
BACHELOR’S THESIS 2022

Generating user interfaces
for ROS-based robots
Hannes Lundh

ISSN 1650-2884
LU-CS-EX: 2022-20

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

KANDIDATARBETE
Datavetenskap

LU-CS-EX: 2022-20

Generating user interfaces for
ROS-based robots

Hannes Lundh

Generating user interfaces for
ROS-based robots

Hannes Lundh
dat15hlu@student.lu.se

May 20, 2022

Bachelor’s thesis work carried out at

the Department of Computer Science, Lund University.

Supervisor: Jacek Malec, jacek.malec@cs.lth.se

Examiner: Maj Stenmark, maj.stenmark@cs.lth.se

mailto:dat15hlu@student.lu.se
mailto:jacek.malec@cs.lth.se
mailto:maj.stenmark@cs.lth.se

Abstract

The aim of this bachelor’s thesis is to simplify the process to make a us-
able graphical user interface (GUI) for different ROS driven robots. The
approach is expected to work for many different robots, and on many dif-
ferent platforms, such as PC, Android and IOS. The architecture was based
on Kivy and KivyMD and a domain-specific language (DSL) was made for
it. KIVY and KIVYMD are both PYTHON libraries containing resources for
making portable user interfaces. To demonstrate the approach, a basic GUI
was constructed using the DSL and then tested on a number of units.

Keywords: DSL, GUI, ROS robots

2

Acknowledgements

I would like to thank my supervisor Jacek Malec as well as my examiner Maj Sten-
mark for helping me with this project. Another special thanks go to Faseeh Ahmad and
Alexander Dürr for helping me figure out how the simulation of the robots worked.

3

4

Contents

1 Introduction 7
1.1 Background . 7
1.2 State-of-the-art when designing a DSL and GUI 8
1.3 Goals . 10

2 Methodology 11
2.1 Method . 11

2.1.1 DSL description . 11
2.1.2 GUI Structure . 14
2.1.3 Evaluation . 15

2.2 Tools . 15
2.2.1 ROS . 15
2.2.2 Kivy . 16

3 Results 17
3.1 DSL . 17
3.2 ROS . 18
3.3 Example GUI DSL code . 20
3.4 Portability . 21
3.5 GIT . 22

4 Discussion 23
4.1 Summary . 24

Bibliography 25

5 Appendix 27
5.1 main.py . 27
5.2 divide_layout.py . 30
5.3 robot_program.py . 31
5.4 command_buttons.py . 33

5

CONTENTS

5.5 button_callbacks.py . 35
5.6 initialize_ur5.launch . 36
5.7 test_ur5_move.py . 37
5.8 ur5.py . 39
5.9 test_ur5.py . 40
5.10 initialize_panda.launch . 41
5.11 test_panda_move.py . 42
5.12 panda.py . 44
5.13 test_panda.py . 45

6

Chapter 1

Introduction

It is time consuming to create graphical user interfaces (GUIs). Often, an application
should be run on multiple platforms, which requires that the same interface is imple-
mented in different languages. Tools that simplify the GUI specification and generate
platform dependent code have the potential to save programming time and effort. The
goal of this project its to investigate a method for GUI-creation for ROS-based robots.

1.1 Background

The Robot Operating System (ROS, http://www.ros.org) is a framework made for
writing portable robot software. It is used as a middleware in the communication be-
tween the application software provided by the user and the robot. The core com-
ponents[14] of ROS contain two sub groups, communication infrastructure and tools.
Communication infrastructure enables messages being sent between the components
of a ROS-based system and includes, among others, standard messages sent to and
from a robot. Among the tools one can find, for example, the robot description lan-
guage. A particularly useful tool is rviz. Rviz is used to visualize the robot messages
and simulate what the commands would make the robot do.
Another level between the robot and the user is a Graphical User Interface (GUI). A GUI
is what the human user interacts with e.g., what is shown on a screen. In this project we
will use the GUI showed in the article Supporting Semantic Capture During Kinesthetic
Teaching of Collaborative Industrial Robots[16] as an inspiration to proceed from.

7

http://www.ros.org

1. INTRODUCTION

Figure 1.1: Screenshot of the GUI from [16]

A DSL is different from general-purpose languages like C, Java and Python, because
it is made to be specialized to a particular application domain. An example of a DSL is
e.g., Structured Query Language (SQL).

SQL is a domain-specific language used in programming and designed for
managing data held in a relational database management system (RDBMS),
or for stream processing in a relational data stream management system
(RDSMS). It is particularly useful in handling structured data, i.e. data in-
corporating relations among entities and variables.[15]

1.2 State-of-the-art when designing a DSL
and GUI

In order to design a DSL for a GUI one needs a domain model of what the GUI should
do. A domain model explains how the GUI is supposed to look and function, includ-
ing buttons, menus etc. Starting with a concrete example GUI and then extracting,
simplifying and deriving the domain model is one way to do that. In the article DSL-
driven generation of Graphical User Interface[1] the authors describe how a GUI can be
said to be a definition of a DSL. They then create a tool called DEAL that traverses GUI
applications and creates the domain model for that GUI. The authors later continued
their research where they went from a domain model and created an iTask application
meaning they can now do GUI → domain model → DSL → GUI fully automatically.[2]
In this project these steps will not be done automatically, however, the approach stays
mostly the same.

In the article Design Guidelines for Domain Specific Languages[6] the authors pro-
pose several guidelines which they think should be used when creating DSLs. They
define 5 categories of different types of guidelines, Language Purpose, Language Real-
ization, Language Content, Concrete Syntax, Abstract Syntax.

8

1.2 STATE-OF-THE-ART WHEN DESIGNING A DSL AND GUI

• Language Purpose contains for example, “Make your language consistent.” where
they propose:

DSLs are typically designed for a specific purpose. Therefore, each
feature of a language should contribute to this purpose, otherwise it
should be omitted.

