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Abstract

The efficiency of software systems can be negatively affected by database latency
which can take a significant fraction of execution time. To mitigate run-time
latency, different levels of caching can be introduced with different strategies to
load the cache.

In this thesis such strategies are investigated, mainly focusing on lazy load-
ing and parallel preloading of the cache. We implement some of the identified
strategies and conduct an experimental analysis of the performance.

All of the strategies are implemented using Java together with the Hibernate
ORM framework. The caching strategies could be translated to any other ORM
framework.

After running experiments and comparing the collected measurements we
conclude that one of the lazy loading solutions relying on Hibernate proxies is
inefficient. Another lazy loading solution, which is based on lookup tables, effec-
tively moves the latency from startup to run-time while also removing the cost
of fetching data preemptively. The solution using inter-query parallelism with
parallel preloading achieves efficient startup and run-time latency when all data
is not requested from the cache directly at startup.

In conclusion, the caches using parallel preloading and lookup tables perform
the best and are recommended to be used.

Keywords: Databases, Hibernate, ORM, In-memory Cache, Java, Lazy Loading, Inter-
query Parallelism
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Chapter 1

Introduction

Each day a massive amount of data is generated and gathered about the global economy and
the markets around the world. As a result, large financial corporations have played an impor-
tant part in the advancement of the field of database management. Trillions of pieces of data
are used each day in the financial sector for analysis, decision making, risk management, and
more [21]. As the amount of data collected has been growing steadily during the last decades
[12][31], many companies have invested in the research of new technologies to improve the
efficiencies of databases and the handling of a large amount of data. When new technolo-
gies and methods continuously emerge, companies have to evaluate them and adapt for their
services to be efficient and stay relevant.

At Nasdaq, a world-leading financial service corporation, the importance of efficiently
handling large amounts of data is growing each day. The company has been one of the main
drivers of the digitalization of the world’s markets and the financial system as a whole, as
it was the first company in the world to establish an all-electronic exchange in 1971 [38].
Nasdaq has transitioned with the market to be more of a technology company today. The
company’s technology stack is not only used to run its own exchanges but also customers’
exchanges and other backbone components of the world’s financial markets. It is important
that Nasdaq’s products are fast and efficient as the world of finance moves in small fractions
of a second, even as low as nanoseconds [50]. The amount of data processed each day is also
huge as, for example, the daily number of transactions are in the hundreds of millions [21]. An
implication of this is that the way the data is handled and the use of database management
system is of importance to not be a bottleneck of the whole system.

The product that has been examined during this thesis is used for risk mitigation and is
part of the core of the financial infrastructure. As the market moves in fractions of a second
it is important that this product is fast and reliable. Risk mitigation is key for a stable and
well-functioning market. What if the service crashes and needs a failover? How much time
will it take to get it up and running again? It could take a long time if there is a massive
amount of data that has to be loaded initially and the handling of the data is poor.

The way the data is loaded and handled by the application plays a significant role. In this
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1. Introduction

thesis, we will call the load between the database and the application at startup an initial
load. If there is an initial load between a database and an application that takes too much
time, as the size of the data grows, it could create issues and bottlenecks. The current solution
has been examined and new strategies have been proposed that handles the load to the cache
more efficiently.

The thesis starts with a description of the investigated problem and the relevant theory
used in chapter 2. In chapter 3 the method used is laid out, together with a more detailed
description of the system and motivation behind the experiments that were conducted. In
chapter 4 results are gathered by investigating the initial solution, proposing new solutions,
and finally comparing all implementations with experiments. The discussion based on these
results is done in chapter 5, together with subsections about future work and possible validity
threats. The conclusion can be found in chapter 6.

10



Chapter 2

Background and Related Work

2.1 Problem Statement
Nasdaq has many big internal projects with millions of lines of code. However, only a minor
part of the code base is related to our master thesis work. In figure 2.1 we present a simplified
view of the system architecture.

Figure 2.1: A simplified view of the system architecture. The area
that this thesis focuses on is marked by a red ellipse.

The application we are working with is built up by several micro-services, it is one of
these micros-services in particular that is investigated in this thesis. The product is a software
solution used by many customers worldwide but the application is in most cases hosted at the
customers’ hardware- and network infrastructure. Generally the service is not stored on the
cloud, although there is a possibility that the product will be moved to the cloud in the future.

11



2. Background and Related Work

There are also different ways to interact with the product, for example some customers use
an API and others use a web-browser GUI. Since this report, focuses on the startup process of
the back-end we are not concerned with data loading between the user and the micro-service
and therefore we do not provide details on how the customer interacts with the application.
The part of the codebase and architecture that we will be investigating is marked by the red
ellipse in figure 2.1.

The code in the repository is written in Java and much of the code, especially the code
that we are working on, is focused on database operations. For the database operations, the
company uses a framework called Hibernate which is described in detail in section 2.2.3. The
database management system used for this product is Oracle Database. Many of the services
have their own centralized database where most of the data they access is stored. However,
the services do sometimes access data tables located in other databases. All of these databases
are running on one host, while the services are running on another, as can be seen in figure
2.1. From the perspective of our master thesis, we focus on loading of data from one database
into one service.

An issue with today’s solution is that loading the data from the database into the program
can take a lot of time when there is a large amount of data. This is specifically at startup and
restart when everything needs to be loaded. Many of the services have implemented caches
in order for any loaded objects not to be loaded again during program execution. These
caches are loaded at startup which takes a considerable amount of time. Some of the database
tables can contain millions of rows and if all services need to restart and load all of the data
from several of these big tables into its cache, the startup process can take a long time. To
limit the scope we will be focusing on the initial load process in the micro-service previously
mentioned, but it is still important to understand the bigger picture. Loading a table which
takes 30 seconds may not be an issue on its own, but loading multiple tables for multiple
services for 30 seconds could result in unacceptable startup time.

2.1.1 Research Questions
Based on the presented scenario we arrive at the research questions given below. In RQ1 we
analyze the given problem using debug tools and a statistics API attempting to find causes
of issues that can be mitigated. RQ1 provides needed insight into the issues present in the
current solution. This information is used as input to RQ2 where we research tools and
methods that can be used to manage and alleviate the identified issues. In RQ3 the different
potential solutions that we identified in RQ2 are compared by running experiments.

RQ1. What are some of the major causes of inefficiencies in data loading for the case com-
pany?

RQ2. Which strategies can be used to alleviate the issues in data loading identified in RQ1?

RQ3. How do different loading strategies compare in terms of efficiency and maintainabil-
ity?

12



2.2 Object-Relational Mapping

2.2 Object-Relational Mapping
Relational database management systems (RDBMS) have been around since the 70s [2]. Even
though newer technologies, such as non-relational databases (NoSQL), have grown in pop-
ularity, RDBMS are still actively used today. The reason for this is that RDBMS has been
proven and used in applications built with enormous investments behind it, especially his-
torically. RDBMS also has an understandable format and consistency properties that most
newer database systems do not have [2].

The reason databases are used in the first place is that data needs to be persistent, and
the persisted data needs to be managed efficiently. Data would have little use if it was erased
each time a system shutdown. In object-oriented applications, persistence is key to making
objects outlive the processes that created them [4, p.3].

An issue with relational databases in combination with object-oriented programming
languages is the mismatch between the paradigms way of storing data. This is called the
Impedance Mismatch Problem and refers to that objects are built up by data, behavior, and
inheritance, while relational databases are built up by tables and relations between them [55].
To mitigate this issue a technique called object-relational mapping (ORM) can be used [49].

An ORM creates a persistence layer, between the database and the applications, that
solves this mismatch problem for developers. The layer can populate the application with ob-
jects based on the data from the database, and also gives the developer the tools to persist the
objects in an object-oriented way. This way the developer does not need to interact directly
with the database through SQL, instead the database operations are performed indirectly by
interacting with an ORM framework in the programming language of the application. This
also comes with the advantage that it is easier to switch database systems if needed as the
logic of communicating with the database is in the persistence layer [55].

There could be downsides to the use of ORMs. As with almost all higher-level tools they
are usually not optimal for pure performance compared to other lower-level frameworks, such
as JDBC in this case [20]. Adding a layer naturally leads to adding overhead. Additionally,
much of the details are hidden by the higher level of abstractions and this can make it harder
for the developer to write performance-optimized code. Other issues and anti-patterns could
arise which in return could impact the performance of both the database and the application
[49].

2.2.1 Data Access Object
In object-oriented software, it is a good practice to separate responsibilities between objects
by adding layers, for example, the persistence layer that has been mentioned above. There
are many well-known software patterns that can be used to achieve this separation. One
such pattern that is widely used is the Data Access Object (DAO) pattern. The DAO pattern
separates the business logic with the logic needed to access the data store for persistence. With
these layers, the application becomes more modular and simpler to maintain. The pattern
can be described as follows. For each Java object that needs persistence, a DAO interface
with needed Create, Read, Update, Delete (CRUD) and find operations is created. Then
implementations of this interface can be written depending on what database management
system is used and how the communication should be done. This means that the type of
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2. Background and Related Work

database and/or communication to the database can be changed without the business layer
or the underlying Java object having to be changed [32].

2.2.2 Java Persistence API
Object-relational mapping is just a concept in itself. ORM frameworks need to be used to
apply this concept in applications. For Java there are some frameworks available, for example,
Hibernate, which is open source, and Oracle’s TopLink [25][44]. Each of these frameworks
have its own features and ways to obtain ORM functionality. However, the community has
created a standardization called Java Persistence API (JPA) [43]. JPA is an interface that
makes an application independent of the ORM tool used, so if a developer uses the JPA
interface, the work needed to switch between ORM frameworks like Hibernate and TopLink
is minimal [8].

The JPA specifies methods and collections that are to be used, and the frameworks have
their own implementations of these. To map Plain Old Java Objects to the relational database
annotations or XML files are used. The annotations give the ORM tool the necessary meta-
data for the transformation between the domain models [5][16].

2.2.3 Hibernate
As mentioned there are frameworks that are used for the concept of Object-relational map-
ping. Hibernate is one of the most popular frameworks for ORM in Java [25]. Hibernate is
an open-source project that was founded by Gavin King in 2002 and has today grown to be
more than just an ORM as it has tools for other types of domain models [25][39].

Hibernate uses metadata for the transformation between the different domain models.
The metadata is provided by the developer by using annotations in code. As mentioned
Hibernate has support for the JPA standard, but it also has its own native API if the developer
prefers it. If the native API is used, the applications are more locked to Hibernate, as it will
be more complex to switch to another ORM tool. Hibernate’s native API also allows the
developer to use raw SQL queries if needed [5].

Hibernate uses Java Database Connectivity API (JDBC) and other existing Java APIs to
create the persistence layer. JDBC is the API used to connect to the relational databases,
which means that every database that has a JDBC driver is supported with Hibernate. As
mentioned before the persistence layer itself creates the ability to switch databases in a less
complicated way [55].

In Hibernate, queries can be expressed in a programmatic way using criteria. The devel-
oper can build up the criteria by choosing which table or tables to target, and optionally add
other functionality like order by and filters. There is also a way to only load a specific set of
columns from a table, which is called a projection. As a standard, this will return an array
of objects, where one object is a column [24]. However, a functionality called result trans-
former can be used to map the columns to an object. The standard is to map it to a so-called
Data Transfer Object (DTO). The DTO stores the returning values by mapping the column
specified in the projection to its own fields. This will limit the use of typecasting and let the
code move around data in a more standardized way [48].

Hibernate works with something called sessions which represents an abstract unit of
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2.2 Object-Relational Mapping

work. A session is similar to a database transaction but a session can span multiple transac-
tions [22].

2.2.4 Hibernate Built-In Caches
Hibernate has built-in functionality for caching data. These caches can be split into the
primary cache and the secondary (or second-level) cache. The primary cache is connected to
a Hibernate session and is mandatory, it cannot be deactivated. Hibernate sessions are often
opened and closed with transactions. As transactions are short-lived the primary cache does
not add that much performance boost, it is more used to keep the session and the database
synchronized [29].

The secondary cache is not mandatory and has to be activated by the developer. The cache
requires a third-party implementation to work, for example, EhCache. This cache is not
connected to a single session, instead, it caches for the whole application process. Therefore
the cached data is not deleted when a session closes, it lives on together with the program.
If the second-level cache is used, a session will first check its primary cache. If the data is
not in that cache it will check the secondary cache before having to request data from the
database. The second-level cache can therefore improve the performance of the program with
a decrease of the amount of calls to the database [29].

To access the entities stored in the second level cache the developer needs to access that
entity directly by using its id [23]. Therefore, it will not work directly on queries. There is
however an option that can be activated as well alongside the secondary cache that caches
queries. This works well if the same queries are executed repeatedly, or if the data is not
changed. However, the overhead of using this in other scenarios can impact the performance
of the application negatively, and therefore it is deactivated by default, and should not be
used for most applications [23] [29].

2.2.5 The N + 1 Problem
Hibernate and other ORM frameworks help the programmer immensely since it handles
many aspects of SQL querying and mapping of data to Java objects. But as already mentioned
there are some drawbacks of higher-level ORM frameworks. It should be noted however that
Hibernate allows different ways of making requests to the database. If we want to specify a
native SQL query, to avoid redundant extra queries, that is completely possible. Nonetheless,
when working with Hibernate we aim to simplify the interface to the persistence layer, and
therefore one usually does not write native SQL unless problems with ordinary Hibernate
queries have been identified. As an example, a common problem that can arise in this case is
the so-called N + 1 problem [28][4, p. 286–289]. We will illustrate the N + 1 problem with
an example.

Consider a scenario with a one-to-many relationship. For example, we can have one
table for universities and another for students. For the sake of the example, we assume that a
student can only attend one university at a time but every university can of course have many
students. The number of universities is denoted by N . When storing the tables in a database,
this would normally result in each student having a column, acting as a foreign key, with the
university name.
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2. Background and Related Work

Now let us say that we at some point are interested in printing out all students for every
university. In Hibernate code this could look something like shown below.

List<University> universities = session.createQuery("From University",
University.class).getResultList();

for (University university : universities) {
List<Students> student = university.getStudents();
for (Student student : students) {

System.out.println(student);
}

}

In this scenario, Hibernate will fire one query to the database to get the list of universities.
But then for each of the N universities, there will be one query collecting the list of students
at that university. Hence this is called the N +1 problem. Note that if we would have written
native SQL queries it would have made no sense to make this many queries. Instead, one
query joining the two tables would have been sufficient and much faster.

It is possible to solve the N + 1 problem in Hibernate in many ways. For example, the
first line in the previous code example can just be switched to the code in the listing below.
One can easily check that this solves the issue by using Hibernate’s built-in statistics tools for
analysis, see 2.2.6. Since we can solve the problem it is not a deal-breaker, but it is something
that is easily missed.

List<University> universities = session.createQuery("From University u
JOIN fetch u.students", University.class).getResultList();

The previously mentioned DAO pattern is another layer of abstraction on top of Hi-
bernate. Again this means that our objects are more conveniently used but the cost is that
problems such as the N + 1 problem could be harder to identify.

2.2.6 Hibernate Statistics API
In every subcategory of computer science, metrics and statistics are essential for developing
any product that runs efficiently. To quote one of the most well-known statements in com-
puter science made famous by Donald Knuth: "Premature optimization is the root of all evil
(or at least most of it) in programming" [33]. Premature optimization leads to spending time
on improvements that in the end have very little to no impact. In a scientific report, tools
and metrics can be even more important since it is needed to back up any conclusions.

Hibernate provides a built-in statistics API to collect metrics on the database operations
performed. This can be information such as the number of JDBC statements executed and
the time spent on a particular query. These statistics can be used to analyze performance and
avoid issues such as the N + 1 problem.

2.3 Incremental Loading
Incremental loading, also called delta loading or incremental querying, is a term that is used
to describe the concept of loading data in smaller batches in intervals. This is compared to a
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full load where we would load everything at once in a big query [7].
The purpose of using the concept of incremental loading is that a full load of all data

makes the application unresponsive for a long time while the data is fetched. When load-
ing data incrementally the user can access the data fetched so far while new data can be
fetched with only a small latency for each query. We should point out that incremental load-
ing will lead to a larger number of queries. This likely leads to a longer execution time for
the complete loading process than if we would load everything in one big query [4, p. 14].
Still, splitting up the loading process into several queries, each with short latency, can be less
disturbing to the user.

2.3.1 Change Data Capture
Incremental loading is often used in Extract Transform Load (ETL) systems. ETL can be sum-
marized as a way of loading data from multiple heterogeneous data sources such as databases
into one big data warehouse. Incremental loading is in ETL systems used as a method of
propagating changes from one database to another. This way it is not needed to load all data
from the source when updating the target, we only need to load any new changes since the
last time we synchronized the databases [7][30].

Change Data Capture (CDC) is the terminology used for the method of capturing the
differences in the source and target data [7], it is these differences that will be propagated
from one database to the other. There are many different implementations of CDC. One
method is to use a log of changes since the last load. This can be either the DBMS internal
logs or logs explicitly managed by the developers. Another way is to use a separate column
with a watermark such as a timestamp or an incremented number to identify when the row
was last updated. Lastly, you can use triggers to log or mark the rows that were changed since
the last load [7].

In this thesis, we are not working with ETL. We are moving data into the program mem-
ory as Java objects, instead of moving data from databases or other sources into another
database which is typical in an ETL process. Another point of difference is that when talking
about CDC the two sources of data are usually mostly synced, and the usually relatively small
differences will be captured and then completely fetched to the other data source [30]. In our
case, we are investigating initial loading which means that we will start from zero data in our
program memory. The similarities are that we are still working with two sources of data and
we could split up the initial loading process into fetching data in smaller batches. In that
case, we could use methods of CDC to detect differences between source and target.

