

Department of Economics

Data Analytics and Business Economics

DABN01: Master Thesis

May 2022

Interactive Network Visualization of Insurance
Portfolios

Authors:

Gustavo Lemos Borba

Stella Sofia Sologaistoa

Supervisors:

Jonas Wallin

Johan Larsson

2

Abstract

Companies are seeking new ways to analyse data, and network visualizations are a great tool to

enhance the ability to understand relational data. The objective of this thesis project was to build

an interactive network visualization of an insurance company’s portfolio. The resulting

visualization helps users catch sight of patterns and outliers that might, otherwise, be overlooked.

The results were achieved through the combination of R packages shiny and visNetwork and

include both text and slider inputs for precise data filtering, as well as tools for highlighting,

zooming, and interacting with nodes for more detailed information.

Keywords: Networks, Interactive Visualizations, Insurance Cases, Data, Analytics

3

Contents

1. Introduction ... 4

2. Methodology .. 5

2.1. Networks ... 5

2.2. Data .. 7

2.3. Main R Packages Used ... 7

3. Results .. 11

3.1. The Network ... 11

3.2. The Dashboard ... 16

3.3. Final Interface .. 19

4. Discussion... 21

4.1. Contributions and Limitations .. 21

4.2. Future Work ... 22

5. Conclusion ... 23

References .. 24

4

1. Introduction
Insurance cases are complicated, involving many different parts, such as insurance policies,

parties, claims, and money. In addition, there might be fraudulent activities that are hard to

discover, which might lead to considerable losses to the business, increased premiums, and

customer losses. Investigations of insurance fraud in Sweden amount to over 10,500 cases a year,

which results in 505 million SEK worth of claims denied after the investigation (Larmtjänst, 2021).

Therefore, there is a need for tools that aid in the discovery of such fraudulent and illegal activity.

One way to detect this activity is by using visual elements to understand the data, more specifically,

via an interactive network visualization that can show relationships between policies, parties, and

claims.

Trygg-Hansa is an insurance company founded in 1928 in Sweden. It offers a wide range of

insurances such as car, home, personal, other vehicles, pregnancy, and business insurance. Trygg-

Hansa, however, currently has no general solution to visualize networks of insurance cases

interactively. The insurance company proposed that a graphical user interface (GUI) for

visualizing insurance portfolio data as a network could be the best solution for their need.

Consequently, the aim of this work is to both create a visualization of the relationship between

insurance claims and parties, as well as to provide filter functionalities to facilitate the visualization

of specific data points. This will ensure that end users, such as underwriters and claim handlers,

will be able to gain intuition and an overview of the impact that the claims and their relationships

might produce on their objectives. By developing a dashboard with this visualization, we will

ensure that all the teams interested in this information will be able to understand it better and

consequently make more informed decisions.

This thesis is divided into four parts. In Methodology, we cover what type of data we use in the

project, theory regarding networks, and software packages we used to construct the visualization.

Then, in Results (section 3), we outline how we built the interactive network visualization and the

dashboard. In the Discussion (section 4), we discuss our contributions and limitations of the result

and provide directions for future work.

5

2. Methodology
This section focuses on the approach we took in designing the visualization of the insurance

portfolio. Having the data provided by the insurance company, the interactive network graph was

built and later the dashboard was created. This section includes theory on network visualizations,

followed by a brief overview of the data used, and lastly a description of the two main R packages

used in this project.

2.1. Networks
A network is a set of nodes connected by a set of edges (Newman, 2010). The nodes are the

elements or characteristics defined, which in our case are claims or parties. And the edges show

the connection between each node; therefore, each edge consists of two endpoints (Hsu & Lin,

2008). In Figure 1, we can see a simple network and its components. Networks occur in many

different disciplines: biology, social sciences, communication, chemistry, economics, logistics,

economics, etcetera. For example, they can easily show airline transportation, where the airports

act as nodes and the edges are the flights (Steen, 2010).