• Language Realization contains for example, “Decide carefully whether to use graph-
ical or textual realization.” where they propose that one should reflect early on
whether one should use a graphical tools such as Eclipse Modeling Framework[4]
or use a text-based one such as MontiCore[10].

• Language Content contains for example, “Reflect only the necessary domain con-
cepts.”, “Keep it simple.”.

– “Reflect only the necessary domain concepts.”:
This guideline proposes that only the tasks that the language is made for
gets implemented. This in order to not complicate it.

– “Keep it simple.”:
The importance of keeping it simple cannot be overstated. The sole reason
a DSL is created is to simplify in this example the making of a GUI. If the
DSL is not simple it defeats the purpose.

• Concrete Syntax contains for example “Use descriptive notations.” where they
propose keeping the semantics of different reused notations or symbols. For ex-
ample "+" should mean addition and that keywords should be easily identifiable.

• Abstract Syntax contains for example “Enable modularity.” where they propose
that systems nowadays are very complex and having modularity is a way to sim-
plify it.

While not all of these guidelines are relevant to this project a lot of them are and will be
followed to some extent.

In the Bachelor’s thesis Reducing implementation time for the GUI design-to-code
process using DSL[11] the author describes a workflow for designing GUIs. The work-
flow can be summarized in these steps:

1. Wireframes (low quality static representation)

2. Mockups (high quality static representation)

3. Assets (such as button shapes, images etc.)

4. Specification (specification of the different elements, such as their position, size,
colour etc.)

5. The design document itself (alternatively the design document can be given straight
away to the software engineer and then the previous steps are unnecessary)

9

1. INTRODUCTION

6. Interactive prototypes (how the GUI is supposed to be used so that animations
etc can be added)

In this project this workflow will be the basis of how the GUI will be created however it
will not be strictly followed.

1.3 Goals
The primary goal of this project was to create a tool useful for developing robotic user
interfaces.

It was decomposed into the following subgoals:

1. Design of a layered architecture for the tool so that all the necessary interfaces
can be created in modular way.

2. Definition of a Domain-Specific Language (DSL) for specifying the structure and
functionality of the GUI.

3. Creation of a proof-of-concept Graphical User Interface (GUI) prototype that is
able to pass commands to the robot via a Robot Operating System (ROS) connec-
tion.

4. Generate code for many devices such as tablets, desktops and mobile phones.

5. Evaluate the design by using it for developing a known user interface[16]. The
expectation is that the GUI will be using a tablet as the test hardware.

10

Chapter 2

Methodology

2.1 Method
The thesis methodology can be explained in the following steps:

• Designing/creating a DSL using the design science approach.

• Building a GUI using the DSL.

• Evaluating the GUI, its portability and functionality.

2.1.1 DSL description
The system architecture is displayed in Figure 2.1.

Figure 2.1: Architecture of the system

11

2. METHODOLOGY

The idea was to be able to use the DSL in order to create multiple GUIs for different
hardware.

The Design Science approach could be summarized as create, evaluate and iter-
ate. The GUI from Supporting Semantic Capture During Kinesthetic Teaching of Col-
laborative Industrial Robots[16] was used to specify the requirements of the DSL. The
requirements may be summarized as:

1. Specify the areas in a screen
Example what should be achieved:
Right half contains current robot program, left half contains programming tools

Visual area Contains

left robot arm program

right robot arm program

programming step buttons

reference frame
definitions and switching

"File menu"

Text input line

Buttons for the physical
activation of the robot
and additional items

12

2.1 METHOD

2. Graphical items on the screen
Example what should be achieved:

Item name Description

ROBOT PROGRAM

swimlane (ladder),
elements correspond
to robot instructions,
top to bottom order,

instructions may
be compound

(some subroutine graphics,
like indentation,

should be possible)

PROGRAMMING STEP BUTTON rectangle with a name
REFERENCE FRAME DEFINITION rectangle with a name

FILE MENU ITEM rectangle with a name

TEXT INPUT LINE
at least 40 characters long,

one line high

PHYSICAL ACTIVATION BUTTONS icons or text
MESSAGE AREA Text

3. The visual requirements of a robot program instruction button:

• activation area for running just this instruction in the step-wise execution/de-
bugging

• name

• type

• reference frame used

• edit activation possibility

• deletion possibility

Visualisation of current program pointer position is necessary!

4. Actions for some elements (including buttons)
Example of what might be needed:

• activation of the current robot arm

• insertion of a specific command into the active arm’s program at the current
position

• change of the default frame used

• saving a set of instructions as a skill

• saving the current system state

13

2. METHODOLOGY

2.1.2 GUI Structure
To test the DSL, a concrete example using it was made according to this structure, mim-
icking the one from Figure 1.1:

Figure 2.2: Structure of the GUI

The structure of the proof-of-concept is shown in Figure 2.2 the first step was to
create the basic screen that will be the same for all robots, which was the base layer
containing a boxlayout with a toolbar at the top. A boxlayout was used to partition
widgets above/below with the orientation vertical or next to each other with the ori-
entation horizontal. There are other arguments one can add like spacing, minimum
height and padding etc. The toolbar has a drop down menu containing save and load.
Below that is a divide layout which is a subclass to the boxlayout class in kivy, with the
added function of being able to tell it how many partitions one wants when one creates
it and the new functions to support that usage (see chapter 5.2). The way it was used
here was to choose an orientation and number of areas one wants. So in the example
GUI the orientation "horizontal" and size 2 was chosen. Which divides the screen area
into two, from the top to the bottom (see second step in Figure 2.2). Then the function
add_widget_to_layout was used to add another dividelayout class to the left part
and a robot_program to the right. The robot_program is a subclass to the kivy class
Boxlayout and includes a list of RobotItems which are a subclass to the KivyMD class
MDCardSwipe (see chapter 5.3). The dividelayout on the left part was given the orien-
tation "vertical" and the size 3. Then 3 Gridlayouts containing buttons were added to
that dividelayout. Gridlayout partitions the area in rows and columns. One can de-
cide either the number of rows, the number of columns or both the number of rows
and the number of columns when one creates the gridlayout. The buttons were all

14

2.2 TOOLS

created in three different files depending on their functionality (see chapter 5.4). Dif-
ferent colours were used to differentiate between them. All but a few of the buttons use
the same placeholder function, since the ROS controller was not added, that function
brings up a snackbar with the name of the button showing. The only exceptions were
Test Panda and Test UR5, that have test programs that start when pressed (see chapter
5.5).