2.3.2 Lazy Loading
ORM frameworks like Hibernate allow the programmer to specify different strategies re-
garding when to load data from the database. As the frameworks make up a connection
between an object and its representation in the database the question is when the framework
should fetch the data to populate the object. The two main strategies can be split up into
eager and lazy. The eager strategy fetches all the data directly. This could cause issues if the
amount of data is huge. The load will take time, and the application might also load a lot of
data it will never use. However, the number of queries will be reduced. The opposite of eager
is the lazy strategy. With this strategy, the application only fetches the data when it is used.
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This means that the use of an object might lead to an execution of a query unless the object
has been loaded from the database before and cached. Because of this lazy loading can lead
to the previously described N + 1 problem [54]. As eager loading loads all objects directly,
and does so with larger but fewer queries, the network round trip time is reduced compared
to fetching one object at a time. On the other hand, lazy loading decreases network traffic
by not fetching data that is never used [10].

It should be pointed out that there are many strategies that are a combination of eager and
lazy fetching. For example, the default strategy in Hibernate is to fetch the object requested
eagerly, directly upon request, but it uses lazy fetching for any collections or associations to
other tables that are members of the object [18].

Since the application does not load everything at once, but a little at a time only when
asked for, lazy loading is one way to achieve incremental loading. The startup time will be
significantly reduced, but the latency of loading from the database comes during run-time
instead when the application asks for data that has not been cached. Eager loading could
avoid this latency as the data has already been fetched when asked for.

Hibernate Proxies

Dynamic proxy classes are a feature in Java and this type of classes implements a list of inter-
faces specified at run-time. When there is an invocation of a method on the proxy object it
will be sent to the real object that the proxy class implemented the interface from. If a proxy
is created using the real class User, as an example, the following statement will return true:
proxy instanceof User. It will look like the proxy is the real object, and this can be used by APIs
and frameworks [41].

The way that Hibernate implements lazy loading is by the use of proxies. As mentioned
Hibernate by default uses lazy loading for associations to other tables by an entity. An entity
can also be loaded as a proxy, not just the associations. To keep track of whether the associate
entity has been loaded or not a proxy object is used. If a function call is made on the proxy,
it will have to communicate with the real object. To be able to do this Hibernate needs to
retrieve that object’s data from the database. However, to do this conversion the application
needs to be connected to a Hibernate session, or it will throw an exception. Therefore, the
developer needs to understand when and where it can "unproxy" a proxy. To reattach a proxy
to a Hibernate session, as Hibernate sessions should be closed when leaving the persistence-
layer, locks with lock mode NONE can be used [26].

In figure 2.2 we can see what a proxy representation would look like for the class User.
The proxy works like an interface between the method calls and the real object, while also
knowing what to retrieve from the database when it is time to load the object data. If the
proxy has not converted yet and the proxy gets a method call, like in figure 2.2, the proxy
will communicate with the database to load the object data. After this load, the proxy can
be converted into the real entity.
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Figure 2.2: A figure representing a Hibernate proxy

Caching Strategy
Lazy loading is a strategy that caches can use to load if and only if the data is going to be
used [34]. This could be done without ORM-frameworks. Instead, the cache itself could
keep track of whether it has loaded or not. The way to achieve this is to set up the cache so
that it can check if it has cached the data the application asks for. If the requested data is in
the cache we have a cache hit and can simply return it. However, when the requested data is
not in the cache we get a cache miss. Then the cache needs to load the requested data from
the database, insert it into its internal structure and return it to the application. This way,
only data that has been asked for by the application are loaded and stored by the cache, in
other words the cache is lazy. The figure 2.3 shows how the cache works in a simple way by
illustrating cache hits and misses.

Figure 2.3: A figure showing cache hits and cache misses

2.3.3 Pagination
A third way to split up the full load process into smaller loads is to have explicit pagination
of the database tables. Pagination means that we would split up the table into pages. We can
split the table up based on any column that we can order by such as id, timestamp, etc. The
user will explicitly have to request data from a certain page. This will decrease the size of the
queries and should definitely decrease startup time [9]. But pagination only works in some
circumstances where the user is fine with only using parts of the table at any moment. If the
user always needs to access the full table pagination is not possible.
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2.4 Parallelizing Database Queries
In many areas of computer science, parallelism is a commonly used approach to enhance
performance. When parallelizing a sequential algorithm the level of concurrency needs to
be decided and the potential of using a parallelized implementation depends on the task at
hand. One limit of concurrency is the number of hardware threads available at the machine
running the task. Another limit is the nature of the tasks at hand, i.e. how can we split the
task up into several sub-tasks running in parallel? This partitioning is commonly known as
decomposition [15]. If these sub-tasks transfer data over the network, for example database
queries, the network will be another limiting factor. Additionally, dependencies between
tasks limit how big fractions of a program can run in parallel and how much overhead will
be spent on synchronization between threads. Amdahl’s law is a well-known theory that
states that the gain in performance is limited to how large a fraction of the program we can
parallelize [1].

2.4.1 Parallel Query Processing

The DBMS used is responsible for transforming high-level queries into execution plans that
can be efficiently executed. Many DBMS provides methods to exploit parallelism. We can
divide the query processing parallelism into two forms: inter-query parallelism and intra-
query parallelism. Inter-query parallelism means that we can run several queries in parallel
while intra-query parallelism refers to dividing one query into several subtasks which can run
in parallel in the query execution plan [46].

As mentioned in 2.1 the case company is using Oracle DB as their DBMS. Oracle DB
supports multiple users accessing the database at the same time, i.e. inter-query parallelism
[40]. Intra-thread concurrency is also supported [42].

2.4.2 Parallelism in Hibernate

As always when parallelizing a program it is important to consider thread-safety both in
the application source code and in all third-party libraries used. Hibernate supports multi-
threaded applications but certain rules must be followed [22].

A Hibernate session factory is thread-safe while a session is not. Therefore it is important
to create a new session for every thread. When working with lazy fetching strategies extra care
must be used. Each proxy saves a reference to the session used when the proxy was created.
Therefore, if a proxy is created by one thread and later on initialized by another thread you
will have to reattach the proxy to a session owned by the thread initializing the proxy [22].

By running Hibernate queries in parallel instead of running them sequentially hardware
and network resources can be utilized to a larger extent. Inter-query parallelism can also
be exploited at the database. Finally, any operations in the Hibernate framework or the
application source code that is interacting with Hibernate may also benefit from parallelism.
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2.5 Related Work
This section summarizes a couple of sources from previous research that are relevant to the
scenario investigated in this master thesis. There are many research papers investigating
database performance and possible improvements. In fact, so much that through the course
of our master thesis work we have several times felt that it can be quite hard to navigate
through all the literature to find the scenarios and methods that are most relevant to us.

Several research papers such as [37], [36] and [35] provide guidelines for efficient SQL
querying, both from the perspective of a database administrator and from the perspective
of a developer. In this report, an ORM framework is used which abstracts away parts of the
lower-level functionality compared to pure SQL. However, since the higher-level frameworks
like Hibernate are dependent on lower-level frameworks using SQL it can still be necessary
to understand the efficiency guidelines of the lower level-frameworks to achieve high perfor-
mance. In [13] Colley and Steiner describe how previous well-known SQL tuning guidelines
relate to performance tuning when using ORM frameworks.

There is also a lot of previous work studying performance in Hibernate in particular.
We have used the book in [4] made by Bauer and King as a foundation for general knowledge
about the Hibernate framework. Hibernate also provides a lot of online documentation with
guidelines on how to efficiently use the framework [18]. In [20], the performance of Hibernate
is compared to its lower-level counterpart JDBC.

As mentioned in section 2.3.1 there has been previous research, such as [31][30][7], on how
to limit the size of data transferred between data sources in ETL systems with Incremental
loading. We have not found any papers which use CDC together with Hibernate although
the concept of loading smaller chunks of data instead of a full load is present in the research
papers and online documentation about lazy loading and pagination.

Lazy loading is common practice in Hibernate and many other frameworks. As such,
there is much research on how to use it most efficiently and how it compares to eagerly
loading data. [10] and [54] are both examples of such papers.

There is a lot of previous research regarding parallelism in database systems but most of
them are focused on parallelism from the perspective of the DBMS engine, for example [11]
and [51]. In other words, researching how DBMS engines can handle multiple requests at once
and how they can split up one query into several parallel parts. We have not found detailed
research regarding performance benefits due to parallelizing a number of database queries
rather than running them sequentially from the perspective of the application. However,
the Hibernate documentation and community forums indicates that this is an established
strategy [22].

In [56] Zhou et al propose a technique of preloading a database cache with multithreading.
In their scenario, they are focusing on simultaneous multithreading and parallelism at the
DBMS engine but a similar technique can be applicable in our scenario as well. Kohler and
Specht investigated database cache loading in [34] and how it can be enhanced by using lazy
fetching strategies and parallelization techniques.

The previous research conducted in our area that we have just mentioned will be used as
a foundation to provide a solution to today’s problem when answering RQ2. Exactly which
of the methods will be used and how it relates to previous research depends on the answer to
RQ1 and is discussed further on in the report.
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2.6 Contribution
2.6.1 Scientific Contribution
By conducting this research and attempting to solve the issue present at the case company
we provide guidelines for others to do the same. In particular, the methods we propose in
RQ2 should be possible to utilize for any other organization loading large amounts of data
from a database into their application data structures at startup.

Compared to the previous research discussed in 2.5 we aim to provide a relatively direct
approach from the perspective of a software developer. Many of the papers we investigated
are only focused on the theory concerning small sub-parts rather than the whole process of
loading data to an application. Additionally, many of these papers describe how something
works, from a highly theoretical perspective, rather than what the developer can actually do
about it in practice. In this master thesis, we investigate implementations at a real company
and we have to practically integrate our solutions with the other parts of the codebase.

2.6.2 Distribution of Work
As per requirement at our university, we need to describe in a clear manner who did what in
our master thesis work. We have been working very closely together with communication on
each section. Still, we have divided the work between us so that one of us is mainly responsible
for each section. There are a few exceptions where both of us has contributed equally much.
In table 2.1 we outline who is mainly responsible for each section.
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Section Ivar Henckel David Söderberg
Introduction X

Problem Statement X
Object-Relational Mapping X X

Incremental Loading X X
Parallelizing Database Queries X

Related Work X
Contribution X

Method X
System Overview X

Performance Measurement in Java X
Experiment X

Maintainability X
RQ1 - Identifying Inefficiencies X

RQ2 - Proposed Solutions X X
RQ3 - Gathering Experiment Data X

Validity Threats X
RQ1 - Interpreting Inefficiencies X

RQ2 - Dissecting Implementations X X
RQ3 - Comparing Solutions X X

Future Work X
Conclusion X

SQL Script to Generate Data X
Hibernate Statistics Command X

Mutual Code X
Hibernate Proxy Cache X

Lookup Table Cache X
Asynchronous Preloading Cache X

Experiment Code X

Table 2.1: Distribution of work. The person mainly responsible for a
section is marked with an X. If both of us are approximately equally
responsible both persons are marked with an X.
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Chapter 3

Approach

3.1 Method
The methodology used for this thesis is action research [17]. The action research process can
be split into two stages, examination and practical experiments. For the first stage, the re-
searchers analyze the problem situation to formulate theories that could be used to solve the
issue. These theories are then used in the second stage where the practical attempts are done.
Any effects caused by changes in the implementation, based on the theories, are then evalu-
ated. The result of the evaluation is then analyzed, and if the problem is still there, or other
issues have emerged, the process will restart at the first stage. This means that action research
is an iterative process.

Action research is a common methodology when working with research of a problem-
solving nature. As software engineering is rooted in problem-solving this method of working
is often suitable in computer science research [3]. A significant benefit of using action re-
search compared to other scientific methodologies is the flexibility gained due to the iterative
approach. When attempting to solve a problem, the circumstances related to the issue could
change as one progresses on the path to solving the problem. The understanding of the issue
will most likely increase as one implements and evaluates various solutions. Additionally,
when new solutions are implemented other problems can arise [17].

The steps in action research can be related to our research questions. The first part of
action research examines the problem at hand and identifies which methods can be used to
solve the problem. We have divided this part into RQ1 and RQ2 where answering RQ1 pro-
vides detailed information about the issue we are trying to solve and RQ2 identifies different
approaches on how the issues can be managed and solved. The second part of action research
is to use experiments to evaluate the implementations from the previous steps, this is done
when answering RQ3. As expected we answer these three questions with an iterative work-
flow. When running the experiments to answer RQ3 we may get more information on what
the underlying issue is, leading to improvements in RQ1. Although we will be working with

25



3. Approach

the questions in an iterative manner, we will not present our iterations explicitly unless it is
needed to clarify the problem-solving process.

When working with this methodology, and problem-solving in general, it is often difficult
to keep discussions and conclusions unbiased since the researchers are evaluating solutions
that they themselves implemented. Therefore as we make progress through this report we
regularly let our supervisors at the university and at the case company review any implemen-
tations, experiments or discussions we make.

3.2 System Overview
3.2.1 Test Environment
To run the experiments a test environment provided by Nasdaq is used. These test nodes
(as they are called by the case company) are set up with a customer-specific configuration to
get an environment close to what it would look like in production. Each node is connected
with its own database, which has some initial data. The provided data was not sufficient to
replicate the quantities of data a production environment would have. Therefore, we had to
generate data to get a more realistic view of how large the quantities could be in production,
see 3.2.4.

The environments are running with the help of VMWare Virtual Platform with RedHat
7.9 x86_64 as operative system. It uses a 4x Intel(R) Xeon(R) Gold 6230R @ 2.10GHz CPU
with Java version 11 and Oracle Database version 19.0.0.

3.2.2 Application
The test environments have been configured to be able to easily install, update and run the
application. The application in itself uses a micro-service architecture. These services run
by themselves and can be shut down and restarted without the need of restarting the whole
system. When a service starts it will first go into the state of "running". However, it is fully
ready when it reaches the state of "server", the server will not answer any requests until this
state has been reached. Between running and server is where the initial load of all the data
takes place in the initial solution. The execution time of this initial load is one of the time
measurements that will be looked at.

The services also have commands that can be executed via the command line and this
is one way to communicate with a service. By using these commands we can tell a service
to do certain steps, for example, reload the caches. Such commands are used to start the
experiments described later on in section 4.1 and section 3.4.

3.2.3 Cache Service
To get a better understanding of the proposed solutions, given for RQ2 in section 4.2, the
cache service needs to be explained in more detail. The cache service is currently built up by
four different in-memory caches, one for each table that we want to cache. In the original
reference solution, each of these caches are initialized with all the data from the correspond-
ing table at startup of the service. This is called a full initial load as mentioned before. This
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original cache implementation is referred to as the Full Load Cache throughout this thesis.
Records in the caches can be added, removed, and updated during run-time. This means
that the application will by itself make sure the caches are up to date with the latest changes.
The cache service needs to be thread-safe as multiple threads could request, add, remove or
update data.

There are also three ways to retrieve objects from the cache by the application. Either the
application asks for all the records, records from a specific account, or just one record based
on an unique id number. We will name these ways of retrieving data getAll , getAccount , and
get respectively and these names will be used throughout the report.

To keep track of the data two data structures are used for each of the caches. The code
snippet below shows the two structures. The first called cache is the main structure and
holds all the entities. These can be found by their unique id number. The second structure
accountIndexMap is used to map the entities to a specific account. The class IndexKey is used
to map an account to a unique object. The class AccountIndex stores all the data related to a
specific account.

private final Map<Long, Entity> cache;
private final Map<IndexKey, AccountIndex> accountIndexMap;

3.2.4 Generating Test Data
Test data was generated to fill the tables used during the experiment phase. A SQL script
was developed to generate rows in the table that resembled production data, see A.1. Note
that the script has been masked to protect the internal system of the case company. Some
of the columns values would have more variety in a production environment. The script has
options regarding which table to insert values in, amount of rows to insert, and deleting all
generated rows if needed. This is to make it easy to test different sizes of data sets during the
experiments.

Through discussions with our supervisor at the case company, we have determined that
up to around 750 000 rows in each table is a reasonable size to test with. Using sizes up to 750
000 rows makes the issue apparent and at the same time it is not just an extreme corner case.
Some customers, but very few, have much larger databases. In our results we will however
experiment with tables of different sizes. Some solutions may be better at handling larger
tables while others are better at handling smaller tables.

3.3 Performance Measurement in Java
To run performance measurements in Java there are some things to consider to get more
accurate results. There are various factors that can affect each experiment, the Java Virtual
Machine (JVM), the garbage collator, the size of the heap, etc. Java is also not deterministic
at run-time, which means a Java program differs from run to run. The Just-In-Time (JIT)
compiler is an example of optimizations that occur at run-time, but the JVM also makes
optimizations that will affect the measurements [19].

To get more accurate experiments these issues must be kept in mind to get the best mea-
surements possible. First of all the program needs to "warm-up" by calling the method you
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want to benchmark a couple of times before the real experiments begin. There are plenty
of reasons for this, for example the optimizations by the JIT compiler and that Java classes
are loaded on demand, not when declared. However, the initial performance at the first run
could also be an interesting factor to look at, as this is something the Java program will have
to do in production as well [27].

The JIT compiler does not only create an issue with its gradual optimization of the pro-
gram. The optimizations it does could defeat the purpose of the experiment. Dead code
elimination is an example of an optimization that would do this. Dead code elimination
could occur when the returned object from a method call is not used, and therefore an opti-
mization is to eliminate the method call from the code. It could also lead to optimizations
where the method call is moved outside of the loop it is located in, constant propagation for
example. Therefore, we need to make sure the objects returned are used in such a way that the
JVM or JIT does not consider the method calls dead code or the objects as constants [14][27].

As mentioned the garbage collector could also affect the execution time while running
experiments. Triggering collections between runs could lower the cost of garbage collection
while running the experiment. However, letting the garbage collector trigger automatically
as usual could result in a more realistic result. Here the setup of the experiment needs to be
considered to get the most realistic experiment possible [19][27].

To measure time accurately System.nanoTime can be used and the behavior of this method
is dependent on the hardware. Linux uses the CLOCK_MONOTONIC system, which has
high precision when you use System.nanoTime [27]. The experimental setup that will be
used is RedHat’s operative system based on Linux, so System.nanoTime will be a good time
measurement function for the experiments.