Figure 1 A simple network to understand how the nodes and edges are visually represented

Edges can be directed and undirected. Directed edges define the flow of one node to another, such

that switching the direction of the edges would change the structure of the network. Undirected

edges just connect two nodes without specifying a direction (Tyner, Briatte & Hofmann, 2017). In

our project, we use undirected edges.

Network visualizations are useful because they enable the user to see connections between

elements that might have not been apparent by just observing the data. For example, in Figure 2,

we can see the data to the left and we can see the corresponding network to the right. If we had

6

seen only the table, probably we would take a lot of time to interpret that there are connections in

the data. In contrast, when we see the visualization, we know instantly which nodes are connected

and by which edges. Therefore, observing data in a graphical way instead of relying on tables is

useful.

Figure 2 Comparison between observing the data in a table and observing a network visualization

In addition, adding color to the network graph is of great importance because it can help the end

user to better understand the meaning of the graph and because it can give further information that

might otherwise be lost (Freeman, 2016). But, at the same time, network visualizations may be

difficult to decipher if the data contains thousands of observations. Like any other type of

visualization, it might lose interpretability when it becomes too cluttered or when the labels overlap

and become unreadable. For that reason, there are techniques to overcome these challenges, such

as designing an interactive network visualization instead of a static network visualization.

Interactive network visualizations allow the user to choose via an input box, such as a drop-down

menu, buttons, or tabs, customizable features that show different subsets of the graph, avoiding

conglomerate visualizations (Namata et al. 2014). These features can be, for example, zooming in

or out, filtering out nodes or edges, and hovering over a specific point on the graph. Another

technique is to animate networks so that it makes transitions between time steps, resulting in a

dynamic visualization where nodes appear, disappear, or move to produce a different layout each

time (Ma & Muelder, 2013). In this project, the dates where each node connects to another node

correspond to such time steps.

7

2.2. Data
Trygg-Hansa provided a data set specifically for use in the project, consisting of real insurance

portfolio data that has been modified in two ways. First, the data was anonymized so that it couldn’t

be traced back to any particular person, in order to avoid having the privacy and security of the

people entrusting their data to Trygg-Hansa be compromised. And secondly, they wanted to have

a model that could single out specific characteristics and metrics by adapting the input data whilst

still getting an interactive network as an output.

The data used for this visualization contains two data sets: a node and an edges data set. The node

data set shows the type of insurance characteristics, such as parties, policies, or claims. The edges

data set shows the connection paths that indicate the relationship between nodes. The nodes data

set contains three columns with the node ID, the value, and the type of node (claim, party, policy,

etc.). The edges data set also contains three columns, but it shows the relationship between nodes,

meaning that it shows the node ID in its source, the node ID at its target, and the date that this

relationship started. In Table 1, we can see the description of the data given by Trygg-Hansa.

Table 1 Data provided by Trygg-Hansa to make an interactive network visualization

2.3. Main R Packages Used

Shiny

The R package shiny (Chang et al. 2021) has been successful in simplifying the creation of

interactive web applications by providing a set of user interface (UI) functions and introducing

what is known as reactive programming, which automatically checks dependencies within a code

(Wickham, 2020). It allows R users to build web applications without requiring HTML, CSS, or

8

javascript knowledge, and on top of that, it is compatible with many of the facilities that R has to

offer. Applications in shiny require two components: a UI function and a server function (Shiny,

2017). In simple terms, the server function defines how the app is going to work (Wickham, 2020)

while the UI function translates and presents the results to the interface. Shiny is a form of server-

side application, which means that all the information processing occurs on a web server, and shiny

itself builds a web server designed to host shiny applications (Allen, 2020). These servers can be

published on the internet or privately shared within a company or a team.

