
 

Supervisor: Ana Rodriguez-Gonzalez 
 

Predicting preterm birth with machine 
learning methods 

 

 

 

by 

Zélie Dresse 

May 2022 

 

Master’s Programme in Data Analytics and Business 
Economics 

DABN01 - Master Essay I 

 

 

 



 

 i 

Abstract 
Preterm birth is a leading cause for birth complications and neonatal mortality in the world. It 
remains difficult to predict whether a preterm birth will occur, which hinders the possible use 
of prevention treatments. This thesis investigates the use of machine learning models in the 
prediction of spontaneous preterm birth. In addition, possible heterogeneous performance of 
these models among different racial groups is explored. Using birth certificate data, retrieved 
from the Natality Birth Data Sets in the National Vital Statistics System, machine learning 
models were trained and evaluated. Four machine learning methods are employed: logistic 
regression, random forests, eXtreme gradient boosting and neural networks. The models’ 
performance is similar across methods, the logistic regression model achieved the lowest test 
AUC of 0.6710 and the lowest TPR of 30.14% at the 10% FPR level. The eXtreme gradient 
boosting model performed best with a test AUC of 0.6994 and TPR of 34.15%. All models 
performed similarly for both black and non-black women. These results confirm previous 
evidence that this type of easily accessible patient data does not seem to be sufficient to 
construct high-performing machine learning models.   
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1 Introduction  
Preterm birth (PTB) remains one of the main causes of birth complications and neonatal 
mortality in both low-income and high-income countries. The World Health Organization (2018) 
(WHO) reports that every year around 15 million babies are born preterm. In addition, it is the 
leading cause for death under five years old. For the United States, the Centers for Disease 
Control and Prevention (2021) (CDC) reports a preterm birth rate of 10.1% in 2020. Their 
numbers also reflect the heterogeneity in preterm birth as the rate among African-American 
women is 14.4%, while the rate stands at 9.1% for white women and 9.8% for Hispanic women. 
This overall rate of preterm birth has been quite stable for about the last ten years (March of 
Dimes Perinatal Data Center, 2021). 

Apart from the direct relation between preterm birth and neonatal mortality, PTB has many 
other undesirable effects in the later life of the surviving infant. Currie and Almond (2011) 
provide an extensive literature review supporting the theory that early-life events before the 
age of five can have long term impacts in later life. There is a large body of literature specifically 
concerning the effect of PTB on the infant in their later life. Associations between PTB and a 
higher risk of certain disabilities, low educational attainment, lower earnings or receiving social 
security benefits have been found (Moster, Lie & Markestad, 2008). Further, evidence exists 
that extremely preterm children report poorer health-related quality of life at the adolescent 
age (Wolke et al., 2013), perform worse in cognitive and mathematical test at age 11 (Simms 
et al., 2013) and have an increased incidence of ADHD (Bhutta et al., 2002). Other studies 
performing sibling-comparisons find that there is an increased incidence of infant mortality and 
autism among PTB babies (D'Onofrio et al., 2013), worse school performance for early PTB 
children (Ahlsson et al., 2015) and a clear relation between early PTB and language delay 
(Zambrana et al., 2021) 

There exist some prevention methods that are currently used for clearly at-risk mothers, such 
as mothers having had a previous preterm birth or with a short cervical length. In particular, 
cervical cerclage and vaginal progesterone have been shown to be effective in reducing the 
frequency of early PTB and neonatal morbidity (da Fonseca, Damiao & Moreira, 2020). Flood 
and Malone (2012) also mention the success of clinics dedicated to preterm birth in increasing 
gestation length and reducing PTB complications.  

Given the negative consequences of PTB and as prevention methods are available, it would 
be desirable to be able to identify mothers who are likely to have a preterm birth. However, it 
is fairly hard to predict whether a woman is at risk for a preterm delivery. While there are some 
factors that seem to increase the risk of preterm birth, the majority of women with a preterm 
delivery have no clear risk factor (Vogel et al., 2018). This is especially the case for women 
giving birth for the first time as a previous preterm birth is the main indicator for preterm 
delivery. Glover and Manuck (2018) provide an overview of the existing screening methods for 
spontaneous preterm birth. There are various methods with varying results. A common method 
is an ultrasonographic assessment of the cervical length. However, findings seem to indicate 
that only a small number of low-risk women who end up having a PTB can be identified with 
such a test. Other existing or upcoming methods are screening through fetal fibronectin, 
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biomarkers, serum proteomics and genetic factors. However, there is no clear method at the 
moment that is easily used and has a high predictive ability.  

The main challenge according to Glover and Manuck is the heterogeneous nature of PTB. As 
rates show, African-American or non-Hispanic black women are affected by preterm birth more 
often. Previous studies suggest that the mechanisms behind PTB are different for non-
Hispanic black women and this makes it difficult to derive one screening method that fits all. 
Manuck (2017) explores this racial difference further. She finds that the interpregnancy 
interval, which is an important indicator for PTB, can only explain 4% of the racial disparity. 
Socioeconomic factors also explain only a small part of the racial variation. In addition, it is 
found that biomarkers are clearly race-dependent, the genetic variation between races could 
play a role and that the vaginal microbiome is more diverse for non-Hispanic black women, 
which is associated with PTB. This evidence shows that race matters in the case of preterm 
birth and should be kept in mind when trying to predict PTB.  

This previous evidence indicates that predicting preterm birth is quite difficult and an accurate 
and feasible medical method has not been found yet. However, predicting preterm birth is a 
crucial step in order to prevent it and reduce the amount of preterm birth related complications.  

The aim of this thesis is to construct a machine learning model capable to predict preterm birth 
based on information found in the birth certificate. This data is found in the Natality Birth Data 
sets from the National Vital Statistics System, made available by the National Center for Health 
Statistics (NCHS) (National Center for Health Statistics, 2022; NBER, 2022). This thesis 
considered the data from years 2016 until 2020. More specifically, only information available 
in the first and second trimester is used, as this would enable prediction at that time in the 
pregnancy. In addition, it will be investigated whether models perform as well for black as for 
non-black women and if not, how this can be resolved. Four methods are explored: logistic 
regression, random forests, eXtreme gradient boosting (XGBoost) and neural networks. The 
two main metrics that are used are: Area Under the Receiver Operating Curve (AUC) and the 
true positive rate (TPR) at the 10% false positive rate (FPR) level.  

I find that all four models perform quite similarly. The AUC scores on a test set range from 
0.6710, for the logistic regression model, to 0.6994, for the XGBoost model. This is in line with 
results in existing literature. When considering the TPR rates on test data, the values range 
from 30.14% (logistic regression) to 34.15% (XGBoost). These results indicate that the models 
only have limited predictive ability and are possibly not powerful enough to be implemented in 
a clinical setting. Further research and improvements are necessary to make this possible. 
Regarding the possible heterogeneous performance between black and non-black women, it 
is found that models perform similarly between these two groups. In addition, training models 
separately does not substantially improve performance. 