3.4 Experiment
The experiments that are conducted will help to get a better understanding of the solutions
to be able to answer RQ3. Based on the proposed solutions from RQ2, we decided to run
two different parts of the experiment. The first part is to understand how much an imple-
mentation affects startup time. This is important as startup time was one main issue of the
initial solution. The second part of the experiment will be done during run-time. The dif-
ferent implementations will act differently during run-time which means the measurement
of the startup time is not enough to compare the solutions. For example lazy loading, as de-
scribed in 2.3.2, will move latency from startup to run-time. Therefore, experiments based
on different scenarios during run-time need to be tested to get a fair comparison of how the
implementations affect the program as a whole.

To measure how much the implementation impacts the startup time of the service the
log file for the service can be used. The startup time is calculated using the timestamps in
the log for the state changes of the service. This part is important as the proposed solutions
and the original solution differs in what has to be done at startup, and a slow startup time
is the main issue for the Full Load Cache when the data in the database is large. The startup
time will differ depending on the size of the underlying database. Therefore we will conduct
three startup experiments with 250k, 500k and 750k rows in each table.

The run-time scenarios cover all three methods used to retrieve data from the cache,
getAll, getAccount and get. The experiment will be conducted using both 250k and 750k rows
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in the tables to see the difference between the solutions depending on the size of the tables
in the database.

The experiments for the method getAll are listed in table 3.1. All tests will be conducted on
one database table as this is enough to measure the performance of the method. Experiments
1-3 test how the cache acts when none or some of the data has been previously accessed before
requesting all the data for the first time. Test 4 measures the time when getAll is called for
the second time. The reason for these experiments is that the proposed solutions will act
differently regarding how much will be loaded from the database based on what has been
previously accessed. We have decided to use 50% and 90% for test 2 and 3. 50% is used to
show how the cache acts when we have an equal amount loaded and not loaded. 90% is used
to show how the cache acts when almost all of the total data has been loaded into the cache.
To get 50% and 90% of the data previously accessed for tests 2 and 3 the chosen fraction of the
data is loaded with the help of get and the unique id numbers, at setup of the experiment. The
numbers that will be used are randomized to mitigate any effect the JVM or JIT optimizations
might have on the result.

1. Get all from one table, first time called
2. Get all from one table, first time called 50% previously accessed
3. Get all from one table, first time called 90% previously accessed
4. Get all from one table, second time called

Table 3.1: Experiment to test the functionality of getAll

The experiments for the method getAccount are listed in table 3.2. For each test it will be
one method call per run using a randomized account. The reason for the randomization is to
mitigate the impact the JVM and JIT have on the measured time. We want to run experiments
1 and 2 to see the difference between how the solutions compare if data has been previously
accessed or not.

1. Get account from one table, account not accessed before
2. Get account from one table, account accessed before

Table 3.2: Experiment to test the functionality of getAccount

The experiments for the method get are listed in table 3.3. Both these tests will work in
the same way as the ones listed for getAccount. Instead of randomizing an account, a valid
unique id number will be randomized to be used as an argument in the method call. The
reason behind the randomization is to mitigate the impact the JVM and JIT have on the
measured time.

1. Get entity from one table, not accessed before
2. Get entity from one table, accessed before

Table 3.3: Experiment to test the functionality of get
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In the pseudo-code below we can see the setup of how all the experiment scenarios will
run. For the whole experimental code, see A.7.

// 2 runs warm up + 10 runs experiment
for(12 runs):

Reset and setup cache (+ trigger garbage collection)
Start time
Run experiment
Stop time
Save the execution time
Use the returned data from the experiment

The first two runs will be to warm up the JVM, then each experiment will run 10 times
more. Between each run, there will be a reset and setup of the cache to prepare for the
experiment. We will trigger garbage collection after the reset of the cache so that the data
that has been cleared from the previous run can be collected. This will create a more realistic
scenario, as the cleared data would not be in the heap in production. To not get dead code
elimination or other optimizations that would impact our experiment in a negative way we
will make sure to use the returned data after we have stopped the time measurement.

As the JVM and the JIT compiler are non-deterministic, the whole experiment suite will
run three times, with a new invocation of the JVM each time. This will give a more accurate
total result. All in all each experiment will run 36 times including the warm-up runs. With
all measurements, we can calculate an average time per experiment. For the result of the
experiments, see 4.3.

3.5 Maintainability
Even though a solution is the most efficient it might not be the best to actively use depending
on the maintainability. Lower execution time can lead to satisfied customers in the short
term. But a higher level of complexity and a lower level of maintainability will lead to costs in
development and slower improvements in the future. Therefore, from a business perspective,
the gain in performance always has to be related to the cost of development.

Additionally, even though the original implementation and the solutions that we present
in 4.2 do not have a very high number of lines of code, the cache only serves as one component
in a bigger software project. In other words, if all smaller components have a high percentual
increase in lines of code the complete project will get a lot harder to maintain.

To answer this part of RQ3 we will calculate the number of lines of code. Lines of code
can be used as a predictor of the effort to maintain the code, because of the simple principle
that more code means more work and more bugs [47]. What should be pointed out though is
that lines of code itself is not an accurate metric of maintainability and should preferably be
used together with other metrics [47]. However, we use this metric as a quick overview and
not for a detailed comparison. To add depth to the discussion on maintainability we will also
consider the knowledge needed to understand each solution.

The number of lines of code can be calculated in different ways. We have chosen to
include all the classes and methods that are specific to the solution. Rows that are blank and
comments will not be counted. We will also not count rows that have to do with the logging,
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as they are not part of the functionality of the solutions. The number of import- and package
statements are not counted either since we do not want to disclose the internal frameworks
used. The same code style has been enforced to all solutions, which makes them comparable.

3.6 Testing
To test the proposed solutions we implemented commands that could be executed from the
command line. These commands were executed manually and can interact with the cache
while the application is running. No automatic tests have been developed for this thesis, and
we leave that for future work if any of the caches get integrated into production.

All of the three types of get requests, described in 3.2.3 have been tested individually as
well as requests for updating, removing and adding one entity to the cache. These requests
were also tested in different scenarios. All of the requests were tested both when requesting
data that did and did not exist in the database. Additionally, the get requests were tested
both when data had and when data had not already been cached.

For the proposed solution described in 4.2.3 some additional tests were run. This solution
is based on separate preloading threads loading data into the cache and the cache will act
differently depending on if these threads are finished or not. Because of this, we tested the
behavior described in the last paragraph both when these preloading threads were finished
and when they were not. To simulate the threads not being finished a Thread.sleep(long) was
added manually to the code.
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Chapter 4

Result

4.1 RQ1 - Identifying Inefficiencies
In this section, we attempt to answer RQ1. We collect different metrics to understand the
issue that is causing slow startup time at the case company. This investigation is started by
defining a suitable scope.

4.1.1 Scope
As always when analyzing performance issues it is important to define a suitable scope. If only
a very small part of the codebase and hardware is analyzed there will be a high risk that we
fail to see the bigger picture. Because of this, we may spend time researching and improving
something that is not actually a major issue compared to other performance bottlenecks. At
the same time many technology solutions, such as the one we are working with, are made up
of large codebases and many different types of hardware. In this case, it is also important to
use a suitable approach to narrow down the search for performance issues. Otherwise, every
small detail will have to be analyzed which would demand a much larger team of experts
and the budget to pay for them. Because of this, we begin by collecting more general and
higher-level statistics to narrow down our search for the issue and then go more and more
into detail.

There are usually many aspects of a large software project that can benefit from optimiza-
tion. But for this thesis we limit the scope to cache response time latency during startup and
run-time, since that is something that the case company considers a priority.

An application communicating with a database over a network could have a slow startup
process due to inefficient network- or hardware capacity. In that case, the issue could perhaps
be solved by just buying new hardware. Of course, one could not expect that the newest and
most expensive equipment is always being used. Still, we can expect that hardware- and
network infrastructure is set up to match business requirements to a reasonable extent.
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As mentioned in section 2.1 Nasdaq is only hosting the service with network and hard-
ware to a small extent, most of the customers have their own setup. Therefore it is not a
feasible solution, in this case, to just buy a more expensive network infrastructure. If we
instead solve the issue with software the solution would automatically be propagated to all
customers.

Since increasing network bandwidth is not a preferred solution, and in most cases han-
dled by the customer, we do not investigate network issues further. Instead, we concentrate
our efforts towards optimizing software or modifying the software in such a way that less
data needs to be loaded.

4.1.2 Overview of Startup Execution Time
The application that we are working with uses logs where one can debug and analyze the
order of when different parts of the code base execute. Since this log is timestamped we can
use it to get a first overview of how the execution time is distributed on different parts of
the code. In table 4.1 we present time measurements from this log when running with and
without the cache enabled. We are looking at the full time for the startup process to finish
and the time for the cache to be initialized by loading all the data it needs. In this case, we
used four tables of 750 000 rows each.

Running with Cache Startup Execution Time Load Cache Execution Time
Disabled 80 s 0 s
Enabled 179 s 103 s

Table 4.1: Approximate results on startup execution time obtained
by reading log files. All values are averaged over three executions.

Looking at table 4.1 we can clearly see that loading the cache takes up a large portion of the
startup time. When the tables have this size, 58% of startup execution time is spent on loading
the cache. This is enough to motivate further research on how to improve the performance
regarding this. Knowing that the initial loading of the caches from the databases takes a
considerable portion of the startup execution time we now want to go into detail about what
is taking time.

4.1.3 Software Layers
Looking at the issue from a software perspective there are still several abstraction layers where
the issue can be found. When the cache is loaded Hibernate is used to get the results from
the database and to convert them into Java objects. These objects are then inserted into data
structures used in the cache. There is also some logging in the cache.

When looking at the logs it is clear that there is extensive logging when the tables are this
big. Logging is of course good and it is not reasonable to get rid of the logging completely
just to decrease execution time. But in this particular case, there is one log message per row
meaning that with 750 000 · 4 = 3 000 000 rows this could take a considerable amount of
time and make the log output hard to read. Additionally, the info logged in this case does
not seem to be that useful when debugging.
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By using Hibernates built-in Statistics API we can determine how much time is spent
in the Hibernate framework. This can then be compared to the full execution time for the
cache loading which also includes writing log messages and performing operations on data
structures. We can also determine how many queries there are. As explained in section 3.2.2, it
is possible to implement command line commands to communicate with the application. We
implemented two such commands: one to reload the cache and another to present statistics
from Hibernates Statistics API. An extract from the source code for the latter command can
be seen in A.2.

In table 4.2 we present a summary of statistics when reloading the cache with all four
tables. The real table names have been replaced in order to not disclose unnecessary confi-
dential information. By using the Statistics API we can also see that there are no cache hits in
Hibernates internal caches, a cache hit could otherwise have given false comparisons. Lastly,
the size of the table is calculated with Oracle Database’s vsize command which calculates the
size for each entry of the tables, we have then calculated the sum of this value over all entries
in each table.

Table Name Queries Executed Execution Time Table Rows Table Size
Table 1 1 18 512 ms 750 000 104 MB
Table 2 1 19 691 ms 750 000 106 MB
Table 3 1 18 415 ms 750 000 92 MB
Table 4 1 14 810 ms 750 000 98 MB

Sum over all tables 4 71 428 ms 3 000 000 400 MB

Table 4.2: Summary of statistics generated with Hibernate Statistics
API. The query execution time is averaged over 3 executions.

We can make several observations regarding the table in 4.2. To begin with, there is only
one query per table, which is a good thing since many queries cause a lot of overhead. The
tables were built without any associations to other tables on purpose by the developers to
prevent issues with one cache request resulting in many queries. This means that problems
like the N + 1 problem, described in section 2.2.5, are not an issue in our case.

Another observation is that the sum of execution time for all tables is 71,428 seconds.
Comparing this with 4.1 where we saw that 103 s were spent on loading the cache. We con-
clude that the fraction of time spent in the Hibernate framework firing the queries and de-
livering the response is 71s/103s = 70%. Note that this measurement is approximate but
it is enough to consider the time spent on things outside of the Hibernate framework, like
logging and data-structure operations, not as significant.

Our Hibernate Statistics command also outputs the query executed. In the code snippet
in listing 4.1 we can see the query executed to fetch Table 4. The output is similar in structure
for all the four tables with only a changed number of columns. The column names have been
changed in order to not disclose confidential information. Note that all entities fulfill the
condition in the where clause with our current setup and the data we generated. I.e. all of the
rows are fetched to the application.
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Listing 4.1: Query used to fetch Table 4.
select

this_.column_1 as column_1_name,
this_.column_2 as column_2_name,
this_.column_3 as column_3_name,
...
...
this_.column_24 as column_24_name

from table_4 this_
where 0=’0’ and this_.column_3=?
order by this_.column_7 asc, this_.column_6 desc

Looking at the size of the tables in table 4.2 we can see that we are working with quite
large data tables and this is likely to be a major factor causing slow loading. To show the
effect of the large query results we generated the graph in figure 4.1 that illustrates how the
performance is affected when the query result size is changed. In this experiment, a limit
clause was added to the query in listing 4.1 to limit the size of the result. Note that the table
size is still the same, just that we are extracting results of different sizes. The execution time
seems to increase linearly in relation to the number of rows fetched. This is a clear indicator
that limiting the size of the data fetched to the cache is a good idea.

Figure 4.1: A graph illustrating how the execution time of loading
one table into the cache is affected when the amount of rows is lim-
ited to the number on the x-axis.

It is clear in figure 4.1 that decreasing the size of the data fetched also decreases the query
latency. Decreasing the query latency means that the execution time for the startup process
will also decrease. Based on what we have found it makes sense to implement new solutions
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that do not fetch all of the data in the startup process. The application also has the potential
to only fetch parts of the data at startup and postpone the rest of the data loading to a later
moment, if and when the data is needed. We provide a more in-depth interpretation of the
results presented in this section later on in section 5.1.

4.2 RQ2 - Proposed Solutions
As explained in 4.1.3 we consider the main issue causing long startup latency to be the size
of the data fetched. One way to mitigate this is to use lazy loading as described in section
2.3.2. Two proposed solutions of lazy loading have been implemented based on the strategies
presented in 2.3.2. There are some major differences between the two strategies, for example,
what needs to be done at startup of the cache service. This is explained in more detail in
sections 4.2.1 and 4.2.2 below. The performance of the implementations is presented in 4.3.
The Java class for the Hibernate Proxy Cache and the corresponding provider class can be
found in A.4. Note that this code also has references to code in A.3.1, A.3.4, A.3.5 and A.3.6.
For the Lookup Table Cache the code is found in A.5 with some references to code in A.3.1,
A.3.2 and A.3.3.

Lazy loading means that the cost in latency of a query is only paid once we actually need
the query result. If a particular result is never needed we will never pay the cost. However,
if the user asks for everything in our database tables we will have to load that data at some
point, lazy loading will then not get rid of this latency, it will only move it to the time of
request instead of the time of startup. To eliminate the latency between the database and the
application we implemented a third solution described in section 4.2.3. This implementation
uses a combination of lazy loading and inter-query parallelism to let other threads handle the
latency of a full load while the main thread can continue with the startup process. The code
for this implementation can be found in the appendix in A.6, with some references to mutual
code in A.3.1, A.3.2 and A.3.3.

4.2.1 Lazy Loading - Hibernate Proxy
This implementation uses Hibernate proxies to keep track of whether an entity has been
loaded or not. There is an issue though that the proxies need to be set up in the internal
data structures in the cache at startup. Therefore there are some steps that need to be done
at startup, which also include some loading from the database. However, it will only load
parts of the tables. If we look at graph 4.1 we can see that fetching less data will decrease
the time spent on the query, which makes this solution still viable even though it has an
initial load. The steps are shown in figure 4.2. As mentioned the cache service includes four
different caches that are linked to one table each. The figure illustrates one of these caches
being initialized.
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Figure 4.2: A graph illustrating the steps the cache need to take at
startup with the use of the Hibernate Proxy Cache

To be able to load the proxies and to insert the proxies into the cache five columns need
to be loaded from the database for each entity. Two of the columns are the primary key and
are used to create the proxy. The other three columns together correspond to an account and
are used to keep track of which account the proxy is connected to. We will call these five
columns together proxy information. To retrieve the proxy information the persistence layer
will create a Hibernate criteria with projections on the columns we need to retrieve. The
criteria will transform the retrieved columns from the database into a DTO that saves the
data and has a proxy that can be added to it. The code snippet below shows the creation of
the criteria with projections and the mapping of the columns to the DTO.

final ProjectionList projectionList = Projections.projectionList()
.add(Projections.property("key"), "key")
.add(Projections.property("column A"), "column A")
.add(Projections.property("column B"), "column B")
.add(Projections.property("column C"), "column C");

return DetachedCriteria.forClass(entitylType)
.add(Restrictions.eq("columnX", ColumnX.MASKED_VALUE))
.setProjection(projectionList)
.setResultTransformer(Transformers

.aliasToBean(EntityProxyInfoDTO.class))
.getExecutableCriteria(getSessionFactory().getCurrentSession())
.list();

The proxy information is then used to load the proxies. By using the Hibernate function
load, we make sure that proxies are returned and no load from the database is done. The
proxies that are returned from Hibernate are saved into the DTOs and the list of DTOs are
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returned to the cache. The cache loops through all the DTOs and inserts the proxies into the
internal data structures and uses the information about the account to fill the account index.
After this step, the initial setup of the cache is done, and with the help of the proxies, it will
look like the cache is filled with all the data, even though a whole entity has not been loaded
yet. See in the code snippet below how the proxy is added to the DTO.

final Session session = getSessionFactory().getCurrentSession();
for (EntityProxyInfoDTO<T> proxyInfo : proxyInfoList) {

final T proxy = session.load(entityType, proxyInfo.getKey());
proxyInfo.setEntity(proxy);

}

return proxyInfoList;;

In figure 4.3 we can see an example of the steps the cache will take when the mehod
getAccount is called. As mentioned the cache’s internal structures are filled with entities or
the proxies of them. Therefore the cache needs to loop through all the objects and check if it
is a "real" entity or a proxy. If it is a proxy, it needs to be "unproxied". The proxies are added
to a list, that is sent to the persistence layer. The persistence layer sets up a Hibernate session,
and with the use of locks with lock mode NONE, it attaches the proxies to the session. With
this attachment, the Hibernate session will convert the proxies into a real object by loading
them from the database. When the proxy is converted it will be so everywhere it has been
used, so we do not have to return and replace anything in the cache, it is done automatically
by Hibernate. When all entities have been unproxied, we can return what the application
asked for. The code snippet below shows the way the proxy is attached to the Hibernate
session and converted into a real object.

final Session.LockRequest lockRequest = getSessionFactory()
.getCurrentSession()
.buildLockRequest(LockOptions.NONE);

for (final T proxy : proxyList) {
lockRequest.lock(proxy);

}

Figure 4.3: A graph illustrating the steps the cache need to take with
a call to getAccount using the Hibernate Proxy Cache
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The code snippet below gives an example of how the cache works when the application
wants to retrieve a single object from the cache when the function get is called. As the cache
already has all the objects in its internal structures a get on the map is done to retrieve the
object. A check is done inside the unproxy method to check if it is a proxy or not. If it is a
proxy it will be sent to the persistence layer to be converted.

public synchronized T get(final long entityNumber) {
final T entity = cache.get(entityNumber);
unproxy(entity);
return entity;

}

private synchronized void unproxy(final T entity) {
if (!Hibernate.isInitialized(entity)) {

entityProxyService.unproxy(entity);
}

}

4.2.2 Lazy Loading - Lookup Table
With the use of this strategy, no load from the database is done at startup. This means the
internal data structures in the cache are empty when the application is fully started. There-
fore there will not be any unnecessary load, only loads of data that has been requested. The
loading is only done during run-time and therefore it will not impact the startup time at all.
The cache needs to keep track of what is has loaded and inserted into the internal structures.