To create an interactive user interface, packages such as shiny, shinyWidgets (Perrier, Meyer &

Granjon, 2022), and shinydashboard (Chang & Borges, 2021) can be used. Shiny allows users to

create a user interface by defining the header, sidebar, and body of a dashboard page. The header

can include the title and drop-down menus. The sidebar may include menu items or shiny inputs

that will affect the visualization output (Shiny Dashboard Structure, 2014). The interface’s main

part, the body, is where the output is displayed. The server function requires an input and output

object; in this project, for example, there are two different inputs and outputs:

- text input: text that should be typed by the user

- text output: text returned depending on the text input

- slider input: slider with dates in chronological order that can be changed by the user

- visNetwork output: the visNetwork output filtered by the text and slider inputs

visNetwork

The main R package used in the project was the visNetwork package, which is used to build

network visualizations in R (Almende, Thieurmel & Titouan, 2021). The main function in the

package is visNetwork(), which requires two different data sets: one containing nodes and another

containing edges. These data sets are expected to have specific column names for the function to

work properly. The nodes data set should at least have an id column containing the unique nodes’

identification code, while the edges data set must have a from and to column that creates

connections from one ID to another (McNulty, 2022).

9

Furthermore, a simple way to modify and add features to the network is by appending columns

with information that can be read and understood by visNetwork(). In this work, the following

columns were incorporated into the nodes data set:

- title: displayed as a tooltip when a user hovers the mouse over a node or edge

- color: used to define specific colors for the nodes. In this project we used two different

color specifications:

- color.background: determines the background color of each node

- color.border: determines the border color of each node

- shape: used to define specific shapes for the nodes

- x: used to define x-coordinates to the nodes

- y: used to define y-coordinates to the nodes

The visNetwork package can automatically recognize columns with the specific names listed

above, but it is not limited to those customizations. Different customization options are available

for use in visInteraction(), visOptions(), visLegend(), and others.

- visInteraction() allows users to enable zoom, drag, and select options in the

visualization.

- visOptions() allows users to highlight the nearest nodes and edges by hovering or clicking

on a node, create interactive selection options for specific grouping variables, and set

default colors for each group (Luke, 2015).

- visLegend() allows users to include custom legends in the visualization.

These additional features were important for increasing the interactivity of the visualization. A

section of the R code exemplifying their use in this project can be observed in Listing 1.

10

Listing 1 R code example of visNewtork, visSettings, visInteraction, and visLegend
visNetwork(nodes = nodes.net,
 edges = edges.net,
 main = "Network Visualization",
 background = NA) %>%
visNodes(color = list(highlight = NA),
 borderWidthSelected = 3) %>%
visEdges(color = "#0D0D0D",
 hoverWidth = 5,
 selectionWidth = 3.5,
 shadow = TRUE)%>%
visInteraction(dragNodes = TRUE,
 multiselect = TRUE,
 navigationButtons = FALSE,
 zoomView = TRUE) %>%
visOptions(highlightNearest = list(enabled = TRUE,
 degree = nrow(edges.net),
 hover = TRUE),
 nodesIdSelection = list(enabled = TRUE,
 useLabels = FALSE,
 selected = node,
 style = 'width: 0px;
 height: 0px;
 background: #f8f8f8;
 color: black')) %>%
visLegend(useGroups = FALSE,
 addNodes = legend,
 width = 0.08)

11

3. Results
In this section, we explain how we constructed the interactive network visualization, as well as

the choices behind some of its features. We also explain how the dashboard works and what its

properties are.

3.1. The Network
We took a series of steps in designing this project, from choosing the network nodes’ shape format

to fixing the nodes’ coordinates x and y. Here we are describing each of the steps towards the final

network visualization,

Shapes

The original nodes data set used in this project contained a column for the nodes’ types. The types

are represented by the letters s, c, e, p, and h. Type s nodes were known to be insurance parties,

while nodes of all other types could represent a variety of things, such as claims or policies. For

simplicity, we ignored all possible types, and categorized nodes of type s as Party, and Claim

otherwise.

The visNetwork() function recognizes that a column named shape will contain the necessary

information to define the shape of each node. Having that in mind, an ifelse() function was used

to create a new column, evaluating to square if a node has type s (Party) and circle otherwise

(Claim), and the list was then added as the shape column to the data set. The resulting network

can be observed in Figure 3, in which squares and circles are representing insurance parties and

claims, respectively.

