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Abstract

This thesis presents the study of two-particle pseudorapidity correlations in pp-
collisions at

√
s = 13 TeV using the ALICE detector at LHC, CERN. The correlation

function was calculated as a function of multiplicity and was repeated for several
multiplicity classes and different charge combinations in the forward-backward and
central regions of the detector, respectively. The results reveal an enhancement
of particle pairs being emitted in the same direction and strong autocorrelations
using the mid-multiplicity estimator at low multiplicities. Comparing the results
with PYTHIA simulations, similar results are obtained for both multiplicity esti-
mators. This reveals that PYTHIA simulations are able to accurately reproduce
these results, notably, also the autocorrelations are reproduced.
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1 Introduction

During the very first moments of the universe, after the Big Bang, it is believed that
an entirely different phase of matter was present. This phase was so dense that quarks,
the building blocks of all matter, were no longer confined to the fundamental particles
we observe every day. In this state of matter, quarks are deconfined (more or less free
to move on their own) and is known as the Quark-Gluon Plasma (QGP). It is crucial to
analyze this phase to understand how the universe has evolved and came to be what we
see today.

To study the QGP one might expect measurements on astronomic scales to be neces-
sary, but instead we can study this on Earth by analyzing some of the smallest particles
we know. By accelerating protons or heavy ions, such as lead, to speeds close to the speed
of light, and letting them collide, the QGP has been replicated on Earth. One still unan-
swered question about this phase is if a QGP is formed during smaller scale collisions,
such as proton-proton (pp) collisions.

In this thesis, I will analyze two-particle pseudorapidity correlations, with pseudora-
pidity defined in section 3.1. This correlation function is a function of multiplicity, the
number of recorded particles, and analyzing this will give insight into the dynamics of
small-scale collisions. This is then compared with PYTHIA (see section 5.5.1) simulations
to receive a better understanding of the limitations and advantages of the ”Lund String
model” used in PYTHIA.

1.1 Aim of Thesis

This thesis aims to reproduce parts of the analysis done by ATLAS [1], but with the
ALICE detector described in section 4. Namely, two-particle correlation in pseudorapidity
will be studied for different charge combinations. Additionally, the analysis will be done
for the forward-backward (V0M) and central (Ntracklets) multiplicity estimators and will
be compared with simulations done in PYTHIA. As the ATLAS analysis was only done
for the central multiplicity estimator and most of ALICE’s multiplicity dependent results
are obtained for the forward estimator this will be of particular interest to understand
possible biases introduced by using different multiplicity estimators.

2 The Standard Model

The Standard Model (SM) was developed throughout the 20th century and has since
been the fundamental theory of particle physics [2]. Here a brief introduction to the SM
is given, presenting the elementary particles and forces with a focus on the strong force.

2.1 Elementary Particles of the SM

In the SM there are three classes of particles: quarks, leptons, and bosons, where the
fermionic quarks and leptons constitute all observable matter, and the bosons are the
force carriers. There are six quarks: up (u), down (d), charmed (c), strange (s), top
(t), and bottom (b). There are also six leptons: electron (e−), muon (µ−), tau (τ−);
with respective corresponding neutrino: electron-neutrino (νe), muon-neutrino (νµ), and
tau-neutrino (ντ ). Each quark and lepton also have a corresponding antiparticle with an
opposite charge and spin.
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The quarks and leptons, described above, can further be classified into three genera-
tions. Each generation consists of particles with identical properties except for the mass,
which increases with each generation [3]. This classification of generations, together with
all particles and bosons, excluding corresponding antiparticles, can be seen in Fig. 1.

Finally, the five known bosons are the photon (γ), the Z-boson (Z0), the W-boson
(W+/−), the gluon (g), and the Higgs-boson (H). Where the photon and gluon are the
force carriers for the electromagnetic and strong force respectively, and the Z- and W-
bosons are the force carriers for the weak force. The Higgs boson is responsible for giving
elementary particles their mass through the Higgs mechanism. [4]
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Figure 1: Shows the elementary particles of the standard model. The fermions, quarks,
and leptons are divided into generations I, II, and III and shown as colons from left to
right. The figure is taken from [5].

2.2 Fundamental Forces in the SM

The four known forces of nature are electromagnetism, the strong force, the weak force,
and gravity. As a result of the elementary particles having so little mass, gravity hardly
affects them. Therefore, gravity is effectively neglected in the SM, leaving us with three
forces. The electromagnetic interactions are described by Quantum Electrodynamics
(QED), acting on electrically charged particles. The weak force acts on all fermions
and has been unified with the electromagnetic force into the electroweak force [3].

2.2.1 Strong Interactions

The strong force acts on all quarks and is mediated through the gluon. The strong inter-
action acts on ”color-charged” particles. There are three color charges: red, green, and
blue together with respective ”anti-color”. All quarks and gluons carry color charge, and
their interaction is predicted by Quantum Chromodynamics (QCD).

