
Thompson’s Groups

Author

Kanishka Katipearachchi

Advisor

Anitha Thillaisundaram

Department of Mathematics



Abstract

In this thesis a fairly self-contained introduction to Thompson’s groups
and a few of its related groups are given. The groups F , T and PLF (R)
and some of their subgroups are discussed extensively. Finally, some in-
teresting topics one could study after reading this thesis are summarized.
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1 Introduction

In 1965 Richard Thompson discovered the groups F, T and V in connection with
his research in logic. Part of the initial interest in these groups was the fact that
T and V gave the first examples of infinite simple finitely presented groups.

Since then the groups in question have developed a life of its own being
studied using tools from a wide range of areas in mathematics. The main reason
as to why we can study Thompson’s groups using a wide variety of tools is that
these groups can be viewed naturally in multiple ways.

First, the groups can be studied purely algebraically, and has both finite
and infinite presentations which we can use as we desire. Second, the elements
of the groups can be viewed as different types of functions mapping the real
line to itself. This view allows us to study the properties of these groups using
purely analytic and dynamic tools. Third, we can study these groups as maps
between finite binary rooted trees. This view allows us to use combinatorial and
topological results to study this group.

In this thesis we will first introduce Thompson’s group F studying its al-
gebraic, analytic and combinatorial aspects extensively. We will give both the
finite and infinite presentations and proceed to show many interesting results
regarding the commutator subgroup of F as well.

Next we will discuss Thompson’s group T . Our primary topic on T will be
its finite presentation and simplicity. Following this discussion we will study a
family of groups which were motivated by Thompson’s groups F and T . In the
final section we will discuss some results which we could not include here but
would be interesting to study for anyone who reads this thesis.

The prerequisites required to read this thesis are minimal. A basic un-
derstanding of analysis and group theory are sufficient to understand the core
material covered. In order to understand a few of the remarks a little topology
could also help, however none of this will be central to the thesis.
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2 Preliminaries

2.1 Free groups and group presentations

Central to our discussion on Thompson’s groups is the idea of free groups and
group presentations. We discuss this idea in the following sections.

Definition 2.1. Given a group G and a subset S of G, the subgroup generated
by S is the smallest subgroup of G that contains S. This is denoted as ⟨S⟩G.
We say that S generates G if ⟨S⟩G = G.

Definition 2.2. A free group F with basis X is a group F with subset X
such that for every group G and map f : X → G, there exists a unique group
homomorphism f̄ : F → G which extends f .

This definition is summarized by the following diagram.

X G

F

This definition does not show that such an object actually exists. So in the
following sections we will give an explicit construction for a group and show
that it is indeed a free group.

Definition 2.3. Given a set X we define the set X−1 to be the set which
contains for all x ∈ X an element x−1. A word on X is a sequence (x1, x2, . . . )
where xi ∈ X ∪X−1 ∪ {1} and xi ̸= 1 for only finitely many terms. The word
where all xi = 1 is called the empty word.

We typically denote the empty word by e and any arbitrary word as

xϵ1
1 xϵ2

2 · · ·xϵn
n

where all xi ̸= 1, and ϵi = ±1. We also define concatenation of words
a = xϵ1

1 xϵ2
2 · · ·xϵn

n , b = yµ1

1 yµ2

2 · · · yµm
m to be the word

ab = xϵ1
1 xϵ2

2 xϵ3
3 · · ·xϵn

n yµ1

1 yµ2

2 yµ3

3 · · · yµm
m .

Definition 2.4. Let A be the set of all words onX. We define F (X) to be A/ ∼
where ∼ is the equivalence relation generated by xss−1y ∼ xy and xs−1sy ∼ xy
for all words x, y and all letters s.

This set of equivalence classes along with the operation induced by concate-
nation forms a group where [e] is the identity, and [x−ϵn

n · · ·x−ϵ3
3 x−ϵ2

2 x−ϵ1
1 ] is the

inverse of [xϵ1
1 xϵ2

2 xϵ3
3 · · ·xϵn

n ]. Associativity is inherited from the associativity of
concatenation.
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Theorem 2.5. [18, Theorem 2.2.7] For a given set X the group F (X) is a free
group with basis X.

Proof. We first let i be the map from X to F (X) such that x 7→ [x]. Let G be
an arbitrary group and f a map from X to G. Define f∗ : A → G inductively
as follows:

e 7→ 1G

xw 7→ f(x)f∗(w)

x−1w 7→ f(x)−1f∗(w)

where x is an arbitrary letter and w a word. This induces a map f̄ : F (X) → G
which is well-defined as f∗ is compatible with the equivalence relation ∼. The
map f̄ is also clearly a group homomorphism such that f̄ ◦ i = f . As i(X)
generates F (X) there can be no other such homomorphism.

All that remains is to show that i is injective. Let x1, x2 ∈ X and f : X → Z
be the map such that x1 7→ 1 and x2 7→ −1. Further, let f̄ : F (X) → Z be the
corresponding homomorphism. Then,

f̄(i(x1)) = f(x1) = 1

f̄(i(x2)) = f(x2) = −1

This implies that i(x1) ̸= i(x2). Hence, we can identify X with i(X), and
we get that F (X) is a free group.

Note that a free group of a particular basis is unique up to isomorphism as
if there were two different free groups F , F ′,we could find two homomorphisms
from F to F ′ and vice-versa using the definition of free groups which would act
as inverses to each other.

Theorem 2.6. [21, Corollary 11.3] Every group is isomorphic to the quotient
of a free group.

Proof. Let G be a group. Let X = {xg | g ∈ G} and F (X) its free group. Let
f : X → G be the map such that xg 7→ g. Then the definition of free groups
imply that there exists a homomorphism from F (X) to G. This is surjective as
f is, and the first isomorphism theorem gives us the result.

Definition 2.7. Given a group G and set S, we define the normal subgroup
generated by S to be the smallest normal subgroup that contains S. This group
is denoted by ⟨⟨S⟩⟩.

Definition 2.8. Given a set X and a set R be a subset of all words on X. Let
F (X) be the free group generated by X. We define the group generated by S
with relations R, denoted by ⟨X | R⟩ to be defined as follows.

⟨X | R⟩ := F (X)/⟨⟨R⟩⟩

If G ∼= ⟨X | R⟩, we say that ⟨X | R⟩ is a presentation of G.
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2.2 Groups of bijections

Given any set S it is clear that the set of bijections of S forms a group. By a
group of bijections we will mean a subgroup of any such group. Given a group
G we let G′ denote the commutator subgroup of G. In this section G will always
be a group of bijections

Definition 2.9. Let G be the group of bijections of a set S. We then define
the support of an element g ∈ G as follows:

supp(g) = {s ∈ S | g(s) ̸= s}.

Now we will discuss some results that we will require later on in this thesis.
The first of these is a remarkable theorem due to Graham Higman. We follow
the proof and discussion of this theorem as done by Burillo [9, pp. 42–44] with
slight changes in presentation. The following hypothesis will be repeatedly used
in proving the theorem and for this reason we define it separately as follows.

Definition 2.10. Let α and β be two elements of G and let S = supp(α) ∪
supp(β) and let γ ̸= 1 be a third element in G. If we can find an element
ρ ∈ G such that γ(ρ(S)) ∩ ρ(S) = ∅ then we say group G satisfies the Higman
condition.

Our goal is to prove that if G satisfies the Higman condition then G′ is
simple. In order to do this we first need the following lemma.

Lemma 2.11. Suppose G satisfies the Higman condition, and let N be a non-
trivial normal subgroup of G. Then G′ ≤ N .

Proof. There is a non-trivial element γ in N as N is non-trivial. Let α and β be
arbitrary elements in G. Using the Higman condition let ρ be an element such
that γ(ρ(S))∩ρ(S) = ∅. This implies that γ(ρ(supp(α)))∩ρ(supp(β)) = ∅. Let
δ = ρ−1γρ ∈ N . Then we get that δ(supp(α)) ∩ supp(β) = ∅. As δ(supp(α)) =
supp(δαδ−1) we have that δαδ−1 and β commute. Hence, we get that,

α−1β−1αβ = α−1(δαδ−1)β−1(δα−1δ−1)αβ

= (α−1δα)δ−1(β−1δβ)(β−1α−1δ−1αβ) ∈ N.

Therefore, we get that [α, β] ∈ N for all α, β ∈ G.

Lemma 2.12. If a group G satisfies the Higman condition then G′ = G′′.

Proof. We first begin by noting that G′′ is normal in G as a[g′, h′]a−1 =
[ag′a−1, ah′a−1] ∈ G′′ if g′, h′ are in G′. We will now show that G′ = G′′.
If G′ is trivial then this statement is obvious. Hence, suppose G′ is not trivial.
Then if we show that G′′ is non-trivial we are done as the previous lemma gives
us that G′ ≤ G′′.

To do this we consider a non-trivial element a of G′, and let α = β = γ = a.
Using the same method that we used in the previous lemma we get an element
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δ ∈ G′ such that supp(δaδ−1) ∩ supp(a) is empty. This means that G′ has
two different elements with disjoint supports. This implies that δaδ−1a−1 ̸= 1.
Hence, we have found a non-trivial element in G′′ and the fact that G′′ = G′

follows.

Theorem 2.13. If a group G satisfies the Higman condition then G′ is simple.

Proof. In order to prove this we will apply Lemma 2.11 to G′ in order to show
that G′′ ≤ N for all non-trivial normal subgroups N of G′. As G′ = G′′ by
Lemma 2.12, it will follow that G′ is simple. In order to prove this we have to
show that G′ satisfies the Higman condition.

Let α, β ∈ G′ and γ a non-trivial element in G′. Then the Higman condition
gives us an element ρ ∈ G, such that ρ(S) ∩ γ(ρ(S)) = ∅ where S = supp(α) ∪
supp(β).

Now we let S′ = supp(γ) ∪ supp(ρ) and use the Higman condition again on
the elements γ, ρ and γ to find σ ∈ G such that σ(S′) ∩ γ(σ(S′)) = ∅.

Let ν = σγσ−1 and use the argument used in Lemma 2.11 in order to get
supp(γ)∩supp(ν−1ρν) = ∅. We get that ν−1ρν is the identity on ρ(S) as ρ(S) ⊆
supp(γ) and this implies that ρ(S) = ν−1ρ−1νρ(S). As ϵ = ν−1ρ−1νρ ∈ G′ we
have found an element ϵ ∈ G′ such that ϵ(S) ∩ γ(ϵ(S)) = ∅. Hence, we have
that G′ also satisfies the Higman condition, and we are done.