Checking if an entity has been loaded into the cache can be done by checking if it is
located in the map that stores all entities, with their unique number as the key. If the map
does not contain the number, it has not been loaded and a request to the database needs to
be done. The code snippet below shows this function. Note that the object will be null if the
unique number does not correspond to anything in the database. To minimize the amount of
calls to the database a null value will be inserted into the cache. Next time the program asks
for the same number, we can return null without having to communicate with the database.

public synchronized T get(final long entityNumber) {
if (!cache.containsKey(entityNumber)) {

final T entity = entityService.findActive(entityNumber,
entityType);

if (entity == null) {
cache.put(entityNumber, null);
return null;

}

add(entity);
}

return cache.get(entityNumber);
}
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When the application calls the method getAccount we need to be sure that everything has
been loaded for the account that has been passed as an argument. To check if everything has
been loaded for an account the class AccountIndex mentioned in 3.2.3 has been expanded
with a boolean called loadedFromDatabase. This boolean is initially set to false and will be false
until the cache knows for sure that the account has been fully loaded. After a request to the
database of all entities connected to the given account, the boolean can be set as true. After
this load no loading has to be done for this account in the future. The code snippet below
shows the implemention of getAccount . Notice that we first need to retrieve the account
index instance that is linked to this specific account. The boolean is then checked, to see if
the cache needs to load or not. After a potential load, the cache can return all the entities
connected to the account.

public synchronized List<T> getAccount(final String accountInfo) {
final IndexKey indexKey = AccountIndex.createIndexKey(accountInfo);
if (!accountIndexMap.containsKey(indexKey)) {

accountIndexMap.put(indexKey, new AccountIndex());
}

final AccountIndex accountIndex = accountIndexMap.get(indexKey);
if (!accountIndex.getLoadedFromDatabase()) {

final List<T> entityList =
entityService.findActive(accountInfo, entityType);

for (final T entity : entityList) {
add(entity);

}

accountIndex.setLoadedFromDatabase();
}

return accountIndex
.getCollateralKeys()
.stream()
.map(cache::get)
.filter(Objects::nonNull)
.collect(Collectors.toList());

}

The last way the application can retrieve data is to call the function getAll . The cache will
use a boolean here to check if everything has been loaded or not. The boolean will be false
until the method has been run for the first time. This means that the first time the method is
called will always result in a cache miss. When we get a cache miss all the data is loaded from
the database. So even though the cache might have loaded let us say 50% of all the data, or
even 100% without calling getAll , the whole table will be loaded and the missing data will be
inserted. Here we can also set all booleans in the AccountIndex objects to true, as we know all
accounts have been loaded as well. Figure 4.4 shows the steps the cache will take in order to
load everything. This means that the first call of getAll will lead to a load from the database
as the boolean located in the cache will be false. Once the load is done, the boolean can be
set to true and all that was loaded is inserted into the internal structures and returned.
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Figure 4.4: A graph illustrating the steps taken after a call to getAll
using the Lookup Table Cache

The code snippet below shows the getAll method. As mentioned the boolean is first
checked if the cache has loaded everything or not. If not, a load is done and the boolean
is set to true. When we know everything has been loaded we can just take all values in the
cache data structure and return the result. We also need to make sure that all account indices
have their internal boolean set to true, which is done inside loadAll.

public synchronized List<T> getAll() {
if (!hasLoadedEverything) {

loadAll();
hasLoadedEverything = true;

}

return cache
.values()
.stream()
.filter(Objects::nonNull)
.collect(Collectors.toList());

}

4.2.3 Asynchronous Preloading
This implementation can be considered an extension to the Lookup Table Cache implemen-
tation described in section 4.2.2. In fact, since many parts are identical we decided to make
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this cache class a subclass of the cache class in 4.2.2. However, there is a relevant difference
regarding how the cache is loaded.

In this implementation, a number of threads are spawned with the purpose of preloading
the cache with all relevant entries for a specific table. This way another thread takes care of
retrieving the data from the database and if these preloading threads are sufficiently quick
the data has already been fetched when the user requests it.

As described in section 2.4, when parallelizing a sequential algorithm the number of
threads to run in parallel needs to be decided. Additionally, the original task needs to be
split up into sub-tasks that can run concurrently. We initially started with only 1 parallel
thread taking care of preloading all the 4 tables into the cache. The machines we are running
our experiments on have 4 hardware threads available so there was potential for a higher
level of concurrency. In our case, splitting up the preloading task into more subtasks is also
very simple, we can simply run one thread to preload each table. In table 4.3 we present the
time it takes for the preloading to finish for each table when using a single preloading thread
compared to 4, i.e one for each table. As can be seen, spawning 4 threads clearly speed up the
process of preloading so this is what we use in the final implementation. Note that we are
running 5 threads concurrently while preloading is in progress, 1 main thread and 4 preload-
ing threads. Of course, other programs running on the same machine or other threads created
by other parts of the application may also run their own threads so the hardware resources
have to be shared between software threads.

Table Name 1 Preload Thread 4 Preload Threads
Table 1 42 s 32 s
Table 2 73 s 37 s
Table 3 103 s 36 s
Table 4 132 s 34 s

Table 4.3: Time since the first thread started until completion of the
preloading process of the specific table. With only one thread it has
to preload each table sequentially, i.e. one after the other. With 4
threads all of the tables can be preloaded concurrently. The results
were obtained by reading log files. All values are averaged over 3
executions. In this test, we used tables of 400 000 rows.

When the preload threads have completed this cache implementation acts as the Full Load
Cache. Everything have been loaded so there is no run-time latency in the cache regarding
database queries after this point in time. However, there is a possibility that the user requests
data from the cache directly at startup before the preload threads have completed which needs
to be handled. In the first implementation of an asynchronous preloading cache, we simply
waited until the preloading threads were finished before returning data from the cache to
the user. However, this is not optimal since if the user is only asking for a particular row of
a table, waiting for the preload thread to finish means that we have to wait for a load of the
whole table which is a lot slower than just fetching one row. Instead, we observed that this
is exactly the problem we are solving with our lazy loading caches, i.e. only fetching the data
we need. Therefore, we decided to let this cache work as the Lookup Table Cache until the
moment when the preloading is finished. This means that we can have 5 software threads
accessing the database concurrently while preloading is still in process. The main thread is 1
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of these and the other 4 are preload threads. In figure 4.5 the described behavior is visualized.
There is an exception to this behaviour when a user asks for everything in a table before the
preload is finished. When that happens there is no reason to start a new request since fetching
everything from a table is exactly what the preload thread is already doing in parallel so we
might as well wait for it to finish.

Figure 4.5: A simplified view of the timeline at startup for the Asyn-
chronous Preloading Cache . This cache acts as the Lookup Table
Cache until everything has been loaded by the preload threads.

To spawn the preload threads we use a thread pool class provided by the spring framework
called ThreadPoolTaskExecutor. At the start of implementing this solution, instances of Java’s
standard Thread class were used instead, but we realized that in a large project such as this
it might be better to use a common thread pool. This way the common thread pool can
orchestrate the scheduling of all threads in the project instead of each developer having to
worry about this. Java’s built-in synchronized keyword is used to synchronize any shared state.

4.2.4 Hibernate Built-In Caches
As explained in section 2.2.4 Hibernate has its own built-in caches. First of all, we looked at
if the second-level cache and/or the query cache could replace the current cache service in
its entirety. If we look at the second-level cache there is an issue that the entities have to be
accessed by their primary key. The way we want to access the data, as described in 3.2.3, is
based on the methods getAll, getAccount and get. None of these uses the primary key to access
data. The unique number used for get is part of but not the whole primary key that would
have to be used to retrieve an entity from the secondary cache. This creates a mismatch of
how the program needs to be able to handle data, versus how the second-level cache handles
it. Therefore, it would not be sufficient to only activate this functionality and make sure the
entities are cached, we need some sort of caching service.

We could create a cache service that would work as a middleman, a connection between
the second-level cache and the program. This would require an initial load of some columns
to get the data that the cache service would be required to have to structure the calls based on
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the primary key. The requests would then use this data to retrieve entities from the second-
level cache, or if not there, from the database. The point of the secondary cache however
should be that it is pluggable and easy to use out of the box. Therefore, we decided to not
implement a solution based on this either. If we use some sort of cache service, the cache
service in itself could store the data in its caches as with the other proposed solutions, no
need to add two layers for caching.

There is also the query cache that could be used to cache queries. But as mentioned in 2.2.4
this is not recommended to be used in most applications because of the added overhead. The
program will most likely not ask for the same data over and over again, which means there
will be an execution of different queries. Because of this, we decided that the query cache
would not be an option as well.

4.3 RQ3 - Gathering Experiment Data

As described in the approach section 3.4, the experiment has been divided into two parts.
The first part is a measurement of the effect a solution has on the total startup time of the
program. The result of this part can be found in figure 4.6. The measurement of the startup
time with no cache service is not dependent on the size of the database and therefore only
one set of runs are needed.

It is also interesting to look at the time it takes for the preload threads to finish, as this is
when the Asynchronous Preloading Cache will achieve fast run-time access. The result can
be found in figure 4.7.

The second part is the measurement of the time it will take to retrieve data from the
cache with different scenarios. Some scenarios have been grouped in the same table as they
test the same thing with different modifications. Each experiment has been executed with
250k and 750k rows in each table. The result of each experiment can be found below. Bar
charts is used to illustrate the times, but as some of solutions are much slower in some tests
we also provide a table inside the figure to show more detailed times. The time values are
presented in milliseconds.

To get an overview of the maintainability of the code we have calculated the number of
lines of code as described in 3.5. The result of this can be found in table 4.4.

After running the experiments we could see that the Hibernate Proxy Cache implemen-
tation is much slower at certain tests. By looking at figures 4.8 and 4.9, we can see that
the Hibernate Proxy Cache solution is a lot slower when the method to retrieve everything
is called for the first time. We know that the Lookup Table Cache loads everything, which
makes it a good comparison, and the Hibernate Proxy Cache is much slower. We investigated
why this is, and by using the Hibernate Statistics described in A.2 we found that Hibernate
creates one JDBC statement per entity to be unproxied. So as an example, if we have to con-
vert 500k entities, there will be 500k JDBC statements created by Hibernate. This is even
though the whole unproxy process is executed inside a single transaction.
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Figure 4.6: A bar chart illustrating the startup time of the service
for each cache implementation with 250k, 500k, or 750k rows per
table. The shown result is an average of 5 runs.

Figure 4.7: A bar chart illustrating the time it takes for the preload
threads in the Asynchronous Preloading Cache to finish with 250k,
500k, or 750k rows per table. The shown result is an average of 5
runs.
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Figure 4.8: A bar chart illustrating the average measured time for
the method getAll using 250k rows.

Figure 4.9: A bar chart illustrating the average measured time for
the method getAll using 750k rows.
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Figure 4.10: A bar chart illustrating the average measured time for
the method getAccount using 250k rows.

Figure 4.11: A bar chart illustrating the average measured time for
the method getAccount using 750k rows.
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Figure 4.12: A bar chart illustrating the average measured time for
the method get using 250k rows.

Figure 4.13: A bar chart illustrating the average measured time for
the method get using 750k rows.
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Implementation Lines of Code
Cache and Provider Database Access Total

Full Load Cache 92 28 120
Lookup Table Cache 139 53 192
Asynchronous Preloading Cache 186 53 239
Hibernate Proxy Cache 146 89 235

Table 4.4: Lines of Code for each solution. Calculated as described
in 3.5. The code is shown in different sections of the appendix. Note
that the lines of code may appear different to due a different text-
format in this report compared to when viewing the code in a code
editor.
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Chapter 5

Discussion

5.1 RQ1 - Interpreting Inefficiencies
We can observe in table 4.2 that Table 2 takes a bit more time than the other three tables to
load. A probable reason for this is that Table 2 is the biggest table but since there is some
ambiguity regarding the size of the query result, as described in section 5.5, we cannot be
sure. Although this observation implies that Table 2 should be prioritized over the other
tables we believe that the solutions we provide in section 4.2 applies to all tables, therefore
we will not investigate further why Table 2 takes a bit more time to load. Additionally, the
query used in listing 4.1 is very similar for all 4 tables.

When it comes to long-running database queries there are several components where
execution time can be spent. We summarize an overview of these components in image 5.1.
First, all database requests are started in the application source code. When the query result
arrives the application source code performs some operation on the result. Secondly, the
database operations are in this case handled by the Hibernate framework. In the third step
the request, and later on the result, has to be transferred over the network. Finally, the query
processing at the database, calculating the result, will take some time.

Figure 5.1: Components of a database query.

As explained in section 4.1.3 the time spent in the Hibernate queries were measured to
70% of startup time for the initial solution. Note that time spent in a Hibernate query in-
cludes operations in the Hibernate framework as well as time spent in the network and on
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query processing at the database. This means that the rest of the execution time spent on
other parts of the source code in the startup process only consists of 30%.

No measurements have been collected on what fraction of time is spent on the opera-
tions in the Hibernate framework alone, excluding network and query processing. There are
two aspects of performance to consider. Firstly, ORM frameworks can produce unnecessarily
complex and redundant queries as explained in 2.2.5. This is not an issue in our case as shown
by the simplicity of the query in 4.1. Secondly the framework will add overhead when per-
forming operations to compose the queries and map the results to Java objects. An alternative
framework could have been tested to improve performance. However, changing the ORM
framework leads to changes in many parts of the service. Additionally, it is easier for the
developers to use the same ORM framework in all services. It should also be pointed out that
the performance of Hibernate has been tested in many previous papers, such as [20], [53] and
[6], with the results showing good performance. Hence, the potential gain in performance of
switching to another framework is limited.

Network capacity will definitely have an impact on performance. Even if excluding the
other parts of a database query a large amount of data still have to be transferred over the
network if everything is fetched. Consider a customer with a bandwidth of 50 Mbps and
that we need to transfer our 400 MB = 3200 Mb, as seen in table 4.2, it would take 3200
Mb / 50 Mbps = 64 s just to transfer the data. This is in the best case assuming no overhead
in the data packets transferred, which is of course not the reality, and that we achieve the
full bandwidth speed. However, as already described in section 4.1.1, improving the network
capacity is not a feasible solution since the product is a software solution often hosted at the
customers network setup. Even though changing the network is not suitable, changing the
way data is requested can lead to having to transfer less data. This is achieved with the lazy
loading strategies described in 4.2.

It would be theoretically possible to make more detailed measurements on how much
time is spent with query processing at the database. There are tools in Oracle SQL Developer
which gives statistics on time spent on query processing at the database and time spent in
the network. However, we do not have the database administrator access rights necessary to
use these tools. Similarly, we don’t have the permission rights necessary to install and run
network profiling tools at the database nodes. If the time spent on query processing would
be large one could look at ways to speed up the efficiency of the database. This could perhaps
be done by removing query complexity like the order by clause, adding an index to the column
in the where clause, or trying another DBMS for example. Queries fetching large amounts of
data are always likely to be slower than queries fetching less data but it is still possible to
improve scalability with the size of the result. The loading strategies that we have looked at
could be combined with optimizations in the database query processing. However, since the
query in 4.1 is already very simple, we did not see much potential in removing complexity
and adding indexes. Additionally, we felt that this report should focus on one topic, rather
than mixing loading strategies and query processing optimization.

Looking at the measurements on time collected in section 4.1 it is clear that decreasing the
size of the data fetched also decreases the execution time of the query. Decreasing the size of
the data fetched in a query optimizes performance across all the layers that a database query
is composed of. Fewer objects need to be handled in the application code, more precisely
in the cache data structure in our case. The Hibernate framework needs to allocate less
memory and perform operations on less entities. A smaller amount of data is transferred
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over the network. The database query processing also doesn’t need to handle as many entities,
improving performance.

We observed that the original solution queried for everything at startup although all of
the rows and all of the columns may not be needed. Even if all of the data would be needed
eventually, the data loading could be postponed until after the startup process. Fetching data
in the startup process, as done in the original solution, makes the application unresponsive for
a longer time. This is a problem especially if the server crashes and a quick restart is needed.
In this scenario, one could look at how the Hibernate framework is used in the application
and only make the appropriate calls when and if they are necessary. In this manner, different
loading strategies were investigated to load data in smaller portions at a time or to load data
from a parallel thread.

5.2 RQ2 - Dissecting Implementations
In this section we discuss the implementations in more detail by giving more insight into the
functionality and logic to make them work. We also discuss the advantages and disadvantages
based on the theory and functionality of the solutions.