Quarks are never observed alone, but in combinations with other quarks and anti-quarks
such that the quarks together are ”colorless”. That is, all matter built out of quarks,
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known as hadrons, consists of a combination of colors that mix to white or no color. For
instance, a hadron consisting of the colors: red, blue, and green (or corresponding anti-
colors) mix to white, forming a hadron known as a baryon (or anti-baryon). This quark
triplet can be denoted as (qqq) or (q̄q̄q̄) for baryons and anti-baryons respectively. Having
a quark-antiquark pair (qq̄), the quarks must be of the opposite color, for example blue
+ anti-blue, for the hadron to be colorless, forming a meson [4].

2.2.2 Asymptotic Freedom and Jets

An important property of the strong force is its asymptotic freedom resulting in jet forma-
tions. Contrary to the electromagnetic force, which strength decreases with distance, the
strong force grows stronger the further the separation between quarks is. Consequently,
quarks are deconfined (move relatively freely) within hadrons, known as asymptotic free-
dom, but cannot be separated very much, making quarks confined inside hadrons.

This also means that when colliding two hadrons a high-energy gluon may be ex-
changed, knocking out the constituent partons (quarks and gluons). As these ”free”
partons have color but all individual particles must be colorless, sprays of particles known
as jets are created [3]. This process can be modeled using the Lund String model described
in section 3.3.

3 Introduction to High-Energy Physics

The smaller the system that one wants to study, the higher the energies are needed,
making it natural to work with high energies in particle physics. In this section, common
variables used in high-energy physics are first presented, followed by a brief presentation
of the quark-gluon plasma and an introduction to the Lund string model.

3.1 Variables of High-Energy Physics

During relativistic high-energy collisions, it can be useful to define new variables to sim-
plify the description of these events. Here rapidity, pseudorapidity, and center of mass-
energy will be described.

Rapidity, y, is defined as

y =
1

2
ln

E + pz
E − pz

(1)

where E is the energy and pz is the longitudinal (along the beam-axis) momentum of the
particle. It is often convenient to use rapidity rather than momentum as differences in
rapidity are Lorentz-invariant under boosts along the beam-axis.

If the particle emitted makes an angle θ with the beam axis, then pz = p cos θ, where
p is the magnitude of the total momentum. Using that E =

√
m2 + p2 and assuming that

the transverse momentum pT ≫ m, we see that Eq. (1) becomes:

y =
1

2
ln

√
m2 + p2 + p cos θ√
m2 + p2 − p cos θ

≈ 1

2
ln

p+ p cos θ

p− p cos θ
= − ln tan θ/2 (2)

where in the last step the half-angle formula for the tangent was used.
The last expression in Eq. (2) is the definition of pseudorapidity,

η ≡ − ln tan θ/2 (3)
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That is, for large transverse momentum the rapidity converges to the pseudorapidity.
Additionally, pseudorapidity is often easier to work with than rapidity, as it is independent
of energy and momentum making it natural to use in particle detectors where we do not
always know the energy of particles [6].

Interpreting pseudorapidity, η = 0 corresponds to a perpendicular angle with the
beam axis, and if η → ±∞ corresponds to an angle along the positive and negative beam
axis respectively. A schematic of the correspondence between η and θ can be seen in Fig.
2.

LHC

θ

Figure 2: Illustration of the relation between η-values and their corresponding angle
made with the beam-axis, θ. The figure is inspired by [7].

Considering two particles, 1 and 2, one defines the Lorentz-invariant variable s ≡
(p1 + p2)

2, where p denotes the four-momentum. s is known as one of the Mandelstam
variables, in the Center of Mass (CM) frame s = (E1+E2)

2− (p̄1+ p̄2)
2 = (ECM)

2, where
p̄ denotes the three-momentum and ECM is the CM-energy. Hence,

√
s is the CM-energy

of the system. This is the standard description of energy in particle colliders, considering
the two beams having four-momentum p1 and p2. Typical CM-energies reached in particle
accelerators are in orders of several TeV in magnitude [8]. In this thesis pp-collisions at√
s = 13 TeV will be studied.

3.2 The Quark-Gluon Plasma

During high energy collisions, the energy-density of hadronic matter becomes large enough
resulting in the strong force being less dominant, as the strong force is weaker at short
distances. We therefore approach asymptotic freedom at high densities, resulting in quarks
moving quasi-freely over extended volumes, known as deconfinement. At the same time,
such high energies are reached that new qq̄ pairs can be produced, further blurring the
boundaries between different hadrons, resulting in a ”quark soup” known as Quark-Gluon
Plasma (QGP) [9].

