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Abstract

Quantum annealing provides a promising avenue for obtaining good approximate solutions
to difficult optimization problems. Protein folding represents one such problem. For test-
ing novel algorithms and technologies, simplified lattice models are well suited, as they
represent considerable computational challenges despite their simplicity. One such model
is the HP model, where the protein is represented as a self-avoiding chain of hydrophobic
(H) and polar (P) beads residing on a lattice. Previous attempts at folding lattice proteins
on a quantum annealer used chain growth techniques, where self-avoidance is tricky to im-
plement. In this project, we develop a novel spin representation of the HP model suited for
quantum annealing. This approach naturally handles self-avoidance, and performs well in
terms of scaling properties with chain length. The approach is implemented using classical
simulated annealing, a hybrid quantum-classical approach and pure quantum annealing. In
the pure quantum annealing case, we successfully fold the largest chain done on a quantum
computer. However, we also notice that pure quantum annealing can not match simulated
annealing yet. In contrast, the hybrid approach is able to solve the largest HP chains,
N = 30, where N is the number of beads, for which exact solutions are known. Moreover,
it outperforms classical simulated annealing using the same encoding, both in terms of
success rate and solution time, and successfully compare with the best-known solutions for
larger chains, N = 48 and N = 64. Further, we see that the encoding is robust in terms
of changes in the parameters required to constrain the spin system to chain-like configura-
tions. The calculations were performed on a D-Wave Advantage quantum annealer.

List of acronyms

SA - Simulated Annealing
QUBO - Quadratic Unconstrained Binary Optimization
QPU - Quantum Processing Unit



Populärvetenskaplig beskrivning

Kvantdatorer har f̊att mycket fokus i media de senaste åren p̊a grund av sin potentiella
förmåga att lösa problem som är för tidskrävande för att l̊ata sig lösas p̊a klassiska da-
torer. Kvantdatorer skiljer sig i grunden fr̊an dagens datorer, genom att bygga p̊a g̊atfulla
kvantmekaniska egenskaper. En s̊adan är kvantsuperposition, som innebär att en partikel
kan vara i flera kvanttillst̊and samtidigt. Antag, till exempel, att uppgiften är att finna
vägen ut ur en labyrint. En klassisk dator löser detta problem genom att testa alla möjliga
vägar en efter en. En kvantdator skulle, genom kvantsuperposition, istället kunna testa
alla vägar samtidigt, och därmed lösa problemet snabbare.

Att bygga en kvantdator är en utmaning eftersom processorn m̊aste vara isolerad fr̊an
världen runtomkring för att beh̊alla sina kvantmekaniska egenskaper. De stora satsningarna
som för närvarande görs fokuserar därför inte bara p̊a generella kvantdatorer, utan även
p̊a mer specialicerade s̊adana för särskilda ändamål. Ett viktigt exempel är adiabatiska
kvantdatorer för optimeringsproblem. En s̊adan dator best̊ar av ett kvantsystem där en-
ergifunktionen av systemet kan regleras. Initialt kan kvantsystemet antas befinna i ett
tillst̊and som i labyrintexemplet motsvarar en blandning av alla möjliga vägar. Det g̊ar att
visa att tillst̊andet sedan kan ändras till ett som motsvarar vägen ut ur labyrinten, genom
att ändra energifunktionen. Om denna ändring sker l̊angsamt nog hittar vi vägen ut varje
g̊ang. Dessvärre kan förändringen i praktiken inte ske hur l̊angsamt som helst, eftersom
processorn m̊aste h̊allas helt isolerad. Detta medför att den sökta vägen ut inte kommer
hittas med 100% sannolikhet.

I detta projekt försöker vi använda en adiabatisk kvantdator för att bestämma struk-
turen av förenklade proteiner. Proteinstrukturberäkningar är ett sv̊art men viktigt prob-
lem, eftersom kännedom om strukturen är avgörande för att förutsp̊a hur exempelvis en-
zymproteiner fungerar. I v̊ar förenklade modell kan proteinet ses som ett kapat pärlhalsband,
där pärlorna representerar aminosyror. Dessutom till̊ater vi bara pärlorna att vara p̊a speci-
fika platser, precis som schackpjäser bara f̊ar vara p̊a en utav 64 rutor p̊a schackbrädet.
Trots denna restriktion kan pärlhalsbandet anta en mängd olika former. Bland dessa söker
vi den struktur som har lägst energi. Försök att lösa detta optimeringsproblem p̊a en
kvantdator har gjorts förut. I denna uppsats utvecklar vi en ny formulering av struk-
turbestämmningsproblemet, väl lämpad för kvantdatorer. Vi testar med framg̊ang meto-
den p̊a en kvantdator utvecklad av D-Wave Systems, för adiabatiska kvantberäkningar.
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1 Introduction