2.1.3 Evaluation
The following points was used when evaluating the GUI:

• Portability: could the GUI be ported to different platforms and how easily that
can be done.

• Functionality: the GUI was used to control robots.

2.2 Tools
Some of the tools used in this thesis project have been named in the introduction.
This entire project was made on a Linux virtual machine running Ubuntu 18.04, it was
programmed in Python on Visual Studio Code. The GUI was run on a Samsung Galaxy
Tab Active Pro SM-T545 as well in order to show portability.

2.2.1 ROS
ROS is a middleware in the communication between the application software provided
by the user and the robot. It can be seen in the layered architecture of the project in
figure 2.3:

Figure 2.3: Layered architecture

The ROS-server will publish a topic that the ROS-client will subscribe to. The ROS
server in our case is the UR5 driver[18] and the panda driver[5] that were used in or-
der to make the robots ROS compatible. The drivers uses the MoveIt Motion Planning
Framework[3] in order to command the robot. This means the project only needs to
program the controller/client side of the ROS connection. In order to test the ROS
connection between the GUI and a robot a test program was written for two differ-
ent robots, Franka Emika Panda[13] and UR5[19]. The test programs were run from a
button press in the GUI.

15

2. METHODOLOGY

2.2.2 Kivy
After looking at a couple of options, PyQT5[12], Tkinter[17] and Kivy[8], the option
chosen was Kivy with the added collection of material design compliant widgets that
KivyMD offers.

Kivy is a free and open source Python framework for developing mobile
apps and other multitouch application software with a natural user inter-
face (NUI). It is distributed under the terms of the MIT License, and can
run on Android, iOS, Linux, macOS, and Windows.[7]

KivyMD is a version of the Kivy framework, however KivyMD follows Material Design
which is a design method created by Google to help developers build high-quality dig-
ital experiences for Android, iOS, Flutter, and the web[9].
Kivy as well as KivyMD have very helpful websites where all of the different widgets and
their uses are shown.1

1For Kivy the site was https://kivy.org/doc/stable/ and for KivyMD the site was https://
kivymd.readthedocs.io/en/latest/components/.

16

https://kivy.org/doc/stable/
https://kivymd.readthedocs.io/en/latest/components/
https://kivymd.readthedocs.io/en/latest/components/

Chapter 3

Results

3.1 DSL
The DSL has 5 commands: base, swimlane, Add and Create. The reason base and
swimlane are not capitalized is because they create predefined widgets while the other
commands are used as functions that can change depending on what arguments you
give them. The base command will create the base layer, which consists of a toolbar
on top and a dividelayout below(as seen on the second step in Figure 2.2).
The swimlane command will create the swim lane widget, which can be seen on the
right side of the GUI in Figure 3.6.
The Add command will be structured like this:

Add widget_to_be_added to widget_that_will_be_added_to

And as implied it will add a widget to another widget. Example:

Add List to Canvas

Figure 3.1: Example of Add

17

3. RESULTS

The Create command has the following structure for divide layout:

create dividelayout layout_name file_contatining_information
(orientation, number of parts, name of part(as many as there are parts with com-
mas in between them)

It divides a layout in the orientation, either vertical or horizontal, in x number of parts.
The parts are DivideLayouts with the names given after the comma. Example:

Create dividelayout Canvas file_containing_this (vertical, 2, Top, Bottom)

Figure 3.2: Example of Divide

The Create command has the following structure for button layout:

Create buttonlayout layout_name file_containing_buttons

This creates a buttonlayout with the buttons made in the file. Example:

Create buttonlayout answer_buttons file_containing_buttons_yes_and_no

Figure 3.3: Example of Divide

3.2 ROS
The way the ROS communication is handled in this project is by first initializing the
robot simulations using their ROS drivers (see chapters 5.6 and 5.10) then a test pro-
gram was written that sends the commands to the robot simulation (see chapters 5.7-
5.9 and 5.11-5.13). It is therefore completely independent from the GUI, which means
the GUI could be used for many robots aswell as the same robot could be used for
many GUIs. Here are some images of the two different robot simulations:

18

3.2 ROS

Figure 3.4: Picture of the panda simulation

Figure 3.5: Picture of the UR5 simulation

19

3. RESULTS

3.3 Example GUI DSL code

Figure 3.6: Screenshot of the GUI

The commands to build this GUI with the DSL are the following (see Figure 2.2 and the
abstraction of the DSL in chapter 3.1 for reference):

Add base to screen (which is the boxlayout with the toolbar)
Create dividelayout baselayout (vertical, 2, buttons, swim_lane)
(creates the dividelayout)
Add baselayout to base
Create dividelayout buttonslayout (horizontal, 3, command, reference,
programming) (creates the dividelayout for the gridlayouts)
Add buttonslayout to buttons
Add swimlane to swim_lane
Create buttonlayout command_layout command_buttons.py (creates
a gridlayout with all the buttons in command_buttons.py)
Create buttonlayout reference_layout reference_buttons.py (cre-
ates a gridlayout with all the buttons in reference_buttons.py)
Create buttonlayout programming_layout programming_buttons.py
(creates a gridlayout with all the buttons in programming_buttons.py)
Add command_layout to command
Add reference_layout to reference
Add programming_layout to programming

20

3.4 PORTABILITY

3.4 Portability
The implementation was tested on a Samsung tablet, see Figure 3.7 and 3.8

Figure 3.7: Picture of the app running

Figure 3.8: Picture of app after the World button was pressed

21

3. RESULTS

Figure 3.9: Picture of the Demo GUI app

3.5 GIT
The entire code base as well as a DSL sketch and a quick guide on how to run the GUI
can be found here:
https://git.cs.lth.se/jacek/agenericgui.