Next we give one final lemma which will be useful in discussing groups that
occur naturally as subgroups of Thompson’s group F.

Lemma 2.14. [7, Lemma 1.2] Given a set A, let SA be the group of all permuta-
tions of A. Let X be a subset of SA such that all f ∈ X have infinite order, and
any two distinct elements f and g have disjoint supports. Then X generates a
free abelian subgroup of SA.

Proof. As distinct elements of X have disjoint supports, it is clear that X gen-
erates an abelian group.

Let F (X) be the group generated by X. Every f ∈ F (X) can be written
as gai

1 · · · gan
n , where gi ∈ X and gi ̸= gj if i ̸= j. If f = 1, we have that each

ai = 0 due to the fact that gi has infinite order for each i. Hence F (X) is a free
abelian group.

2.3 Rewrite systems

Definition 2.15. A rewrite system T consists of a set X = obj(T ), a set
Y = moves(T ) and two maps,

Y → X ×X, y 7→ (i(y), τ(y))

Y → Y, y 7→ y−1,

where for all y ∈ Y we have that (y−1)−1 = y, y−1 ̸= y and i(y) = τ(y−1). Here
i and τ are called the initial and terminal objects respectively.
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An element in X is called an object and an element in Y is called a move.
A derivation is either an object or a sequence of moves e1e2e3 · · · en such that
τ(ei) = i(ei+1). An orientation is a subset of moves Y0 such that Y = Y0 ∪Y −1

0

and Y0 ∩ Y −1
0 = ∅. Moves of Y0 are called positive moves and moves of Y −1

0 are
called negative moves.

If we have a positive move e with i(e) = a and τ(e) = b we say that a can
be positively rewritten to b and denote it as a ↣ b. If there is a derivation with
only positive moves from a to b it is called a positive derivation and denoted
a → b. If there is a derivation with either negative or positive moves from a to
b (and hence from b to a as well) we write a ↔ b.

A rewrite system is terminating if every positive derivation

a1 → a2 → a3 → . . .

stabilizes after a finite number of moves. Terminating systems are also referred
to as well-founded systems. This is due to the fact that a relation is terminating
if and only if well-founded induction holds [1, pp. 13–14].

A rewrite system is confluent if for all a, b, c such that a → b and a → c
there is an element d such that b → d and c → d. A rewrite system is locally
confluent if for all a, b, c such that a ↣ b and a ↣ c there is an element d such
that b → d and c → d.

Clearly every confluent system is locally confluent, but a locally confluent
system is not necessarily confluent. Nevertheless, we have the following.

Lemma 2.16. If we have that a ↔ b in a confluent rewrite system, there exists
an object c such that a → c and b → c.

Proof. We give a sketch of a proof in the form of Figure 1 following that given
by Sapir [22, Lemma 1.7.8]. We can consider negative moves as going up a slope
and positive moves as going down a slope. Then as there are a finite number of
moves from a to b we can use the local peaks and confluence to create elements
at lower levels than the elements at troughs. Each colour of Figure 1 represents
one such layer of moving to a lower level. In this way we can reduce each of the
peaks and make one deep canyon.

In a terminating confluent system, Lemma 2.16 combined with the termi-
nating nature implies that there is a unique terminal object.

Unfortunately it is not always easy to show that a rewrite system is confluent
directly. Nevertheless, showing local confluence tends to be much easier to
show, and the following theorem helps us in showing that our rewrite system is
confluent if we have a terminating, locally confluent rewrite system.

Theorem 2.17. [1, Lemma 2.7.2] (Newman’s diamond lemma) A termi-
nating locally confluent system is confluent.

Proof. We prove this statement by well-founded induction on the following state-
ment P (x). We need the system to be terminating in order for well-founded
induction to hold.
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a b

c

Figure 1: Reducing peaks

Let P (x) be the statement that given objects x1 and x2 such that x → x1

and x → x2 there is an element y such that x1 → y and x2 → y.
Let a be an arbitrary object in our rewrite system, and suppose that the

above statement is true for all objects that can be obtained by positive paths
from a. Let b and c be elements such that a → b and a → c. Then let b′ and c′

be the elements obtained by one positive move on the derivations from a to b
and c respectively (a ↣ b′ → b and a ↣ c′ → c). Then local confluence implies
that there exists a u such that b′ → u and c′ → u. Our induction hypothesis
implies that there is an element v such that c → v and u → v. This gives us
derivations b′ → v and b′ → b. Again we use the induction hypothesis to get an
element d such that v → d and b → d. As c → v we have proven the statement
for a. As the statement is trivially true for any terminal object we are done.

2.4 Cayley graphs

Definition 2.18. Let G be a group given as the quotient of a free group on a set
S. The word length ls(γ) of a word γ is the smallest n such that γ = s1s2 · · · sn
where si ∈ S. The word metric dS(γ1, γ2) is defined as lS(γ

−1
1 γ2). In this way

the group G can be given a metric structure.

Note that in thinking of a group as a metric space in this way the distance
between two elements is the number of elements from the set of generators
required to move from one group element to the next. Motivated by this we get
the following definition for the Cayley graph of a group whose metric coincides
with the above metric.

Definition 2.19. Given a group G and a generating set S of G define the
Cayley graph denoted by Cay(G,S) to be the graph whose set of vertices are
the elements of G and whose edges are the elements (g, gs) where g ∈ G and
s ∈ S.
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Definition 2.20. The growth function of a Cayley graph maps k ∈ N to the
number of elements at a distance less than or equal to k. That is β(G,S) : N → N
such that k 7→ |B(G,dS)

r (e)|, where B
(G,dS)
r (e) = {g ∈ G | dS(g, e) ≤ r}. A

generalised growth function is a non-decreasing function from R+ to R+.

A growth function β of a group can be studied as a generalised growth
function by defining α(t) = β(⌊t⌋).

Definition 2.21. We say that a generalised growth function α1 weakly domi-
nates α2 if there is a λ ≥ 1 and C ≥ 0 such that

α1(t) ≤ λα2(λt+ C) + C

for all t ∈ R+.
Two growth functions are weakly equivalent if they weakly dominate each

other. Weak equivalence can be shown to be equivalence relation on all growth
functions.

Definition 2.22. Let (X, d), (X ′, d′) be two metric spaces then we say that
f : X → X ′ is a quasi-isometric embedding if there is a λ ≥ 1 and C ≥ 0 such
that

1

λ
d(x, y)− C ≤ d′(f(x), f(y)) ≤ λd(x, y) + C

for all x, y ∈ X.
A map f ′ : X → X ′ is said to be a finite distance from f if there is a C ≥ 0

for all x ∈ X we have that d′(f(x), f ′(x)) ≤ C.
We say that f is a quasi-isometry if there is a quasi-isometric embedding

g : X ′ → X such that f ◦ g and g ◦ f are finite distance from the respective
identity maps on the metric spaces.

Being quasi-isometric can be shown to be an equivalence relation on metric
spaces.

Lemma 2.23. [18, Proposition 6.2.4] Let G,H be groups and S, T be finite
generating sets for them respectively. Then if there exists a quasi-isometric
embedding (G, dS) → (H, dT ) we get that β(G,S) is weakly dominated by β(H,T ).

Proof. Let f : G → H be a quasi-isometric embedding then we have the follow-
ing for some λ ≥ 1 and c ≥ 0.

1

λ
dS(g, g

′)− c ≤ dT (f(g), f(g
′)) ≤ λdS(g, g

′) + c.

Then we get that if g ∈ B
(G,dS)
r (e),

dT (f(g), e
′) ≤ λdS(g, e) + c ≤ λr + c.

This implies that f(B
(G,dS)
r (e)) ⊆ B

(H,dT )
λr+c (e′).
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Further if f(g) = f(g′), we get that

dS(g, g
′) ≤ λdT (f(g), f(g

′)) + λc = λc.

We use these two estimates to get,

β(G,S)(r) = |B(G,dS)(e)
r | ≤ β(G,S)(λc)β(H,T )(λr + c).

Hence, the theorem follows.

This implies that quasi-isometric groups are weakly equivalent.

Lemma 2.24. [18, Proposition 5.2.5] Let G be a finitely generated group and
S, S′ be two generating sets for it. Then the two Cayley graphs viewed as metric
spaces (G, dS) and (G, d′S) are quasi-isometric.

Proof. We will show that the identity map gives us a quasi-isometry from (G, dS)
to (G, dS′).

Let c = max{d′S(e, s) | s ∈ S} and let g, h be two elements in G. Then
g−1h = s1s2 · · · sn. From this we obtain

dS′(g, h) = dS(g, gs1 · · · sn)
≤ dS′(g, gs1) + dS′(gs1, gs1s2) + dS′(gs1s2, gs1s2s3) + · · ·
+ dS′(gs1 · · · sn−1, gs1 · · · sn)

= dS′(e, s1) + dS′(e, s2) + · · ·+ dS′(e, sn)

≤ cn = cdS(g, h).

Similarly, we can show the reverse as well. Hence, we get that it is a quasi-
isometry.

Definition 2.25. We define the growth rate of a group G with finite generating
set S and growth function β as,

w(G,S) = lim sup
k→∞

β
1
k .

If w(G,S) > 1, we say that the group has exponential growth. If w(G,S) = 1,
we say that it has sub-exponential growth. If a group has sub-exponential growth
and its growth function β(k) is weakly dominated by a function kd, we say that
the group has polynomial growth. If the group has sub-exponential growth but
is not polynomial we say that it has intermediate growth.

It is clear that if two growth functions are weakly equivalent they will have
the same growth rate. Therefore, we get that growth type is a quasi-isometric
invariant, and we can ignore the generating set when talking about the growth
type of finitely generated groups. Recall that a semigroup is an algebraic struc-
ture similar to that of a group but where we relax the conditions on existence of
inverse and identity elements. A monoid is a semigroup which has an identity
element.

12



Theorem 2.26. [15, Proposition p.187] A finitely generated group which con-
tains a free semigroup on two generators is of exponential growth.

Proof. We can talk about growth functions of semigroups similar to the way we
do in groups. Then it is clear that the growth function β of a semigroup of 2
generators is as follows:

β(k) = 1 + 2 + · · ·+ 2k ≥ 2k

If a group contains a subsemigroup of 2 generators, we can get a generating set
of the group that contains the generating set of the subsemigroup. Then the
growth function of the group will be greater than β(k), as the distance between
two elements of a subsemigroup will always be greater than the distance between
the elements in the group. Hence, we get that the growth rate is exponential.
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3 Thompson’s group F

In this chapter we begin our discussion on Thompson’s groups by talking about
Thompson’s group F . We first give a few different descriptions of the group
before proceeding to discuss some of its interesting properties. Further, we look
at the commutator subgroup of F , and discuss some of its interesting properties.
The material in this chapter can be found in the paper by Cannon, Floyd and
Parry [11, pp. 2–10], as well as in the book by Burillo [9, pp. 9–46].