This thesis adds to existing literature by further exploring ML methods in order to find a preterm 
birth prediction model. A large amount of recent data has been used, containing variables that 
should be easily available during the pregnancy. Furthermore, an additional focus was placed 
on possible differences in performance between two main subgroups, black and non-black 
women. It was shown that the trained models do not suffer from this kind of heterogeneous 
performance. 

This thesis is structured as follows. Section 2 provides an overview of the existing literature 
concerning the application of machine learning in health and the use of machine learning 
methods for preterm birth prediction. In Section 3, the data, variables and sample selection are 
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explained and some summary statistics are displayed. The following section, Section 4, 
provides an explanation of the methods used. Then, I move on to the results of the models in 
Section 5. Next, Section 6 contains the discussion. Finally, I finish with some concluding 
remarks. 

2 Literature Review 
In this section, I first discuss the existing literature concerning the use of machine learning in 
health applications. Next, some papers with a similar aim as this thesis, namely predicting 
preterm birth with ML methods, are discussed. 

2.1 Machine learning applications in health 
Machine learning has often been mentioned as a promising evolution in health care. Deo 
(2015) provides an overview of machine learning in medicine. He finds that while much has 
been written about the potential of machine learning in medicine, few applications have 
successfully been implemented in health care. There are two main ways in which machine 
learning can contribute to medicine. The first is by assisting in learning patterns from unlabeled 
data, so-called unsupervised learning. The potential contribution of ML is the highest in this 
task as it is a difficult task for humans. The second is by carrying out supervised learning. In 
this case an algorithm mostly learns what a doctor already does, for example predicting a 
health outcome, but the algorithm can reduce workload and maybe improve prediction. 

There are a few areas in which it is shown that machine learning and artificial intelligence is 
valuable and can improve prediction accuracy. First of all, it seems that it is possible to train 
algorithms for the interpretation of medical images. Erickson et al. (2017) studies the use of 
ML in radiology and finds that there is a wide range of applications. Commonly used methods 
are deep learning, support vector machines (SVM), naive Bayes, decision trees and K-nearest 
neighbors. They find that these ML models reduce time spent on interpretation. In addition, it 
can be used to help interpretation of challenging tasks such as pulmonary embolism 
segmentation, polyp detection and brain tumor segmentation. Some studies have developed 
models that can detect breast cancer in mammography images and outperform human 
radiologists consistently (Ragab et al., 2019; McKinney et al., 2020). Furthermore, Al'Aref et 
al. (2019) discuss applications of ML in cardiology and find promising results in applications 
such as the interpretation of electrocardiograms, analysis of two-dimensional 
echocardiography, coronary artery calcium scoring, heart failure diagnosis and classification 
and many others. 

A different source of medical data, in which machine learning can be useful, are electronic 
health records (EHR). Recently, more and more medical information is documented in these 
records, which has increased the research of possible ML applications by exploiting this data. 
Shickel et al. (2018) explore the use of deep learning in these applications. They identify five 
main ML applications in the literature. Machine learning models can be used to extract 
information from EHR, perform EHR representation learning, predict health outcomes, apply 
computational phenotyping and de-identify clinical data. While I am not using actual electronic 
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health record data, the information found in the birth certificate is very similar to what would be 
found in a patient’s health record. 

Finally, there exists a body of literature on the application of machine learning in prenatal 
health. One example is the prediction of vaginal birth after a previous caesarean delivery, 
Lipschuetz et al. (2020) have used gradient boosting and random forest models to predict this. 
The gradient boosting model performed the best with an Area Under the Curve (AUC) of 0.793. 
Another application is the prediction of down syndrome in the first or second trimester, results 
indicate that the performance is comparable or slightly better than existing methods (Koivu et 
al., 2018; He et al., 2021). 

Aside from the potential of ML in medicine, it is important to keep certain ethical challenges in 
mind. As McCoy et al. (2020) point out racial bias and the underrepresentation of certain 
subgroups, such as women, is prevalent in traditional medicine, machine learning can be a 
way to solve these issues but can also worsen them if used uncarefully. It is therefore important 
to keep these problems in mind and actively address them. An important example is the 
Framingham heart study, in which models where trained on a predominantly white population, 
leaving the model to perform poorly on other populations. It became clear in the previous 
section, that there are clear racial differences in the prevalence of preterm birth. It will therefore 
be an additional focus in this thesis. 

Other challenges mentioned by Char, Shah and Magnus (2018) are disparities in the goals of 
users and the intent behind the design of a model, changing physician-patient relations and a 
need to rethink confidentiality and core ethics in order to be able to process sensitive data.  

2.2 Preterm birth prediction with machine learning 
methods 
In recent years, some researchers have started to explore how machine learning could be 
used for preterm birth prediction. Wlodarczyk et al. (2021) provide an overview of existing work 
in this area, which data they use and which methods. Four main sources of data used in these 
types of studies are identified: electrohysterography measurements, electronic health records, 
transvaginal ultrasounds and uterine electromyography. In what follows, I will only focus on the 
literature concerning electronic health records as this is the type of data used in this thesis. In 
general, one of the main technical challenges discussed by Wlodarczyk et al. is the class 
imbalance that exists in these datasets, as preterm birth prevalence usually ranges around 
10%. Common methods to deal with this are oversampling and undersampling. Some 
commonly used methods for prediction are logistic regression, support vector machines 
(SVM), decision trees and neural networks. 

There are some papers with a similar objective as this thesis. A good example is the work of 
Koivu and Sairanen (2020), who predict early stillbirth, late stillbirth and preterm birth using a 
linked birth-death pregnancy CDC dataset. They employ logistic regression, feed-forward 
neural networks, gradient boosting decision tree and ensemble learning. When testing the 
models on external test data, the AUC for preterm birth ranges from 0.62 to 0.67. Weber et al. 
(2018) perform a similar analysis on a smaller Californian dataset with an additional focus on 
the disparity between non-Hispanic black women and white women. Models were trained 
separately for both groups and combined. They utilized (penalized) logistic regression, random 
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forest, k-nearest neighbors and generalized additive modelling. The AUC was 0.62 and 0.63 
for non-Hispanic black and for white respectively and 0.67 for the combined models. 