12

Figure 3 Network visualization of nodes (parties and claims) with shapes dependent on the node’s

type. Here, each square represents an insurance party, while a circle represents a specific claim.

Colors

visNetwork() has different settings that allow choosing the network color. For our network, we

created two columns, color.background and color.border, which contained the information

required by the function.

The nodes’ background color was extracted from a color palette that goes from yellow to dark red,

as shown in Figure 4, and is dependent on the value column that is included in the original nodes

data set. Consequently, higher node values result in darker red background colors. The colors were

chosen to give a sense of which value is higher or lower because, despite the inability of humans

to judge the distance between nearly similar colors, we can still quickly distinguish what is higher

or lower (Grant, 2018).

Figure 4 Palette of colors used for the nodes’ background color

All nodes are configured to have a very dark cyan border color in order to add contrast between

the nodes and the background.

13

The resulting network can be seen in Figure 5, including the shapes previously assigned to nodes’

types, and the colors assigned to nodes’ respective values.

Figure 5 Network visualization of the nodes, combining the shapes determined in Figure 3, and

the colors defined in Colors

Legend

The legend used in the visualization explains the meaning of the two shapes used and how the

color changes depending on the node’s value. The legend was added through visLegend(), which

allows the developer to tweak multiple settings strictly related to the network’s legend, and the

result can be seen in Figure 6.

14

Figure 6 Network including legends on the left side of the visualization indicating the shapes and

colors

Titles

visNetwork() also allows the use of column inputs named title. The titles can be added to the

nodes data set and to the edges data set and will be shown when a user hovers the mouse over a

specific node or edge in the network.

When a user hovers the mouse over a specific node, the ID and Value of that node are displayed

in a box (Figure 7).

When a user hovers the mouse over a specific edge, the two IDs connected by that edge and the

date in which the connection was made are displayed in a box (Figure 8).

15

Figure 7 Example of how a user can access a node’s informational box, containing ID and value,

by hovering over a specific node

Figure 8 Example of how a user can access an edge’s informational box, containing the IDs of the

nodes connected and the date of connection, by hovering over a specific edge

Node Coordinates

By the end of the project, a user will be changing inputs that will directly impact the network. This

results in a new random layout with every change. To avoid this from happening, it is crucial to

determine the coordinates of each displayed node.

When new columns named x and y are added to the nodes data set, visNetwork() recognizes that

those will be the nodes’ positions when the network is displayed. It can be challenging to manually

determine specific nodes’ coordinates that will be optimal for different data sizes, so a function

from the igraph package (Csardi & Nepusz, 2006), layout_nicely(), was used. This function

16

uses a graph object created with the same data used in the visNetwork() and attempts to choose

an appropriate layout algorithm for the network visualization. Therefore, by using

layout_nicely(), it was possible to extract the coordinates to create the new x and y columns.

3.2. The Dashboard
With the visual aspects of the network in place, the next step was to start building the user interface,

including filtering options that are going to allow the company to visualize specific data points.

The aim here was that the user would have filtering options available for the ID and date inputs.

These were designed as text and slider inputs, respectively, and their effects were presented as two

different outputs: a text and a visualization.

Text Input

The main input of the user interface, the text input, allows the user to search for a specific ID by

typing it in the designated space. The text input can be used as a filter for what the user wants to

observe, as only the parties and claims connected to the ID typed will be presented on the screen.

For instance, let us imagine that a Trygg-Hansa team wants to visualize the claims in which a

specific third party, X, is involved. Instead of looking at a long and complicated table, the team can

open the application developed in this work and type the ID assigned to X. The application will

then automatically filter all the claims connected to X in any form.

Text Output

To help the user understand what is selected by the typed input, a red-colored text is displayed

between the input box and the visualization output, containing either the ID selected by the

program or, in case the user’s input is not found in the data set, an “ID NOT FOUND” message.