3.1 Different descriptions of F

From this section onwards, we write function composition as fg(x) = g(f(x))
as it is more natural when talking about groups. A dyadic rational number is a
rational of the form k

2n , and a dyadic interval is an interval of the form [a−1
2n , a

2n ],
where a ≤ 2n. A dyadic partition is one where all its dividing partitions are
dyadic intervals.

Definition 3.1. We define Thompson’s group F as the subgroup of homeomor-
phisms of [0, 1] which have the following properties:

� The elements are piecewise linear.

� When the elements are differentiable the derivatives are powers of 2.

� There are finitely many breakpoints, and they are dyadic rationals in [0, 1].

We will now verify that this is indeed a group. Let the break points be 0 <
x1 < x2 < · · · < xn < 1.

When x ∈ [0, x1], we have that f(x) = 2a1x which implies that f(x1) is a
dyadic rational. Similarly, if x ∈ [x1, x2], we have that f(x) = 2a2x − 2a2x1 +
f(x1). This implies that f(x2) is a dyadic rational as well. Inductively it follows
that f(xi) is a dyadic rational for all i. From this it is clear that compositions
of such maps, and inverses of such maps will also be in F . Associativity is
inherited from that of function composition.

Remark 3.2. We can use the above to represent any element of f by listing
their break points in the form

{(x1, f(x1)), (x2, f(x2)), . . . , (xn−1, f(xn−1))}.

Note that giving pairs of dyadic rationals which preserve order is not sufficient
to define elements of F as the gradients may not always be a power of 2.

Example 3.3. Consider the function given by the breakpoints {( 12 ,
3
4 )}. This

will not be an element of F as the derivative when x ∈ (0, 1
2 ) is

3
2 .

Theorem 3.4. [9, Theorem 1.1.6] The group F is torsion free.

Proof. Let f be any non-identity element, and x1 the first breakpoint such that
the right derivative is not 1 (the right derivative here will be 2k where k ̸= 0).
Then at x1 we have that fn will have right derivative 2nk. Which means it
cannot be the identity unless n = 0. Hence, the group F is torsion free.
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Before we give any examples for elements of this group we will give an
alternate description for Thompson’s group F in terms of binary rooted trees.
Naturally, in order to do this we first need to discuss the idea of binary rooted
trees.

Definition 3.5. A binary rooted tree is a tree such that:

� It has a root v0.

� If v is a vertex then there are exactly two edges, the left edge ev,l and the
right ev,r, which contain v but are not in the geodesic from v0 to v.

� Vertices with valence 0 or 1 are called leaves.

We give such a tree’s leaves a natural ordering from left to right starting from 0.

Definition 3.6. We now define the standard tree of dyadic intervals (Figure 2)
as follows:

� The vertices are the standard dyadic intervals in [0, 1].

� An edge is a pair of dyadic intervals (I, J) such that I is either the left
half or the right half of J . We then call the edges the left or right edges
respectively.

[0,1]

[0, 1
2 ] [ 12 , 1]

[0, 1
4 ] [ 14 ,

1
2 ]

Figure 2: The standard tree of dyadic intervals

Any finite subtree of this tree which contains the root [0, 1] and where all
other non-leaf vertices has three edges gives us a dyadic partition of [0, 1]. In
practice, we will draw any finite subtree as seen in Figure 3.

[0, 1

[ 12 , 1]

[ 12 ,
3
4 ] [ 34 , 1]

=

Figure 3: How we draw finite trees.

We also define a caret to be a subtree which has a root and just two edges.

15



Figure 4: A caret

Theorem 3.7. [11, Lemma 2.2] For every f ∈ F there is a dyadic partition
0 = x0 < x1 < · · · < xn = 1 such that f is linear on each [xi, xi+1] and
0 = f(x0) < f(x1) < · · · < f(xn) = 1 is a dyadic partition of [0, 1].

Proof. Let P be a partition of [0, 1] whose breakpoints are dyadic rationals and
f is linear on each interval of P . Let [a, b] be one such interval and suppose
that the derivative of f there is 2−k. Then f(x) = 2−kx + c on [a, b], and let
b = a+ r

2n for some r. We then have that f(a) = 2−ka+c and f(b) = 2−kb+c =
f(a) + r

2n+k . Hence, we can get dyadic partitions a < a + 1
2n < · · · < b and

f(a) < f(a) + 1
2n+k < · · · < f(b). As we can do this for all intervals we get a

dyadic partition for [0, 1].

As each standard dyadic partition has a corresponding tree diagram we can
describe each f as a tree diagram (R,S), where R and S have the same number
of leaves. We call R the domain tree and S the target tree.

Example 3.8. Now we give two examples for elements in the group F . Later
we will also show how these two elements are sufficient to generate the group F.
The tree diagrams for the two elements are given in Figure 5 and 6

a(x) =


2x, 0 ≤ x ≤ 1

4

x+ 1
4 ,

1
4 ≤ x ≤ 1

2
x
2 + 1

2 ,
1
2 ≤ x ≤ 1

b(x) =


x, 0 ≤ x ≤ 1

2

2x− 1
2 ,

1
2 ≤ x ≤ 5

8

x+ 1
8 ,

5
8 ≤ x ≤ 3

4
x
2 + 1

2 ,
3
4 ≤ x ≤ 1

Figure 5: a(x)

For a given f this tree diagram (R,S) is not unique. We can take the nth
leaves of R and S and add carets to these leaves in order to expand the trees
and get new tree diagrams. Conversely, if the nth and n+1st leaves of the two
trees in a tree diagram have the same parent vertex, we can remove the carets
containing the nth and n+1st leaves in both the range tree and domain tree in
order to get a different tree diagram which correspond to the same element in F

16



Figure 6: b(x)

as before. This process of adding and removing leaves is called expansion and
reduction respectively. If no reductions are possible we call the tree diagram a
reduced tree diagram.

Figure 7: Reduction and Expansion.

It is interesting to note that what we have described here is an example
for a rewrite system where the objects are tree diagrams, and expansions and
reductions are negative and positive moves respectively.

=

=

Figure 8: An example for multiplication.

This method of adding or removing leaves is important when multiplying
elements of F given as tree diagrams. If we have two elements f1 = (R,S) and
f2 = (R′, S′) we would like f1 ·f2 = (R,S′). Unfortunately this does not always
make sense as R and S′ might not have the same number of leaves. We can
rectify this by extending S and R′ so that they are the same tree and extending
R and S′ as required. This can be seen in the example computation of the tree
diagram for the element a−1ba (Figure 8).

Lemma 3.9. Reduced tree diagrams are unique.

Proof. The idea for this proof closely follows the proof given by Matucci [19,
Proposition 2.1.1] for strand diagrams.
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We prove this using Newman’s diamond lemma (Lemma 2.17). As any tree
diagram is built of finite trees, the rewrite system is clearly terminating. Fur-
ther, given a tree if we can reduce it in two different ways, the carets involved
in the different reductions will always be disjoint. This means that reducing in
whichever order gives us the same tree diagram, and our system is locally con-
fluent. Hence, we can use Newman’s diamond lemma which will imply unique-
ness.

We call a tree all-right if all its leaves except for the left-most descend directly
from the right edge of the tree. A positive element is a reduced tree diagram
whose range tree is an all-right tree.

Definition 3.10. Define the elements Tn ∈ F as the elements with the following
breakpoints (using the notation discussed in Remark 3.2):[(

1− 1

2n
, 1− 1

2n

)
,
(
1− 3

2n+2
, 1− 1

2n+1

)
,
(
1− 1

2n+1
, 1− 1

2n+2

)]
A general Tn is given in Figure 9. Here the n leaves are just leaves coming

from the right branch of the tree.

n leaves n leaves

Figure 9: General example for Tn.

Lemma 3.11. [9, pg 23-24] For all k < n, we have that

T−1
k TnTk = Tn+1.

Proof. This can be done using multiplication of trees for the cases n = k + 1
and n ≥ k + 2. We give the case where n ≥ k + 2 in Figure 10.

Definition 3.12. Given a tree with n+ 1 leaves ordered from 0 to n, let ai be
the maximal number of left edges ascending from leaf i that does not reach the
right side of the tree. Then ai is called the ith leaf exponent. An example for
this is given in Figure 11

Theorem 3.13. Any positive element f ∈ F with tree diagram (R, Tn) can be
written as

T a0
0 T a1

1 · · ·T an
n .
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k leaves k leaves n leaves n leaves k leaves k leaves

n+ 1 leavesk Leaves k leaves k leaves k leaves k-leaves

=

=

Tn+1

Figure 10: The case when n ≥ k + 2.

a1 a2 a3 a4 a5 a6 a7 a8a0

Figure 11: Tree with exponents a0 = 1, a1 = 3, a5 = 1, a6 = 1 and the other
leaf exponents are 0.

Proof. The proof is by induction on a =
∑n

i=0 ai. The statement is trivially
true for a = 0 as R would have to be Tn as well. Hence, suppose the statement
is true for k − 1 and f is an element such that k =

∑n
i=0 ai. Let m be the

smallest number such that am ̸= 0. We then multiply on the left by T−1
m which

gives the following tree diagram which has the same leaf exponents for all leaves
except for the leaf exponent am which becomes am − 1. Hence, it follows from
the induction hypothesis that this has form T am−1

m T
am+1

m+1 · · ·T an
n . Hence, we get

that the statement is true for f .

The above theorem was given by Burillo [9, Theorem 2.2.4], and the proof
follows that given by Cannon, Floyd and Parry [11, Theorem 2.5].

Given an arbitrary element f = (R,S) with n+ 1 leaves, we can write it as
the product of two trees (R, Tn)(Tn, S). Hence, we can write any element f as
follows:

f = T a0
0 T a1

1 · · ·T anT−bn
n · · ·T−b0

0

From this we can see that the elements {T0, T1, . . .} generate F . Unfortunately
this form is not unique, but we can make it unique by the addition of one extra
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condition.

Theorem 3.14. [9, Theorem 2.3.3] Every element of F admits a form

f = T a0
0 T a1

1 · · ·T an
n T−bn

n · · ·T−b0
0 ,

where for all i, if ai and bi are simultaneously non-zero then ai+1 or bi+1 (or
both) are non-zero as well. We call this the normal form of the normal form
of f . Further, this form is unique and is the shortest expression in generators
of F .