There are several observables for QGP, such as strangeness enhancement and jet
quenching, which are discussed in more detail in [8]. This has mainly been observed in
collisions involving heavy ions, such as lead, and some experiments insinuate that this is
also formed in smaller scale collisions, such as proton-proton collisions [10].
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3.3 Lund String Model

The Lund string model is a statistical model that describes the formation of hadrons
after a collision event, also known as hadronization. The model is based on the string-
like properties of quark confinement. At large distances, the QCD interaction can be
modeled by a linear string-like potential V (r) ∝ κr where κ is the string constant. As
color charges in the initial interaction move apart, the distance between color charges will
be large enough for it to be energetically favorable for the string to break, forming a quark
anti-quark pair (qq̄). Considering a hadron to be such a string, when the string breaks or
fragments, new hadrons are produced [8].

As an example, consider a stable qq̄-pair (meson). One can visualize the movement
or excitation of the quarks inside the mesons with a space-time diagram, see Fig. 3a.
Performing a Lorentz boost on this results in Fig. 3b. The fragmentation of the string
is modeled as a tunneling probability, meaning it exponentially increases with the string
length. This fragmentation process of multiple produced Lorentz boosted mesons can be
seen in Fig. 3c.

x

t

(a)

x

t

(b) (c)

Figure 3: Space-time diagram of two bound quarks. (a) shows a bound meson exhibit-
ing a ”yo-yo”-like movement in one dimension. Performing a Lorentz boost on (a) re-
sults in (b). Multiple fragmentations and meson-formations can be seen in (c). The fig-
ures are from [11].

Notably, as discussed in [12] and [13], iterating the fragmentation model one receives a
flat plateau in rapidity, meaning that the hadron density produced by a single string is
almost constant in rapidity, as seen in Fig. 4.

dn/dy

y
Figure 4: The produced plateau in hadron density is made by iterating the fragmen-
tation model. The plateau is shown with some endpoint corrections. Here, n denotes
the number of particles, and y the rapidity. The blue and red curves show this for lower
and higher energies respectively. The figure is from [14].
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4 The ALICE Experiment at the LHC

The ALICE detector is one of four main detectors at the Large Hadron Collider (LHC)
at Conseil Européen pour la Recherche Nucléaire (CERN), Geneva [15]. The LHC is a
circular particle accelerator, with a 27 km circumference, consisting of two beam-lines.
The beams of accelerated particles are bent and focused by superconducting dipole and
quadruple magnets respectively. The maximum CM-energy that was available at the LHC
was

√
s = 13 TeV [7].

The four main experiments at LHC are ATLAS (A Toroidal LHC Apparatus), CMS
(Compact Muon Solenoid), LHCb (LHC-beauty), and ALICE (A Large Ion Collider Ex-
periment). ATLAS and CMS are general-detection experiments, while LHCb and ALICE
are more specialized. LHCb explores hadrons containing the bottom, also known as
beauty, quark, while ALICE is optimized for the study of heavy-ion collisions and the
QGP [15].

The remainder of this section will describe some of the most relevant parts of the
ALICE detector used in the data collected for this thesis. A more detailed description
can be found in [16].

4.1 ALICE

The ALICE experiment specializes in heavy-ion collisions and, hence, is also the detector
capable of recording the highest multiplicities, number of recorded particles, at CERN. A
schematic picture of the ALICE detector and all its subdetectors can be seen in Fig. 5.

Figure 5: The ALICE detector and many of its subdetectors. Notably, the detectors
discussed in this section can be seen. The ITS is at the center of the detector and an
enlarged image of this can be seen in the top right corner showing the SPD, SDD and
SSD more clearly. The TPC can be seen as the second innermost detector and the
V0A and V0C can be seen on either side of the interaction point. The modified figure
is taken from [17].
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4.2 Inner Tracking System (ITS)

The Inner Tracking System (ITS) is the innermost part of the ALICE detector. The
central barrel consists of six layers of silicon-based semiconductor detectors, located at
radii between 4 and 43 cm and together covering a pseudorapidity-region of |η| < 0.8.

These silicon-based detectors operate by having a semiconductor run in reverse bias,
creating a depletion region. Charged particles passing through will excite electrons, cre-
ating a detectable current, proportional to the energy of the detected particle [18].

The first two innermost layers consist of arrays of hybrid Silicon Pixel Detector (SPD),
covering a pseudorapidity-region of |η| < 2.0 and |η| < 1.4, respectively, and are in this
analysis mainly used to determine the primary vertex position of tracks. Of the remaining
four semiconductor layers in the ITS, the first two are known as the Silicon Drift Detector
(SDD), while the last two, where the track density is expected to be the lowest have
double-sided Silicon micro-Strip Detectors, are the SSD. The SDD and SSD have similar
functions and mainly detect the energy loss per distance, dE/dx, of particles along with
finding the track segments closest to the primary vertex together with the SPD.