Quantum computers provide a promising avenue for solving difficult optimization prob-
lems since they can utilize quantum phenomena such as superposition, entanglement and
quantum tunneling. These phenomena imply that NP problems can, potentially, be solved
in polynomial time [1,2]. The development of these computers has taken two major tracks,
quantum annealers [3] and gate-based systems [4]. In this project, we have used a quan-
tum annealer manufactured by D-Wave (D-Wave Systems Inc.). The D-Wave machines
are made up of a spin system and minimize energy functions in the form of Ising spin glass
Hamiltonians. Therefore, problems have to be mapped onto this form. Mapping difficult
optimization problems onto Ising spin glass system has seen success [5–8], and goes back
to the eighties [7, 8].

Protein folding, going from sequence to structure by minimizing an energy function, rep-
resents a difficult optimization problem. Simplified lattice-based models can often provide
qualitatively relevant results. However, these simplified models still represent a computa-
tional challenge and are therefore ideal testbeds for new algorithms. A pioneering formu-
lation of the lattice protein folding problem in terms of an Ising spin glass Hamiltonian
was given by Perdomo and coworkers [9] as a quadratic unconstrained binary optimization
(QUBO) problem. They used the HP model [10], where a protein is represented by a chain
of N beads, either being hydrophobic (H) or polar (P), residing on a lattice. This formu-
lation required a significant amount of qubits for small chains, yet scaled polynomially.

An early attempt to fold a short lattice protein (N = 6) using quantum annealing was
carried out on a D-Wave machine [11]. The implementation used a growth algorithm, where
the turns along the chain were mapped onto qubits. This implementation was resource-
efficient for small chains but scaled exponentially with N . Recently, a similar encoding
was implemented on IBM’s gate-based quantum computers for a short chain (N = 7) [12].
These algorithms offer a compact chain representation, but make self-avoidance difficult
to implement. For a recent review of lattice protein folding on quantum computers, see
ref. [13].

In contrast to refs. [11, 12], in this project, we propose a different mapping for lattice
proteins. In our mapping all sites on the lattice hosts qubits. The approach was inspired by
ref. [14], which used a D-Wave machine to sample homopolymers and shares similarites with
a QUBO formulation for lattice heteropolymers [15] which, to our knowledge, was never
implemented. Our approach is such that minimizing the energy function, E, makes the
qubits coalesce to a finite set active qubits defining the desired folded structure. Further,
the function E includes a self-avoidance term and, importantly for quantum annealing, is
quadratic (or 2-local) in the binary variables. This dynamical encoding can be seen as a
clustering approach driven by requiring a legal chain on the lattice.

We evaluate the performance of the proposed method using the HP model [10] as a
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testbed. We do this by using classical simulated annealing (SA) [16], followed by ex-
plorations on the D-Wave Advantage annealer [17]. To measure the performance of the
method we compare with synthetic HP [10] sequences with up to 30 beads, where the exact
solution is known [18,19] from exhaustive enumeration. In addition, we also present results
obtained for two longer sequences [20] with 48 and 64 beads, respectively, which have been
studied by various classical methods.

This thesis is organized as follows. Sec. 2 presents a short introduction to quantum
computation basics, while in sec. 3 we discuss the D-Wave annealers. In sec. 4 the HP model
is presented along with the novel energy function, E, and sec. 5 presents the computational
methods used in this project. The results and evaluation of the model are presented in
sec. 6. The thesis ends with a few concluding remarks and an outlook, given in sec. 7.