Proof. Suppose there exist elements of F which have multiple normal forms.
Then there exists an element f with a pair of normal forms which has minimal
total length. Let the two normal forms be

T a0
0 T a1

1 · · ·T an
n T−bn

n · · ·T−b0
0

and
T c0
0 T c1

1 · · ·T cn
n T−dn

n · · ·T−d0
0

and let k be the smallest number such that Tk has non-zero exponent in at
least one of the two normal forms. Then we have that the only generator in
the above normal forms that affects the gradient on the right of (1− 1

2k
, 1− 1

2k
)

is Tk, and the gradient there is given by 2ak−bk = 2ck−dk . This implies that
ak − bk = ck − dk. If ak − bk = ck − dk > 0, we would have that ak, ck > 0.
This would mean we could cancel fk in the two normal forms to get new normal
forms with shorter length. This would contradict the minimality. Similarly, if
ak − bk = ck − dk < 0 would contradict minimality of lengths as well. Hence,
we get that ak − bk = ck − dk = 0.

Without loss of generality we can assume ak = bk ̸= 0 and ck = dk = 0.
Hence, we get that f = TkzT

−1
k = w where z, w are normal forms and w

contains only generators with index greater than k in it. Hence, we can write
z = T−1

k wTk. We can then use Lemma 3.11 to get z = w̄ where w̄ is just the
normal form w with all Ti replaced by Ti+1. Hence, we arrive at a new pair of
normal forms with shorter total length. Again we obtain a contradiction and
there must be a unique normal form. This must be the shortest as existence of
a shorter one would contradict the uniqueness.

This proof is not strictly necessary for us to prove this theorem. It would be
sufficient to note that this extra algebraic condition is the same as saying that
the tree diagram obtained is reduced, by constructing the tree with the correct
leaf exponents. However, the proof itself is interesting as it shows how it is
useful to be able to switch freely between algebraic, combinatorial and analytic
aspects of the group F .

3.2 Different presentations of F

In this section we will give two different presentations of the group F . The
first will be an infinite presentation which is intuitive to understand but has
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an infinite presentation. Further, the tree diagrams T0 and T1 are sufficient to
generate F , and this clearly shows that F is finitely generated. What is more
surprising is the fact that F is finitely presented as well. In this section we will
give a finite presentation for the group F .

Theorem 3.15. [9, pp. 23–29] The group G given by the infinite presentation

⟨x0, x1, x2, . . . | x−1
k xnxk = xn+1, ∀k < n⟩

is isomorphic to F .

Proof. We define a homomorphism from G to F by the map xi 7→ Ti. This
is well defined by Lemma 3.11. As the elements Ti generate F this map is
surjective.

If we take the image of any word in G we get an element in F which we can
reduce to a unique normal form by using Lemma 3.11. We can then use the
same corresponding relations in G to transform that the initial word we used
to the word corresponding to the unique normal form. This uniqueness implies
injectivity and this map is an isomorphism.

In order to show that the group F is finitely presented we follow the proofs
given by Burillo [9, Theorem 3.13] and Floyd, Cannon and Parry [11, Theorem
3.1].

Theorem 3.16. The groups given by the following presentations are isomor-
phic:

F1 = ⟨a, b | [ab−1, a−1ba], [ab−1, a−2ba2]⟩

F2 = ⟨x0, x1, x2, . . . | x−1
k xnxk = xn+1 ∀k < n⟩

Proof. The idea of this proof is to define two surjective homomorphisms from
the generators of F1 to F2 and vice-versa. In order to ensure that these are well
defined we will show that the defining relations are in the respective kernels of
the homomorphisms.

First we define a homomorphism from F1 to F2 that such that a 7→ x0 and
b 7→ x1. Note that as xn+1 = x−n

0 x1x
n
0 , we have that a−nban 7→ xn+1, for all

n ≥ 2 which in turn implies that this map is surjective.
Next we show that this map satisfies the relations of F1:

[ab−1, a−1ba] 7→ [x0x
−1
1 , x2] = x0x

−1
1 x2x1x

−1
0 x−1

2 = x0x3x
−1
0 x−1

2 = 1

[ab−1, a−2ba2] 7→ [x0x
−1
1 , x3] = x0x

−1
1 x3x1x

−1
0 x−1

3 = x0x4x
−1
0 x−1

3 = 1

The final equalities follow from the relations on F2. Hence, we have a well
defined surjective homomorphism from F1 to F2.

Next we show that there is a surjective homomorphism from F2 to F1. Nat-
urally we define this such that x0 7→ a, x1 7→ b. This is sufficient to extend this
map to the rest of the group, and it follows that xn+1 7→ a−nban.

We now need to show that this map satisfies the relations in order for this
map to be well defined. In order to make the computations clear we define
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y0 = a and yn = a−(n−1)ba(n−1). This means that what we need to show is that
y−1
k ynyk = yn+1 for all k < n. Note that this clear for all n when k = 0.

In order to do this we first show that [a−1b, ym] = 1 =⇒ y−1
k ynyk = yn+1

for all m = n− k + 2. We have

ynyk = y
−(n−1)
0 y1y

(n−1)
0 y

−(k−1)
0 y1y

k−1
0

= y
−(k−2)
0

(
y
−(n−k+1)
0 y1y

(n−k+1)
0

)
y−1
0 y1y

k−1
0

= y0y
−(k−1)
0

(
yma−1b

)
yk−1
0 = y0y

−(k−1)
0

(
a−1bym

)
yk−1
0

=
(
y
−(k−1)
0 y1y

k−1
0

)
y
−(k−1)
0 ymy

(k−1)
0

= yk
(
y−n
0 y1y

n
0

)
= ykyn+1.

Hence, if we show [a−1b, ym] = 1 for all m ≥ 3 we would be done.
When m = 3,

[ab−1, a−1ba] = 1 =⇒ ab−1a−1baba−1a−1b−1a = 1

=⇒ b−1aa−2ba2a−1ba−2b−1a2 = 1

=⇒ [b−1a, y3] = 1

=⇒ [a−1b, y3] = 1.

(1)

When m = 4,

[ab−1, a−2ba2] = 1 =⇒ ab−1a−2ba2ba−1a−2b−1a2 = 1

=⇒ b−1aa−3ba3a−1ba−3b−1a3 = 1

=⇒ [b−1a, y4] = 1

=⇒ [a−1b, y4] = 1.

(2)

As the statement is true for m = 3, we have that y−1
n−1ynyn−1 = yn+1 for

all n. We can now use this along with an induction argument to show that
[a−1b, ym] = 1 for all m ≥ 3. Indeed,

[a−1b, yn] = a−1by−1
(n−2)y(n−1)y(n−2)b

−1ay−1
(n−2)y

−1
(n−1)y(n−2)

= a−1by−1
(n−2)y(n−1)

(
y(n−2)b

−1ay−1
(n−2)

)
y−1
(n−1)y(n−2)

= a−1by−1
(n−2)

(
y(n−1)b

−1ay−1
(n−1)

)
y(n−2)

= a−1b
(
y−1
(n−2)b

−1ay(n−2)

)
= a−1bb−1a = 1.

Here we use [a−1b, yn−1] = 1 and [a−1b, yn−2] = 1 in order to prove [a−1b, yn] =
1 which is why we prove [a−1b, ym] = 1 when m = 3 and m = 4 separately.

Hence, it follows that F1 and F2 are isomorphic.

This finite presentation for F that we obtain is useful to us, as it allows us
to talk about the Cayley graph of the group F in a very reasonable manner. In
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this direction there is quite a remarkable result due to Fordham [14] which gives
us a way of finding the exact length of an element in F , by counting the number
of different types of caret pairs in the reduced tree diagram for that element.

Further, there is a topological generalisation of finite generation and presen-
tation of groups, and it was shown by Brown and Geoghegan [8] that Thomp-
son’s group F was the first torsion free FP∞ group (finitely generated groups
are FP1 and finitely presented groups are FP2, and a group is FP∞ if it is FPn

for all n). However, this result is beyond the author’s current knowledge, and
we will not delve into it further in this thesis.

3.3 Further properties of F

In this section we will look at how F acts on the dyadic rationals denoted by
Z[ 12 ]. In order to do this first we will discuss the idea of transitive actions.

First recall that we say that a group action G ×X → X is transitive if for
all x, y ∈ X there is a g ∈ G such that (g, x) 7→ y. Given such an action there
is a natural extension of this action to an action on the Cartesian product Xn

where the action acts pointwise. We consider the action of G on the subset
of Xn which consists of n-tuples of distinct elements of X. If this action is
transitive we say that G is n-transitive on X. We say that G is highly transitive
if X is infinite and G is n-transitive on X for all n ∈ N.

Similar to the above we consider the action of G on the subsets of X with
n elements. We denote this collection of subsets as X{n}. Then this action is
called n-homogeneous if G acts transitively on X{n}. We say that it is highly
homogeneous if X is infinite and G is n-homogeneous on X for all n ∈ N. By
these definitions it is clear that n-transitive implies n-homogeneous.

By the definition of F it is clear that the elements of F act on the set
Z[ 12 ] ∩ [0, 1]. Further, we can see that the orbit of the elements 0 and 1 are the
singleton sets {0} and {1} respectively. Hence, it is clear that this action is not
transitive nor homogeneous. As orbits of an action are disjoint, we can restrict
this action to an action on Z[ 12 ]∩ (0, 1). As elements of F are always increasing
it is clear that this action is not n-transitive for all n ≥ 2. Using the next lemma
we will show that this action is n-homogeneous for all n.

Lemma 3.17. [11, Lemma 4.2] If 0 = x0 < x1 < · · · < xn−1 < xn = 1 and
0 = y0 < y1 < · · · < yn−1 < yn = 1 are partitions of [0, 1] consisting of dyadic
rationals, then there exists f ∈ F such that f(xi) = yi for all i ∈ {0, 1, . . . , n}.

Proof. Let m ∈ Z be such that 2mxi and 2myi are integers for all i. Let R = S
be the tree where each leaf corresponds to an interval of 1

2m . Note that xi and
yi appear as endpoints and start points of intervals except for the points 0 and
1. We can use this to extend R and S as follows to construct the required f .

Consider the leaves of I1 and I2 of R where xi is the left endpoint and xi+1 is
the right end point, and the leaves J1 and J2 of S where yi is the left endpoint
and yi+1 is the right end point. Without loss of generality suppose that the
number of leaves appearing in R between the leaves I1 and I2 is greater than
the number of leaves between J1 and J2. Then we can add carets to leaves
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between J1 and J2 until there are the same number of leaves between I1 and I2
and J1 and J2. We can map these leaves linearly in an order preserving manner
to get the function f that we desire.