Lee and Ahn (2019) report similar AUC values ranging from 0.62 to 0.64. They uncover that 
the most important predicting variables are BMI, cervical length, age, hypertension and 
diabetes mellitus. Some of these are also reported by Belaghi, Beyene and McDonald (2021), 
who find that the strongest predictors in their models are diabetes, previous abortions and 
abnormal pregnancy-related plasma protein A concentrations. Their models based on 
information in the first trimester lead to AUCs ranging from 0.55 to 0.59, which increase to 
0.58-0.64 when including second trimester information. Finally, the inclusion of pregnancy 
complications leads to an increase up to an AUC of 0.8. 

Another noteworthy paper is written by Raja, Mukherjee and Sarkar (2021) who predict preterm 
birth in rural India, combining a feature selection based on entropy, oversampling and the 
training of logistic regression, SVM and decision tree models. They achieve a sensitivity of 
0.71 for the decision tree, 0.83 for the logistic regression and 0.89 for SVM.  

Finally, Rocha et al. (2021) try to predict the week of delivery using different ML methods, such 
as eXtreme gradient boosting, elastic net, ridge and lasso regression, linear regression and 
decision trees. Again, all models perform quite similarly, with eXtreme gradient boosting being 
the best. They are able to estimate the delivery within two weeks. They find that the most 
important variables are previous C-sections, number of prenatal care visits, age, the availability 
of ultrasound examination in the care network and the share of primary care teams in the 
municipality registering the oral care consultation.  

In all of these papers the different methods usually lead to similar performance. When looking 
across the different studies, there is not one machine learning method that stands out 
compared to the others. The purpose of this thesis is to further add to this literature by exploring 
a few ML methods and their performance on more recent data. In addition, it will be 
investigated whether these models perform as well for black as for non-black women. 

3 Data 
3.1 Dataset description 
The models in this thesis are trained and evaluated on the Natality Birth Data from the National 
Vital Statistics System, made available by the National Center for Health Statistics (NCHS) 
(National Center for Health Statistics, 2022; NBER, 2022). These public-use datasets consist 
of information on all live births occurring in the United States and are based on information 
retrieved from the birth certificates. This information includes demographic data of the parents, 
information about the mother’s health, about the birth itself and the baby’s health. 

3.2 Sample selection 
I consider five years of data and include the births from 2016 until 2020, which leads to a total 
of 18,999,808 births. In order to reach a complete dataset, observations with missing values 
in relevant categories are removed. The removal of observations should not lead to too much 
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of an information loss due to the large size of the data set. In addition, a quick investigation of 
these observations made sure that these missing values were mostly random and thus their 
removal would not lead to a bias. This brings the total amount of observations to 16,973,359 
births. For two categorical variables with a high number of missing values, marital status and 
paternity acknowledged, it was decided to include a category indicating that the information is 
missing as the observations were not always missing randomly.  

For the prediction of spontaneous preterm birth, only spontaneous births were included in the 
final dataset. This is usually done in the literature as these are the kind of births for which 
prediction would be the most valuable. A non-spontaneous preterm birth is usually a medical 
decision made by a doctor, for example due to certain complications. It is planned and thus 
does not need to be predicted by the model. In practice, this was done by only including either 
vaginal births without induction of labor or cesarean births without induction of labour and with 
a trial of labour. This inclusion criteria reduces the number of observations to 8,473,853.  

Finally, the dataset is split in three sets, the training set contains 60% of the data (5,084,311 
observations) and the validation and test set both contain 20% of the data (1,694,771 
observations). 

3.3 Variable description 
The goal of our model is to perform a binary classification, indicating whether the birth was a 
preterm birth or not. The outcome variable, preterm birth, is equal to True if the gestational 
period is equal to 36 weeks or less. This variable is constructed based on the obstetric estimate 
of gestation, a measure which has been used by the NCHS since 2014. 

In order to perform this prediction, a wide range of variables are included. In general, only 
variables that would already be available in the first or second trimester are selected, as this 
would enable to predict the preterm birth at that time.  

The first set of variables contains general information about the mother. This includes the 
mother’s age but also demographic variables such as information about US nativity, resident 
status, race and Hispanic origin of the mother. Next, more information that can signal the socio-
economic status of the mother is included: the mother’s educational level, whether she is a 
recipient of the Special Supplemental Nutrition Program for Women, Infants and Children 
(WIC) and the payment source of the delivery. Information about the father was mostly 
excluded as these lead to a high number of observations with missing values. However, marital 
status of the mother, a variable indicating whether paternity was acknowledged and a variable 
indicating if the information about the father’s age was available, are included in order to partly 
cover this factor.  

The next set of variables pertains to health conditions. First, a set of risk factors and present 
infections are included. These variables are concerning pre-pregnancy and gestational 
diabetes, pre-pregnancy and gestational hypertension, hypertension eclampsia, previous 
preterm birth, the use of infertility treatment, fertility enhancing drugs or assisted reproductive 
technology, previous cesareans, Gonorrhea, Syphilis, Chlamydia, Hepatitis B and Hepatitis C. 
Further information about previous pregnancies is included in the form of the number of prior 
births now living, prior births now dead, prior other pregnancies, an indicator for the first birth, 
an indicator for the first pregnancy and the birth interval. Other more general health information 
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included is the mother’s height and her BMI. Regarding health behavior, information about the 
mother’s smoking behavior before and during the first and second trimester of the pregnancy 
is also included.  

Finally, there are binary variables indicating whether prenatal care was begun in the first or 
second trimester or not all. The final included variable is the sex of the born infant, in which the 
assumption is made that this can be reasonably well predicted in the second trimester. 

3.4 Summary statistics 
The final dataset consists of 7,795,112 full term births and 678,741 preterm births, which is an 
overall preterm birth prevalence of 8.01 percent. When considering race, the prevalence 
among black women is equal to 11.25 percent compared to 7.24 percent for non-black women. 
This clearly reflects the pattern found in the literature. 

Appendix A contains some descriptive statistics of the variables included in the dataset. In 
what follows, I will briefly discuss them. As mentioned before, black women are clearly 
overrepresented in the preterm births. Other patterns are a higher percentage of unmarried 
women, lower educated women, women receiving WIC, more births paid for with Medicaid and 
a lower percentage of paternity acknowledged for preterm births. This seems to indicate that 
women with a lower or more vulnerable socio-economic status are more affected by preterm 
birth.  

Regarding the mother’s health, results are not very surprising. There are clearly more women 
in the preterm group that smoke, have a high BMI, have risk factors and infections. Especially 
the risk factors gestational diabetes, gestational hypertension and previous preterm birth are 
more present among women having a preterm birth. It also seems that there is a higher 
percentage of women not having received prenatal care among the preterm births. Finally, the 
percentage of female births are lower for preterm births. These basic statistics seem to indicate 
that it might be possible to predict spontaneous preterm birth with these variables, as they vary 
between full term and preterm births. 

4 Methodology 
This thesis explores different machine learning methods in order to solve the binary 
classification problem of classifying births as a preterm birth or not. Four different methods are 
explored: logistic regression models, random forest models, eXtreme gradient boosting models 
and neural networks. 