4.3 Time Projection Chamber (TPC)

The Time-Projection Chamber (TPC) is the second innermost detector system and is
the main tracking detector in the central region of ALICE. It is essentially a long drift
chamber. In particular, the ALICE TPC has both electric and magnetic fields, with the
latter being produced by the L3 magnet encapsulating the whole central detector. The
TPC in ALICE consists of a large container, |η| < 0.8, containing a gas mixture of Ne,
CO2 and N2.

When a charged particle enters the gas, it will be ionized. Respective parts of the ion
pair are accelerated by the electric field, resulting in the released electrons drifting towards
the TPC endplates where they and their position are measured using wire chambers.
Using the recorded orthogonal projection of the position and the time taken to reach the
endplates of the produced ions, tracks can accurately be reconstructed in three dimensions.
This allows the transverse momentum, pT , to be measured from the radius of curvature
the particle makes in the magnetic field. Together with the recorded 3D direction of the
particle, the total momentum can be determined. The TPC is also used to detect the
energy loss per distance and, together with other central detectors, properties such as
vertex position and particle identification. [19, 20, 16].

4.4 Multiplicity Estimators

To identify the activity of collision events, multiplicity estimators are used. The mul-
tiplicity can be estimated either by separate detectors or by using the same detectors
that reconstruct the collision tracks. Two multiplicity estimators measuring the activ-
ity of different parts of the detector will be discussed here: the V0M and the Ntracklets

estimators.
The multiplicity recorded by these estimators is commonly shown in terms of multi-

plicity percentiles. For example, a multiplicity of 0-1% corresponds to the event having
the highest 1% recorded multiplicity. This is illustrated in Fig. 6, which shows a typical
multiplicity curve with different multiplicity percentiles.
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Figure 6: Shows a typical graph of the number of events and the corresponding mul-
tiplicity recorded by the V0M estimator for pp collisions. This is usually expressed in
terms of multiplicity percentiles, shown as the different intervals under the graph. Each
interval contains events with the top x% multiplicity in the corresponding interval. The
figure is taken from [21].

4.4.1 V0M estimator

The V0A and V0C are two forward multiplicity estimators. These are scintillator counters
found on each side of the ALICE interaction point, covering a pseudorapidity 2.8 < η < 5.1
for the V0A, and −3.7 < η < −1.7 for the V0C estimator.

The scintillator counter functions on the principle that charged particles moving
through the medium inside the scintillator will excite this medium. Then, when the
medium is de-exited photons will be emitted, which are then guided to a photomultiplier
system, where the signal is amplified, which then is recorded and used to count the num-
ber of particles that have passed through the detector. [19]. The sum of the V0A and
V0C is referred to as the V0M, which will be used in this work as the forward-multiplicity
estimator.

4.4.2 Ntracklets estimator

The Ntracklets estimator is used to measure the multiplicity, or size, of a collision in the
central region of the detector. Using the two SPD detectors of the ITS, one can construct
a tracklet, a short two-point track segment between two SPD-hits. Ntracklets is then the
count of the number of reconstructed tracklets using the SPD in the pseudorapidity region
|η| < 0.8 and gives an estimate of the multiplicity in the central region of the detector.

11



5 Analysis Method

The analysis resembles that made by ATLAS [1] but with proton-proton (pp) collisions
using the ALICE detector. Mainly two-particle correlation studies will be investigated,
which is explained in this section. This analysis was repeated for different multiplicity
classes, multiplicity estimators, and charge combinations. The result was also compared
with PYTHIA simulations. The following analysis was executed using ROOT and Ali-
ROOT, two offline data processing software, standard for ALICE analysis [22].

5.1 Two Particle Correlations

Forward-backward correlations can be studied by the two-particle correlation function, as
done in [1, 23], and is defined as:

C(η1, η2) =

〈
N(η1)N(η2)

〉〈
N(η1)

〉 〈
N(η2)

〉 (4)

where N(η) is the multiplicity density distribution for a single event and ⟨·⟩ denote the
event average. This is a function of pseudorapidity and returns a distribution conveying
the likelihood of different particle pairs being produced. The correlation function above
is then normalized so that the average value of C(η1, η2) is one. Hence, a value of one
corresponds to two independent tracks, and larger or smaller values correspond to the
probability of the track-pair being seen is larger or smaller, respectively.

We expect that particles that end up correlated and are close in momentum-space
are the end products of the same early-time microscopic processes, resulting in this dis-
tribution being sensitive to the early-time dynamics of the system. In terms of the Lund
string model, see section 3.3, we expect that correlated particles are produced from the
same string, resulting in a similar hadron density-distribution as seen in Fig. 4.