Corollary 3.18. The group F acts highly homogeneously on Z[ 12 ] ∩ (0, 1).

Proof. The previous lemma gives that F acts n-homogeneously on Z[ 12 ] ∩ (0, 1)
for all n.

Define F [a, b] to be the subgroup of F whose elements have support in [a, b].
Our next goal is to show that F [a, b] is isomorphic to F if a and b are dyadic
rationals in [0, 1]. In order to do this we first prove it in the special case when
a− b is a power of 2.

Lemma 3.19. [11, Lemma 4.4] Let a, b be dyadic rational numbers such that
a− b is a power of 2. Then F ∼= F [a, b].

Proof. We define ϕ : [a, b] → [0, 1] as the map x 7→ 1
b−ax−

a
b−a . Then ϕ−1(x) =

(b− a)x+ a. We use this to define an isomorphism from F to F [a, b] that maps
f 7→ ϕfϕ−1.

We see that ϕfϕ−1 is in F [a, b] as it maps dyadic rationals to dyadic rationals
and the derivative is f ′(ϕ(x)) whenever the derivative exists which is a power
of 2. This can be easily seen to be a group isomorphism.

From this we see that F is isomorphic to F [0, 1
2 ], F [ 12 ,

3
4 ] and F [ 12 , 1]. We

will use these three subgroups of F to show that F ∼= F [a, b] for arbitrary dyadic
rationals a and b.

Theorem 3.20. [9, Theorem 3.1.3] Let a and b dyadic rationals in [0, 1]. Then
F ∼= F [a, b].

Proof. We split the proof into three different cases. First we consider the case
where a ̸= 0 and b ̸= 1. Then we can find an element α ∈ F such that α( 14 ) = a
and α( 34 ) = b. Now we define an isomorphism from F [ 14 ,

3
4 ] to F [a, b] which

maps f toα−1fα.
Similarly, if a = 0 we can use of F [0, 1

2 ] and if b = 1 use F [ 12 , 1]. In this way
we get that F [a, b] ∼= F.

As elements with disjoint supports commute we can also use this to show
that F has finite products of itself as a subgroup of itself. Further it also contains⊕∞

i=1 F in itself. As any element has at most finitely many breakpoints it cannot
contain an infinite product of itself. Similarly, we can construct free abelian
groups of arbitrary finite order contained in F using Lemma 2.14. Hence, F
also contains

⊕∞
i=1 Z.

Our next goal is to show that F has exponential growth.

Lemma 3.21. [2, Proposition 1.5.9] The submonoid of F which is generated by
x−1
0 and x1 is free.
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Proof. Take any word x generated by x−1
0 and x1.

x = xa1
1 x−1

0 xa2
1 · · ·x−1

0 xan
1

where ai ≥ 0 for all i.
Then we can move all the x−1

0 to the right, by using the fact that x−1
0 xi =

xi+1x
−1
0 . Then we get

xa1
1 xa2

2 · · ·xan
n x

−(n−1)
0 .

This normal form is in the unique form, so different words in x−1
0 and x1 corre-

spond to different words in F . Hence, the submonoid is free.

Corollary 3.22. The group F has exponential growth.

Proof. This follows from the fact that F has a free submonoid generated by two
generators and Lemma 2.26.

3.4 Properties of F ′

In this section we will study this group as well as some related groups. We will
have two main goals in this section. The first is to show that F ′ is simple and,
the second is to show that every quotient group of F is abelian. In order to
prove these we will begin by proving a few interesting properties of F .

Theorem 3.23. [9, Theorem 4.1] Let [F, F ] be the commutator subgroup of F .
Then,

F/[F, F ] ∼= Z⊕ Z.

Further the commutator subgroup contains elements of F which have support
contained in a proper subset of [0, 1].

Proof. We define a map ϕ : F → Z⊕ Z such that for f ∈ F ,

ϕ(f) = (m,n)

where the right derivative of f at 0 is 2m and the left derivative at 1 is 2n. This
is a homomorphism and is surjective as ϕ(a) = (1,−1) and ϕ(b) = (0,−1).

Next, we proceed to show that [F, F ] = Ker(ϕ). Clearly [F, F ] ⊆ Ker(ϕ) as

ϕ(xyx−1y−1) = ϕ(x) + ϕ(y)− ϕ(x)− ϕ(y) = 0.

In order to show Ker(ϕ) ⊆ [F, F ] we consider f ∈ Ker(ϕ). We can write f =
ai1bj1ai2 · · · aikbjk where only i1 and jk are allowed to be 0.

Then we have that,

ϕ(f) = ϕ(a)(i1+···+ik) + ϕ(b)(j1+···+jk)

= (i1 + · · ·+ ik)(1,−1) + (j1 + · · ·+ jk)(0,−1) = 0.

This implies that i1 + · · · + ik = j1 + · · · + jk = 0. We can now use induction
on k to prove that f ∈ [F, F ].
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Clearly this is true for k = 1, 2. Suppose it is true for k = n − 1. Then it
follows that,

ai1bj1 · · · ainbjn =ai1bj1 · · · ain−1+inbjn−1+jn

× (b−(jn−1+jn)a−inbjn−1+jnain)(a−inb−jnainbjn).

From the induction hypothesis it follows that ai1bj1 · · · ain−1+inbjn−1+jn ∈ [F, F ]
and hence f ∈ [F, F ]. From the first isomorphism theorem we are done.

The fact that the support of any element in [F, F ] is contained strictly in
[0,1] can be seen clearly by the fact that any element must be the identity for
some neighborhood of 0 and 1.

Theorem 3.24. The group F has trivial center.

Proof. Let p be in [0, 1]. Then p can be written in the two following ways:

p =

∞∑
i=1

ai
2i

= 1−
∞∑
i=1

bi
2i
,

where ai, bi ∈ {0, 1} and An =
∑n

i=1
ai

2i < 1−
∑n

i=1
bi
2i = Bn.

Define the family of functions fn ∈ F as follows:

fn(x) =



2x, 0 ≤ x ≤ An

4 ,

x+ An

4 , An

4 ≤ x ≤ An

2 ,
x
2 + An

2 , An

2 ≤ x ≤ An,

x, An ≤ x ≤ Bn,

2x−Bn, Bn ≤ x ≤ Bn + 1−Bn

4 ,

x+ 1−Bn

4 Bn + 1−Bn

4 ≤ x ≤ Bn + 1−Bn

2 ,
x
2 + 1

2 Bn + 1−Bn

2 ≤ x ≤ 1.

Note that these functions have support in [0, 1]\[An, Bn] with fn(p) = p.
Let f be any element in the center of F . Then we have that f(p) =

f(fn(p)) = fn(f(p)) for all n. Then f(p) ∈ [An, Bn] for all n. This implies
that f(p) = p and as we can do this for an arbitrary p ∈ [0, 1] it follows that f
is the identity map. Therefore, the center of F is trivial.

It is interesting to note that Burillo gives a purely algebraic proof for Theo-
rem 3.24 [9, Proposition 3.3.5].

Lemma 3.25. [9, Proposition 3.3.2] Let F ′′ be the double commutator of F .
Then F ′ = F ′′.

Proof. This argument relies on the fact that the support of elements in F ′ are
proper subsets of (0, 1) (Theorem 3.23). Let f ∈ F ′ and [a, b] be its support. Let
c, d dyadics such that 0 < c < a, and b < d < 1. Then f ∈ F [a, b] ⊂ F [c, d] ⊂ F ′.
However F [a, b] ⊂ F ′[c, d] ⊂ F ′′ as [a, b] ⊂ [c, d]. Hence, we have that f ∈ F ′′.
From this we get that F ′′ = F ′.
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Theorem 3.26. [9, Theorem 3.3.1] The commutator subgroup F ′ is simple.

Proof. We will show that F ′ satisfies the Higman condition which will imply
that F ′′ is simple. As we have shown that F ′ = F ′′ this will imply that F ′ is
simple.

Let α, β ∈ F ′ and let S = supp(α) ∪ supp(β). As α, β ∈ F ′ we have that
S ⊆ [ϵ, 1− ϵ] for some ϵ > 0. Let γ be a non-trivial element of F ′. Then there is
an interval I such that γ(I)∩I = ∅. Then the highly homogeneous properties of
F (Corollary 3.18) allows us to construct an element ρ ∈ F ′ that takes [ϵ, 1− ϵ]
into I. Hence F ′ satisfies the Higman condition and the theorem follows.

Theorem 3.27. [9, Theorem 3.3.6] Every proper quotient group of F is abelian.

Proof. Let F/N be a proper quotient of F and x a non-trivial element of N .
As F has a trivial center there is an element y ∈ F such that yxy−1x−1 ̸= 1.
As yxy−1 ∈ N and x ∈ N we have that [y, x] ∈ N ∩ F ′. Hence, we have that
N ∩ F ′ is a non-trivial normal subgroup of F ′. As F ′ is simple we have that
N ∩ F ′ = F ′ which implies that F ′ ⊂ N and F/N is abelian.
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4 Thompson’s group T

In the group F we took two binary rooted trees with the same number of leaves
and mapped them to each other in such away that the map preserved the index
of the leaf when ordered from left to right. In Thompson’s group T we do the
same thing, but we allow cyclic permutations of the leaves in order to obtain a
larger group which contains F as a subgroup of it.

4.1 Describing T

To begin with we define the circle S1 = [0, 1]/∼ where ∼ denotes the identifi-
cation of the points 0 and 1.

Definition 4.1. We define Thompson’s group T to be the subgroup of home-
omorphisms of S1 with the following properties:

� All elements are piecewise linear.

� When differentiable, the derivatives are a power of 2.

� Dyadic rationals are mapped to dyadic rationals and there are only finitely
many break points.

As with the group F it can be shown that this is indeed a group when
defined as above. We can also view elements of T as tree diagrams and unique
reduced tree diagrams, the only difference being that we now have to explicitly
define which leaf of the range tree the first leaf of the domain tree maps to. We
denote this leaf with a bold vertex. We can number the leaves in the range tree
cyclically and map the leaves such that the map preserves the ordering. When
multiplying it is also important to preserve this order as seen in Figure 13.

Example 4.2. As an example for an element in T which is not in F we give
the following.

c(x) =


x
2 + 1

2 , 0 ≤ x ≤ 1
2

x+ 1
4 ,

1
2 ≤ x ≤ 3

4

2x− 3
2 ,

3
4 ≤ x ≤ 1

Figure 12: Tree diagram for c(x).
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=

=

Figure 13: Example for multiplication: a−1cb.