5.2.1 Lazy Loading - Hibernate Proxy
As mentioned in the description of this implementation 4.2.1, there is a load of five columns
at startup. As we can see in the figure 4.6 this has an effect on the startup time. However, not
as much as loading all columns as the Full Load Cache does. There is a risk that the cost at
startup and converting the proxies at run-time is too costly if we add them up together. If we
look at the Lookup Table Cache there is no cost at startup, all the cost of loading is moved
to run-time. If the Hibernate Proxy Cache does not gain any advantage during run-time
compared to the Lookup Table Cache , the cost at startup is just an overhead. Therefore you
could argue that this implementation must be faster than the Lookup Table Cache during
run-time to be a viable solution.

One advantage of this implementation compared to the Lookup Table Cache is that no
entity will be loaded twice. After startup it will look like the cache is filled as with the Full
Load Cache. The difference is that before returning an entity, there needs to be a check if it
is a proxy or not. For example, if only 10% of all entities are still proxies, and the program
calls getAll , only these 10% of the data needs to be handled by Hibernate and be unproxied
with a load from the database.

Using high-level frameworks like Hibernate could reduce the complexity of the code.
Much of the logic is done by Hibernate instead of the programmer doing it with a more
low-level approach. One issue with high levels is that the performance could degrade. The
developer loses control over what exactly is done, for example how the database queries look
like. The potentially negative effect on performance could be worth it, with the reduced
complexity. But if the negative effect is too large, it is not worth it. This is a balance that
needs to be analyzed when using high-level solutions.

Thread-safety is also an important topic that needs to be analyzed. To unproxy the prox-
ies, the implementation uses a Hibernate Session. These sessions are not thread-safe in them-
selves. Therefore it is important that there is only one thread connected to each session. If
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there are two threads connected to one session there will be data races. By default Hibernate’s
getCurrentSession() method, which is used in this implementation, returns different sessions
for different threads. We also checked that this setting had not been changed and still had
the default value. In order to attach a proxy to a new thread when unproxying, if another
thread created the proxy, we use Hibernates built-in function in the listing below.

Session.buildLockRequest(LockOptions.NONE).lock(Object proxy)

5.2.2 Lazy Loading – Lookup Table

To reduce the startup time this solution is optimal as there is no load into the caches at all
during startup. However, the latency is moved into run-time instead. This could create long
response times when a large amount of data is requested for the first time. But after the
data has been loaded it will not have to reload it. This means the added latency cost during
run-time is a one-time concern.

An advantage of this solution is that only what is used is loaded into the caches. This
means that the program memory does not get filled with entities that will never be used.
This could in the long run decreases the chance of running out of memory on the heap which
could crash the whole service. However, if the program asks for the cache to retrieve all or
almost all of the data the number of objects stored on the heap will be the same. But at least
all the data that has been added to the heap were explicitly asked for and not added to the
heap preemptively.

There is however an issue with this solution that loads could be done of entities that are
already in the cache. This is because the cache cannot know until it has made sure that it has
loaded everything that the program asks for. In figure 5.2 a scenario is shown that exemplifies
this issue. Let us say that the entity with the number N is the only object connected with
account X. As seen in the first call in figure 5.2 the entity is located in the cache as no database
loading had to be done. However, when the application calls getAccount with account X as an
argument there is a load anyways. The cache cannot know that account X only has one entity
before it has been checked once. So what the load here returns is one object that is already
in the cache, so nothing new is added and an unnecessary load has been done. It could be
much worse, for example when 90% of all data has been loaded, and then the program asks for
everything. The cache will then still have to load everything from the specific table, although
90% was already in the cache.
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Figure 5.2: A graph illustrating unnecessary loads when using the
Lookup Table Cache

5.2.3 Asynchronous Preloading
This solution has great potential in terms of both startup and execution time since it moves
the startup latency to other threads while still achieving the same short run-time latency
as the Full Load Cache. But the run-time latency is slightly ambiguous because it depends
on how quickly the data is requested from the cache compared to how quickly the preload
threads can finish.

A downside with this solution and multithreading in general is that working with threads
tends to introduce a higher level of complexity. Our task decomposition and thread-orchestration
are relatively simple since each thread can work on its own dedicated table and only syn-
chronize with the main thread. Still, there are a few places where thread-safety needs to be
discussed.

As can be seen in the code in A.6, the three different get-methods are very similar to the
ones in the Lookup Table Cache which can be seen in A.5. The difference is that we do not
synchronize over the database operations since we want the preloading threads to be able to
run them in parallel with the main thread accessing the cache data-structures. A consequence
of this is that we need to check twice if a certain entity has been loaded. First, we check if the
entity needs to be fetched from the database, but when this is done another thread may have
already fetched the entity in parallel in which case we do not want to overwrite the entity, it
might have been updated or removed.

When the main thread fetches entities before a preload thread has finished special care
is needed so that the preload thread does not overwrite the entities already fetched. When
an entity has not been removed after fetching it this is straightforward, simply check if the
entity exists in the cache’s map data structures. However, if the main thread both fetches
an entity and removes it before the corresponding preload thread is finished extra care is
needed. If an entity is removed from the data structures completely, there will be no way for
the preload thread to check if the entity has not been loaded before, since there is no trace
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left of that entity. We solved this by instead storing null as the value for entities that have
been removed. Note that this means that if entities are added to and removed from the cache
over and over the cache will simply grow larger and larger. If such a behavior is expected
a strategy to clean up these removed entities when the preload thread is finished should be
added.

Regarding this solution there are some small modifications that could have been done to
either increase efficiency at the cost of more complexity or the other way around.

It is possible to increase the level of concurrency in this solution. This could be done by
letting a number of threads fetch a certain fraction of the table rows rather than the whole
table. Each part would then have to be joined together with the other parts of the table,
fetched by other threads, in the cache. Methods of CDC, as described in 2.3.1, could be used
in that scenario to determine what has already been loaded to the cache by another thread.
The optimal number of threads to start in such a solution would depend on the overhead of
joining the tables into the cache and the resources available at the host and in the network. On
the machines that have been used for our experiments, there are only four hardware threads
as previously described. Therefore, we did not see much potential in increasing the level of
concurrency at the cost of complexity in the application code, since in this case hardware is
the limiting factor.

In this solution we used four preloading threads to speed up execution as described in ta-
ble 4.3 and in the source code in A.6. It should be pointed out that this parallelization is pos-
sible in the Full Load Cache as well, with the difference that it would wait for all the preload
threads to complete before progressing. This waiting should be simple to implement, since
the thread pool class that we are using includes such functionality. Such a solution should
improve the startup time of the Full Load Cache . Although the startup time of the Full
Load Cache would improve, it would not be as fast as the Asynchronous Preloading Cache
solution since it would still have to wait for the threads to finish. However, the complexity
would be a lot lower in such a solution since there would be no need for the synchronization
and the lazy loading behaviour which is in place when the parallel preloading and the main
thread are allowed to run in parallel.

5.2.4 Alternative Solutions
The solutions described in 4.2 are the methods we judged to have the most potential while
still only requiring a reasonable amount of work for a master thesis. But of course, there are
other alternative solutions that we have not evaluated in this thesis that still deserves to be
mentioned.

One idea is to prioritize certain entities, either each entity has its own priority or the
priority is decided by the corresponding account. These prioritized entities could then be
loaded already at startup in a lazy loading solution. The priorities could be determined by
reading some statistics from the database, such as the last access date. An alternative is to
use a machine learning algorithm for the cache to learn which entities are accessed most
frequently.

Another idea is to decrease the size of the data elements in the tables. Looking at 4.1 we
can see that the size of the data transferred is correlating very closely to the startup execution
time. However, such a solution would probably mean large changes in the whole system since
the data types might need to change everywhere. Determining the data type size necessary for
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each column is also a difficult problem relaying heavily on knowledge of the business needs.
In the solutions presented in 4.2 we use lazy loading for the rows. Lazy loading strategies

could also be used to only fetch some of the columns rather than all columns of the entities.
Another way to only load some columns at a time would be to explicitly split up the current
tables horizontally and let the current entity be represented by two or more entities. This
way you may only have to fetch one of the entities, corresponding to the group of columns
required at the moment. Both of these changes should be a lot more complex to implement
compared to the lazy loading of rows since it would require a mechanism to determine if each
column for each entity is already fetched or not.

Pagination can be introduced to only load parts of the tables at a time as explained in
section 2.3.3. However, with pagination at most a single page of data can be accessed at all
times. This would introduce big changes in the whole system, not just the cache, leading
to a scope too large for a master thesis. Additionally, pagination is only possible when the
business requirements allow the application to handle one page of data at a time. Therefore
pagination would require a more detailed understanding of the business requirements.

5.3 RQ3 - Comparing Solutions
This section will compare the implementations based on the result gathered and presented
in section 4.3.

5.3.1 Startup Time
In figure 4.6 we can see the effect the implementations have on startup time. As expected
the Full Load Cache takes the most time, especially in the scenario with 750k rows per table.
This is one of the main issues of the original solution that our proposed implementations
are attempting to alleviate. The measurements show that all our implementations reduce the
effect the cache service has on the total startup time.

The Lookup Table Cache and Asynchronous Preloading Cache solutions have the shortest
startup time. This is expected as no loading has to be done before the service is fully up and
running. In figure 4.6 there is some difference between the averages. These differences are so
small that we cannot draw any conclusions considering the accuracy of our measurements.
Both of these strategies are as fast as having no cache service at all. There is of course some
overhead with starting up the cache service, but it is an insignificant part of the total startup
time.

The Hibernate Proxy Cache is faster than the Full Load Cache but slower than the other
two of our implementations. Compared to the other two, the proxy solution loads from the
database at startup to create the proxies and structure the caches. However, by comparing
the startup time between the Hibernate Proxy Cache and Full Load Cache we can see that
only loading parts of the whole table is reducing the impact that the loading has on the total
startup time. To determine if this extra load is worth the effort we need to analyze the run-
time experiments.

Besides the startup time of the Asynchronous Preloading Cache, it is interesting to look
at how long it takes for the preloading threads to finish. This is an important measurement
as the solution will have loaded everything from the database at that point and the latency
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of requesting data from the cache will be insignificant. Before preloading is finished, this
cache will have a run-time latency similar to the Lookup Table Cache. What we can see from
the measured time in figure 4.7 is that preloading finishes faster than the Full Load Cache
when it loads in startup. This is a good sign, the parallelism is faster than loading each cache
sequentially. The efficiency of the preloading threads seems to not be ideal though. If we take
a look at how long it takes for the Lookup Table Cache to load all the data in figure 4.9 we can
see that it is faster for one individual query. This comparison is not fully accurate since we
are comparing the average execution time in 4.9 while we are looking at the slowest thread
out of four in 4.7. It gives us a hint however what an ideal scenario would look like if the
threads could run in parallel without any bottleneck or overhead. It may be that the preload
threads are slower for an individual query since the threads have to share resources and we
have a limited amount of hardware threads. Additionally, the preloads threads work in both
startup and run-time, running in startup might mean that they have to share resources with
other parts of the startup process.

5.3.2 Run-time Request Latency
By analyzing the experiment results presented in section 4.3, we can understand that the
difference in the solutions is mostly based on if the cache needs to load from the database
or not. Both the Full Load Cache and Asynchronous Preloading Cache are fast in all of the
experiment, as both of them already have loaded everything when the tests are executed. The
Lookup Table Cache and Hibernate Proxy Cache solutions need to load from the database
in some scenarios, which makes them take more time overall in these run-time experiments.

The result in figures 4.8 and 4.9 shows that the Hibernate Proxy Cache solution is consid-
erably slower than the other solutions when getAll is called for the first time. As mentioned
in the result section we found that this is because Hibernate creates one JDBC statement per
unproxy. Adding up all these JDBC statements together creates an enormous overhead that
leads to a slower execution time. The Lookup Table Cache is much faster in comparison. As
we know that the Lookup Table Cache loads everything from the database for this specific
experiment we could say that all solutions that have worse execution times are not a viable
option. At least not viable to load a large amount of data from the database. This seems to
be the major issue of the Hibernate Proxy Cache implementation.

If we look closer into the experiment that requests data from the cache that has been
previously accessed we can see if there is any notable overhead in any of the solutions. In tables
4.8 and 4.9 we can compare the measured time when we call the getAll method for the second
time. In figures 4.10, 4.11, 4.12 and 4.13 we can look at the methods getAccount and get and
how both of them act when the data requested have been previously accessed. What we can
see is that the difference in time is too small to draw any conclusion for all implementations
except for the Hibernate Proxy Cache solution. The solution seems to create a bit more
overhead for the function getAll. This is likely because there is a check for each entity if it is a
proxy or not. For the other solutions, the difference is insignificant, so the overhead for the
logic implemented for the Lookup Table Cache and Asynchronous Preloading Cache is not
notable compared to the initial solution.

For both the Full Load Cache and Asynchronous Preloading Cache there is never a load
to the database in any of the run-time experiments as mentioned. We can also see that how
much has been accessed beforehand makes no difference in the latency. To clarify, the reason
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the Asynchronous Preloading Cache does not have any load is that we wait for the preload
threads to finish before running the experiments. That is why the measured times are small
for all the experiments that tested the method getAll shown in figures 4.8 and 4.9. If data is
requested before the preload threads are finished the Asynchronous Preloading Cache will
act like the Lookup Table Cache. In other words, when discussing the run-time latency of the
Asynchronous Preloading Cache the probability of data being requested before the preload
threads are finished also has to be considered. Table 4.7 shows how long it takes for the
preload threads to finish, while how quickly the data is requested depends entirely on the use
case.

There is however a difference in how both the Hibernate Proxy Cache and Lookup Ta-
ble Cache solutions act depending on previously accessed data in the experiments. For the
Lookup Table Cache we can see that the time is stable for the three experiments that have not
called the function getAll yet. This is because as mentioned it will load everything again as it
cannot know what the database has stored. However, the second time the method is called
it is as fast as it would be using the Full Load Cache or Asynchronous Preloading Cache.
The Hibernate Proxy Cache solution on the other hand can detect what it has to load, which
means the execution time decreased depending on how much has been previously accessed.
But if we look at the execution times this implementation is slow for most tests, for the same
reason as before with one JDBC statement per entity to be unproxied.

It is interesting to see how the implementations differ when there is a request for a smaller
portion of data for the first time. A request to the method getAccount is interesting because
it is a fairly large subset of the whole database. These experiments can be found in figures
4.10 and 4.11. A call to the method get is also interesting because it shows how the cache im-
plementation acts with the smallest subset. These experiments can be found in figures 4.12
and 4.13. What we can see is that the Full Load Cache and Asynchronous Preloading Cache
produce the fastest times, as expected. What is interesting is that the Lookup Table Cache
is faster than the Hibernate Proxy Cache for the method getAccount, but similar in execution
time with a call to get. Why the Hibernate Proxy Cache implementation is slower with ac-
counts can be explained by the same flaw described earlier. This flaw makes the Hibernate
Proxy Cache a worse implementation overall. It is worth pointing out as well that the latency
for get requests are very small for all implementations. Latency of a few milliseconds is not
likely to cause a disturbance to the customer, at least not in the case company’s use case.

5.3.3 Maintainability
Table 4.4, shows a comparison of the lines of code for each implementation. As mentioned in
section 3.5, this measurement gives an overview of how maintainable a solution is. The table
shows that the Full Load Cache solution has the least amount of code. This is mostly because
the Full Load Cache only needs one way to fetch data from the database (getAll). The Full
Load Cache additionally does not need any logic to check if data has already been fetched
during run-time since everything is cached already at startup.

In the Lookup Table Cache three different types of requests are needed to the database
(get, getAccount and getAll) which requires more code for database access. Additionally, there is
logic for checking whether an entity has already been fetched during run-time. The provider
is simple since no loading needs to be done at startup, but still the lines of code, i.e. the
complexity of the solution, is higher than for the Full Load Cache .
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As can be seen in table 4.4 the Hibernate Proxy Cache and the Asynchronous Preloading
Cache solutions have a higher number of lines of code, but the two solutions have complexity
in different parts of the code. The Asynchronous Preloading Cache has additional lines due
to the orchestration of the preload threads, in both the cache class and the provider class.
However, the database access is exactly the same as for the Lookup Table Cache. In the
Hibernate Proxy Cache implementation, much of the cache logic for checking if something
is already loaded is moved into the Hibernate framework. This removes some complexity,
but the logic to set up data structures with proxies leads to about the same amount of lines as
the Lookup Table Cache for the cache and provider while the complexity for database access
is increased.

The lines of code corresponds fairly well to how complex we felt that each solution was
to implement, but we can make some additional remarks on how difficult it is to understand
each solution. The Full Load Cache is straightforward as there is not much logic that handles
different scenarios during run-time. The Hibernate Proxy Cache solution uses Hibernate
functionality to create proxies and unproxy them when needed. Therefore, the complexity
completely depends on a developer’s previous knowledge of the Hibernate framework and
Hibernate proxies in particular. For example, there needs to be an understanding of how
to make the solution thread-safe. The other implementations only use Hibernate for simple
database queries but not for the cache logic. For the Lookup Table Cache and Asynchronous
Preloading Cache, the logic mostly relays on standard data structures in Java, but when and
how the data structure operations are executed needs to be understood. A developer with
previous knowledge about Hibernate Proxies may find the Hibernate Proxy Cache solution
easier to understand and maintain. The Asynchronous Preloading Cache is an extension of
the Lookup Table Cache but the addition of running threads in parallel adds complexity to
it. The possible issues with running multiple parallel threads need to be understood and
handled to make the solution thread-safe. This makes the Asynchronous Preloading Cache
more difficult to understand and maintain than the Lookup Table Cache .

5.4 Future Work
From the perspective of the case company more detailed testing of the functionality would
be needed. When implementing our solutions, we have been running manual testing with
command-line commands that we have implemented. But if any of our solutions get in-
tegrated into the real production code, automatic testing would be needed for efficiency.
Additionally, the case company would need to add exception handling when the cache fails
due to losing connection to the database for example.

This master thesis report focuses on efficient loading from a database at startup. We have
not looked into cache eviction strategies, nor does the initial reference implementation have
any eviction strategy implemented. However, if the case company expects huge tables to be
loaded at startup it might be necessary to implement behavior to replace data when the cache
is full, otherwise the program may run out of memory.