To ensure that final models still perform well on new data and avoid overfitting, it is extremely 
important to perform data splitting. As this is a big dataset, cross-validation does not seem 
necessary and I have simply split the data in three different sets. Candidate models are first 
trained on the training dataset, after which their performance is evaluated on the validation set. 
The tuning of parameters is also done by using the validation set. Based on these results, the 
final models are selected and are then evaluated on the test set. Using this method ensures 
that results are generalizable to new unseen data.  
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The main metrics used are Area Under the Receiver Operating Characteristics Curve (ROC-
AUC) and the True Positive Rate (TPR) at the 10 percent False Positive Rate (FPR). These 
measures are more suitable than, for example, accuracy as they take into account class 
imbalance and allow for different classification thresholds. In addition, I focus on these metrics 
as the goal would be to achieve a good TPR while having only a reasonable ratio of false 
positives. It is more important to correctly identify preterm births as such than to avoid falsely 
predicting a few preterm births that end up being a full term birth.  

The data analysis part of this thesis has been performed in Python 3.8 (Van Rossum & Drake, 
2009). The most commonly used packages are NumPy (Harris et al., 2020), pandas 
(Mckinney, 2010; The pandas development team, 2021), Matplotlib (Hunter, 2007), Scikit-learn 
(Pedregosa et al., 2011), xgboost (xgboost developers, 2021) and Keras (Chollet & others, 
2015).  

Wlodarczyk et al. (2021) finds that a wide range of machine learning methods has been used 
in order to predict preterm birth. The choice of methods depends on different factors. For 
example, the use of support vector machine models seems promising. However, it is not 
performed in this thesis due to the large size of the dataset. The “no free lunch” theorem in 
statistics and machine learning explains why so many different methods are being tried out 
and used. This theorem says that there is not one method that clearly outperforms all others: 
the performance depends on the specific data set and on the problem at hand (James et al., 
2021). Our findings in the literature review were quite similar. Therefore, I decided to try out 
several methods and compare their performance.  

An obvious first choice to perform classification is a logistic regression, which can be seen as 
a baseline model. Inspired by previous literature (Weber et al., 2018; Lee & Ahn, 2019; Koivu 
& Sairanen, 2020), I decided to apply two ensemble methods, random forests and boosting. It 
has been shown that ensemble methods improve performance compared to training single 
models (Sagi & Rokach, 2018). In addition, these models include non-linearities in the model, 
in contrast to the linear logistic regression model. For boosting, the popular XGBoost 
implementation is chosen. This boosting system is a very effective system that incorporates 
regularization and uses limited computational resources (Chen & Guestrin, 2016). Finally, I 
experiment with an artificial neural network model due to its proven performance in a wide 
range of areas (Abiodun et al., 2018).  

4.1 Logistic Regression 
Logistic regression is a linear model for classification. The aim is to model the expected value 
of the outcome variable (y) given the predictors (x), !(#!|%"). In the case of logistic regression, 
the form for the expected value that the outcome variable is equal to one given the features is 
set as in Equation 1 (Hastie, Tibshirani & Friedman, 2017b). This assures that predicted 
probabilities are bounded between zero and one.  

!(#!|%") = ((#! = 1|%") =
exp	(%"

#. +	0$)

1 + exp1%"
#. +	0$2

 

Equation 1. Logistic regression probabilities. 

In practice, logistic regression models are fitted by maximizing the log-likelihood or 
equivalently, minimizing the negative log-likelihood. The log-likelihood is given by: 
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log[7(.)] = 	9:#!(%"
#. +	0$) − log<1 + exp	(%"

#. +	0$)=>	
%

!&'
 

Equation 2. Log-likelihood logistic regression. 

In Scikit-learn, ridge (L2) regularization is automatically applied (scikit-learn developers, 2022), 
meaning that a squared penalty term is added to the minimizing function. This is done in order 
to avoid overfitting. Finally, from Equation 2 and by adding the regularization term, the cost 
function in Equation 3 can be derived, this is the function that Scikit-learn is minimizing when 
fitting a logistic regression. 

min
(,*!

1
2
.#. +	9log CDE( C−#!1%"

#. +	0$2F + 1F
+

!&'
	 

Equation 3. Loss function logistic regression. 

Standardization is applied to help with the convergence of the models and for the application 
of certain feature selection methods. In order to deal with the high class imbalance in the 
dataset, I chose to apply random undersampling. In random undersampling, random 
observations in the majority class are removed until a certain majority/minority class ratio is 
reached. In this case the ratio was 1:1. Due to the large size of the dataset, the random loss 
in observations does not seem to lead to too much of loss in information. Other undersampling 
and oversampling techniques are available, but random undersampling proved to be the most 
feasible as it helped reducing the size of the dataset and thus helped with computation.  

Finally, feature selection was performed using ANOVA F-test feature selection, in which the 
variables with the highest ANOVA F-value were selected. The number of variables selected 
are chosen by the researcher. Two other feature selection methods, variance thresholding and 
selection based on computed chi-squared statistics, were also experimented with. However, 
the ANOVA F-value seemed to select features the best way. 

4.2 Random Forest 
Random forest is an ensemble method for classification. An ensemble method is a method 
that trains several models and then combines them to achieve better results. More specifically, 
random forest models combine many decision-tree models. A decision tree is a model that is 
developed by asking a set of questions about the features, each of these questions being 
represented by a node. After going through the tree and answering the different questions, you 
arrive at a final point, a leaf, which returns the prediction for the outcome. Such a tree is fitted 
by splitting nodes in a way that minimizes a certain loss function. The easiest way to 
understand a decision tree is visually. Figure 1 shows an example of a binary classification 
decision tree.  
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Figure 1. Illustration of a decision tree. 

One possible issue is that a decision tree can have high variance. A solution to this is bootstrap 
aggregating or bagging. A bagging method trains multiple trees on different bootstrap samples 
of the same data and then averages these models. Figure 2 illustrates how a bagging 
classification model could look like. This ensemble technique smooths out the prediction and 
thus reduces the variance. Random forest is such a bagging model, in which decision trees 
are trained with the important restriction that in each step where a new split is decided on, only 
a few randomly selected features are candidates for that split. This leads to a possible further 
improvement in variance by aggregating less correlated trees. (Hastie, Tibshirani & Friedman, 
2017c).  

 
Figure 2. Illustration of a bagging model. 