4.2 A presentation for T and its simplicity

There are two main goals for this section. We will give a finite presentation for
T and show that T is simple. We will mostly follow the discussion of this done
by Cannon, Floyd and Parry [11, Chapter 5].
To do this we first define the group T1 as follows:

T1 = ⟨a, b, c | [ab−1, a−1ba], [ab−1, a−2ba2], c−1b(a−1cb),

((a−1cb)(a−1ba))−1b(a−2cb2), (ca)−1(a−1cb)2, c3⟩

While this is a presentation of T , in order to show this we will first define a
surjective group homomorphism from T1 to T . After which we will show that
T1 is a simple group. From this it will follow that T ∼= T1, and hence T is also
simple.

Lemma 4.3. [11, Lemma 5.2] The group T is generated by the elements a, b,
c and satisfy the following relations:

(i) [ab−1, a−1ba] = 1

(ii) [ab−1, a−1ba] = 1

(iii) c = b(a−1cb)

(iv) (a−1cb)(a−1ba) = b(a−2cb2)

(v) ca = (a−1cb)2

(vi) c3 = 1

Proof. Let H be the subgroup of T generated by a, b and c. Then H contains F
as F is generated by a and b. Let f be an arbitrary element in T . If f([0]) = [0]
then f is an element of F and hence H. So suppose that f([0]) = [x] such that
[x] ̸= [0]. Then there is h ∈ F such that h(x) = 3/4. Then the map g = fhc
is such that g([0]) = c(h(f([0]))) = c(h([x])) = c([ 34 ]) = [0]. This gives that g is
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in F which in turn gives that h = f−1gc−1 ∈ H. From this we see that T = H
and so T is generated by a, b and c.

Next we check if the relations hold. The first two are clear as they follow
from the finite presentation of F . We can use tree diagrams to show the rest,
and we give one such computation in Figure 14. In this we use the previously
computed tree diagram for a−1cb in Figure 13.

=

∼

Figure 14: c = b(a−1cb).

As a consequence of Lemma 4.3 the following holds.

Corollary 4.4. [11, Lemma 5.3] There is a surjective homomorphism from T1

to T .

We now proceed to show that T1 is simple. In order to do this we first define
the following elements in T1:

X0 = a and Xn = a−(n−1)ba(n−1) for all n ≥ 1.

It follows from our discussion of F that XnXk = XkXn+1 for all k < n. We
also define Cn = a−(n−1)cb(n−1).

Our next goal is to get a similar normal form to that of the group F . In
order to do this we need to study how elements commute with each other, and
we derive a few computational rules for this.

Lemma 4.5. [11, Lemma 5.5] For all k ∈ {1, 2, . . . n}, we have the following:

(i) Cn = XnCn+1,

(ii) CnXk = Xk−1Cn+1,

(iii) CnX0 = C2
n+1.

Proof. For (i),

Cn = a−(n−1)cb(n−1) = a−(n−1)(b(a−1cb))b(n−1)

= (a−(n−1)ba(n−1))(a−ncbn) = XnCn+1.
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For (ii), if k = 1, it follows from how we define Cn. If k = 2 and n = 2, it
follows from fourth relation in the group presentation.

If k = 2 and n > 2, we use induction on n to get

CnX2 = X−1
n−1Cn−1X2 = X−1

n−1X1Cn = X1X
−1
n Cn = X1Cn+1.

If k ≥ 3 we use induction on k,

CnXk = a−1Cn−1bXk = a−1Cn−1Xk−1b = a−1Xk−2Cnb

= Xk−1a
−1Cnb = Xk−1Cn+1.

For (iii), If n = 1 it is exactly fifth relation in the presentation. If n > 1, we
use induction to get

CnX0 = X−1
0 Cn−1X1X0 = X−1

0 Cn−1X0X2

= X−1
0 C2

nX2 = X−1
0 X0C

2
n+1 = C2

n+1.

Lemma 4.6. For all n,m, s ∈ N such that m ≤ n+ 1 and r, s ≤ n we have the
following;

(i)

Cm
n Xr =


Xr−mCm

n+1, r ≥ m

Cm+1
n+1 , r = m− 1

Xr+(n+2−m)C
m+1
n+1 , r < m− 1,

(ii)

X−1
s Cm

n =


Cm+1

n+1 X−1
(s+m)−(n+2), s ≥ (n+ 2)−m

Cm
n+1, s = n+ 1−m

Cm
n+1X

−1
s+m, s ≤ n−m,

(iii) Cm
n = X(n+1)−mCm

n+1,

(iv) Cm
n = Cm+1

n+1 X−1
m−1,

(v) Cn+2
n = 1.

Proof. We refer to the proof given by Cannon, Floyd and Parry [11, Lemma 5.6].

Similarly to the group F we define a positive element to be the product of
non-negative powers of Xi, and negative elements to be those which are inverse
to positive elements. In the previous two lemmas what we have shown are the
results required to move positive elements to the left of elements of form Cm

n and
negative elements to the right of Cm

n . This combined with the theory developed
in discussing F we can see how we can get normal forms of T1.

Lemma 4.7. Let i, j, k and l be positive integers such that i < j+2 and k < l+2.
Then there are positive elements p and q, and non-negative integers n and m
such that m < n+ 2 such that Ci

jC
k
l = pCm

n q−1.
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Proof. Let n ≥ max(j, l). Then Lemma 4.6 gives us positive elements p and q
such that Ci

j = pCi
n and Ck

l = Ci+r
n q−1. Hence Ci

jC
k
l = pC2i+r

n q−1.

We can use Lemma 4.7 along with all the computational rules we have proven
for the group T1 in order to prove that every element in T1 can be written in the
form pCm

n q−1. However, it is important to note that this form is not unique.
This can be seen clearly from rules (iii) and (iv) in Lemma 4.6.

Theorem 4.8. If g ∈ T1, then g = pCm
n q−1 where for some positive elements

p, q where m < n+ 2.

Proof. We give the main idea of the proof and refer to the proof given by
Cannon, Floyd and Parry [11, Theorem 5.7] for all the details.

We consider the set of elements in T1 of the for pCm
n q−1, where p and q are

positive elements and m < n+2. We can then use our computational rules in T1

to show that this set is closed under multiplication. Then it follows that this is
a subgroup of T1. As this subgroup also contains a, b and c it follows that this
is the group T1, and every element g ∈ T1 can be written in the form pCm

n q−1.

Theorem 4.9. [11, Theorem 5.8] The group T1 is simple.

Proof. Suppose that N is a non-trivial normal subgroup of N , and let Θ : T1 →
T1/N be its quotient homomorphism. Then there is a non-trivial element g
which maps to 1 by Θ.

Let g = pCm
n q−1 where m < n + 2. We then have that Θ(p−1q) = Θ(Cm

n )
which in turn implies that Θ((p−1q)n+2) = 1.

Let α : F → T1/N be the restriction of Θ on the group generated by a and
b in T1. Then this is a well-defined homomorphism.

If p−1q ̸= 1 we have that (p−1q)n+2 ̸= 1 as F is torsion-free. This means that
α(F ) is isomorphic to a proper quotient group of F . As every proper quotient
group of F is abelian by Theorem 3.27 it follows that Θ(ab) = Θ(ba).

If p−1q = 1, we have Θ(Cm+1
n+1 X−1

m−1) = Θ(Cm
n ) = Θ(p−1q) = 1 and Cm

n ̸= 1.

This implies that Θ(Xn+2
m−1) = 1, as before this will imply that Θ(ab) = Θ(ba).

Then from the fourth relation of the group T1 we have that,

Θ(a−1cb)Θ(a−1ba) = Θ(ba−2cb2) =⇒ Θ(a−1c) = Θ(ba−2c) =⇒ Θ(a) = Θ(b).

Now from the third relation we get that,

Θ(c) = Θ(ba−1cb) = Θ(c)Θ(b) =⇒ Θ(b) = 1,

which also means that Θ(a) = 1.
From the fifth relation we get

Θ(ca) = Θ((a−1cb)2) =⇒ Θ(c) = 1.

Hence, we get that N = T1, and it follows that group T1 is simple.
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Corollary 4.10. [11, Corrollary 5.9] The group T1 is isomorphic to Thompson’s
group T .

Proof. As there is a surjective homomorphism from T1 to T we have that T is
isomorphic to a quotient of T1. As T1 is simple and T is non-trivial, we must
have that T1 is isomorphic to T .

The problem of uniqueness of the form pCm
n q−1 is an interesting one to

work with. An obvious way to remedy this would be to use our tree diagrams in
order to form what we call our normal form which would be unique. As our tree
diagrams in T consist of a domain tree and range tree with the leaf mapping to
the first leaf of the domain tree being marked. We can then reduce it and get a
unique form as follows.

First suppose that our reduced tree diagram (R,S) has n+2 leaves. We can
then use our all-right trees Tn−1 and our elements Cn to write

(R,S) = (R, Tn−1)C
m
n (Tn−1, S).

This would then give us a form pCm
n q−1 which fits in well with our intuition.

However, it is not so obvious as to how we could characterise this unique
normal form as we do in Thompson’s group F using Theorem 3.14. Such an
algebraic characterisation, as well as some other interesting aspects of T were
given by Burillo, Cleary, Stein and Taback [10]. Unfortunately, due to a lack of
time this will not be discussed further in this thesis.
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5 Piecewise linear homeomorphisms of the real
line

In the previous sections we have seen how Thompson’s group F can be viewed
as either a group of homeomorphisms of the unit interval or as a group of maps
between finite binary rooted trees. In order to motivate the following section
we look at yet another way of viewing this group.

Theorem 5.1. [11, Theorem 1.4.1] Thompson’s group F is isomorphic to the
subgroup of homeomorphisms f of R with the following properties:

� They are piecewise linear and orientation preserving.

� They have finitely many breakpoints which are all dyadic rationals.

� There is a number M ∈ N and k, l ∈ Z such that f(x) = x + k for all
x ≤ −M and f(x) = x+ l for all x ≥ M .

Proof. Consider the piecewise linear function ϕ : R → [0, 1] defined on its integer
breakpoints as,

ϕ(k) =

{
1− 1

2k+1 , k ∈ Z, k ≥ 0

2k−1, k ∈ Z, k < 0

and is linear in between them.
Given any f ∈ F we can conjugate it with ϕ to get a map ϕfϕ−1 : R →

R. Then ϕfϕ−1 maps dyadics to dyadics. Further, it is piecewise linear and
whenever the derivative exists the derivative is a power of 2. Also note that if
f ∈ F has derivative 2a in some neighborhood of 0, and the interval [ 1

2m , 1
2m−1 ]

is contained in this contained in that interval we have that ϕfϕ−1 takes [−(m+
1),−m] to [−(m−a+1),−(m−a)] linearly. Hence, we have that ϕfϕ−1(x) = x−
a near−∞. Similarly, if the derivative of f near 1 is 2b, we have that ϕfϕ−1(x) =
x − b near ∞. This implies that ϕfϕ−1 has finitely many breakpoints. Hence,
we are done.