An example of how the application reacts to the text input can be seen in Figure 9. The

hypothetical party, s5, is selected, and the network was filtered to show the connected nodes, as

well as a text confirmation of the ID selected.

17

Figure 9 Shiny application outputs when the user provides a text input. Here, s5 was provided as

the ID, and the network was filtered to show only nodes related to s5.

Slider Input

The slider input serves as a date filter, allowing the user to specify a date range during which the

nodes should be presented. The date slider is useful for investigating the changes in the network

over time. The dates included in the slider will vary according to the ID typed in the text input,

such that the minimum date choice is the date in which the typed ID was created. This

dependability avoids errors that would otherwise occur when a user chooses a date for which the

ID does not exist.

In practice, when the user types an ID the program automatically shows that ID’s network at the

maximum date range possible and, from there, the user can manually move the slider to a desired

date. Figure 10 shows an example of how it is possible to visualize the evolution of the 𝑠𝑠5 network

over time. Together, the text input filters out all unconnected claims and the slider input only

allows claims that were made in between the dates chosen by the user to be visualized.

Text Input
Text Output

18

Date Range Upper Bound

Figure 10 Date slider input in action

19

Sidebar and Main Panel

As mentioned in the description of the shiny package (section 2.3), the sidebar in shiny can include

different menu items and inputs. In this project, the only item displayed presents the user with the

network visualization of the data. In this case, the dashboard sidebar seems to be useless and could

be left out of the dashboard. However, the Trygg-Hansa team that will receive this project may

want to add more items to the dashboard, so the intention here is to set an example that is going to

facilitate their work in the future.

The dashboard main (right) panel displays the information related to the menu item selected by

the user, such as the text input and output, visualization output, and slider input.

3.3. Final Interface

By combining the work done in 3.1. The Network and in 3.2. The Dashboard, we get to the final

result of this project, which can be observed in Figure 11. The figure shows what a user from

Trygg-Hansa would observe when the application is opened.

The application automatically selects the node of the earliest date from the data set. The node ID,

in this case, is s15. This was done to avoid throwing errors related to the slider input, which

requires an initial ID to be selected. From there, the user has complete autonomy: being able to

choose the input ID, change the date range with the slider, zoom in and out, hover over nodes for

specific information, and drag or select multiple nodes.

20

Figure 11 Final shiny application

The application is available for testing at gustavo-borba.shinyapps.io/Project/. We encourage users

to try out the different features described throughout this thesis, as well as different inputs. Some

alternative input IDs for use can be found in Table 2.

Table 2 Sample from the nodes dataset containing all columns added during the thesis project

id value type shape color.background color.border title x y
s2 0.39475 s square #FFB800 #013848 <p>s2
Value:0.395 3.49218 11.11478
s5 0.79297 s square #B63E00 #013848 <p>s5
Value:0.793 9.18752 1.34352
c10 0.57615 c circle #EB8900 #013848 <p>c10
Value:0.576 5.17543 10.44504
c34 0.96161 c circle #8E0400 #013848 <p>c34
Value:0.962 -0.47263 4.27801
e3 0.50760 e circle #FBA000 #013848 <p>e3
Value:0.508 2.77042 9.62593
e6 0.94903 e circle #920900 #013848 <p>e6
Value:0.949 9.63476 -1.07371
p5 0.44923 p circle #FFAD00 #013848 <p>p5
Value:0.449 10.15191 8.40810
p12 0.82031 p circle #AF3400 #013848 <p>p12
Value:0.82 -1.84540 12.52456
h10 0.59257 h circle #E88400 #013848 <p>h10
Value:0.593 -1.71315 10.62542

https://gustavo-borba.shinyapps.io/Project/

21

4. Discussion
The outcome of this project thesis was aligned with the expectations and goals set out by Trygg-

Hansa. Therefore, we can say that the results were more than satisfactory. This work focused on

building a user interface that could be applied to visualize Trygg-Hansa’s insurance portfolio and

went beyond the primary objectives by including additional useful features along the way. In this

section, we summarize our contributions, discuss possible limitations of the work, and outline

opportunities for future work.