22

https://git.cs.lth.se/jacek/agenericgui

Chapter 4

Discussion

In this thesis project it has been shown that a DSL could be used to generate a GUI.
The GUI could be used to send commands to ROS based robots as shown with the
test programs for the Franka Emika Panda and UR5 robots. It could also be ported to
different platforms in this project it was used in Ubuntu as well as Android. Looking
into the future of this project the next step would be to create the translator for the DSL
so that it can be used to create GUIs. Another thing would be to make it so that the
GUI creates the robot programs as well and not just runs them. Since the connection
between ROS and the GUI is already made that should not be too difficult. The only
thing that needs to be done is to create a ROS controller that later ties into the GUI
through buttons.
Below are some pros and cons to using this approach in order to simplify the creation
of the GUIs for ROS-based robots.
pros:

• It is fast to create a GUI with a DSL since it is designed for that purpose.

• By having the same GUI be portable to all the different platforms one saves time
by not having to program the entire GUI from scratch, in a different different
programming language depending on the platform.

cons:

• One loses a lot of functionality of the original libraries, in this case Kivy and
KivyMD, since the DSL, on purpose, limits the options in order to be more ef-
ficient at what it is made for.

23

4. DISCUSSION

4.1 Summary
In summary this project completed all the subgoals set at the beginning of the project.

1. Design of a layered architecture for the tool so that all the necessary interfaces
can be created in modular way.

This was achieved and is shown in Figure 2.1. The structure can be modular for each
robot as the GUI can change independently from the robot.

2. Definition of a Domain-Specific Language (DSL) for specifying the structure and
functionality of the GUI.

The basic structure of the DSL is shown in the chapter 3.3.

3. Creation of a proof-of-concept Graphical User Interface (GUI) prototype that is
able to pass commands to the robot via a Robot Operating System (ROS) connec-
tion.

This was achieved by the Test Panda and Test UR5 buttons that sets up a simulation
for the robots and makes them move, as previously mentioned in chapter 3.2. The
simulations can be seen in figures 3.4 and 3.5.

4. Generate code for many devices such as tablets, desktops and mobile phones.

Just by using Kivy/KivyMD for the GUI this goal was achieved automatically. As shown
in Chapter 3.4 and in Figures 3.7, 3.8 and 3.9.

5. Evaluate the design by using it for developing a known user interface[16]. The
expectation is that the GUI will be using a tablet as the test hardware.

This was achieved since the user interface will work but the expected functionality i.e.,
all the buttons should work as they did on the original GUI, does not. In order for the
buttons to work a ROS controller needs to be programmed and then the functionality
could be done as well.

24

Bibliography

[1] Michaela Baciková, Jaroslav Porubän, and Dominik Lakatos. “Defining Domain
Language of Graphical User Interfaces”. In: 2nd Symposium on Languages, Ap-
plications and Technologies. Ed. by José Paulo Leal, Ricardo Rocha, and Alberto
Simões. Vol. 29. OpenAccess Series in Informatics (OASIcs). Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013, pp. 187–202. ISBN: 978-
3-939897-52-1. DOI: 10.4230/OASIcs.SLATE.2013.187. URL: http://drops.
dagstuhl.de/opus/volltexte/2013/4038.

[2] Michaela Bačíková and Jaroslav Porubän. “DSL-driven generation of Graphical
User Interfaces”. In: Open Computer Science 4.4 (2014), pp. 204–221. DOI: doi:
10.2478/s13537-014-0210-9.

[3] Chitta Coleman S, ucan and Correll. “Reducing the Barrier to Entry of Complex
Robotic Software: a MoveIt! Case Study”. In: Journal of Software Engineering for
Robotics. Vol. 5. 2014, pp. 3–16. DOI: 10.6092/JOSER_2014_05_01_p3.

[4] Eclipse Modeling Project | The Eclipse Foundation. https://www.eclipse.org/
modeling/emf/. Accessed: 2022-04-12.

[5] franka_ros. https://github.com/frankaemika/franka_ros. Accessed: 2022-
04-08.

[6] Gabor Karsai et al. “Design Guidelines for Domain Specific Languages”. In: CoRR
abs/1409.2378 (2014). URL: http://arxiv.org/abs/1409.2378.

[7] Kivy (framework) - Wikipedia. https : / / en . wikipedia . org / wiki / Kivy _
(framework). Accessed: 2022-02-07.

[8] Kivy: Cross-platform Python Framework for NUI Development. http://kivy.
org. Accessed: 2021-11-24 - 2021-12-22.

[9] Material Design. https://material.io/design/introduction. Accessed:
2022-01-21.

[10] MontiCore. https://monticore.github.io/monticore/. Accessed: 2022-04-
12.

25

https://doi.org/10.4230/OASIcs.SLATE.2013.187
http://drops.dagstuhl.de/opus/volltexte/2013/4038
http://drops.dagstuhl.de/opus/volltexte/2013/4038
https://doi.org/doi:10.2478/s13537-014-0210-9
https://doi.org/doi:10.2478/s13537-014-0210-9
https://doi.org/10.6092/JOSER_2014_05_01_p3
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://github.com/frankaemika/franka_ros
http://arxiv.org/abs/1409.2378
https://en.wikipedia.org/wiki/Kivy_(framework)
https://en.wikipedia.org/wiki/Kivy_(framework)
http://kivy.org
http://kivy.org
https://material.io/design/introduction
https://monticore.github.io/monticore/

BIBLIOGRAPHY

[11] Charilaos Mulder. “Reducing implementation time for the GUI design-to-code
process using DSL”. Bachelor’s thesis. Universitet van Amsterdam, Sept. 2016.