To summarize, the classification random forest algorithm goes as follows (Hastie, Tibshirani & 
Friedman, 2017c):  

1. A number (B) of bootstrap samples are drawn from the training data 
2. A tree is trained on each bootstrap sample by repeating the following steps for each 

split, until a certain minimum node size is reached 
a. Randomly select m variables from all the predictor variables 
b. Pick the best split among these variables 
c. Split the node in two according to this best split 

3. The output is the ensemble of trees. 
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In order to get to a prediction for a new observation, the predictions of all the trees in the 
random forest are taken and a majority vote will decide on the final prediction. 

There are two main parameters to be tuned in the analysis: the depth of the tree and the 
number of features randomly drawn in each step. Regarding the depth, in theory a fully grown 
tree is best, although this leads to overfitting. As for the number of chosen features, the default 
chosen value in a classification model is the square root of the number of variables. Other 
parameters to consider are the criterion to evaluate the quality of a split, either Gini impurity or 
the information gain, the minimum number of observations to reach a terminal leaf, and the 
number of trees to be estimated. 

4.3 eXtreme Gradient Boosting 
Apart from bagging methods, there is another category of ensemble methods, so-called 
boosting methods. eXtreme Gradient Boosting (XGBoost) is such a boosting method that also 
implements regularization. The idea of boosted trees is that many simple decision trees, called 
weak learners, are sequentially trained to modified versions of the same dataset to arrive at a 
final model that reduces variance and bias (Hastie, Tibshirani & Friedman, 2017a). The dataset 
used in the training is reweighted in each iteration, and observations that were incorrectly 
predicted at the previous step will receive higher weights in the next iteration. The difference 
with bagging methods becomes clearer when visualizing it like in Figure 3. 

 
Figure 3. Illustration of a boosting model. 

Gradient boosting is a generalization of boosting, which allows it to optimize any loss function, 
as long as it is differentiable. The algorithm used to optimize this function uses gradient 
descent, in which steps are made towards the minimum by moving against the direction of the 
gradient of the function. Finally, XGBoost, is an optimized, efficient implementation of gradient 
boosting. Some of its advantages are that it implements regularization for the trees and allows 
parallel processing, which reduces computation time significantly.  

There are several hyperparameters that should be tuned in XGBoost. The method used in this 
thesis is based on the method proposed by Analytics Vidhya (2016). Early stopping is used to 
avoid overfitting. First, the depth of the tree and the minimum weight in a child are tuned. As 
explained in the XGBoost documentation (xgboost developers, 2021), this second variable is 
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the minimum sum of instance weight in a child, a child being similar to a split. This is a form of 
regularization. Next, gamma is tuned. This variable indicates the minimum reduction in loss 
required in order to make a split, another form of regularization. After that, subsample ratio is 
optimized, in XGBoost this parameter means the ratio of observations randomly sampled 
before growing the trees in order to avoid overfitting. At the same time, the subsample ratio of 
columns is also tuned. This is the same parameter as in random forests which decided how 
many variables are randomly selected to be a candidate for the next split. Furthermore, L2 
regularization is applied and the related lambda parameter is tuned. Finally, the learning rate, 
the step size used in the optimizing algorithm, and the number of estimated trees must be 
considered. 

4.4 Neural Networks 
The final method used in this thesis is a neural network model. More specifically, feedforward 
neural networks will be trained. Chapter 6 in the book Deep Learning by Goodfellow, Bengio 
and Courville (2016) provides an extensive explanation of feedforward neural networks.  

A neural network can be seen as a chain of functions. Each layer in a network is a function 
that takes the output of the previous layer as its input. Figure 4 shows us a possible 
feedforward neural network. Our features or inputs are considered as the input layer and are 
entered into the first hidden layer, which contains eight so called hidden inputs or neurons. The 
second hidden layer has four hidden inputs, which take the output of the first hidden layer as 
their input.  

 
Figure 4. Illustration of a feedforward neural network. 

In each layer, weights and a bias are applied to the inputs. For example, in the first layer, the 
following values (Equation 4) are calculated in each of the eight hidden units and are the 
outputs of this layer. 

ℎ,
(') =	H,$

(') +	9H,/
(')I/

0

/&'
,					K = 1,… , 8 

Equation 4. Output of the first hidden layer. 

Next, the same calculation is done in the second hidden layer, where the outputs of the first 
hidden layer are taken as the input.  



 

 13 

ℎ,
(1) =	H,$

(1) +	9H,/
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Equation 5. Output of the second hidden layer. 

Finally, the same formula is applied in the output layer.  

# = 0$ +90/ℎ/
(1)	

3

/&'
 

Equation 6. Output of the output layer 

The term feedforward means that the information flows from the inputs to the output through 
different layers without passing feedback from a layer output to previous layers. This is the 
case for this specific network. It takes the p input variables, passes them through two hidden 
layers, the first with eight units and the second with four units, to then pass it through the final 
output layer which gives us the output, in our case the probability that the observation belongs 
to class 1 (or the True class).	 

The above explanation was a simplified version of what is usually done. In order to introduce 
nonlinearities in the model, activation functions are almost always applied to each layer. In this 
thesis, the rectified linear unit (ReLU) is chosen as the activation function in the hidden layers, 
which is usually the default choice in modern neural networks. This function is defined as 
O(P) = max	(0, P). So, the true output of the first hidden layers will be: 

O Cℎ,
(')F = maxS0,H,$

(') +	9H,/
(')I/

0

/&'
T 

Equation 7. ReLU activation function applied to the first hidden layer. 

As we are training a binary classification model, the sigmoid function is chosen as the activation 
function for the output layer. This function, defined by Equation 8, ensures that the output is 
bounded between zero and one. This is desirable as the output in our model is the probability 
that the birth is a preterm birth. 

U(E) =
1

1 + D45
 

Equation 8. Sigmoid function. 

The actual fitting of the neural network model happens through backpropagation. The weights 
are initially set to a random number close to zero. Then, an optimizing method is used to update 
these weights towards optimal values that minimize a certain loss function. In this thesis, the 
Adam optimizer is used, which is also a gradient descent method. 

Again, there are some parameters that need to be tuned. Of course, one must decide on how 
many layers and how many units in each layer the model should have. Next, the learning rate 
of the optimizer has to be carefully tuned. Another parameter is the number of epochs or the 
number of times the algorithm cycles through the whole dataset while updating the weights. 
This is chosen by applying early stopping in order to avoid overfitting.  Within one epoch, the 
model is trained multiple times on smaller subsets of the data, a so-called batch, in order to 
update weights more often and reduce computation, as computing a gradient on the whole 
data is quite heavy. Therefore, one must also choose the batch size, which is the number of 
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samples included in one batch, typical choices are 128, 256 or 512. Finally, I consider two 
other parameters. First, the initial weights that are given to the algorithm can play a role and 
different weights should be experimented with. At last, it could also be beneficial to apply L2-
regularization, this is performed by choosing the final parameter lambda.  