4.1. Contributions and Limitations
Trygg-Hansa’s implementation of the network visualization could be adapted to benefit many

companies in different segments. Because there is a scarcity of public studies regarding network

visualizations for portfolios, we believe that this project could serve as a template for future work

in related areas. We organized the project code base such that other data sets could be applied to

it, avoiding hard-coded paths or specific components names, thus making it easier for future users

to adapt the code to their own data sets. Because shiny creates server-side applications, however,

depending on the expected number of simultaneous users, it will require a powerful server in order

to preserve the quality of the application. On the other hand, it is generally quicker and simpler to

be designed than client-side applications, which require more advanced programming skills.

Nevertheless, there are certain limitations that companies would need to overcome as means to

make good use of such visualization form, which are presented as followed. Firstly and foremost,

the data set used to build the model is limited to 133 observations and 188 edges, which is

unrealistic for companies that could have thousands of data points. Because of the data size, some

issues that could appear in a bigger data set may have been overlooked in this project, such as the

number of nodes to be displayed and the quantity of information to be presented by a selected

node.

In addition, due to the shortage of time to build and deliver this project, some shiny and visNetwork

settings may not have been used in the most efficient way, such as reactive functions and

visNetworkProxy(). These settings could benefit the computational efficiency and allow for

different settings that were not explored in this work.

22

4.2. Future Work
Because this project has a vast scope for use in many different industries beyond the insurance

sector, future work is dependent on the end user and their visualization needs. The inclusion of

more data may require some adaptations to the visualization and query settings. Future

development opportunities arising from this project include limiting the number of nodes

presented, adding a table with all data associated related to selected nodes, and assigning icons as

the nodes’ shapes to ease user understanding.

Limit the Number of Nodes Presented

Networks can technically grow arbitrarily large and it is infeasible to visualize thousands of

components at once. Untested solutions for this could be to create a threshold limiting the number

of nodes that can be displayed and to make the terminal nodes expandable, so that the user of the

application could manually display information that is out of the limits. Another option is to

aggregate terminal nodes that are in the same group, allowing the user to manually trigger extra

information. These settings could be achieved by utilizing the visCollapse() and

visUncollapse() functions with a visNetoworkProxy object.

Table with Associated Data

Companies will most likely have much more data information associated with the nodes and edges,

so the Titles may not fit it all. Having a table that covers all necessary information linked to a node

could bring more meaningful insights for the user.

Icons as Shapes

Companies with multiple types of related nodes may prefer using self-explanatory icons to

represent each node type. There are different sources of icons compatible with R, such as Font

Awesome and Ionicons that can be used in the network.

23

5. Conclusion
Visualizing data can be useful to find patterns, trends, and outliers with data sets that contain

thousands of observations. In this thesis project, we used relational data to demonstrate how the

claims and parties of an insurance portfolio can be visualized. We used the programming language

R and various of its packages to create an interactive network visualization that is adaptable, such

that the company can modify the input data while still getting an interactive network as a result.

Furthermore, we created a dashboard – a graphical user interface – to allow the end user to filter

inputs and select data ranges. By interacting with the dashboard, the relational data can be explored

in an intuitive and simple way.