[12] PyQt5 * PyPI. https://pypi.org/project/PyQt5/. Accessed: 2022-02-07.

[13] Robot System. https://www.franka.de/robot-system. Accessed: 2022-05-01.

[14] ROS.org | Core Components. https://web.archive.org/web/20211024082252/
https://www.ros.org/core-components/. Accessed: 2021-09-18.

[15] SQL - Wikipedia. https://en.wikipedia.org/wiki/SQL. Accessed: 2021-09-
18.

[16] Maj Stenmark et al. “Supporting Semantic Capture during Kinesthetic Teaching
of Collaborative Industrial Robots”. In: 2017 IEEE 11th International Conference
on Semantic Computing (ICSC). 2017, pp. 366–371. DOI: 10.1109/ICSC.2017.
40.

[17] tkinter - Python interface to Tcl/Tk. https://docs.python.org/3/library/
tkinter.html. Accessed: 2022-02-07.

[18] Universal Robots ROS drivers. https://github.com/ros-industrial/universal_
robot. Accessed: 2021-09-19.

[19] UR5e => Flexibel automationsplattform | Universal robots. https://www.universal-
robots.com/se/produkter/ur5-robot/. Accessed: 2022-05-01.

26

https://pypi.org/project/PyQt5/
https://www.franka.de/robot-system
https://web.archive.org/web/20211024082252/https://www.ros.org/core-components/
https://web.archive.org/web/20211024082252/https://www.ros.org/core-components/
https://en.wikipedia.org/wiki/SQL
https://doi.org/10.1109/ICSC.2017.40
https://doi.org/10.1109/ICSC.2017.40
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/universal_robot
https://www.universal-robots.com/se/produkter/ur5-robot/
https://www.universal-robots.com/se/produkter/ur5-robot/

Chapter 5

Appendix

5.1 main.py

! / usr / bin / env python3

import roslaunch
from kivy . uix . boxlayout import BoxLayout
from kivymd . app import MDApp
from kivymd . uix . snackbar . snackbar import Snackbar
from kivymd . uix . toolbar import MDToolbar
from kivymd . uix .menu import MDDropdownMenu
from kivy . uix . gridlayout import GridLayout
from kivy . metrics import dp
from items . divide_layout import DivideLayout
from items . command_buttons import *
from items . reference_buttons import *
from items . programming_buttons import *
from items . robot_program import RobotItem , RobotProgram

class MyApp(MDApp) :

def _ _ i n i t _ _ (s e l f , ** kwargs) :
super () . _ _ i n i t _ _ (* * kwargs)

def open_menu(s e l f , button) :
s e l f .menu. c a l l e r = button

27

5. APPENDIX

s e l f .menu. open ()

def open_robot_menu (s e l f , button) :
s e l f . robot_menu . c a l l e r = button
s e l f . robot_menu . open ()

def menu_callback (s e l f , text_item) :
s e l f .menu. dismiss ()
Snackbar (t e x t =text_item) . open ()

def build (s e l f) :
root = BoxLayout (orientation= ’ v e r t i c a l ’ , spacing =2)

layout = DivideLayout (2 , orientation= ’ horizontal ’)

menu_items = [
{

" viewclass " : " OneLineListItem " ,
" t e x t " : "Open" ,
" height " : dp(5 6) ,
" on_release " : lambda x="Open" : s e l f . menu_callback (x)

} ,
{

" viewclass " : " OneLineListItem " ,
" t e x t " : "Save" ,
" height " : dp(5 6) ,
" on_release " : lambda x="Save" : s e l f . menu_callback (x)

}
]
s e l f .menu= MDDropdownMenu(

items=menu_items ,
width_mult=4

)

toolbar = MDToolbar(t i t l e ="GUI created with DSL")
toolbar . lef t_act ion_items = [["menu" , lambda x : s e l f . open_menu(x)]]

layout . add_widget (toolbar)

button_layout1 = GridLayout (cols =3)
button_layout1 . add_widget (MoveTo ())
button_layout1 . add_widget (ViaPoint ())
button_layout1 . add_widget (Open ())
button_layout1 . add_widget (Close ())
button_layout1 . add_widget (Test_panda ())

28

5.1 MAIN.PY

button_layout1 . add_widget (Test_ur5 ())

button_layout2 = GridLayout (cols =3)
button_layout2 . add_widget (World ())
button_layout2 . add_widget (MyObjRef ())

button_layout3 = GridLayout (cols =3)
button_layout3 . add_widget (CreateObject ())
button_layout3 . add_widget (C r e a t e S k i l l ())
button_layout3 . add_widget (ChangeObject ())
button_layout3 . add_widget (ChangeRefSystem ())
button_layout3 . add_widget (RemoveButton ())

layout . add_widget_to_layout (
DivideLayout (3 , orientation= ’ v e r t i c a l ’) , 0)

l e f t = layout . get_widget (0)
l e f t . add_widget_to_layout (button_layout1 , 0)
l e f t . add_widget_to_layout (button_layout2 , 1)
l e f t . add_widget_to_layout (button_layout3 , 2)

robot_program = RobotProgram ("Robot")
for i in range (5) :

robot_program . add_item (RobotItem (
robot_program , t e x t = f "command { i } "))

layout . add_widget_to_layout (robot_program , 1)

root . add_widget (toolbar)
root . add_widget (layout)
return root

MyApp () . run ()