Motivated by this we proceed to study the group of piecewise linear homeo-
morphisms of R following the paper due to Brin and Squier [7]. We define this
group as follows.

Definition 5.2. We define the group PL(R), consisting of piecewise linear
homeomorphisms f : R → R which have the following properties:

� The element f is not differentiable on a discrete set B(f).

� It has constant derivative when it is differentiable.

� It is positively oriented.

If we only allow elements f where B(f) is finite we get a new group PLF (R).
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5.1 A presentation for PLF (R) and its subgroups

Our next goal is to give a presentation for PLF (R). In order to do this we first
define a family of elements of PLF (R) (which will end up being a generating
set for PLF (R)) and show how they interact with each other.

Definition 5.3. We define the elements of Mp, Ta and Xb,q where a, b ∈ R and
p, q ∈ R+ as follows;

(i) Mp(t) = pt,

(ii) Ta(t) = t+ a,

(iii)

Xb,q(t) =

{
t t ≤ b,

b+ q(t− b) t ≥ b.

Lemma 5.4. [7, Lemma 2.2] Let a, b ∈ R and p, q ∈ R+, then we have the
following;

(i) MpMq = Mpq,

(ii) TaMp = MpTap,

(iii) TaTb = Ta+b,

(iv) Xb,qMp = MpXpb,q,

(v) Xb,qTa = TaXa+b,q,

(vi) Xb,qXb,p = Xb,pq,

(vii) Xb,qXa,q = Xa,pXa+p(b−a),q where a < b.

Proof. Parts (i), (ii) and (iii) are clear.
For (iv) we have

Xb,qMp(t) =

{
pt t ≤ b

p(b+ q(t− b)) > b

and

MpXpb,q(t) =

{
pt pt ≤ pb

pb+ q(pt− pb) pt ≥ pb

which show that Xb,qMp = MpXpb,q. Parts (v), (vi) and (vii) can be shown in
the same manner.

Our next goal is to show that any element in PLF (R) can be written in
a unique normal form using the above relations. This normal form is con-
structed by using the fact the set of non-differentiable points is finite. We first
use elements Mp and Ta to make the element into one which is the identity
near −∞. We then move along the real line from left to right getting rid of all
non-differentiable points one by one using elements of the form Xb,q.
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Lemma 5.5. [7, Theorem 2.3] Let g ∈ PLF (R) be such that g is the identity
near −∞. Then g can be written uniquely as,

g = Xb1,q1 · · ·Xbn,qn ,

where b1 < b2 < · · · < bn and qi ̸= 1.

Proof. We proceed by induction on |B(g)|. If B(g) = ∅ then g is the identity.
Suppose the statement is true for all k ≤ n − 1 and let g be an element such
that B(g) = n. Let b1 be the smallest number in B(g), and q1 = g′(b+1 ). Then
consider the function g1 = X−1

b1,q1
g. As |B(g1)| < |B(g)| the existence of the

above form follows by the induction hypothesis.
To show uniqueness we can again proceed by induction. The statement is

clearly true for the identity map where B(g) is empty. After which the choice
of each bi and qi is forced.

Theorem 5.6. [7, Theorem 2.3] Any f ∈ PLF (R) can be written uniquely as,

f = MpTaXb1,q1 · · ·Xbn,qn ,

where b1 < b2 < · · · < bn and qi ̸= 1.

Proof. We simplify the situation to a setting where we can use Lemma 5.5. Let
p be the derivative of f near −∞. Then we can consider the element f1 = M−1

p f
which has slope 1 near −∞. Hence f1(t) = t + a near −∞. Then let g be the
element T−1

a M−1
p f . From this our theorem follows. Uniqueness follows as our

choice of p and a are forced. We call this form the normal form of f.

Note that this theorem also shows that the elements Mp, Ta and Xb,q gen-
erate PLF (R). In the next theorem we show that the relations proven in
Lemma 5.4 are sufficient to give a presentation for PLF (R).

Theorem 5.7. [7, Theorem 2.4] The group PLF (R) is isomorphic to the group
G given by the presentation,

G = ⟨Mp, Ta, Xb,q, p, q ∈ R+ |MpMq = Mpq, TaMp = MpTpa, TaTb = Ta+b,

Xb,qTa = TaXa+b,q, Xb,qXb,p = Xb,pq,

Xb,qXa,p = Xa,pXa+p(b−a),q where a < b⟩.

Proof. We define a map θ : G → PLF (R) which maps the generators of G to
the functions in PLF (R) with the same name. We can then extend this map
to a well-defined group homomorphism as PLF (R) satisfies the relations of this
group, which we call θ as well. The map θ is surjective as Mp, Ta and Xb,q

generate PLF (R). The map θ is injective as the relations of the abstract group
of G are sufficient to get a form corresponding to the unique normal form in
PLF (R). Hence, we are done.
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Note that this proof works exactly the same when we consider the subgroup
PLF+(R), where the generators are of type Xb,q, and the relations are the
relevant relations of the above group G. Similar to this we also define the
subgroup PLFα(R) which consists of elements which are the identity for all
t ≤ α. This is generated by elements of type Xb,q where b ≥ α, and has a
presentation with the obvious relations from the presentation for G.

Let K be a multiplicative subgroup of R+. Define PLFK(R) to be the
subgroup of PLF (R), where f ∈ PLFK(R) if f ′(t) ∈ K whenever the derivative
exists. This group has a presentation of all generators and relations of G with
the added restriction that p, q ∈ K.

Let A be an additive subgroup of R such that for all p ∈ K and a ∈ A,
pa ∈ A. Then define PLFK

A (R) to be the subgroup of PLFK(R), whose ele-
ments have breakpoints contained in A. This group will again have the same
presentation of G with the added restriction that p, q ∈ K and a, b ∈ A.

5.2 A family of subgroups of PLFK
A (R)

In this section we will study a specific family of subgroups of PLFK
A (R), and

show that they are finitely presented. Let p ∈ Z+ and K be the multiplicative
subgroup of R+ consisting all integral powers of p. Let A be the additive sub-
group of rational numbers whose denominators are integral powers of p.
Then define G(p) = PLF0(R) ∩ PLFK

A (R). Notice that G(p) has the following
infinite presentation:

G(p) = ⟨Xb,pj , b ∈ A+, j ∈ Z | Xb,piXb,pj = Xb,pi+j ,

Xb,piXa,pj = Xa,pjXa+pj(b−a),pi where a < b⟩.

In this section we will show that G(p) is finitely presented. In order to do
this we first transform the above generators and relations to a more manageable
infinite presentation.

The first thing we notice is that the first relation in this presentation allows
us to writeXb,pj = Xj

b,p, this will allow us to disregard the generators of the form
Xb,pj where j > 1 in future discussions. Then we would also like to show that
we can write the second relation in an equivalent form involving only elements
of the form Xb,p.

Xb,pkXa,pj = Xk
b,pXa,pj = Xk−1

b,p Xa,pjXa+pj(b−a),p = · · · = Xa,pjXk
a+pj(b−a),p.

From this it follows that this relation is independent of k. Showing independence
of j is slightly more tricky.

We define a function βj(a, b) = a+ pj(b− a). Then we get that,

βi(a, βj(a, b)) = βi+j(a, b).

Using this it follows that,

Xb,pXa,pj = Xb,pX
j
a,p = Xa,pXβ1(a,b),pX

j−1
a,p = X2

(a,p)Xβ1(a,β1(a,p)),pX
j−2
a,p .
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= X2
(a,p)Xβ2(a,p),pX

j−2
a,p = · · · = Xj

(a,p)Xβj(a,p),p

Hence it is independent of j. Then we can re-label Xa,p = xa, and get the
following presentation for G(p):

⟨xa, a ≥ 0, a ∈ A | xbxa = xaxa+p(b−a) where b > a⟩.

We can further reduce the necessary generators to the case where a, n ∈ N as
follows.

If xb a generating element of G(p) then b ∈ A which means that bpk = a ∈ N
for some k ∈ Z. Then we can use the relation x−1

0 xbx0 = xpb to write xb =
xk
0xax

−1
0 . We can also use this to reduce the relation xaxb = xaxa+p(b−a) to the

case where a, b ∈ N. Hence, we get that

G(p) = ⟨xa, a ≥ 0, a ∈ N | xbxa = xaxa+p(b−a) where b > a⟩.

We can finally proceed to show that G(p) is finitely presented.

Theorem 5.8. [7, Theorem 2.9] The group G(p) is finitely presented.

Proof. Define z = x−1
1 x0. Then for all b ≥ 1,

z−1xbz = x−1
0 x1xbx

−1
1 x0 = x−1

0 xp−1(b−1)+1x0 = xb+(p−1).

Hence, the set {z, x1, x2 . . . , xp−1} generate G(p).
Next we show that the relation x−1

0 xbx0 = xpb holds if and only if z−1xbz =
xb+(p−1) for all b > 0. We have:

x−1
0 xbx0 = xpb ⇐⇒ x−1

1 xbx1 = zxpbz
−1

⇐⇒ z−1x1+p(b−1)z = xpb.

Let 1 + p(b− 1) = b′. Then we have that

x−1
0 xbx0 = xpb ⇐⇒ z−1xbz = xb+(p−1).

In this way we no longer need to consider x0 in our set of generators and
relations.

Our next goal is to show that for all a, b ∈ Z+, n ∈ N and for a′, b′ ∈
{1, 2, . . . , p− 1} we have

xbxa = xaxa+p(b−a) ⇐⇒ [zb
′−a′+npx−1

a′ z
−n, xb′ ] = 1.

However, we have that xbxa = xaxa+p(b−a) = xaz
−(b−a)xbz

b−a, which is equiv-

alent to saying that [zb−ax−1
a , xb] = 1.

As a, b ≥ 1 we have q, q′ ∈ N and r, r′ ∈ {1, 2, . . . , p − 1} such that a =
r + q(p − 1) and b = r′ + q′(p − 1). Then we can write xa = z−qxrz

q and
xb = z−q′xr′z

q′ . Using this we get

1 = [zb−ax−1
a , xb] = [zb−az−qx−1

r zq, z−q′xrz
q′ ]
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⇐⇒ [zq
′−qzb−ax−1

r zq−q′ , xr′ ] = 1 ⇐⇒ [z(r
′−r)+(q′−q)px−1

r zq−q′ , xr′ ] = 1.