It should be noted that the Lazy Loading - Lookup Table and the Lazy Loading - Hi-
bernate Proxy implementations seems to be easier to convert to a solution with an eviction
strategy. In the lazy loading caches, we simply need to implement behavior to only cache the
latest accessed data and evict the older data. In the Full Load Cache on the other hand there
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is currently no functionality at all to cache data after the startup process, this makes eviction
strategies impossible. In the Asynchronous Preloading solution the preloading threads could
not load everything if we only store parts of the data in the cache. Because of this, the gain
of parallelizing the preloading might not be as big as it currently is, depending on how much
data is allowed in the cache.

The memory footprint of caching strategies can be investigated in more detail. To deter-
mine if an account has been loaded or not in the lazy loading solutions, some additional logic
was introduced through an additional class. This means that more memory is used than in
the Full Load Cache when all of the data has been loaded. On the other hand, lazy loading
uses less memory as long as all of the data has not been requested since data is not fetched
preemptively. The Asynchronous Preloading Cache runs queries in parallel, if Hibernate uses
a significant amount of temporary memory this may lead to a higher peak in memory usage.
In other words, the preloading threads could allocate additional temporary memory at the
same time rather than one after the other. Allocating too much memory could lead to the
program crashing.

Further, the scalability of the proposed solutions should be investigated. What happens if
all of the caches in a big system with several micro-services use a cache based on lazy loading
or multithreading at the same time? A hypothesis is that a multithreaded cache performs
worse because hardware threads would have to be shared by a lot of software threads. For the
Asynchronous Preloading Cache solution that uses multithreading the number of preload
threads could be adjusted to one in order to use less resources. It may be that a cache based
on lazy loading performs relatively better since the load on the network is flattened out.
Lazy loading would spread out the database requests more compared to all micro-services
requesting all of the data from all tables at startup.

In 4.1 we showed that the majority of time in the startup process was spent on the database
requests. Due to the size of the data transferred we deemed the best approach to be a decrease
of the size of the data transferred at startup as discussed in 5.1. However, many other things
could improve performance although likely not to the same extent. For example, one could
simplify the query, add an index or investigate the choice of DBMS, thread synchronization,
data structures and ORM-framework. In particular, it would be interesting to investigate in
further detail how different solutions perform in terms of run-time latency after the initial
database load to the cache is finished. In this case, the overhead of synchronization methods
and data structures could be more relevant.

5.5 Validity Threats
The validity of the research is discussed in this section with respect to validity threats de-
scribed in [52].

5.5.1 Construct Validity
Construct validity refers to what degree of certainty the measurements collected correspond
to the theory that is supposed to be analyzed [52]. In our case, the problem that we analyze
is clearly and simply defined as the execution time of loading the caches which are easy to
measure. Additionally, the independent variable is our four implementations, and this is easy
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to change without any ambiguity. Therefore, we do not see any threats to construct validity
of significant importance.

5.5.2 Conclusion Validity
Conclusion validity threats are concerned with inaccuracies that may impact the ability to
draw correct conclusions [52]. There are a few threats to conclusion validity worth mention-
ing. However, we do not believe any of them has a significant impact considering conclusions
are only drawn when the differences in the outcome are large.

Third-Party Frameworks
Several of our measurements depends on a few third-party libraries. The measurements on
startup time conducted in 4.1, 4.3 and 4.6 are collected from timestamps in the logs and
are therefore dependent on the accuracy in the log framework used. In table 4.2 we have
used Oracle’s vsize command to calculate the table size and the Hibernate Statistics API
to calculate query execution time. We are not looking for high precision measurements in
these experiments but rather an overview. Therefore, the exact precision of these third-party
frameworks being used is not researched further. It is assumed that these third-party libraries
provide enough accuracy for us to make general conclusions when there is a big difference in
the measurements results, but we need to be careful not to make any firm conclusions when
the differences in time or data size are too small.

When it comes to the time measurements from Hibernate Statistics API in particular,
running with a configuration that enables Hibernate statistics can negatively affect perfor-
mance. This means that in reality, our queries might be a bit quicker. Note that this is only
relevant for the measurements that specifically use Hibernate Statistics API in 4.2, when
running the other experiments we have disabled these statistics.

Regarding the table size calculations in table 4.2, there is some ambiguity. The size of
the table is different depending on if we are referring to the data stored on disk, the data
transferred over the network or the size of the objects stored in Hibernate. In this case, the
size is referring to the pure sum of the size, as calculated by Oracle DB’s vsize function, of all
data elements in each table.

Varying System Load
In all of the conducted experiments, the load in the system at the moment of execution can
have an effect. The machine running the experiments is only used by one developer at a time,
therefore it is not the case that other heavy processes can be started randomly during the ex-
ecution of our experiments. However, when running the experiments the whole application
with several micro-services is running. This means that while our experiments only collect
measurements on one of the micro-services, the other micro-services could possibly allocate
a varying amount of resources and thereby affect our results.

Most of our experiments include database requests. When collecting statistics on the
database requests there are two types of loads to consider. The database node is shared by a
few developers but not all, this means that we can have a varying number of other requests
hitting the database node while we are running experiments. As a consequence, the resources
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at the database node, such as the CPU, might have to be shared. Any database requests, even
if sent to another database node, can also contribute to a higher load on the network.

However, since the measurements are averaged over a number of experiment runs we
do not consider the varying load in the system to be a concern. Additionally, the deviation
between runs has also been quite small which indicates that random spikes in resource allo-
cation by the other micro-services or hosts in the network are not a big problem.

Even though developers are working on setups that can share the same host as the database
node, they are working with their own database running at that host. This means that there
is no risk that other database requests are holding transaction locks on the data queried in
the experiments.

Java Virtual Machine
As already mentioned in 3.3 there are many aspects of the JVM that can make performance
measurements ambiguous or inaccurate. Importantly, the JIT compiler, the garbage collector
and any other feature of the JVM will be included in the production environment. This means
that disabling any of these features altogether may lead to skewing the results as they would
be less realistic.

To combat the difference in results due to the JIT compiler, warm-up runs were excluded.
But of course, we cannot be sure that the JIT compiler has no effect on the execution after the
warm-up runs. However, as already described in section 3.3 warm-up runs are an established
way to reduce inaccuracies in measurements introduced by the JIT compiler in Java.

In section 3.3 it is described how the Java garbage collection can affect performance mea-
surements and in section 3.4 we describe that we trigger garbage collection between every
experiment to combat this. However, this does not mean that the garbage collection can-
not be triggered again during the experiment execution. Also note that the System.gc() call is
not guaranteed to collect all unused objects. The method call will only trigger the garbage
collector to make an effort toward recycling unused objects [45].

By doing so we make sure that all of the experiments can start without a lot of leftover
garbage from the last experimental runs.

Lines of Code
We base our discussion of maintainability on the number of code lines. These measurements
are very ambiguous as there are usually many ways to write a section of code with the same
logical output. Therefore, this measurement should not be considered very accurate.

To achieve better accuracy regarding this measurement we have tried to keep our coding
style consistent between different implementations. The case company uses plugins to check,
when compiling, that the code follows the company’s coding convention. These plugins have
also led to our different implementations to use the same coding conventions.

5.5.3 Internal Validity
When the independent variable can be changed or influenced without the researcher’s knowl-
edge there is a threat to internal validity [52]. In our case, this is not relevant since our in-
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dependent variables are our implementations or change in the code. Changes in the code
cannot happen without our knowledge, it is instead controlled very explicitly.

5.5.4 External Validity
Threats regarding external validity mean that our findings can only be applied to a gener-
alized setting to a limited extent [52]. There are some threats to external validity discussed
below.

Scope Limitation
To begin with, the experiment setup and the interpretation of our results is of course affected
by the scope that we have defined in 4.1.1. As previously stated, the product is a software
solution and the hardware and network vary from customer to customer. Because of this, we
cannot solve the issue with network or hardware solutions. But it is still possible that the
measurements that we have collected would be different if we collected them at a customer’s
setup.

It would be theoretically possible to run our experiments on different hardware and net-
work to get insight into which inefficiencies are apparent on different setups. On the other
hand, it would require too much time and resources from the company to set up another
type of machine just for this purpose. The test nodes that Nasdaq works with are meant to
be representative of the customers’ setup. Therefore we trust that the measurements collected
on these test nodes are not significantly different from what they would be on the general
customer setup.

Generated Data
As mentioned in 3.2.4 we generated the data in our database tables. The column data types
are the same as in production and the values are inspired by production data, but we are not
working with an exact copy of production data. The production data will of course also vary
from customer to customer, but the generated data is perhaps not completely representative
of the usual production data.

One relevant difference is that we do not know if the number of accounts relates to the
number of entities in a way that is similar to the usual production data.

Another point of difference is that the generated data probably has less randomness.
In some of the columns, the same value is generated for all rows, while these values would
probably vary in production.

The relation between the size of the data and the number of rows may also be slightly
different compared to what is normal in production. As an example, it may be that a NULL
value is common in production for a particular column while the generated data store some-
thing else, or the other way around.
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Conclusion

The identified inefficiency with the initial solution, which we call the Full Load Cache, at
the case company was that all data was loaded at startup. This would lead to a long startup
time if the dataset would be relatively large. A faster startup time is especially important if
the server crashes and everything needs to be restarted quickly. To alleviate this issue three
solutions were proposed. What all of them have in common is to limit what has to be loaded
during startup. However, these solutions affect the program during run-time in different
ways instead.

The proposed solutions are called the Hibernate Proxy Cache, Lookup Table Cache, and
Asynchronous Preloading Cache. The Hibernate Proxy Cache loads five columns at startup
for each entity to fetch proxies of the real entity and insert them into the cache. When the
cache service gets a request, it needs to check if the requested entities are proxies or not. If it
is a proxy it will need to be converted to a real object.

Lookup Table Cache does not load anything from the database at startup. This means
that it will have a minimal impact on the startup time. The cost of loading from the database
is instead moved to run-time, but the cost of fetching data preemptively is removed. When
a cache with this implementation gets a request it needs to check if it has loaded the data or
not. If not, load it and insert it into the cache.

The Asynchronous Preloading Cache is an extension of the Lookup Table Cache. The
difference is that this implementation starts threads at startup that load from the database
in parallel. Until these preload threads are done, the cache works similarly to the Lookup
Table Cache.

All the proposed solutions reduce the startup time compared to the initial solution. The
Hibernate Proxy Cache takes a bit more time than the other two as it loads from the database.
The Lookup Table Cache and Asynchronous Preloading Cache have an insignificant effect
on the startup time compared with having no cache service at all.

The run-time experiments showed that both the Full Load Cache and Asynchronous
Preloading Cache were fast in all scenarios. The Lookup Table Cache and Hibernate Proxy
Cache took longer times in scenarios where data was accessed for the first time. In the Hiber-
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nate Proxy solution, there is a flaw in that Hibernate creates one JDBC statement per proxy
to be converted. This created an enormous overhead when the cache had to convert a large
number of proxies. The Lookup Table Cache had more stable and predictable loading times.

In conclusion, the Hibernate Proxy Cache is not viable since the run-time request latency
can be much larger than for the Lookup Table Cache . The original solution using an initial
full load can lead to long-running startup processes with large data sets, as such it is not a
viable solution if startup time is prioritized. The Lookup Table Cache is fast at startup but
moves the latency into run-time, this cost is still a one-time concern. Experiments showed
that the run-time latency for this cache is still small for smaller requests. The Asynchronous
Preloading Cache has a minimal impact on the startup time and is fast during run-time after
the preloading threads are done. This makes the Asynchronous Preloading Cache a solution
with good potential, although it comes with a higher cost in complexity.
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Appendix A

Code

Here we provide the code used throughout this thesis. Both the resulting implementations
and some tools used to investigate performance. In order to not disclose any confidential
information we have masked certain parts of the code. See the two listings below for how we
have handled this.

/*The following means that one or more packages are imported in the real
implementation but these are internal packages that are not relevant
for the logic of our implementations.*/

import ...;

/*In the real implementation a certain type of entity is used with a more
descriptive name. Since we don’t want to disclose the type of data
stored in the database we just refer to them as entities.
Additionally, to differentiate between different kinds of data types
we use entityA, entityB, etc.*/

this.entityACache = new HibernateLazyCache<>(entityProxyService,
EntityA.class);
this.entityBCache = new HibernateLazyCache<>(entityProxyService,
EntityB.class);

/*A similar approach was used to mask any column names. The real column
names have been replaced with something like "columnX".*/

...
DetachedCriteria.forClass(entityType)
.add(Restrictions.eq("columnX", ColumnX.MASKED_VALUE))
.addOrder(Order.asc("key.entityNumber"))
.addOrder(Order.desc("key.columnY"))
...
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A.1 SQL Script to Generate Data
Note that the the names of tables and columns have been masked to not expose Nasdaq’s
internal system.

-- Amount of rows to insert into specified table
define AMOUNT_OF_ROWS = 10000;

-- Table that should be used. Specify number
-- 0 = TABLE A
-- 1 = TABLE B
-- 2 = TABLE C
-- 3 = TABLE D
define TABLE_CHOICE = 0;

-- Table with all columns, shared and unique:
-- Some columns have been changed from NOT NULL to constants to

make the code cleaner
CREATE TABLE tmp (

COLUMN_A NUMBER(10, 0) NOT NULL,
COLUMN_B DATE NOT NULL,
COLUMN_C DATE NOT NULL,
COLUMN_D NUMBER(10, 0) DEFAULT 4,
COLUMN_E VARCHAR2(12 CHAR) DEFAULT ’value’,
COLUMN_F VARCHAR2(12 CHAR) DEFAULT ’value’,
COLUMN_G NUMBER(10, 0) NOT NULL,
COLUMN_H NUMBER(20, 0) NOT NULL,
COLUMN_I VARCHAR2(32 CHAR) DEFAULT ’value’,
COLUMN_J VARCHAR2(2 CHAR) DEFAULT ’value’,
COLUMN_K VARCHAR2(5 CHAR) DEFAULT ’value’,
COLUMN_L VARCHAR2(16 CHAR) DEFAULT ’value’,
COLUMN_M NUMBER(20, 0) NOT NULL,
COLUMN_N VARCHAR2(64 CHAR) DEFAULT ’GENERATED’,
COLUMN_O NUMBER(10, 0) DEFAULT 5,
COLUMN_P DATE NOT NULL,
COLUMN_Q DATE DEFAULT DATE’2070-01-01’,
COLUMN_R VARCHAR2(12 BYTE) DEFAULT ’value’,
COLUMN_S DATE,
COLUMN_T NUMBER(10, 0) DEFAULT 0,
COLUMN_S_A NUMBER(20, 0) NOT NULL,
COLUMN_S_B NUMBER(10, 0) DEFAULT 2,,
COLUMN_S_C NUMBER(20, 0) NOT NULL,
COLUMN_S_D NUMBER(10, 0) DEFAULT 0,
COLUMN_S_E NUMBER(20, 0) DEFAULT 0,
COLUMN_S_F NUMBER(10, 0) DEFAULT 0,
COLUMN_S_G NUMBER(10, 0) DEFAULT 0,
COLUMN_D_A NUMBER(10, 0) DEFAULT 0,
COLUMN_C_A DATE NOT NULL,
COLUMN_B_A DATE DEFAULT DATE’2070-01-01’,
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COLUMN_B_B NUMBER(20, 0) DEFAULT 0,
COLUMN_B_C VARCHAR2(34 BYTE),
COLUMN_B_D NUMBER(10, 0) DEFAULT 0,
COLUMN_B_E VARCHAR2(3 BYTE),
COLUMN_B_F NUMBER(20, 0) DEFAULT 0,
COLUMN_C_A VARCHAR2(12 BYTE) DEFAULT ’ ’,
COLUMN_C_B NUMBER(10, 0) DEFAULT 9,
COLUMN_C_C NUMBER(10, 0)

);

INSERT INTO tmp (COLUMN_A, COLUMN_B, COLUMN_C, COLUMN_G, COLUMN_H,
COLUMN_M, COLUMN_P, COLUMN_S_A, COLUMN_S_C, COLUMN_C_A)

SELECT
gen.COLUMN_A,
gen.COLUMN_B,
gen.COLUMN_B,
DBMS_RANDOM.value(1, 10),
DBMS_RANDOM.value(power(10, 18), power(10, 19)-power(10, 18)),
gen.COLUMN_M,
gen.COLUMN_B,
DBMS_RANDOM.value(power(10, 3), power(10, 4)-1),
gen.COLUMN_M,
gen.COLUMN_B

FROM (
SELECT

LEVEL as COLUMN_A,
TO_DATE(TRUNC(

DBMS_RANDOM.value(TO_CHAR(DATE ’2021-01-01’,’J’)
,TO_CHAR(DATE

’2022-01-01’,’J’))),’J’) as
COLUMN_B,

DBMS_RANDOM.value(0, 100000) as COLUMN_M
FROM dual
CONNECT BY LEVEL <= &AMOUNT_OF_ROWS

) gen;

DECLARE nbrOfInstances NUMBER;
BEGIN

SELECT count(1) INTO nbrOfInstances FROM "DB 2"."TABLE E";
FOR counter IN 1..nbrOfInstances
LOOP

UPDATE tmp
SET
(COLUMN_J, COLUMN_K, COLUMN_L) = (

SELECT COLUMN_E_A, COLUMN_E_B, COLUMN_E_C
FROM (

SELECT COLUMN_E_A, COLUMN_E_B, COLUMN_E_C, rownum
as rn

FROM (
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SELECT COLUMN_E_A, COLUMN_E_B, COLUMN_E_C
FROM "DB 2"."TABLE E"

)
)
WHERE rn=counter)

WHERE counter = MOD(id, nbrOfInstances);
END LOOP;
IF &TABLE_CHOICE = 0 THEN

INSERT INTO TABLE A
SELECT

COLUMN_B,
COLUMN_C,
COLUMN_D,
COLUMN_E,
COLUMN_F,
COLUMN_G,
COLUMN_H,
COLUMN_I,
COLUMN_J,
COLUMN_K,
COLUMN_L,
COLUMN_M,
COLUMN_N,
COLUMN_O,
COLUMN_P,
COLUMN_C_A,
COLUMN_Q,
COLUMN_S,
COLUMN_S_C,
COLUMN_R,
COLUMN_S_A,
COLUMN_S_B,
COLUMN_S_E,
COLUMN_S_D,
COLUMN_S_F,
COLUMN_S_G,
COLUMN_T
FROM tmp;