Given collision data, the pseudorapidity of all measured hadrons in an event is known.
Their average distribution can be displayed in a histogram, as in Fig. 7a. Combining all
pairs of particles, one obtains the average pseudorapidity distribution for all measured
particle pairs. Hence, the point (η1, η2) = (0, 0), in such distribution, corresponds to both
particles being emitted perpendicularly to the beam axis, and a point (0,∞) corresponds
to one particle being emitted perpendicularly and the other along the beam axis. A
schematic example of this type of distribution is shown in Fig. 7b and will be referred to
as a Same Event (SE) distribution.

5.2 Event Mixing

In contrast to the SE distribution, described above, which only uses track combinations
from the same event, a new distribution is created of mixed pairs from two different
events and will be called the Mixed Event (ME) distribution. By combining tracks from
two separate events, one is sure that any non-trivial correlation must be introduced by the
detector. The ME distribution is hence used to correct detector inefficiencies, an example
of a schematic ME distribution can be seen in Fig. 7c.
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Denoting the SE distribution as S(η1, η2) and the ME distribution as B(η1, η2), we have
S(η1, η2) ∝

〈
N(η1)N(η2)

〉
and B(η1, η2) ∝

〈
N(η1)

〉 〈
N(η2)

〉
, as described in [1]. Since the

SE and ME distributions are proportional to the numerator and denominator of Eq. (4)
respectively, we get that:

C(η1, η2) =
S(η1, η2)

B(η1, η2)
(5)

with the proportionality constant canceling since C(η1, η2) is normalized. An example of
such a distribution can be seen in Fig. 7d. In this distribution, particles with similar
pseudorapidity, η, are referred to as short-range correlations and particles with different
η1 and η2 are referred to as long-range correlations.

η
-0.8 0.80

C
ou

nt

(a) Single event η-
spectrum.

(b) SE-distribution. (c) ME-distribution. (d) Two parti-
cle correlation-
distribution.

Figure 7: Several different schematic pseudorapidity distributions. The left-most spec-
trum shows how η in a single event. (b), (c) and (d) show the SE, ME, and final corre-
lation distributions respectively, using multiple events.

5.3 Event and Track Selection

To ensure that the pseudorapidity distributions are not dependent on other variables, we
impose event and track selection conditions that limit possible biases.

The first event selection criteria is for the recorded event not to be a pileup. That is
to ensure that each accepted event does not have recorded tracks that overlap with other
events or background events [24]. Secondly, we impose the criteria that a primary ver-
tex was successfully reconstructed. And lastly, we need the position of the reconstructed
vertex along the beam-line, zvtx, to be within 10 cm from the center of the detector,
|zvtx| < 10 cm, to ensure that the detector response is homogeneous.

For the track selection, ALICE ITSTPC2011 track cuts were used, discussed in [25].
These cuts are optimized to reduce contamination from secondary tracks and give the
best momentum resolution. This is obtained by requiring that track segments in the ITS
and TPC are matched and that at least one SPD hit is recorded.

A separate selection criteria to filter out particles not created during the collision, that
may be products of material interactions or weak decays, was performed. The criteria
relates pT and the transverse DCA component (the minimum distance between the recon-
structed track and the primary vertex), denoted by |DCAxy|. The criteria, as discussed
in [25], requires tracks to fulfill:

|DCAxy| < 0.0105 +
0.0350

[pT (GeV/c)]1.1
(6)
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5.4 Multiplicity Classes and Charge Combinations

For the extraction of the correlation function, Eq. (5), the data-set was divided into
groups with different multiplicity classes, multiplicity estimators, and charge combina-
tions, each of which the analysis was repeated for. Defining three multiplicity classes with
the following intervals: 0-10%, 10-30%, and 30-100%. The S(η1, η2) and B(η1, η2) dis-
tributions were calculated for respective multiplicity intervals. In other words, all tracks
within the corresponding distribution are within the multiplicity interval. Additionally,
this was also repeated with the V0M and Ntracklets multiplicity estimators respectively,
defined in section 4.4, as well as for the charge combinations: same charge, ++/- -, and
opposite charge, +-/-+.

5.5 Monte Carlo Simulations

Monte Carlo (MC) simulations are particularly useful for studying the properties of com-
plex systems or systems with non-analytic solutions. The core concept of MC methods
is to make use of randomness by iterating a model, repeatedly creating samples with
different variables. The samples are then used to gain information about the entire sys-
tem. However, it is not necessary for the system one wants to study to be inherently
probabilistic for MC methods to be applicable. A common example of the use of MC is
for the computation of multivariable integrals, which is done by sampling a region with
points and identifying the fraction of points inside the integral region, which then is used
to estimate the volume of this space [26].

5.5.1 PYTHIA

During high-energy particle collisions, many new particles are created in processes, briefly
discussed in section 2.2.2, resulting in models describing all these particles becoming more
convoluted. This makes it difficult and sometimes impossible to compare models and ex-
periments. One way of resolving this problem is by introducing event generators [13].
One MC event generator commonly used in particle physics is PYTHIA, used to generate
collision events that resemble real data. The MC methods are used to introduce some
randomness, representing quantum mechanical variability [27]. The simulation model
PYTHIA utilizes is the Lund String model [28], described in section 3.3. PYTHIA simu-
lations will therefore resemble real collision data, making direct comparisons between the
two useful.