5 Results 
5.1 Logistic Regression 
5.1.1 General results 
The first model (Model 1) is a baseline logistic regression model. This model was trained on a 
randomly undersampled and standardized dataset. Next, feature selection using the ANOVA 
F-value was tested. A model was trained for each set of selected variables by the algorithm, 
going from selecting only one variable to all variables. The AUC scores of these models were 
then evaluated using the validation set. Figure 5 shows the results. Clearly, the feature 
selection selects good variables in the beginning, as the AUC increases quite a lot. After 
around 30, the increases in validation AUC are only small and it might be interesting to only 
include a part of them for computational purposes. However, there is a remarkable jump 
around 45 variables, where the AUC shoots up a bit again. Given these insights, a model 
(Model 2) comprising of the 30 first selected variables and the variable leading to the additional 
increase, which is birth interval, was trained. 

 
Figure 5. Validation AUC scores for logistic regression models with the number of selected variables 

by ANOVA F-test going from one to fifty-one.  

Figure 6 shows the Receiver Operating Characteristics (ROC) curve on the test data for both 
models. Applying variable selection decreases the test AUC only slightly from 0.6710 to 
0.6634. In summary, Model 1 achieves an AUC of 0.6710 and a TPR of 30.14% at the 10% 
FPR level. Model 2 results in an AUC of 0.6634 and a TPR of 29.25% at the 10% FPR level. 
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Figure 6. ROC curve on the test data for two logistic regression models. 

Figure 7 plots the ten largest (in absolute terms) coefficient values in Model 2. A previous 
preterm birth is clearly an important factor in the prediction, which is in line with the findings in 
the literature. Furthermore, the birth interval, gestational hypertension, having had no prenatal 
care and gestational diabetes are the variables with the highest coefficients in this model. 

 
Figure 7. Coefficient values for the variables with the ten largest coefficients in Model 2. 

5.1.2 Heterogeneous performance 
In this section, we consider the performance of Model 1 across two groups, black women and 
non-black women. Figure 8 shows the ROC curves and AUC score for those specific 
observations. It is quite clear that the model performs equally well for both groups. The same 
is reflected in the TPR at 10% FPR of 29.17% and 29.66%, for black and non-black women 
respectively. 
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Figure 8. ROC curve for Model 1, in yellow on the whole test set, blue only on black women and green 

on only non-black women.  

Next, I trained two separate models for these groups in order to explore whether this would 
improve the performance. This did slightly improve the AUC for black women to 0.672, which 
is similar to the overall performance of Model 1. The TPR at 10% FPR becomes 30.23% for 
black women and 29.73% for non-black women. However, this is a minimal improvement.  

5.2 Random Forest 
5.2.1 General 
In the random forest model, it was again decided to use a randomly undersampled and 
standardized dataset. After careful tuning of the hyperparameters, maximum tree depth and 
the number of randomly selected features in each split decision were set to 21 and 9 
respectively. The number of trees was set to 100, as training more trees did not improve the 
results further and the entropy criterion was used. This led to the final model (Model 3) with a 
test AUC score of 0.6939 and a TPR of 33.28% at the 10% FPR level. Figure 9 shows the 
corresponding ROC curve. 

 
Figure 9. ROC curve on the test data set for the random forest model. 

For a random forest model, it is possible to calculate a variable’s importance in terms of the 
decrease in impurity attributed to that variable. Figure 10 shows the variable importance of the 
ten most important variables. Some variables are the same as the ones identified in the logistic 
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regression but there are also some newcomers, such as age, prior births now alive, race and 
the payment method. Again, the birth interval and previous preterm birth play the major roles 
in the prediction. 

 
Figure 10. Variable importance in terms of mean decrease in impurity for the ten most important 

variables in the random forest model. 

5.2.2 Heterogeneous performance 
Similar to the logistic regression model, Model 3 performs equally well for black and non-black 
women. The AUC for black women is 0.6873 and 0.6874 for non-black women. The TPR at 
10% FPR is 31.98% and 32.73% respectively.  

When training separate models for these two groups and tuning the parameters separately, 
the performance is almost exactly the same. The AUC becomes 0.6867 and 0.6872 and the 
rates 32.77% and 32.50%, for black women and non-black women respectively. 

 
Figure 11. Variable importance from separately trained random forest models on each subgroup. 

It might be interesting to consider whether the same variables are important in these separate 
models. Figure 11 shows the variable importance for the models trained separately on the two 
subgroups. While the six most important variables are the same, there are some differences 
after that. For black women the resident status and having had no prenatal care has some 
predictive importance, while for non-black women the payment method and the Hispanic origin 
seem to be more relevant.  
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5.3 eXtreme Gradient Boosting 
5.3.1 General 
Next, the XGBoost model was trained on the undersampled and standardized dataset. The 
tuning of the hyperparameters led to the following choices: a learning rate of 0.2, 233 estimated 
trees (chosen by applying early stopping), a maximum depth of 6 and a minimum weight in a 
child of 4. Furthermore, the minimal reduction gamma was set to 0, the subsample ratio of the 
columns to 0.5, the subsample ratio to 0.9 and the lambda for the L2 regularization to 80. This 
leads to Model 4 with the ROC curve shown in Figure 12. The AUC is equal to 0.6994 and the 
TPR at 10% FPR is equal to 34.15%, the best results so far.  

 
Figure 12. ROC curve on the test data for the XGBoost model. 

Figure 13 shows us the 10 most important variables again. Surprisingly, height now seems to 
be the most important variable and a previous preterm birth is not included at all.  

 
Figure 13. Variable importance in terms of mean decrease in impurity for the ten most important 

variables in the XGBoost model. 

5.3.2 Heterogeneous performance 
Once again, performance across our two main subgroups were not very different. The AUC 
for black women was 0.6933 and the TPR 33.16%. For non-black women, these scores were 
0.6932 and 33.53%. When training and tuning separate models for the subgroups, the 
performance was still not improved, with an AUC of 0.6909 and 0.6907 and rates of 33.34% 
and 33.33%.  
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5.4 Neural Networks 
5.4.1 General 
Finally, a neural network was trained. The hyperparameters were carefully tuned using the 
validation set and the following choices were made. The model consists of 2 hidden layers, the 
first with 128 hidden units and the second with 64 hidden units. The ReLU activation function 
was applied to these layers, while the sigmoid function was applied to the output layer. In 
addition, L2 regularization with lambda equal to 0.001 was applied and a random normal weight 
initialization was used. Next, the learning rate for the Adam optimizer was equal to 0.0001, 100 
epochs were trained and a batch size of 128 was used in this process. Finally, early stopping 
was applied with a patience of 20. 

This model resulted in a test AUC of 0.6964 and a TPR of 33.88% at the 10% FPR level. There 
is no obvious method to evaluate the variable importance in a neural network.  