ELSIF &TABLE_CHOICE = 1 THEN
INSERT INTO TABLE B
SELECT

COLUMN_B,
COLUMN_C,
COLUMN_D,
COLUMN_E,
COLUMN_F,
COLUMN_G,
COLUMN_H,
COLUMN_I,
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COLUMN_J,
COLUMN_K,
COLUMN_L,
COLUMN_M,
COLUMN_N,
COLUMN_O,
COLUMN_P,
COLUMN_Q,
COLUMN_B_A,
COLUMN_B_B,
COLUMN_S,
COLUMN_S_C,
COLUMN_S_E,
COLUMN_R,
COLUMN_S_A,
COLUMN_S_B,
COLUMN_S_D,
COLUMN_S_F,
COLUMN_S_G,
COLUMN_B_C,
COLUMN_B_D,
COLUMN_T,
COLUMN_B_E,
COLUMN_B_F

FROM tmp;
ELSIF &TABLE_CHOICE = 2 THEN

INSERT INTO TABLE C
SELECT

COLUMN_B,
COLUMN_C,
COLUMN_D,
COLUMN_E,
COLUMN_F,
COLUMN_G,
COLUMN_H,
COLUMN_I,
COLUMN_J,
COLUMN_K,
COLUMN_L,
COLUMN_M,
COLUMN_N,
COLUMN_O,
COLUMN_C_B,
COLUMN_P,
COLUMN_Q,
COLUMN_S,
COLUMN_C_C,
COLUMN_R,
COLUMN_C_A,
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COLUMN_T
FROM tmp;

ELSIF &TABLE_CHOICE = 3 THEN
INSERT INTO TABLE D
SELECT

COLUMN_B,
COLUMN_C,
COLUMN_D,
COLUMN_E,
COLUMN_F,
COLUMN_G,
COLUMN_H,
COLUMN_I,
COLUMN_J,
COLUMN_K,
COLUMN_L,
COLUMN_M,
COLUMN_N,
COLUMN_O,
COLUMN_D_A,
COLUMN_P,
COLUMN_Q,
COLUMN_S,
COLUMN_S_C,
COLUMN_R,
COLUMN_S_A,
COLUMN_S_B,
COLUMN_S_D,
COLUMN_T

FROM tmp;
END IF;

END;
/
DROP TABLE tmp;

-- DELETE GENERATED ROWS
-- DELETE FROM TABLE A WHERE COLUMN_N = ’GENERATED’;
-- DELETE FROM TABLE B WHERE COLUMN_N = ’GENERATED’;
-- DELETE FROM TABLE D WHERE COLUMN_N = ’GENERATED’;
-- DELETE FROM TABLE C WHERE COLUMN_N = ’GENERATED’;
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A.2 Hibernate Statistics Command
final SessionFactory sf = getSessionFactory();
final Statistics stats = sf.getStatistics();

if (findParamValueBoolean(parameters, "clear")) {
stats.clear();
return null;

}

operationOutput.println(">>>>>>>>>>>>SUMMARY<<<<<<<<<<<<<<");
operationOutput.println("Is statistics enabled?: " +

stats.isStatisticsEnabled() + "\n");
final long preparedStatements = stats.getPrepareStatementCount();
operationOutput.println("Registered " + preparedStatements + " JDBC

statements.");
operationOutput.println("Registered " + stats.getQueryExecutionCount() +

" queries, with " + stats.getQueryCacheHitCount() + " query cache
hits.");

operationOutput.println("Registered " +
stats.getNaturalIdQueryExecutionCount() + " NaturalId queries");

operationOutput.println("The slowest query executed in " +
stats.getQueryExecutionMaxTime() + " ms");

operationOutput.println("Query string for the slowest query: " +
stats.getQueryExecutionMaxTimeQueryString());

operationOutput.println("The number of collections loaded (fetching and
cache) " + stats.getCollectionLoadCount());

operationOutput.println("The number of entities loaded " +
stats.getEntityLoadCount());

if (findParamValueBoolean(parameters, "showQueries")) {
operationOutput.println("\n>>>>>>>>>>>>Query details<<<<<<<<<<<<<<");
final String[] queries = stats.getQueries();
for (String q: queries) {

final QueryStatistics qs = stats.getQueryStatistics(q);
operationOutput.println("\nQuery: " + q);
operationOutput.println("Executed " + qs.getExecutionCount() + "

times with an average execution time of " +
qs.getExecutionAvgTime() + " ms");

}
}

return null;

81



A. Code

A.3 Mutual Code
A.3.1 AccountIndex

package ...;

import java.util.HashSet;
import java.util.Set;

import ...;

public class AccountIndex {
private final Set<Long> entityKeys = new HashSet<>();
private boolean loadedFromDatabase = false;

public Set<Long> getEntityKeys() {
return entityKeys;

}

public void addEntityKey(final long entityKey) {
entityKeys.add(entityKey);

}

public void removeEntityKey(final long entityKey) {
entityKeys.remove(entityKey);

}

public boolean getLoadedFromDatabase() {
return loadedFromDatabase;

}

public void setLoadedFromDatabase() {
loadedFromDatabase = true;

}

public static IndexKey createIndexKey(final Collateral<?> entity) {
return createIndexKey(entity.getAccountInfo());

}

public static IndexKey createIndexKey(final String accountInfo) {
return new IndexKey(accountInfo);

}
}
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A.3.2 EntityService

package ...;

import java.util.ArrayList;
import java.util.List;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;

import ...;

/**
* This class contain the database transaction support for Entity.
*/

@SuppressWarnings("unused")
@Service
public class EntityService {

private EntityDao entityDao;

@Autowired
public void setEntityDao(final EntityDao dao) {

this.entityDao = dao;
}

@Transactional(readOnly = true)
public <T extends Entity<?>> List<T> findAllActive(final Class<T>

entityType) {
return entityDao.findAllActive(entityType);

}

@Transactional(readOnly = true)
public <T extends Entity<?>> List<T> findActive(final String

accountInfo, final Class<T> entityType) {
return entityDao.findActive(accountInfo, entityType);

}

@Transactional(readOnly = true)
public <T extends Entity<?>> T findActive(final long entityNumber,

final Class<T> entityType) {
return entityDao.findActive(entityNumber, entityType);

}
}
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A.3.3 EntityDaoHibernate

package ...;

import java.util.List;

import org.apache.log4j.Logger;
import org.hibernate.criterion.DetachedCriteria;
import org.hibernate.criterion.Order;
import org.hibernate.criterion.Restrictions;
import org.springframework.orm.hibernate5.support.HibernateDaoSupport;
import org.springframework.stereotype.Component;

import ...;

@SuppressWarnings("unchecked")
@Component("entityDao")
public class EntityDaoHibernate extends HibernateDaoSupport implements

EntityDao {
private final Logger logger =

Logger.getLogger(EntityDaoHibernate.class);

@Override
public <T extends Entity<?>> List<T> findAllActive(final Class<T>

entityType) {
return DetachedCriteria.forClass(entityType)

.add(Restrictions.eq("columnX", ColumnX.MASKED_VALUE))

.addOrder(Order.asc("key.entityNumber"))

.addOrder(Order.desc("key.columnY"))

.getExecutableCriteria(getSessionFactory().getCurrentSession())

.list();
}

@Override
public <T extends Entity<?>> List<T> findActive(final String

accountInfo, final Class<T> entityType) {
return DetachedCriteria.forClass(entityType)

.add(Restrictions.eq("accountInfo", accountInfo)))

.add(Restrictions.eq("columnX", ColumnX.MASKED_VALUE))

.getExecutableCriteria(getSessionFactory().getCurrentSession())

.list();
}

@Override
public <T extends Entity<?>> T findActive(final long entityNumber,

final Class<T> entityType) {
final List<T> result = DetachedCriteria.forClass(entityType)

.add(Restrictions.eq("key.entityNumber", entityNumber))

.add(Restrictions.eq("columX", ColumnX.MASKED_VALUE))
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.getExecutableCriteria(getSessionFactory().getCurrentSession())

.list();

if (result.size() > 1) {
logger.warn("Query return more that one active entity !!");
for (T entity : result) {

logger.warn(entity);
}

}

return result.isEmpty() ? null : result.get(0);
}

}
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A.3.4 EntityProxyService

package ...;

import java.util.List;

import ...;

@Service
public class EntityProxyService {

private EntityProxyDao entityProxyDao;

@Autowired
public void setEntityProxyDao(final EntityProxyDao dao) {

this.entityProxyDao = dao;
}

@Transactional(readOnly = true)
public <T extends Entity<?>> List<EntityProxyInfoDTO<T>>

loadAllProxy(final Class<T> entityType) {
return entityProxyDao.loadAllProxy(entityType);

}

@Transactional(readOnly = true)
public <T extends Entity<?>> void unproxy(final List<T> proxyList) {

entityProxyDao.unproxy(proxyList);
}

@Transactional(readOnly = true)
public <T extends Entity<?>> void unproxy(final T proxy) {

entityProxyDao.unproxy(proxy);
}

}
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A.3.5 EntityProxyDaoHibernate

package ...;

import java.util.List;

import org.hibernate.LockOptions;
import org.hibernate.Session;
import org.hibernate.criterion.DetachedCriteria;
import org.hibernate.criterion.ProjectionList;
import org.hibernate.criterion.Projections;
import org.hibernate.criterion.Restrictions;
import org.hibernate.transform.Transformers;
import org.springframework.orm.hibernate5.support.HibernateDaoSupport;
import org.springframework.stereotype.Component;

import ...;

@SuppressWarnings("unchecked")
@Component("entityProxyDao")
public class EntityProxyDaoHibernate extends HibernateDaoSupport

implements EntityProxyDao {
@Override
public <T extends AbstractEntity<?>> List<EntityProxyInfoDTO<T>>

loadAllProxy(final Class<T> entityType) {
final List<EntityProxyInfoDTO<T>> proxyInfoList =

loadAllActiveProxyInfo(entityType);
final Session session = getSessionFactory().getCurrentSession();
for (EntityProxyInfoDTO<T> proxyInfo : proxyInfoList) {

final T proxy = session.load(entityType, proxyInfo.getKey());
proxyInfo.setEntity(proxy);

}

return proxyInfoList;
}

@Override
public <T> void unproxy(final List<T> proxyList) {

final Session.LockRequest lockRequest =
getSessionFactory().getCurrentSession().buildLockRequest(LockOptions.NONE);

for (final T proxy : proxyList) {
lockRequest.lock(proxy);

}
}

@Override
public <T> void unproxy(final T proxy) {

getSessionFactory().getCurrentSession()
.buildLockRequest(LockOptions.NONE).lock(proxy);
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}

private <T extends AbstractEntity<?>> List<EntityProxyInfoDTO<T>>
loadAllActiveProxyInfo(final Class<T> entityType) {
final ProjectionList projectionList = Projections.projectionList()

.add(Projections.property("key"), "key")

.add(Projections.property("accountInfo"), "accountInfo");
return DetachedCriteria.forClass(entityType)

.add(Restrictions.eq("columnX", ColumnX.MASKED_VALUE))

.setProjection(projectionList)

.setResultTransformer(Transformers.aliasToBean(EntityProxyInfoDTO.class))

.getExecutableCriteria(getSessionFactory().getCurrentSession())

.list();
}

}
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A.3.6 EntityProxyInfoDTO

package ...;

import ...;

public class EntityProxyInfoDTO<T extends AbstractEntity<?>> {
private EntityKey key;
private String accountInfo;
private T entity;

public EntityKey getKey() {
return key;

}

public void setKey(final EntityKey key) {
this.key = key;

}

public String getAccountInfo() {
return accountInfo;

}

public void setAccountInfo(final String accountInfo) {
this.accountInfo = accountInfo;

}

public T getEntity() {
return entity;

}

public void setEntity(final T entity) {
this.entity = entity;

}
}
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A.4 Hibernate Proxy Cache

A.4.1 Cache

package ...;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.function.Predicate;
import java.util.stream.Collectors;

import org.apache.log4j.Logger;
import org.hibernate.Hibernate;

import ...;

public class HibernateLazyCache<T extends Entity<R>, R> implements
Cache<T, R> {
private static final Logger LOGGER =

Logger.getLogger(HibernateLazyCache.class);
private final EntityProxyService entityProxyService;
private final Map<Long, T> cache = new HashMap<>();
private final Map<IndexKey, AccountIndex> accountIndexMap = new

HashMap<>();
private final Class<T> entityType;

public HibernateLazyCache(final EntityProxyService
entityProxyService, final Class<T> entityType) {
this.entityProxyService = entityProxyService;
this.entityType = entityType;

}

@Override
public synchronized void clear() {

cache.clear();
accountIndexMap.clear();

}

@Override
public synchronized void initCache() {

final List<EntityProxyInfoDTO<T>> entityProxyList = loadAllProxy();
for (final EntityProxyInfoDTO<T> entityProxyDTO: entityProxyList) {

insertProxy(entityProxyDTO);
}

}
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@Override
public synchronized List<T> getAllActive() {

final List<T> entityList = new ArrayList<>(cache.values());
unproxy(entityList);
return entityList;

}

@Override
public synchronized T getActive(final long entityNumber) {

final T entity = cache.get(entityNumber);
unproxy(entity);
return entity;

}

@Override
public synchronized List<T> getActive(final String accountInfo) {

final IndexKey indexKey = AccountIndex.createIndexKey(accountInfo);
if (!accountIndexMap.containsKey(indexKey)) {

return new ArrayList<>();
}

final List<T> entityList = accountIndexMap
.get(indexKey)
.getEntityKeys()
.stream()
.map(cache::get)
.collect(Collectors.toList());

unproxy(entityList);
return entityList;

}

@Override
public synchronized void add(final T entity) {

final long entityNumber = entity.getEntityNumber();
cache.put(entityNumber, entity);
final IndexKey indexKey = AccountIndex.createIndexKey(entity);
if (!accountIndexMap.containsKey(indexKey)) {

accountIndexMap.put(indexKey, new AccountIndex());
}

final AccountIndex accountIndex = accountIndexMap.get(indexKey);
accountIndex.addEntityKey(entityNumber);

}

@Override
public synchronized void remove(final T entity) {

final long entityNumber = entity.getEntityNumber();
cache.remove(entityNumber);
final IndexKey indexKey = AccountIndex.createIndexKey(entity);
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final AccountIndex accountIndex = accountIndexMap.get(indexKey);
accountIndex.removeEntityKey(entityNumber);

}

@Override
public synchronized void update(final T entity) {

final long entityNumber = entity.getEntityNumber();
cache.put(entityNumber, entity);

}

private synchronized void unproxy(final List<T> entityList) {
final List<T> proxyList = entityList

.stream()

.filter(Predicate.not(Hibernate::isInitialized))

.collect(Collectors.toList());
if (!proxyList.isEmpty()) {

entityProxyService.unproxy(proxyList);
}

}

private synchronized void unproxy(final T entity) {
if (!Hibernate.isInitialized(entity)) {

entityProxyService.unproxy(entity);
}

}

private List<EntityProxyInfoDTO<T>> loadAllProxy() {
return entityProxyService.loadAllProxy(entityType);

}

private synchronized void insertProxy(final EntityProxyInfoDTO<T>
entityProxyInfoDTO) {
final long entityNumber =

entityProxyInfoDTO.getKey().getEntityNumber();
final T entity = entityProxyInfoDTO.getCollateral();
final String accountInfo = entityProxyInfoDTO.getAccountInfo();
cache.put(entityNumber, entity);
final IndexKey indexKey = AccountIndex.createIndexKey(accountInfo);
if (!accountIndexMap.containsKey(indexKey)) {

accountIndexMap.put(indexKey, new AccountIndex());
}

final AccountIndex accountIndex = accountIndexMap.get(indexKey);
accountIndex.addEntityKey(entityNumber);

}
}
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A.4.2 Provider

package ...;

import org.apache.log4j.Logger;

import ...;

public class HibernateLazyCacheServiceProvider extends ... {
private static final Logger LOGGER =

Logger.getLogger(HibernateLazyCacheServiceProvider.class);

public HibernateLazyCacheServiceProvider(final Service service, final
String instanceName, final String serviceName) {
super(service, instanceName, serviceName);
final EntityProxyService entityProxyService =

FrameworkService.getDefault(icore).getBean("entityProxyService");
this.entityACache = new HibernateLazyCache<>(entityProxyService,

EntityA.class);
this.entityBCache = new HibernateLazyCache<>(entityProxyService,

EntityB.class);
this.entityCCache = new HibernateLazyCache<>(entityProxyService,

EntityC.class);
this.entityDCache = new HibernateLazyCache<>(entityProxyService,

EntityD.class);
}

@Override
public void resetCache() {

entityACache.clear();
entityBCache.clear();
entityCCache.clear();
entityDCache.clear();
entityACache.initCache();
entityBCache.initCache();
entityCCache.initCache();
entityDCache.initCache();

}

@Override
public void start() {

super.start();
this.entityBCache.initCache();
this.entityDCache.initCache();
this.entityACache.initCache();
this.entityCCache.initCache();
LOGGER.info("caches initialized");

}
}
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A.5 Lookup Table Cache

A.5.1 Cache

package ...;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.stream.Collectors;

import org.apache.log4j.Logger;

import ...;

public class LazyCache<T extends Entity<R>, R> implements Cache<T, R> {
private static final Logger LOGGER =

Logger.getLogger(LazyCache.class);
protected EntityService entityService;
protected final Map<Long, T> cache = new HashMap<>();
protected final Map<IndexKey, AccountIndex> accountIndexMap = new

HashMap<>();
protected boolean hasLoadedEverything = false;
protected final Class<T> entityType;

public LazyCache(final EntityService entityService, final Class<T>
entityType) {
this.entityService = entityService;
this.entityType = entityType;

}

@Override
public synchronized void clear() {

cache.clear();
accountIndexMap.clear();
hasLoadedEverything = false;

}

@Override
public void initCache() {

LOGGER.info("No initialization");
}

@Override
public synchronized List<T> getAllActive() {

if (!hasLoadedEverything) {
loadAll();
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hasLoadedEverything = true;
}

return cache
.values()
.stream()
.filter(Objects::nonNull)
.collect(Collectors.toList());