In this thesis, PYTHIA1 was used to simulate 106 events of inelastic non-diffraction
pp-collisions, with CM-energy

√
s = 13 TeV and considering particles with a lifetime,

τ ≥ 1cm
c
, as primary particles where c is the speed of light. The pseudorapidity and

charge of all tracks within the same η range as the ALICE detector (|η| < 0.8) was
recorded to simulate ALICE collision events. Each event multiplicity in the forward-
backward and central regions was also recorded, corresponding to the V0M and Ntracklets

estimators. The multiplicity was then converted to multiplicity percentiles, and the same
analysis that was performed for the ALICE data, as described in sections 5.1 and 5.2, was
repeated for the PYTHIA simulations.

1PYTHIA version 8.307
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5.6 Data Fits

To be able to easily compare the main aspects of different correlation functions, fits to
C(η1, η2) was performed. Defining the two new parameters: η+ ≡ η1+η2 and η− ≡ η1−η2,
we define the following fit function:

F (η+, η−) = f(η+) · g(η−) + C (7)

with f(η+) being an even polynomial along η+:

f(η+) = A+Bη2+ (8)

and g(η−) being a Gaussian along the η−:

g(η−) = exp

[
−1

2

(
η−
σ

)2
]

(9)

and A, B, C, and σ are constants determined during the fitting process.
Hence, Eq. (7) corresponds to a function that is a polynomial along the bottom left

to top right diagonal and a Gaussian function, with zero mean, along the other diagonal
in the C(η1, η2) histogram. Small η− corresponds to short-range correlations, and large
values correspond to long-range correlations.

6 Results

Several measurements of the two-particle pseudorapidity correlation function was done
for pp-collisions at

√
s = 13 TeV for 6 · 105 events, as described previously, in section 5.

The analysis was repeated for three multiplicity classes (0-10%, 10-30%, and 30-100%),
and for both the V0M and Ntracklets multiplicity estimators, described in section 4.4.
Additionally, same and opposite charge combinations were considered and are presented
in the two succeeding sections, 6.1 and 6.2. The results are compared with PYTHIA
simulations, presented in section 5.5. Fit functions were fit, described in section 5.6,
to respective distribution and displayed as contour plots in the results presented below.
Respective component functions of Eq. (7) can be seen in section 6.3.
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6.1 Same Charge Combinations (++/- -)

In this section, two-particle correlations by pseudorapidity are presented, requiring the
two particles to have the same charge, ++/- -. Fig. 8 shows a comparison of the three
multiplicity classes for the V0M estimator, with ALICE and the simulated data in the
top and bottom row respectively. Fig. 9 also compares the three multiplicity classes for
real and PYTHIA data respectively, but using the Ntracklets estimator. The results are
shown together with a contour plot F (η+, η−).

A ridge-like structure is observed in all correlation distributions with the V0M estimator,
as seen in Fig. 8, and in the highest multiplicity class with the Ntracklets estimator, as seen
in the first column in Fig. 9. A decrease in correlations in the middle of the detector for
lower multiplicities is seen in the second and third columns in Fig. 9. PYTHIA accurately
predicts the shape of all correlation distributions, as seen in the bottom row of each figure.
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Figure 8: Multiplicity correlations with V0M estimator and same charge combinations.
The upper row shows the results obtained with ALICE data, and the second row dis-
plays the PYTHIA simulations. Each columns displays the multiplicity classes, from
left to right: 0-10%, 10-30%, and 30-100%.
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Figure 9: Multiplicity correlations with Ntracklets estimator and same charge combina-
tions. The upper row shows the results obtained with ALICE data, and the second row
displays the PYTHIA simulations. Each column shows the multiplicity classes, from left
to right: 0-10%, 10-30%, and 30-100%.

6.2 Opposite Charge Combinations (+-/-+)

In this section, two-particle correlations by pseudorapidity are presented, requiring the
two particles to have the opposite charge, +-/-+. Fig. 10 shows the three multiplicity
classes for the V0M estimator, with the top row displaying results obtained with ALICE
data and the bottom row displaying the simulated data. Fig. 11 similarly compares the
three multiplicity classes for real and PYTHIA data respectively, but using the Ntracklets

estimator.