5.4.2 Heterogeneous performance 
Figure 14 shows the AUC curve for this overall model and for the two subgroups. It is again 
clear that performance is very similar across the groups and the same goes for the rate which 
is 33.10% and 33.27%, for black and non-black respectively. Training the models separately 
does not improve performance at all and the AUC drops to 0.6890 and 0.6883, while both TPR 
rates are around 32.96% 

 
Figure 14. ROC curve for the neural network model, in yellow on the whole test set, blue only on black 

women and green on only non-black women. 

5.5 Overall results 
Table 1 summarizes the found AUC scores and TPRs. Overall, results are quite similar 
between methods and little improvement compared to the basic logistic regression is found 
when using more advanced and computationally heavy methods such as random forest, 
boosting and neural networks. However, we can conclude that the XGBoost model reached 
the highest test AUC score and highest true positive rate of 34.15% at the 10% false positive 
rate level. 
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 AUC TPR at 10% FPR 

Model 1 - LR 0.6710 30.14% 

Model 3 - RF 0.6939 33.28% 

Model 4 - XGB 0.6994 34.15% 

Model 5 - NN 0.6964 33.88% 

Table 1. Overall results of the trained models. 

6 Discussion 
The goal of this thesis was to build a machine learning model that could predict preterm birth 
based on information available in the first or second trimester of the pregnancy. Four methods 
were explored: logistic regression, random forests, eXtreme gradient boosting and neural 
networks. These models resulted in test AUC scores ranging from 0.6710 to 0.6994. When 
considering the true positive rates ranging from 30.14% to 34.15% at the 10% FPR level, it 
becomes clear that these models are not very successful at identifying preterm birth while 
accepting a reasonable amount of mistakes. Another finding is that the four methods perform 
quite similarly, even though logistic regression is a quite simple linear model compared to for 
example neural networks, the performance of the complex models are only slightly better. 

In comparison with previous literature, where AUC scores were ranging from 0.62 to 0.67, the 
trained models are slightly better. For the TPR, Koivu and Sairanen (2020) find results around 
27-31%. Again, our results improved this performance slightly. Note that some of the papers 
in the literature focus on predicting preterm birth for first-time mothers. 

One important note is that AUC was used as a metric when tuning models. For example, in 
the random forest models when performing searches among possible parameter values, the 
AUC was used to evaluate the models and pick the best one. The implication of this is that the 
TPR could maybe be improved a bit more if the focus was set on this metric but it is improbable 
that big improvements would be achieved.  

While the models have extensively been tested on a quite large test set and this should ensure 
the generalizability, one could wonder if the models would also work on other data sets. The 
birth certificates are of course only available after the birth, so the information would need to 
be retrieved from hospital data sets or specific surveys made for this purpose. It is not certain 
that models would achieve the same performance if these data sets were a bit different. A 
similar question is whether the models can be extended to other countries or time frames. 
Hopefully, the model should not be too sensitive to a certain time period as they were trained 
over a five-year period, including the COVID-19 year 2020. In addition, there is no obvious 
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reason to suspect that the mechanisms behind preterm birth would wildly vary in a short time 
span. 

One technical constraint in this thesis was the computational resource available. As the dataset 
was quite large and in order to keep computation time reasonable, it was decided to use 
random undersampling. This tackled the class imbalance problem posed in the data, while also 
reducing the size of the training data considerably. A negative side-effect of random 
undersampling is that part of the observations is removed and it is not certain that these 
observations do not contain crucial information. It might therefore be possible that better 
models could be achieved by employing other methods, such as random oversampling, 
SMOTE or a combination of over- and undersampling.  

Another limitation of the models could lie in the variables that are important for prediction. 
When looking at the variable importance, some variables stand out. A previous preterm birth, 
the birth interval and the number of prior births and pregnancies are quite important predictors 
in the models. These are all variables that are related to previous pregnancies and would thus 
not be available for first-pregnancy mothers. This indicates that it would be even harder to 
predict a preterm birth for these mothers. When fitting the final models determined in the 
analysis on this subset of mothers, the results displayed in Table 2 are found. It is clear that 
the performance has declined and especially the TPR at 10% FPR level are lower.    

  AUC TPR at 10% FPR 

Model - LR 0.6348 23.90% 

Model - RF 0.6338 23.27% 

Model - XGB 0.6417 24.81% 

Model - NN 0.6396 24.67% 

Table 2. Results of the models on the subset of first-pregnancy mothers. 

While these models could be used in a medical setting to possibly detect preterm births that 
would otherwise not be expected, one could wonder whether the models’ performance is good 
enough to be implemented. However, it might be possible to use them as a basis for similar 
but more advanced models. It is likely that a hospital record would contain more health 
information than a birth certificate that could possibly help the prediction. The information of 
certain simple medical tests such as blood tests or other standard examinations done early in 
the pregnancy could then be added to these models. This information might be easy to uncover 
or might even already be available in other data sets and could further improve models’ 
performance. 

Finally, a note about heterogeneous performance among different racial groups. Another goal 
of this thesis was to investigate whether this was an issue in these models and if there was a 
possible solution to it. However, it became quite clear that the models did not suffer from this, 
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as performance was similar for both black and non-black women. One possible explanation is 
that the dataset was representative for the American population and models were trained on 
this whole dataset. Issues would more likely arise if models were only trained on predominantly 
white or rich populations and then expanded to the wide population. Another factor is that race 
was available in the dataset and could be included as a variable in the models, so models 
could take this into account. This could be an issue in other countries where race is not 
reported as frequently as it is in the United States.  

7 Conclusion 
The main purpose of this thesis was to employ machine learning methods in order to predict 
preterm birth. Such a model would improve identification of at-risk mothers in the first or second 
trimester and enable them to receive treatments that could reduce the risk of a preterm birth. 
Models were trained on the Natality Birth Data provided by the NCHS, including the years 2016 
until 2020. This data set contains information retrieved from the birth certificates of all live births 
in the United States. Four methods were applied to the data: logistic regression, random 
forests, eXtreme gradient boosting and neural networks. An additional aim of the thesis was 
to investigate whether trained models suffered from heterogeneous performance between two 
subgroups, black and non-black women. 

When evaluating the models on a test data set, the following results were found. The logistic 
regression model performed worst with a test AUC of 0.6710 and a TPR of 30.14%. The three 
other models improved performance slightly. The random forest model achieved an AUC of 
0.6939 and a TPR of 33.28% and the neural network model had an AUC of 0.6964 and TPR 
of 33.88%. While its performance was very similar, the XGBoost model performed best with 
an AUC of 0.6994 and a TPR of 34.15%. Regarding the heterogeneous performance, the main 
conclusion is that all these models performed very similarly for both black and non-black 
women. 