29

5. APPENDIX

5.2 divide_layout.py
! / usr / bin / env python3

from kivy . uix . boxlayout import BoxLayout

class DivideLayout (BoxLayout) :

def _ _ i n i t _ _ (s e l f , number_of_parts , ** kwargs) :
super () . _ _ i n i t _ _ (* * kwargs)
s e l f . widgets =[None] * number_of_parts
s e l f . number_of_parts=number_of_parts
s e l f . spacing = 2

def add_widget_to_layout (s e l f , widget , index) :
i f (s e l f . number_of_parts>index) :

s e l f . widgets [index]= widget
s e l f . __update_widgets ()

else :
raise IndexError (’ outside of range ’)

def remove_widget_from_layout (s e l f , index) :
s e l f . widgets [index]=None
s e l f . __update_widgets ()

def __update_widgets (s e l f) :
s e l f . clear_widgets ()
for i in range (0 , s e l f . number_of_parts) :

i f (s e l f . widgets [i] != None) :
s e l f . add_widget (s e l f . widgets [i])

else :
s e l f . add_widget (BoxLayout ())

def get_widget (s e l f , index) :
return s e l f . widgets [index]

30

5.3 ROBOT_PROGRAM.PY

5.3 robot_program.py

! / usr / bin / env python3

from kivy . uix . boxlayout import BoxLayout
from kivy . uix . scrol lv iew import ScrollView

from kivymd . uix . button . button import MDIconButton
from kivymd . uix . card import MDCardSwipe
from kivymd . uix . card . card import MDCardSwipeFrontBox , MDCardSwipeLayerBox
from kivymd . uix . l i s t . l i s t import OneLineListItem
from kivymd . uix . toolbar import MDToolbar
from kivymd . uix . l i s t import MDList

from items . button_callbacks import callback

class RobotProgram (BoxLayout) :

def _ _ i n i t _ _ (s e l f , t i t l e , ** kwargs) :
super () . _ _ i n i t _ _ (* * kwargs)
s e l f . orientation= ’ v e r t i c a l ’
s e l f . spacing="10dp"

s e l f . toolbar = MDToolbar(
elevation =10 ,
t i t l e = t i t l e ,
md_bg_color = (1 , 0 , 1 , 1)

)

s e l f . scrol lv iew = ScrollView (scroll_timeout =100)
s e l f . md_list = MDList (padding=0)
s e l f . scrol lv iew . add_widget (s e l f . md_list)

s e l f . add_widget (s e l f . toolbar)
s e l f . add_widget (s e l f . scrol lv iew)

def add_item (s e l f , item) :
s e l f . md_list . add_widget (item)

def remove_item (s e l f , item) :
s e l f . md_list . remove_widget (item)

31

5. APPENDIX

class RobotItem (MDCardSwipe) :

def _ _ i n i t _ _ (s e l f , robot_program , text , **kw) :
super () . _ _ i n i t _ _ (* *kw)

s e l f . robot_program = robot_program

s e l f . layer_box = MDCardSwipeLayerBox (padding="8dp")
s e l f . delete_icon = MDIconButton(

icon=" trash −can" ,
pos_hint ={ ’ center_y ’ : . 5 } ,
on_release=callback

)

s e l f . layer_box . add_widget (s e l f . delete_icon)

s e l f . front_box = MDCardSwipeFrontBox ()
s e l f . content=OneLineListItem (

t e x t =text ,
_no_ripple_effect = True

)
s e l f . front_box . add_widget (s e l f . content)

s e l f . s ize_hint_y=None
s e l f . height= s e l f . content . height

s e l f . add_widget (s e l f . layer_box)
s e l f . add_widget (s e l f . front_box)

32

5.4 COMMAND_BUTTONS.PY

5.4 command_buttons.py

! / usr / bin / env python3

from kivy . uix . button import Button
from items . button_callbacks import callback , test_panda , test_ur5

class MoveTo(Button) :

def _ _ i n i t _ _ (s e l f , ** kwargs) :
super () . _ _ i n i t _ _ (* * kwargs)
s e l f . background_color = (1 , 0 , 1 , 1)
s e l f . t e x t = "Move to "
s e l f . bind (on_press=callback)

class ViaPoint (Button) :

def _ _ i n i t _ _ (s e l f , ** kwargs) :
super () . _ _ i n i t _ _ (* * kwargs)
s e l f . background_color = (1 , 0 , 1 , 1)
s e l f . t e x t = " Via point "
s e l f . bind (on_press=callback)

class Open(Button) :

def _ _ i n i t _ _ (s e l f , ** kwargs) :
super () . _ _ i n i t _ _ (* * kwargs)
s e l f . background_color = (1 , 0 , 1 , 1)
s e l f . t e x t = "Open"
s e l f . bind (on_press=callback)

class Close (Button) :

def _ _ i n i t _ _ (s e l f , ** kwargs) :
super () . _ _ i n i t _ _ (* * kwargs)
s e l f . background_color = (1 , 0 , 1 , 1)
s e l f . t e x t = " Close "
s e l f . bind (on_press=callback)

class Test_panda (Button) :

def _ _ i n i t _ _ (s e l f , ** kwargs) :
super () . _ _ i n i t _ _ (* * kwargs)
s e l f . background_color = (1 , 0 , 1 , 1)
s e l f . t e x t = " Test Panda"

33

5. APPENDIX

s e l f . bind (on_press=test_panda)

class Test_ur5 (Button) :

def _ _ i n i t _ _ (s e l f , ** kwargs) :
super () . _ _ i n i t _ _ (* * kwargs)
s e l f . background_color = (1 , 0 , 1 , 1)
s e l f . t e x t = " Test UR5"
s e l f . bind (on_press=test_ur5)

34

5.5 BUTTON_CALLBACKS.PY

5.5 button_callbacks.py
! / usr / bin / env python3
import roslaunch
from kivymd . uix . snackbar import Snackbar

def callback (button) :
t e x t = button . t e x t i f button . t e x t else " delete "
Snackbar (t e x t = t e x t) . open ()

def test_panda (s e l f) :
uuid = roslaunch . r l u t i l . get_or_generate_uuid (None, False)
roslaunch . configure_logging (uuid)
launch = roslaunch . parent . ROSLaunchParent (uuid ,