A ridge-like structure is observed in all correlation distributions using the V0M estimator,
as seen in Fig. 10, and in the 0-10% multiplicity class with the Ntracklets estimator, as seen
in the first column in Fig. 11. At lower multiplicities, the central multiplicity estimator
displays less correlation in the middle of the detector due to autocorrelations, as seen in
the second and third columns in Fig. 11. PYTHIA accurately predicts the shape of all
correlation distributions, as seen in the bottom row of each figure.
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Figure 10: Multiplicity correlations with V0M estimator and opposite charge combina-
tions. The upper row shows the results obtained with ALICE data, and the second row
displays the PYTHIA simulations. Each column shows the multiplicity classes, from left
to right: 0-10%, 10-30%, and 30-100%.
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Figure 11: Multiplicity correlations with Ntracklets estimator and opposite charge com-
binations. The upper row displays the results obtained with ALICE data, and the sec-
ond row displays the PYTHIA simulations. Each column shows the multiplicity classes,
from left to right: 0-10%, 10-30%, and 30-100%.

6.3 Fit Functions

In this section parameters of the fit function, F (η+, η−) (Eq. (7)) described in section 5.6,
is presented. In Fig. 12 F (η+, η−) = f(η+) + C is shown for all charge combinations and
multiplicity classes for the V0M and Ntracklets estimators respectively. Fig. 13 compares
the parameter σ after fitting F (η+, η−) to respective two-particle correlation distributions.
σ is compared for each multiplicity class, charge combination and multiplicity class for
both the V0M and Ntracklets estimators.

Both the amplitude and shape of the ridge are predicted well by PYTHIA, as seen by
comparing the top and bottom rows in Fig. 12. A general decrease in ridge amplitude
with higher multiplicities can also be noted. The standard deviation increases with lower
multiplicities using the V0M estimator, as seen in Figs. 13a and 13b. The width of the
Gaussian is more irregular for the Ntracklets distributions and can be seen to diverge for
the 30-100% multiplicity class for ++/- - combinations, see Fig. 13c.
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Figure 12: Respective graphs display f(η+)+C fitted to corresponding results presented
in the previous two sections. The red, green, and blue graphs denote the multiplicity
classes: 0-10%, 10-30%, and 30-100% respectively. This is shown for different multiplic-
ity estimators, charge combinations, real data and PYTHIA simulations.

0 10 20 30 40 50 60 70
Top Multiplicity Percentile [%]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1σ data

simulation

(a) V0M ++/- -

0 10 20 30 40 50 60 70
Top Multiplicity Percentile [%]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1σ data

simulation

(b) V0M +-/-+

0 10 20 30 40 50 60 70
Top Multiplicity Percentile [%]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1σ data

simulation

(c) Ntracklets ++/- -

0 10 20 30 40 50 60 70
Top Multiplicity Percentile [%]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1σ data

simulation

(d) Ntracklets +-/-+

Figure 13: Shows how the fit-parameter σ varies for the three multiplicity classes: 0-
10%, 10-30%, and 30-100%, with each data point in the center of the respective in-
terval. The red points show σ when fitted to ALICE data, and the blue points for
PYTHIA simulations. This is shown for the V0M and Ntracklets multiplicity estimators,
and for different charge combinations.
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7 Discussion

Studying the results of the same and opposite charge combinations in Figs. 8 and 10; and
Figs. 9 and 11, a stronger correlation around η− = 0 is found for +-/-+ combinations.

This is best seen by considering the difference in ranges in these correlation dis-
tributions. Fig. 12 also shows a general increase along the ridge for opposite charge
combinations. However, when comparing the standard deviation, as seen in Fig. 13, it
seems that it is larger for +-/-+ combinations. This is due to the fact that we normalize
all distributions, effectively decreasing the standard deviation of the larger ridge.

The fact that this result is observed is expected, due to charge conservation. When
new quarks are produced the net charge must be zero, meaning quarks of different charge
are always produced together (q+ q̄), therefore more short-range correlations are detected.

Comparing the results for the V0M and Ntracklets multiplicity estimators, which can be
seen in Figs. 8 and 9; Figs. 10 and 11; and in Fig. 12, a significant difference is noted.
A constant correlation along the ridge, η− = 0, is expected in accordance with the Lund
string model. This corresponds to the flat plateau in rapidity discussed in section 3.3 and
seen in Fig. 4.

This plateau is observed in all multiplicity classes using the V0M estimator, but the
Ntracklets estimator exhibits a quite different behavior. At lower multiplicities, 10-30% and
30-100%, the Ntracklets pseudorapidity correlations see an enhancement for large and small
η+. In contrast to the V0M, the Ntracklets estimator measures the multiplicity and tracks
are recorded in the same region, making autocorrelations expected.

It appears that low Ntracklets multiplicities are less driven by a low global multiplicity
and more by local fluctuations. When selecting a low central multiplicity, we choose events
where the color fields that produces particles dominantly covers the edges of the detector
to achieve this. This reasoning explains the peaks around the edges, at |η+| ∼ 1.6, of the
detector. However, when selecting on large multiplicity we instead select the events with
the most recorded tracks in the central part of the detector, allowing jets to be recorded
here, giving back the plateau-like ridge in the highest multiplicity class.