24

References
Allen, J. (2020). Introduction to Shiny Server, Available online:
https://shiny.rstudio.com/articles/shiny-
server.html#:~:text=Shiny%20Server%20is%20an%20open,will%20never%20leave%20your%2
0control [Accessed 03 May 2022]

Almende, B.V., Thieurmel, B., & Titouan, R. (2021). visNetwork: Network Visualization using
'vis.js' Library. R package version 2.1.0, Available online: https://CRAN.R-
project.org/package=visNetwork [Accessed 23 April 2022]

Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J.,
Dipert, A., & Borges, B. (2021). shiny: Web Application Framework for R. R package version
1.7.1. Available online: https://CRAN.R-project.org/package=shiny [Accessed 14 April 2022]

Chang, W., & Borges, B. (2021). shinydashboard: Create Dashboards with 'Shiny'. R package
version 0.7.2. Available online: https://CRAN.R-project.org/package=shinydashboard [Accessed
14 May 2022]

Csardi, G., & Nepusz, T. (2006). The Igraph Software Package for Complex Network Research,
Available online: https://igraph.org [Accessed 24 April 2022]

Freeman, L. C. (2016). Visualizing Social Groups, Irvine, Available online:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.6381&rep=rep1&type=pdf
[Accessed 11 May 2022]

Grant, R. (2018). Data Visualization: Charts, Maps, and Interactive Graphics, New York:
Chapman and Hall/CRC

Hsu, L.-H., & Lin, C.-K. (2008). Graph Theory and Interconnection Networks, Boca Raton:
CRC Press

Larmtjänst AB. (2021). Insurance Fraud in Sweden. Available online:
https://www.larmtjanst.se/Snabbmeny/In-English/Insurance-fraud/ [Accessed 11 May 2022]

Luke, D.A. (2015). A User’s Guide to Network Analysis in R, New York: Springer

Ma, K.-L., & Muelder C. W. (2013). Large-Scale Graph Visualization and Analytics, California:
IEEE Computer Society

McNulty, K. (2022). Handbook of Graphs and Networks in People Analytics. Available online:
https://ona-book.org/index.html [Accessed 24 April 2022]

https://www.larmtjanst.se/Snabbmeny/In-English/Insurance-fraud/

25

Namata, G. M., Staats, B., Getoor, L., & Shneiderman, B. (2007). A Dual-View Approach to
Interactive Network Visualization, Association for Computing Machinery, Available online:
https://www.cs.umd.edu/~namatag/dualnet/cikm2007-Full.pdf [Accessed 11 May 2022]

Newman, E. J. (2010). Networks: An Introduction, New York: Oxford University Press

Perrier, V., Meyer, F., & Granjon, D. (2022). shinyWidgets: Custom Inputs Widgets for Shiny. R
package version 0.6.4. Available online: https://CRAN.R-project.org/package=shinyWidgets
[Accessed May 14 2022]

Shiny. (2017). The Basic Parts of a Shiny App, Available online:
https://shiny.rstudio.com/articles/basics.html [Accessed 23 April 2022]

Shiny Dashboard Structure. (2014). Shiny dashboard, Available online:
https://rstudio.github.io/shinydashboard/structure.html [Accessed 23 April 2022]

Steen, M. (2010). An introduction to Game Theory and Complex Networks, Amsterdam:
Maarten van Steen

Tyner, S., Braitte, F., & Hofmann, H. (2017). Network Visualization with ggplot2, The R
Journal, Available online: https://hal.archives-ouvertes.fr/hal-01722543/document [Accessed 15
May 2022]

Wickham, H. (2020). Mastering Shiny, [e-book] O’Reily Media, Available at: https://mastering-
shiny.org/index.html [Accessed 07 May 2022]

https://cran.r-project.org/package=shinyWidgets

	1. Introduction
	2. Methodology
	2.1. Networks
	2.2. Data
	2.3. Main R Packages Used
	Shiny
	visNetwork

	3. Results
	3.1. The Network
	Shapes
	Colors
	Legend
	Titles
	Node Coordinates

	3.2. The Dashboard
	Text Input
	Text Output
	Figure 9 Shiny application outputs when the user provides a text input. Here, s5 was provided as the ID, and the network was filtered to show only nodes related to s5.
	Slider Input
	Sidebar and Main Panel

	3.3. Final Interface

	4. Discussion
	4.1. Contributions and Limitations
	4.2. Future Work
	Limit the Number of Nodes Presented
	Table with Associated Data
	Icons as Shapes

	5. Conclusion
	References