[" /home/hannes/ catkin_ws / src / motion_scripts /launch/ test_panda . launch"])
launch . s t a r t ()

def test_ur5 (s e l f) :
uuid = roslaunch . r l u t i l . get_or_generate_uuid (None, False)
roslaunch . configure_logging (uuid)
launch = roslaunch . parent . ROSLaunchParent (uuid ,

[" /home/hannes/ catkin_ws / src / motion_scripts /launch/ test_ur5 . launch"])
launch . s t a r t ()

35

5. APPENDIX

5.6 initialize_ur5.launch
<launch>

<include f i l e ="$ (find ur_gazebo) / launch/ur5 . launch"/>
<include
f i l e ="$ (find ur5_moveit_config) / launch/ ur5_moveit_planning_execution . launch"/>

</launch>

36

5.7 TEST_UR5_MOVE.PY

5.7 test_ur5_move.py

! / usr / bin / env python

import rospy , sys
import moveit_commander
from geometry_msgs . msg import Pose
from copy import deepcopy
from std_msgs . msg import Header

from trajectory_msgs . msg import JointTrajectory

from trajectory_msgs . msg import JointTrajectoryPoint

endpoints = [[0 . 0 , −1 , 1 . 5 , 1 . 0 , 0 , −1]]

def main () :

rospy . init_node (’ test_ur5_move ’)
pub = rospy . Publisher (’ / arm_controller /command ’ ,

JointTrajectory ,
queue_size =10)

arm = moveit_commander .MoveGroupCommander(’ manipulator ’)
endpoints . append(arm . get_current_joint_values ())

Create the topic message
t r a j = JointTrajectory ()
t r a j . header = Header ()
J o i n t names f o r UR5
t r a j . joint_names = [’ shoulder_pan_joint ’ , ’ s h o u l d e r _ l i f t _ j o i n t ’ ,

’ elbow_joint ’ , ’ w r i s t _ 1 _ j o i n t ’ , ’ w r i s t _ 2 _ j o i n t ’ ,
’ w r i s t _ 3 _ j o i n t ’]

rate = rospy . Rate (1)
move_away_from_all_zeros = True
pts = JointTrajectoryPoint ()
t r a j . header . stamp = rospy . Time .now()

while not rospy . is_shutdown () :

i f move_away_from_all_zeros :
pts . posit ions = endpoints [0]

37

5. APPENDIX

move_away_from_all_zeros = False
else :

pts . posit ions = endpoints [1]
move_away_from_all_zeros = True

pts . time_from_start = rospy . Duration (1 . 0)

Set the points to the t r a j e c t o r y
t r a j . points = []
t r a j . points . append(pts)
Publish the message
pub . publish (t r a j)
rate . sleep ()

i f __name__ == ’ __main__ ’ :
try :

main ()
except rospy . ROSInterruptException :

print ("Program interrupted before completion")

38

5.8 UR5.PY

5.8 ur5.py
! / usr / bin / env python
import roslaunch

class Ur5 () :
def _ _ i n i t _ _ (s e l f) :

uuid = roslaunch . r l u t i l . get_or_generate_uuid (None, False)
roslaunch . configure_logging (uuid)
s e l f . launch = roslaunch . parent . ROSLaunchParent (uuid , [

" /home/hannes/ catkin_ws / src / motion_scripts /launch/ i n i t i a l i z e _ u r 5 . launch"])
s e l f . test_launch = roslaunch . parent . ROSLaunchParent (uuid , [

" /home/hannes/ catkin_ws / src / motion_scripts /launch/ test_ur5_move . launch"])
s e l f . ur5_running = False
s e l f . test_running = False

def connect (s e l f) :
i f not s e l f . ur5_running :

s e l f . launch . s t a r t ()
s e l f . ur5_running = True

def disconnect (s e l f) :
i f s e l f . ur5_running :

s e l f . launch . shutdown ()
s e l f . ur5_running = False

def start_test_move (s e l f) :
i f s e l f . ur5_running and not s e l f . test_running :

s e l f . test_launch . s t a r t ()
s e l f . test_running = True

def end_test_move (s e l f) :
i f s e l f . ur5_running and s e l f . test_running :

s e l f . test_launch . shutdown ()
s e l f . test_running = False

39

5. APPENDIX

5.9 test_ur5.py
! / usr / bin / env python

import rospy
import sys
sys . path . append(" /home/hannes/ catkin_ws / src / motion_scripts / gui ")
from items . ur5 import Ur5

def main () :
rospy . init_node (" test_ur5 ")
ur5 = Ur5 ()
ur5 . connect ()
rospy . sleep (20)
ur5 . start_test_move ()
rospy . sleep (20)
ur5 . end_test_move ()
ur5 . disconnect ()

i f __name__ == ’ __main__ ’ :
try :

main ()
except rospy . ROSInterruptException :

print ("Program interrupted before completion")

40

5.10 INITIALIZE_PANDA.LAUNCH

5.10 initialize_panda.launch
<launch>

<include f i l e ="$ (find panda_gazebo) / launch/panda_world . launch"/>
<include f i l e ="$ (find panda_sim_moveit) / launch/sim_move_group . launch"/>