Letting q′ − q = n and renaming r′, r as b′, a′ we get that

[zb
′−a′+npx−1

a′ z
−n, xb′ ] = 1

where either n > 0 or n = 0 and b′ > a′.
Hence, we have simplified our problem to a presentation with finite genera-

tors and relations which are indexed by (b, a, n) where a, b are taken from a finite
set and n ∈ N. Next we define A(b,a,n) = zb−a+npx−1

a z−n, then our relations
can be written as [A(b,a,n), xb] = 1.

Now we show that [A(b,a,n), xb] = 1 =⇒ Ab,a,n+p = Ab,b,pAb,a,n+1A
−1
b,b,1:

Ab,a,n+p = zb−a+p+p2

x−1
a z−(n+p)

= zp
2

zb−a+npx−1
a z−nz−p

= zp
2

Ab,a,nz
−p

= zp
2

x−1
b Ab,a,nxbz

−p

= (zp
2

x−1
b z−p)(zpAb,a,nz

−1)(zxbz
−p)

= Ab,b,pAb,a,n+1A
−1
b,b,1.

As xb commutes with Ab,b,p, Ab,a,n+1 and A−1
b,b,1, we have that [A(b,a,n), xb] =

1. Hence, we have that we only need to consider finitely many relations where
a, b ∈ {1, . . . , p− 1} and n ∈ {1, . . . , p}, and we are done.

In the case that p = 2, the group that we just studied has finitely many
dyadic breakpoints, slopes the power of 2 and has support contained in [0,∞).
Trivially F is contained in this group, as we can see F as being the group with
the above properties but with support in [0, 1]. Here it is interesting to note
that G(2) has infinite presentation structure,

G(2) = ⟨x0, x1, . . . | x−1
i xjxi = x2j−i,∀i < j⟩.

Further it is an interesting question as to what properties of the subgroups of
PLF (R) we considered are needed for it to be finitely generated and presented.

5.3 PLF (R) has no free subgroups

We say that a group G is metabelian if its commutator subgroup is abelian.
In this section we will prove that PLF (R) has no free subgroups generated by
more than one element. In order to do this we will prove that any subgroup
of PLF (R) is either metabelian or contains a free abelian subgroup isomorphic
to Z2. Then as a free subgroup of rank greater than 1 is neither metabelian
nor does it contain abelian free subgroups it will follow that PLF (R) does not
contain any free subgroup of rank greater than 1.

In order to show this we begin our discussion with some facts about the
commutator subgroup of PLF (R).
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Lemma 5.9. [9, Lemma 6.1.4] Let f, g ∈ PLF (R) then we have that following:

(i) The element [f, g] has slope 1 at ±∞.

(ii) If f, g have slope 1 at ±∞, we have that supp([f, g]) has compact closure.

(iii) If f, g have common fixed point t, then [f, g] is the identity in a neighbor-
hood of t.

Proof. (i) As elements have finitely many break points gradients commute near
±∞. Hence, we have that [f, g] has slope 1 near ±∞.

(ii) If f, g have slope 1 near ±∞, then f and g can be written as t+ a and
t+ b near ±∞. Hence, it will then follow that [f, g] is the identity near ±∞.

(iii) If f, g have common fixed point t, then [f, g] will also have fixed point
t. Further, the slopes will commute at this point, and we will get that [f, g] is
the identity on some neighborhood of t.

Further, we will also need the two purely dynamical results given by Lemma 5.10
and Lemma 5.11.

Lemma 5.10. [7, Lemma 3.4] Let f be an orientation preserving homeomor-
phism of R, and c, d ∈ R such that [c, d] ⊆ supp(f). Then there exists an n ∈ Z
such that fn(c) > d.

Proof. As [c, d] ⊆ supp(f), we have that f(t) > t or f(t) < t for all t ∈ [c, d].
Suppose f(t) > t for all t ∈ [c, d]. If limn→∞ fn(c) = ∞, we are done. If

fn(c) converges to some number c1, we can see that c1 will be a fixed point of f.
This implies that c1 > d, and we are done.

Similarly, if f(t) < t for all t ∈ [c, d], we can repeat the proof with f−1, and
we are done.

Lemma 5.11. Let f, g be orientation preserving homeomorphisms of R, and
c, d ∈ R such that [c, d] ⊆ supp(f) ∪ supp(g). Then there is a word w ∈ ⟨f, g⟩
such that w(c) > d.

Proof. The idea of this proof is to get a finite partition of [c, d] in such away that
each interval of the partition lies entirely in one of supp(f) or supp(g). Then
we can repeatedly use Lemma 5.10 on each of the partitions to get a word w
such that w(c) > d.

We begin by noticing that supp(f) can be written as the union of disjoint
open intervals in R. We can do the same with supp(g). Then the union of these
open intervals form a cover for [c, d]. Compactness implies that we then have
a finite subcover of [c, d] given by the union of the elements of {(ci, di)}ni=1.
After which we can repeatedly travel along (c, d) getting partitioning points
c = t0 < · · · < tk = d such that [ti, ti + 1] ⊆ (ck, dk) for some k. Hence, our
theorem follows.
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Note that it was essential for us to be able to get the finite cover of our
interval. In the case that f, g ∈ PLF (R), we have that supp(f) can be written
as a finite union of open intervals, and we would not need the compactness
argument to get a finite cover of [c, d].

Theorem 5.12. [9, Theorem 6.1.7] Let G be a subgroup of PLF ′(R). Then
either G is abelian or G contains a subgroup isomorphic to Z2.

Proof. Suppose G is not abelian. Our goal is to create two elements with disjoint
supports in order to generate a group isomorphic to Z.

Then there are elements f, g ∈ G such that [f, g] ̸= 1. As f, g ∈ PLF (R) it
follows that supp(f) ∪ supp(g) can be written as the disjoint union of finitely
many open intervals (a1, b1), (a2, b2), . . . , (an, bn). Lemma 5.9(ii) and (iii) imply
that supp([f, g]) is contained in a compact subset of supp(f) ∪ supp(g).

Let W denote the set of non-trivial words in ⟨f, g⟩ which have support con-
tained in a compact subset of supp(f) ∪ supp(g). As [f, g] ∈ W, we have that
W is non-empty. Let w ∈ W such that supp(w) intersects the minimal num-
ber of components of supp(f) ∪ supp(g). Let (ai, bi) be a component such that
supp(w) ∩ (ai, bi) is non-empty. Then we have that supp(w) ∩ (ai, bi) ⊆ [c, d] ⊆
(ai, bi). Then Lemma 5.11 gives us an element u ∈ ⟨f, g⟩ such that u(c) > u(d).
Then supp(u−1wu) ∩ (ai, bi) ⊆ (u(c), u(d)). Hence, we have that,

supp(w) ∩ supp(u−1wu) ∩ (ai, bi) = ∅.

As supp([u−1wu,w]) ⊆ supp(w)∩ supp(u−1wu), we have that supp([u−1wu,w])
has non-empty intersection less components than w. Hence, minimality implies
that supp([u−1wu,w]) = 1 and they commute. Hence, they generate a free
abelian group isomorphic to Z2.

Corollary 5.13. Let G be a subgroup of PLF (R). Then G is either metabelian
or contains a free abelian subgroup of rank 2.

Proof. Apply Theorem 5.12 to G′. Then G′ is either abelian or contains a free
subgroup of rank 2.

Corollary 5.14. Any subgroup of PLF (R) contains no free subgroups of rank
greater than 1.

Proof. It is well-known that the subgroup of a free group is free (Nielsen-Schreier
theorem, see e.g., [18, Corollary 4.2.8]). As free groups of rank greater than 2
are not metabelian the theorem follows.

We note that this implies that Thompson’s group F does not contain any
free subgroups, and this has interesting ramifications on the amenability of F .
Unfortunately due to a lack of time we will not delve into this further.

Further, in any discussion of PL(R) we must note the importance of the
monograph due to Bieri and Strebel [5]. In this the authors collect and refine
many results regarding the subgroups of PL(R) and seems to be a natural place
to go to for further reading on these groups.
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6 Further avenues

In this section we briefly discuss a few related topics that would have been
interesting to cover in this thesis.

The most natural place to start is Thompson’s third group which we will
call V . If Thompson’s group T can be thought of as tree pair diagrams where
we allow cyclic permutations of leaves, we can think of V as the group of tree
diagrams where we allow arbitrary permutations of V . More concretely V can
be defined similar to Definition 4.1 with the relaxation of the requirement of
the function to be continuous. In V we only want the elements to be right
continuous at its breakpoints. Thompson’s group V turns out to be another
finitely presented infinite simple group and the proof for simplicity given by
Cannon, Floyd and Parry [11, Chapter 6] follows a similar structure to the proof
of the fact that T is simple. Similar to this idea, a braided version of Thompson’s
groups were introduced independently by Brin [6] and Dehornoy [12] and would
be an interesting area of study in the future.

Another interesting problem is the conjugacy problem in Thompson’s groups
F, T and V . A unified solution to this problem in all three groups was given
by Belk and Matucci [4] and the solution shows quite a beautiful relationship
between group theory and geometry.

In order to do this the authors introduce yet another way to view elements
of F, T and V . Given an element f in tree diagram form we create a strand
diagram embedded in the unit square as seen in Figure 15.

=

Figure 15: The element a(x)
as a strand diagram.

Then we can glue the two ends of the strand diagram in order to obtain
an annular strand diagram (a strand diagram embedded in an annulus). The
main result here is that two elements of F are conjugate if and only if they
have the same reduced annular diagram. Similar to this result the groups T
and V have solutions to the conjugacy problem where the added difficulty is
that you can no longer embed elements of T and V in the unit square, and
hence their closed strand diagrams will not be embedded in two-dimensional
space (in the case of T it embeds in the torus and in the case of V it does not
embed on the surface of any three-dimensional object). Strand diagrams also
allow us to construct a very simple groupoid whose orbit group at any point
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will be Thompson’s group F, and this would have also been an interesting idea
to explore further.

Finally, the embedding of Q as an additive abelian into a finitely presented
subgroup T̄ of PL(R) as seen in the paper due to Belk, Hyde and Matucci [3]
would have been interesting to include in this thesis. The group T̄ is the lift
of Thompson’s group T to the real line through the covering map R → R/Z.
The proof of this is purely dynamical with arguments similar to those seen in
Section 5.3. This result gives a solution to a question in the Kourovka notebook
[17, Problem 14.10(a)], and it is quite surprising that this embedding was not
noticed before as the argument used in this paper is remarkably simple.
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