indicates the combination of heuristics.
The x-axis indicates the di�erence, in percent, between the combination and baseline.

Integer Benchmarks

Figure D.1: 500.perlbench_r benchmark.

69

D. Combinations of Heuristics

Figure D.2: 502.gcc_r benchmark.

Figure D.3: 505.mcf_r benchmark.

70

Figure D.4: 520.omnetpp_r benchmark.

Figure D.5: 523.xalancbmk_r benchmark.

71

D. Combinations of Heuristics

Figure D.6: 525.x264_r benchmark.

Figure D.7: 531.deepsjeng_r benchmark.

72

Figure D.8: 541.leela_r benchmark.

Figure D.9: 557.xz_r benchmark.

73

D. Combinations of Heuristics

Floating Point Benchmarks

Figure D.10: 508.namd_r benchmark.

74

Figure D.11: 511.povray_r benchmark.

Figure D.12: 519.lbm_r benchmark.

75

D. Combinations of Heuristics

Figure D.13: 538.imagick_r benchmark.

Figure D.14: 544.nab_r benchmark.

76

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2020-11-20

EXAMENSARBETE A Comparison of List Scheduling Heuristics in LLVM Targeting POWER8.
STUDENT Erik Samuelsson
HANDLEDARE Jonas Skeppstedt (LTH)
EXAMINATOR Flavius Gruian (LTH)

List Scheduling: Hur påverkas
prestandan av de heuristik vi väljer?

POPULÄRVETENSKAPLIG SAMMANFATTNING Erik Samuelsson

List scheduling är en simpel, men effektiv, algoritm för schemaläggning. Som algoritm
betraktad har den många användningsområden, ett av dessa är som schemaläggare
av instruktioner, vilket i sin tur är ett viktigt optimeringstillfälle för kompilatorer.

En kompilators uppgift är att översätta från ett
programmeringsspråk till ett annat. Den absolut
viktigaste egenskapen som en kompilator besitter
är onekligen att översättningen är korrekt. Är
översättningen korrekt kan vi dessutom fundera
på hur vi skulle kunna göra översättningen mer ef-
fektiv, mätt till exempel i exekveringstid. En kom-
pilator är vanligtvis indelad i tre delar, front-end,
middle section och back-end, som var för sig arbe-
tar med en del av översättningen. Schemaläggning
av instruktioner är en process som tillhör back-
end. Det är ett viktigt optimeringstillfälle för att
se till att datorns hårdvara utnyttjas på ett så bra
sätt som möjligt. Den grundläggande algoritmen
för att schemalägga instruktioner är list schedul-
ing, den består av två delar. Först konstrueras en
riktad acyklisk graf i vilken noderna representerar
instruktioner, och bågar mellan noder represen-
terar ett beroende mellan två instruktioner. Sedan
schemaläggas instruktionerna genom en parvis
jämförelse. De instruktioner som vid ett givet
tillfälle kan schemaläggas utgörs av den mängd
noder som saknar inkommande bågar. När en nod
schemalagts tas den bort ur grafen. Figur 1 visar
ett exempel på en graf tillhörande uttrycket (a +
b) / c. Vi ser t.ex. att additionsinstruktionen
inte kan schemaläggas före det att variablerna a
och b har flyttats till varsitt register. Den intres-

Figur 1: Riktad acyklisk graf för: (a + b) / c.

santa delen av algoritmen, vilket också har varit
fokus i detta arbete, är att bestämma vilken av två
instruktioner som ska schemaläggas härnäst. Till
detta utnyttjar man heuristik, för att på så sätt
välja vilken instruktion man ska schemalägga.
Vid evaluering genomfördes tester både på en-

skilda heuristik och kombinationer av dessa. Som
en del av arbetet utvecklades en ny heuristik,
denna, samt resultatet av testerna kan tjäna som
grund för eventuell vidareutveckling av heuris-
tik eller av personer som är intresserad av denna
typen av jämförelser. T.ex. som argumentation
för eller emot en viss typ av heuristik.

	Introduction
	Research Questions
	Contributions

	Background
	Instruction Scheduling
	Basic Blocks
	LLVM
	Group Formation

	Approach
	List Scheduling
	The List Scheduling Algorithm
	Brief on the History of List Scheduling
	The Fundamental Algorithm for Instruction Scheduling
	Heuristics for Scheduling a Basic Block
	Related Work
	List Scheduling in LLVM

	Implementation
	Experimental Evaluation
	Experimental Setup
	Evaluation of Individual Heuristics
	Combinations of Heuristics
	Evaluation of Combinations of Heuristics

	Conclusion
	References
	Appendix The POWER8 Processor Core
	Appendix Pseudocode for the Dispatch Heuristic
	Appendix Individual Heuristics
	Appendix Combinations of Heuristics
	Tom sida