</launch>

41

5. APPENDIX

5.11 test_panda_move.py

! / usr / bin / python

import rospy
import numpy as np
from franka_interface import ArmInterface
from copy import deepcopy

endpoints = [[0 , 0 , 0 , 0 , 0 , 0] , [0 . 0 , −1 , 1 . 5 , 1 . 0 , 0 , −1]]

def main () :
rospy . init_node ("test_panda_move")
r = ArmInterface ()

rate = rospy . Rate (400)

elapsed_time_ = rospy . Duration (0 . 0)
period = rospy . Duration (0 . 0 0 5)

r . move_to_neutral () # move to neutral pose before beginning

i n i t i a l _ p o s e = deepcopy (r . joint_ordered_angles ())

vals = deepcopy (i n i t i a l _ p o s e)
count = 0

while not rospy . is_shutdown () :

elapsed_time_ += period

delta = 3.14 / 16.0 * (1 − np . cos (3 .14 / 5.0 * elapsed_time_ . to_sec ())) \

* 0.2

for j , _ in enumerate (vals) :
i f j == 4 :

vals [j] = i n i t i a l _ p o s e [j] − delta
else :

va ls [j] = i n i t i a l _ p o s e [j] + delta

r . s e t _ j o i n t _ p o s i t i o n s _ v e l o c i t i e s
(vals , [0 . 0 f o r _ in range (7)]) # f o r impedance control
r . s e t _ j o i n t _ p o s i t i o n s (dict (zip (r . joint_names () , vals)))

42

5.11 TEST_PANDA_MOVE.PY

count += 1
rate . sleep ()

i f __name__ == ’ __main__ ’ :
try :

main ()
except rospy . ROSInterruptException :

print ("Program interrupted before completion")

43

5. APPENDIX

5.12 panda.py
! / usr / bin / env python
import roslaunch

class Panda () :
def _ _ i n i t _ _ (s e l f) :

uuid = roslaunch . r l u t i l . get_or_generate_uuid (None, False)
roslaunch . configure_logging (uuid)
s e l f . launch = roslaunch . parent . ROSLaunchParent (uuid , [
" /home/hannes/ catkin_ws / src / motion_scripts /launch/ init ia l ize_panda . launch"])
s e l f . test_launch = roslaunch . parent . ROSLaunchParent (uuid , [
" /home/hannes/ catkin_ws / src / motion_scripts /launch/test_panda_move . launch"])
s e l f . panda_running = False
s e l f . test_running = False

def connect (s e l f) :
i f not s e l f . panda_running :

s e l f . launch . s t a r t ()
s e l f . panda_running = True

def disconnect (s e l f) :
i f s e l f . panda_running :

s e l f . launch . shutdown ()
s e l f . panda_running = False

def start_test_move (s e l f) :
i f s e l f . panda_running and not s e l f . test_running :

s e l f . test_launch . s t a r t ()
s e l f . test_running = True

def end_test_move (s e l f) :
i f s e l f . panda_running and s e l f . test_running :

s e l f . test_launch . shutdown ()
s e l f . test_running = False

44

5.13 TEST_PANDA.PY

5.13 test_panda.py
! / usr / bin / env python

import rospy
import sys
sys . path . append(" /home/hannes/ catkin_ws / src / motion_scripts / gui ")
from items . panda import Panda

def main () :
rospy . init_node (" test_panda ")
panda = Panda ()
panda . connect ()
rospy . sleep (20)
panda . start_test_move ()
rospy . sleep (20)
panda . end_test_move ()
panda . disconnect ()

i f __name__ == ’ __main__ ’ :
try :

main ()
except rospy . ROSInterruptException :

print ("Program interrupted before completion")

45

DEPARTMENT OF COMPUTER SCIENCE | LUNDS TEKNISKA HÖGSKOLA | PRESENTED 2022-05-11

BACHELOR’S THESIS Generating user interfaces for ROS-based robots
STUDENT Hannes Lundh
SUPERVISOR Jacek Malek (LTH)
EXAMINER Maj Stenmark (LTH)

Is it possible to simplify the creation of
Graphical User Interfaces (GUI) for
ROS-based robots?

POPULAR SCIENCE ARTICLE Hannes Lundh

Creating GUIs has always been a hassle, where you have to choose between many
different languages, packages etc. And when you finally have chosen one you have to
learn how they work even if almost everything is not relevant for you. This project
aimed to simplify this for specifically GUIs for ROS-based robots.

A quick explanation of what a GUI is would be
to say everything a user sees and interacts with
on their devices screen is a GUI. In order to sim-
plify the process of creating a GUI, I first started
by looking at a GUI that was already in use at
the Robot Lab at LTH. The purpose of looking
at the GUI was to see what basic building blocks
were necessary for a GUI that is used for con-
trolling robots. From those basic building blocks
a Domain-Specific Language (DSL) could be de-
fined. A DSL could be explained as a language
created for one purpose only, in this case creating
GUIs.
A second part of the project was also controlling a
robot from the GUI. In order to test if it was pos-
sible to control a robot from the GUI a test GUI
was created. While the GUI created was not made
from the DSL, as the translation between the DSL
and the chosen language and packages is not yet
made, it was made such that the DSL would be
able to create it. Since I had no access to a real
robot, a simulation was used instead. The test
GUI showed in Figure 1 has a Test UR5 button,
UR5 being the robot. When pressed a simulation
of the robot starts and runs through a program

Figure 1: Screenshot of the GUI

after which it closes the simulation.
The project has shown that the defined DSL can
be used to create a GUI capable of controlling a
robot. However, for it to be used some more work
needs to be done. The translation between the
DSL and the chosen langauge and packages is still
not completed, and for every new robot a ROS
controller for that specific robot needs to be cre-
ated. Once that is complete, this project will help
everyone who wants to create a personalized GUI
for controlling their ROS-based robots.

	Introduction
	Background
	State-of-the-art when designing a DSL and GUI
	Goals

	Methodology
	Method
	DSL description
	GUI Structure
	Evaluation

	Tools
	ROS
	Kivy

	Results
	DSL
	ROS
	Example GUI DSL code
	Portability
	GIT

	Discussion
	Summary

	Bibliography
	Appendix
	main.py
	divide_layout.py
	robot_program.py
	command_buttons.py
	button_callbacks.py
	initialize_ur5.launch
	test_ur5_move.py
	ur5.py
	test_ur5.py
	initialize_panda.launch
	test_panda_move.py
	panda.py
	test_panda.py