}

@Override
public synchronized List<T> getActive(final String accountInfo) {

final IndexKey indexKey = AccountIndex.createIndexKey(accountInfo);
if (!accountIndexMap.containsKey(indexKey)) {

accountIndexMap.put(indexKey, new AccountIndex());
}

final AccountIndex accountIndex = accountIndexMap.get(indexKey);
if (!accountIndex.getLoadedFromDatabase()) {

final List<T> entityList =
entityService.findActive(accountInfo, entityType);

for (final T entity : entityList) {
add(entity);

}

accountIndex.setLoadedFromDatabase();
}

return accountIndex
.getEntityKeys()
.stream()
.map(cache::get)
.filter(Objects::nonNull)
.collect(Collectors.toList());

}

@Override
public synchronized T getActive(final long entityNumber) {

if (!cache.containsKey(entityNumber)) {
final T entity = entityService.findActive(entityNumber,

entityType);
if (entity == null) {

cache.put(entityNumber, null);
return null;

}

add(entity);
}
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return cache.get(entityNumber);
}

@Override
public synchronized void add(final T entity) {

final long entityNumber = entity.getEntityNumber();
if (!cache.containsKey(entityNumber)) {

cache.put(entityNumber, entity);

final IndexKey indexKey = AccountIndex.createIndexKey(entity);
if (!accountIndexMap.containsKey(indexKey)) {

accountIndexMap.put(indexKey, new AccountIndex());
}

accountIndexMap.get(indexKey).addEntityKey(entityNumber);
}

}

@Override
public synchronized void remove(final T entity) {

final long entityNumber = entity.getEntityNumber();
cache.put(entityNumber, null);
final IndexKey indexKey = AccountIndex.createIndexKey(entity);
if (accountIndexMap.containsKey(indexKey)) {

accountIndexMap.get(indexKey).removeEntityKey(entityNumber);
}

}

@Override
public synchronized void update(final T entity) {

final long entityNumber = entity.getEntityNumber();
cache.put(entityNumber, entity);

}

private synchronized void loadAll() {
final List<T> entityList = entityService.findAllActive(entityType);
for (final T entity : entityList) {

add(entity);
}

for (final AccountIndex accountIndex : accountIndexMap.values()) {
accountIndex.setLoadedFromDatabase();

}
}

}
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A.5.2 Provider

package ...;

import org.apache.log4j.Logger;

import ...;

public class LazyCacheServiceProvider extends ... {
private static final Logger LOGGER =

Logger.getLogger(LazyCacheServiceProvider.class);

public LazyCacheServiceProvider(final Service service, final String
instanceName, final String serviceName) {
super(service, instanceName, serviceName);
final EntityService entityService =

FrameworkService.getDefault(service).getBean("entityService");
this.entityACache = new LazyCache<>(entityService, EntityA.class);
this.entityBCache = new LazyCache<>(entityService, EntityB.class);
this.entityCCache = new LazyCache<>(entityService, EntityC.class);
this.entityDCache = new LazyCache<>(entityService, EntityD.class);

}

@Override
public void resetCache() {

entityACache.clear();
entityBCache.clear();
entityCCache.clear();
entityDCache.clear();

}

@Override
public void start() {

super.start();
LOGGER.info("No initial load.");

}
}
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A.6 Asynchronous Preloading Cache

A.6.1 Cache

package ...;

import java.util.HashSet;
import java.util.List;
import java.util.Objects;
import java.util.Set;
import java.util.stream.Collectors;

import org.apache.log4j.Logger;

import ...;

public class AsyncPreloadCache<T extends Entity<R>, R> extends
LazyCache<T, R> {
private static final Logger LOGGER =

Logger.getLogger(AsyncPreloadCache.class);
private Set<InitTask> activeInitTasks = new HashSet<>();

public AsyncPreloadCache(final EntityService entityService, final
Class<T> entityType) {
super(entityService, entityType);

}

@Override
public synchronized void clear() {

//Invalidate all active init tasks
activeInitTasks = new HashSet<>();
super.clear();

}

public Runnable getInitTask() {
final InitTask task = new InitTask();
synchronized (this) {

if (hasLoadedEverything) {
LOGGER.warn("Cache already initialized. New init task is

redundant.");
}

activeInitTasks.add(task);
if (activeInitTasks.size() > 1) {

LOGGER.warn("More than one init task active.");
}

}
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return task;
}

private final class InitTask implements Runnable {
@Override
public void run() {

final List<T> entityList =
entityService.findAllActive(entityType);

synchronized (AsyncPreloadCache.this) {
if (activeInitTasks.contains(this)) {

for (final T entity : entityList) {
add(entity);

}

for (AccountIndex accountIndex :
accountIndexMap.values()) {
accountIndex.setLoadedFromDatabase();

}

hasLoadedEverything = true;
AsyncPreloadCache.this.notifyAll();
LOGGER.info("Init task (" + entityType.getSimpleName()

+ ") finished. Exiting thread.");
} else {

LOGGER.info("Init task (" + entityType.getSimpleName()
+ ") cancelled. Exiting thread.");

}
}

activeInitTasks.remove(this);
}

}

@Override
public synchronized List<T> getAllActive() {

waitInitCompletion();
return super.getAllActive();

}

@Override
public List<T> getActive(final String accountInfo) {

final IndexKey indexKey = AccountIndex.createIndexKey(accountInfo);
final boolean alreadyLoaded;
final AccountIndex accountIndex;
synchronized (this) {

if (!accountIndexMap.containsKey(indexKey)) {
accountIndexMap.put(indexKey, new AccountIndex());

}
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accountIndex = accountIndexMap.get(indexKey);
alreadyLoaded = accountIndex.getLoadedFromDatabase();

}

List<T> entityList = null;
if (!alreadyLoaded) {

entityList = entityService.findActive(accountInfo, entityType);
}

synchronized (this) {
if (!accountIndex.getLoadedFromDatabase() && entityList !=

null) {
// Check again since another thread could have finished

before this thread.
accountIndex.setLoadedFromDatabase();
for (final T entity : entityList) {

add(entity);
}

}

return accountIndex
.getEntityKeys()
.stream()
.map(cache::get)
.filter(Objects::nonNull)
.collect(Collectors.toList());

}
}

@Override
public T getActive(final long entityNumber) {

final boolean alreadyLoaded;
synchronized (this) {

alreadyLoaded = cache.containsKey(entityNumber);
}

T entity = null;
if (!alreadyLoaded) {

entity = entityService.findActive(entityNumber, entityType);
}

synchronized (this) {
if (!cache.containsKey(entityNumber)) {

// Check again since another thread could have finished
before this thread.

if (entity == null) {
LOGGER.info(entityType.getSimpleName() + " with entity

number " + entityNumber + " does not exist.");
cache.put(entityNumber, null);
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return null;
}

add(entity);
}

return cache.get(entityNumber);
}

}

private synchronized void waitInitCompletion() {
if (!hasLoadedEverything && activeInitTasks.size() < 1) {

LOGGER.error("No active init tasks. Will wait until one is
created.");

}

try {
while (!hasLoadedEverything) {

wait();
}

} catch (InterruptedException e) {
LOGGER.error("Thread interrupted while waiting for init

task.");
}

}
}
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A.6.2 Provider

package ...;

import org.apache.log4j.Logger;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;

import ...;

public class AsyncPreloadCacheServiceProvider extends ... {
private static final Logger LOGGER =

Logger.getLogger(AsyncPreloadCacheServiceProvider.class);
@Autowired
private ThreadPoolTaskExecutor taskExecutor;
private final Runnable[] taskList;

public AsyncPreloadCacheServiceProvider(final Service service, final
String instanceName, final String serviceName) {
super(service, instanceName, serviceName);
final FrameworkService frameworkService =

FrameworkService.getDefault(service);
final EntityService entityService =

frameworkService.getBean("entityService");

final AsyncPreloadCache<EntityA, EntityARec>
entityAAsyncPreloadCache = new
AsyncPreloadCache<>(entityService, EntityA.class);

this.entityACache = entityAAsyncPreloadCache;

final AsyncPreloadCache<EntityB, EntityBRec>
entityBAsyncPreloadCache = new
AsyncPreloadCache<>(entityService, EntityB.class);

this.entityBCache = entityBAsyncPreloadCache;

final AsyncPreloadCache<EntityC, EntityCRec>
entityCAsyncPreloadCache = new
AsyncPreloadCache<>(entityService, EntityC.class);

this.entityCCache = entityCAsyncPreloadCache;

final AsyncPreloadCache<EntityD, EntityDRec>
entityDAsyncPreloadCache = new
AsyncPreloadCache<>(entityService, EntityD.class);

this.entityDCache = entityDAsyncPreloadCache;

taskList = new Runnable[]{
entityAAsyncPreloadCache.getInitTask(),
entityBAsyncPreloadCache.getInitTask(),
entityCAsyncPreloadCache.getInitTask(),
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entityDAsyncPreloadCache.getInitTask()
};

}

@Override
public void resetCache() {
}

@Override
public void start() {

super.start();
LOGGER.info("No initial load.");
for (Runnable task : taskList) {

taskExecutor.execute(task);
}

}
}
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A.7 Experiment Code

package ...;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Random;

import org.apache.log4j.Logger;

import ...

public class CacheExperiment extends ... {
private static final Logger LOGGER =

Logger.getLogger(CacheExperiment.class);
private static final String COMMAND = "Cache Experiment";
private static final String DESCRIPTION = "Experiments on the cache

implementations.";
protected final List<Long> numbers = new ArrayList<>();
protected final Map<IndexKey, AccountInfo> accountMap = new

HashMap<>();
private final Service service;

public CacheExperiment(final Service service) {
super(COMMAND, DESCRIPTION,

new Parameter("cacheService", "Cache service to use. Initial,
Lookup, Proxy or Async.", false, null));

this.service = service;
}

@Override
public Object execute(final OperationOutput operationOutput, final

Collection<ValueParameter> parameters) throws Exception {
final String cacheServiceName = findParamValueString(parameters,

"cacheService");
final String experiment = findParamValueString(parameters,

"experiment");
final CacheService cacheService =

getCacheService(cacheServiceName);
if (cacheService == null) {

operationOutput.println("Invalid cache service. Use Initial,
Lookup, Proxy or Async");

return null;
}
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LOGGER.info("Setting up experiment environment...");
setupBeforeExperiment(cacheService);
LOGGER.info("Setup of experiment environment done.");

// GET ALL
executeExperiment("getAll from one table, 0% previously accessed",

new GetAllFromOneTable(0), cacheServiceName, cacheService);
executeExperiment("getAll from one table, 50% previously accessed",

new GetAllFromOneTable(0.5), cacheServiceName, cacheService);
executeExperiment("getAll from one table, 90% previously accessed",

new GetAllFromOneTable(0.9), cacheServiceName, cacheService);
executeExperiment("getAll from one table, 100% previously

accessed", new GetAllFromOneTable(1), cacheServiceName,
cacheService);

// GET ACCOUNT
executeExperiment("getAccount from one table, 0% previously

accessed", new GetAccountFromOneTable(true), cacheServiceName,
cacheService);

executeExperiment("getAccount from one table, 100% previously
accessed", new GetAccountFromOneTable(false), cacheServiceName,
cacheService);

// GET
executeExperiment("get from one table, 0% previously accessed", new

GetFromOneTable(true), cacheServiceName, cacheService);
executeExperiment("get from one table, 100% previously accessed",

new GetFromOneTable(false), cacheServiceName, cacheService);

return null;
}

private void executeExperiment(final String experimentName, final
Experiment experiment, final String cacheServiceName, final
CacheService cacheService) {
final int runs = 12;
LOGGER.info("---------------------------------");
LOGGER.info(cacheServiceName + " - Executing experiment " +

experimentName + ":");
for (int i = 0; i < runs; i++) {

LOGGER.info(cacheServiceName + " - Setting up run " + i +
"...");

cacheService.resetCache();
System.gc();
experiment.setup(cacheService);
experiment.startExperiment(cacheService, cacheServiceName, i);
experiment.useReturned();

}
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LOGGER.info("---------------------------------");
}

private CacheService getCacheService(final String cacheService) {
switch (cacheService.toLowerCase()) {
case "initial":

return CacheService.getDefault(service, "initial");
case "lookup":

return CacheService.getDefault(service, "lookup");
case "proxy":

return CacheService.getDefault(service, "proxy");
case "async":

return CacheService.getDefault(service, "async");
default:

return null;
}

}

private void setupBeforeExperiment(final CacheService cacheService) {
final List<Entity> entityList = cacheService.getAllActiveEntity();
for (Entity entity : entityList) {

numbers.add(entity.getNumber());
final IndexKey indexKey = new

IndexKey(entity.getAccountInformation());
if (!accountMap.containsKey(indexKey)) {

accountMap.put(indexKey, new AccountInfo(entity));
}

}
}

private <T extends AbstractEntity<?>> void setOnAllEntity(final
List<T> entityList) {
final int randomInt = new Random().nextInt();
for (AbstractEntity<?> entity : entityList) {

entity.setInfo(randomInt + " Experiment done.");
}

}

public abstract static class Experiment {
abstract void execute(CacheService cacheService);

abstract void setup(CacheService cacheService);

abstract void useReturned();

public void startExperiment(final CacheService cacheService, final
String cacheServiceName, final int i) {
LOGGER.info(cacheServiceName + " - Starting run " + i + "...");
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final long start = System.nanoTime();
this.execute(cacheService);
final long stop = System.nanoTime();
LOGGER.info(cacheServiceName + " - Stopping run " + i + "...");
final long elapsedTime = stop - start;
LOGGER.info(cacheServiceName + " - Run " + i + ": " +

elapsedTime + " nanoseconds.");
}

}

public class GetAllFromOneTable extends Experiment {
private final double fractionToLoad;
private List<Entity> entityList;

public GetAllFromOneTable(final double fractionToLoad) {
this.fractionToLoad = fractionToLoad;

}

@Override
public void execute(final CacheService cacheService) {

entityList = cacheService.getAllActiveEntity();
}

@Override
public void setup(final CacheService cacheService) {

if (fractionToLoad != 0 && fractionToLoad < 1) {
final int size = numbers.size();
Collections.shuffle(numbers);
for (int i = 0; i < size * fractionToLoad; i++) {

cacheService.getActiveEntity(numbers.get(i));
}

}

if (fractionToLoad == 1) {
cacheService.getAllActiveEntity();

}
}

@Override
public void useReturned() {

setOnAllEntity(entityList);
entityList.clear();

}
}

public class GetFromOneTable extends Experiment {
private final List<Entity> entityList = new ArrayList<>();
private final boolean nothingLoaded;
private long number;
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public GetFromOneTable(final boolean nothingLoaded) {
this.nothingLoaded = nothingLoaded;

}

@Override
public void execute(final CacheService cacheService) {

entityList.add(cacheService.getActiveEntity(number));
}

@Override
public void setup(final CacheService cacheService) {

if (!nothingLoaded) {
cacheService.getAllActiveEntity();

}

Collections.shuffle(numbers);
number = numbers.get(0);

}

@Override
public void useReturned() {

setOnAllEntity(entityList);
entityList.clear();

}
}

public class GetAccountFromOneTable extends Experiment {
private final List<Entity> entityList = new ArrayList<>();
private final List<AccountInfo> accountInfos;
private final boolean nothingLoaded;
private AccountInfo accountInfo;

public GetAccountFromOneTable(final boolean nothingLoaded) {
this.nothingLoaded = nothingLoaded;
accountInfos = new ArrayList<>(accountMap.values());

}

@Override
public void execute(final CacheService cacheService) {

entityList.addAll(cacheService.getActiveEntity(accountInfo.info));
}

@Override
public void setup(final CacheService cacheService) {

if (!nothingLoaded) {
cacheService.getAllActiveEntity();

}
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Collections.shuffle(accountInfos);
accountInfo = accountInfos.get(0);

}

@Override
public void useReturned() {

setOnAllEntity(entityList);
entityList.clear();

}
}

private static class AccountInfo {
public String info;

AccountInfo(final AbstractEntity<?> entity) {
this.info = entity.getAccountInformation();

}
}

}
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Loading data into an in-memory cache,
the choice of being full, lazy, or
asynchronous

POPULÄRVETENSKAPLIG SAMMANFATTNING Ivar Henckel, David Söderberg

Slow database loading can be a nuisance, causing unresponsive programs and irritated
customers. In our thesis, we investigate different strategies to load data into a cache
efficiently. We propose new implementations, some of which manage to decrease the
inconvenience of data loading.

In the field of computer science databases are com-
monly used as a means to effectively store and
fetch data. Although databases are optimized for
fetching data with the high performance there is
still a cost for each load, especially with a huge
amount of data. To mitigate this cost caches can
be used to temporarily store previously accessed
data in a location that is faster to access.

In this thesis, we investigated different strate-
gies to load data into the cache. The original
cache implementation at the case company loaded
all of the data into the cache at startup, called
a full load. This meant that startup time would
increase which could be a problem, especially if
a server crashes during business hours and every-
thing needs to be quickly restarted and restored.

One alternative solution is to load data into the
cache lazily. Lazy loading means that no load is
done until the data is used in the program. This
will move the cost of loading from startup to run-
time while also removing the cost of fetching data
that is never used. A third option is to utilize par-
allelism and load data from separate threads while
the main thread can continue without having to
wait.

Three solutions were implemented, two of which

used lazy loading, and the third used parallelism.
These implementations were compared to the orig-
inal full load solution in experiments. It was found
that all three implementations decreased startup
time but impacted the run-time request latency
in different ways. Additionally, all of our so-
lutions added a higher level of complexity to a
varying degree, compared to the full load solu-
tion. One of the lazy loading implementations was
shown to be inefficient. This solution relied heav-
ily on a higher level framework meaning that we
as developers had less control over the details in
the database operations. The second lazy load-
ing solution worked efficiently, serving its purpose
to reduce startup time but slightly increase run-
time latency as expected. Our implementation us-
ing parallelism was shown to be efficient both at
startup and run-time, but it also adds the most
complexity.
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