Now, considering how the standard deviation, σ, of the Gaussian fit-function, F (η+, η−),
varies with multiplicity, see Fig. 13. The V0M estimators exhibit a general decrease of
standard deviation with multiplicity, following ATLAS [1]. However, the Gaussian width
of the Ntracklets estimator does not show such a pattern. Due to the narrow pseudorapid-
ity range, the Ntracklets correlation distribution cannot be fit to perfection, making the fit
unrepresentative of the actual data.

Note that the standard deviation in the Ntracklets distribution for same charge combi-
nations in the multiplicity interval 30-100%, seen in Fig. 13c, becomes very large. This
is due to this correlation distribution not containing any ridge-like structure, see Fig. 9f,
making the standard deviation large.

The amplitude along the ridge, see Fig. 12, shows a general decrease with higher
multiplicities, similar to the decrease of σ with larger multiplicities. This is because,
when increasing the multiplicity more strings are produced and hence more particles, but
the number of particle pairs increases by the square of that, resulting in more uncorre-
lated pairs of particles from different strings and consequently lowering the correlations
at higher multiplicities. Moreover, the normalization of the correlation function results in
the lower multiplicity distributions, with more correlations, to receive a larger standard
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deviation.

Analyzing the pp-collisions with PYTHIA simulations, see Figs. 12 and 13, a similar
result between data and simulations is obtained. Notably, PYTHIA agrees with experi-
ments for both the V0M and Ntracklets estimator, even agreeing with the autocorrelations
at low multiplicities.

7.1 Improvements and Outlook

Multiple improvements to the analysis and further studies are possible. One improvement
could be to enforce additional event-mixing conditions for the ME distribution. For
example, one could require the distance between the vertices of two events, which are
mixed, to be within a certain distance. This is useful because when doing the SE mixing,
the distance between two event-vertices is always zero, which is not necessarily the case
in the ME distribution. This difference in the mixing of the SE and ME distributions
might introduce some bias.

Another possible improvement could be to further correct for efficiency. As previ-
ously mentioned, the ME mixing will compensate for most detector inefficiencies, which
means that efficiency has already been partially compensated for. Further efficiency-
compensation of the ALICE detector, using MC simulations, would likely result in an
almost uniform correction over pseudorapidity, which would cancel in the normalization
step, making this correction less crucial.

Furthermore, a possible improvement to the analysis could be to perform a minimum
bias comparison to see if the V0M estimator exhibits similar behavior as the Ntracklets dis-
tributions at lower multiplicities with these additional constraints. Repeating the analysis
for a larger data-set would also be of interest. In this thesis, only 6 · 105 events were used,
and one could easily have used larger data-sets to reduce statistical errors.

Further investigation of what implications the results found in this thesis have for
the ATLAS detector could be interesting. As mentioned in the introduction, the ATLAS
detector only makes use of central multiplicity estimators, meaning that autocorrelations
should be present. As PYTHIA simulations appear to predict autocorrelations well, one
could investigate with PYTHIA if the ridge along η− = 0 appears when considering larger
pseudorapidity ranges when using the central multiplicity estimator. If so, this would
explain why the ATLAS detector, with a larger pseudorapidity range, does not experience
as strong autocorrelations as seen in this thesis with ALICE, because a smaller fraction
of all detected strings would be at the edge of the detector.

Finally, comparing the resulting two-particle pseudorapidity distributions to that
made with other simulation software, to gain insight into the advantages of each, could
also be interesting. One such simulation software is EPOS, which in contrast to PYTHIA
assumes a QGP formation [29].

22



8 Conclusion

This thesis aimed to study multiplicity correlations in pseudorapidity for three different
multiplicity classes (0-10%, 10-30%, 30-100%), different charge combinations, and in the
central and forward-backward region of ALICE, using the Ntracklets and V0M estimators
respectively. This was done for pp collisions at

√
s = 13 TeV. The results show strong au-

tocorrelations with the Ntracklets estimator at low multiplicities, and a ridge-like structure
with a plateau at high multiplicity, which is also seen for all multiplicity classes with the
V0M estimator. MC simulations were conducted using PYTHIA, showing similar results
for all multiplicity classes, charge combinations, and multiplicity estimators. In particu-
lar, the PYTHIA results also accurately predicted the autocorrelations with the Ntracklets

estimator. Opposite charge combinations reveal an expected increase in short-range cor-
relation due to charge conservation. Studying the standard deviation, perpendicular to
the ridge, of the two-particle correlation distributions, no conclusions could be made with
the Ntracklets estimator, however, a general decrease in Gaussian width as multiplicity in-
creases was noted for the V0M estimator. The accuracy of the PYTHIA simulations and
its ability to predict autocorrelations seen in this thesis ensures its use as a high-energy
physics simulation software.
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