This thesis adds to previous papers by further exploring how ML methods can be used in order 
to predict PTB. More recent data was used and of course the choices in tuning and constructing 
the models differed. The results in this thesis are in line with previous attempts and indicate 
that it is quite hard to use this type of patient data in order to predict preterm birth. Additionally, 
I also focused on ensuring that the models work for both black and non-black women.  

As mentioned before, the performance of the models is probably not sufficient for it to be 
implemented in a clinical setting. Another question is whether the performance of the models 
would differ when applied to other data sets, in other countries, or in another time period. 
Another important weakness in the models is that the main variables contributing to the 
prediction of PTB are variables relating to a previous pregnancy. This means that it would be 
even harder to build a successful model for first-time mothers. The additional analysis 
presented in the discussion confirms that this is the case. 

Further research and extensions of the models are necessary in order to find a model that 
performs well enough. One possible suggestion would be to add more and other variables. It 
is likely that hospital records contain other relevant variables that could improve prediction. In 
addition, it should be investigated if there are more possible predictors that could easily be 
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detected and included, such as for example biomarkers, fetal fibronectin or genetic factors. 
Hopefully, this could lead to a model with a high predictive ability that would enable easy and 
accurate prediction of preterm birth. This would in turn make it possible to administer 
prevention treatments and possibly reduce preterm birth rates in the world. 
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Appendix A: summary statistics 
   Data Type   Full Term  Preterm  
 Age   Numerical  28.37 28.30 
  (5.74) (6.03) 
 Young mother (age < 20)   Boolean  5.77% 6.99% 
 Old mother (age >= 35)   Boolean  14.82% 16.63% 
 US born   Boolean  75.91% 80.09% 
 Residence status   Categorical    

 Resident   72.28% 68.00% 
 Intrastate nonresident   25.34% 29.02% 
 Interstate nonresident   2.08% 2.83% 
 foreign resident   0.30% 0.16% 

 Race   Categorical    
 White   73.67% 67.82% 
 Black   14.89% 21.69% 
 AIAN   0.96% 1.10% 
 Asian   7.41% 6.12% 
 NHOPI   0.33% 0.35% 
 More than one   2.74% 2.91% 

 Hispanic origin   Categorical    
 Non-Hispanic   74.38% 75.79% 
 Mexican   15.12% 13.99% 
 Puerto Rican   1.85% 2.10% 
 Cuban   0.52% 0.49% 
 Central and South American   4.42% 3.89% 
 Other Hispanic   3.71% 3.75% 

 Marital Status     
 Married   Boolean  53.73% 45.95% 
 Unmarried   Boolean  35.23% 45.58% 
 Information unknown   Boolean  11.04% 8.47% 

 Mother's education   Categorical    
 8th grade or less   4.00% 3.38% 
 9th - 12th grade   9.76% 12.96% 
 High school graduate   25.49% 29.82% 
 Some college credit   19.30% 20.75% 
 Associate degree   7.88% 7.84% 
 Bachelor's degree   21.40% 15.98% 
 Master's degree   9.71% 7.18% 
 Doctorate degree   2.84% 2.09% 

 Low education   Boolean  38.87% 46.16% 
 High education   Boolean  12.55% 9.26% 
 Paternity Acknowledged     

 Yes   Boolean  79.19% 75.64% 
 No   Boolean  9.68% 15.75% 
 Information unknown   Boolean  11.13% 8.62% 

 Father's age available   Boolean  89.00% 82.45% 
 Payment method   Categorical    

 Medicaid   41.45% 49.88% 
 private insurance   49.12% 42.29% 
 self-pay   5.51% 4.11% 
 other   3.92% 3.71% 
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   Data Type   Full Term  Preterm  
 WIC   Boolean  35.68% 40.00% 
 HEALTH INFORMATION     
 Start of prenatal care     

 No prenatal care   Boolean  1.59% 5.10% 
 Started in first trimester   Boolean  77.08% 75.03% 
 Started in second trimester   Boolean  16.70% 16.10% 

 BMI     
 BMI underweight   Boolean  3.83% 4.82% 
 BMI overweight   Boolean  39.32% 40.10% 
 BMI obese   Boolean  8.35% 12.06% 

 Height   64.13 63.86 
  (2.82) (2.84) 
 Cigarettes     

 Cigarettes before (daily)   Numerical  0.90 1.59 
  (4.26) (5.63) 
 Cigarettes 1st trimester (daily)   Numerical  0.55 1.08 
  (3.03) (4.27) 
 Cigarettes 2nd trimester (daily)   Numerical  0.41 0.85 
  (2.49) (3.66) 
 Cigarettes (yes/no)   5.35% 10.05% 
    

 RISK FACTORS   All: boolean    
 Pre-pregnancy diabetes   0.34% 1.53% 
 Gestational diabetes   4.29% 7.54% 
 Pre-pregnancy hypertension   0.73% 2.45% 
 Gestational hypertension   2.95% 7.20% 
 Hypertension Eclampsia   0.10% 0.41% 
 Previous preterm Birth   2.34% 10.28% 
 Infertility treatment used   1.04% 2.42% 
 Fertility Enhancing Drugs   0.52% 1.08% 
 Asst. Reproductive technology   0.60% 1.53% 
 Previous Cesarean   4.18% 5.84% 
 Number of cesareans   0.05 0.07 
  (0.25) (0.33) 
 INFECTIONS   All: boolean    
 Gonorrhea   0.29% 0.53% 
 Syphilis   0.10% 0.19% 
 Chlamydia   1.88% 2.61% 
 Hepatitis B   0.22% 0.22% 
 Hepatitis C   0.33% 0.89% 
    
 Infant is female   Boolean  49.05% 45.09% 
    
 PREVIOUS PREGNANCIES     
 Prior alive   Numerical  1.07 1.22 
  (1.31) (1.46) 
 Prior dead   Numerical  0.01 0.02 
  (0.17) (0.22) 
 Prior other pregnancies   Numerical  0.37 0.48 
  (0.81) (0.99) 
 First birth   Boolean  41.59% 39.75% 
 First pregnancy   Boolean  34.61% 31.64% 
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   Data Type   Full Term  Preterm  
 Birth interval   Categorical    

 0-3 months (plural delivery)   0.18% 4.37% 
 4-11 months   0.78% 2.65% 
 12 to 17 months   5.01% 6.87% 
 18 to 23 months   8.18% 6.92% 
 24 to 35 months   14.96% 10.81% 
 36 to 47 months   8.95% 7.15% 
 48 to 59 months   5.78% 5.15% 
 60 to 71 months   3.95% 3.76% 
 72 months and over   10.62% 12.57% 
 Not applicable (first birth)   41.59% 39.75% 