2 Quantum Computing Basics

Quantum computing has received much attention recently, and progress is being made. For
a more detailed discussion on the topic, the reader is referred to [1,2,21–25]. This section
outlines some basics of the field. In this work we set ℏ ≡ 1. In quantum computing,
to process information, the quantum bit (qubit) is used as the unit for computation [2].
Contrary to the classical binary so-called bit, the qubit can utilize quantum phenomena
such as superposition and entanglement. It can be seen as a generalization of the bit. The
qubit |ψ⟩ is often described using two complex numbers ψ0, ψ1 ∈ C, such that [1, 2, 21]

|ψ⟩ = ψ0 |0⟩+ ψ1 |1⟩ =
(
ψ0

ψ1

)
(2.1)

where the state is normalized such that ⟨ψ|ψ⟩ = |ψ0|2 + |ψ1|2 = 1. The last equality in
eq. (2.1) is only true in the |0⟩ , |1⟩ basis, where these states can be represented by the
standard basis vectors [2, 21]

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
. (2.2)

Actual calculations use multi-qubit systems.

Similarly to the one qubit case, a multi-qubit system can also be described using a
set of complex coefficients. However, for a system of n qubits, 2n coefficients are needed
instead of two. Thus, the system |ψ⟩ can be described using ψ0,...,ψ2n−1 as [2, 21]

|ψ⟩ = ψ0 |0 · · · 00⟩+ ψ1 |0 · · · 01⟩+ . . .+ ψ2n−1 |1 · · · 11⟩ =


ψ0

ψ1
...

ψ2n−1

 . (2.3)
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The basis states in eq. (2.3) are Kronecker products of the single qubit basis states seen in
eq. (2.2). For example, the |q0q1 · · · qn−1⟩ = |q0⟩ ⊗ |q1⟩ ⊗ . . . ⊗ |qn−1⟩, where qi = 0, 1 for
the ith qubit of the system. Note that the basis state |q0q1 · · · qn−1⟩ with the coefficient
ψj contains the binary value of j inside the ket, i.e. bin(j) = q0q1 · · · qn−1. Therefore, the
state |ψ⟩ can be written as [2, 21]

|ψ⟩ =
2n−1∑
j=0

ψj |j⟩ (2.4)

In recent years two major quantum computing paradigms have emerged. These are gate
based quantum computing [4] and quantum annealing [3] (also known as adiabatic quantum
computing)1. Gate based quantum computing works by applying operators, also called
gates, onto the state ket of the system such that the final ket is the desired state [1,21]. This
paradigm has received much attention and is the focus of Google’s, Microsoft’s and IBM’s
computers. Since such a computer was not used in this thesis, it will not be discussed any
further. The second paradigm uses the adiabatic theorem, which is discussed in sec. 2.1.
The somewhat simpler technology of the quantum annealers implies that they are less
difficult to manufacture, and as such, quantum annealers with 5000+ qubits are available
already [17]. Thus, quantum annealers are approaching sizes sufficiently large to tackle
real-world problems. It can also be shown that both paradigms, theoretically, have the
same computational power [22].

2.1 Quantum Annealing

The idea of quantum annealing machines is to use the adiabatic theorem in quantum
mechanics. The theorem assumes a Hamiltonian of the form [1,21,22]

H(t) = A(t)H0 +B(t)H1, t ∈ [0, τ ]. (2.5)

The coefficient in front of H1 goes from zero to unity, while the coefficient in front of H0

goes from unity to zero. Therefore, H(0) = H0 and H(τ) = H1. The theorem states that
if the system is in the non-degenerate ground state of H(t) at t = 0, and H(t) is changing
slowly, the system will remain in the instantaneous ground state a time τ later. For the
theorem to work the anneal time has to be chosen such that [22]

τ ≫ max0≤s≤1

| ⟨ψ1(s)| dH(s)
ds

|ψ0(s)⟩ |
(E0(s)− E1(s))2

, s ≡ t

τ
(2.6)

where |ψ0(s)⟩ (|ψ1(s)⟩) and E0(s) (E1(s)) are the instantaneous ground (first excited) state
and its energy, respectively. Eq. 2.6 implies that H0 and H1 in eq. 2.5 have to be chosen

1There are other paradigms as well, such as measurement based quantum computing [26] or fusion-based
quantum computing [27]
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such that they do not commute. If they commute there will be a time, s1, where the energy
gap E0(s1)− E1(s1) vanishes [1].

To solve problems using the adiabatic theorem the state Hamiltonian H0 is chosen such
that the ground state is easy to construct, while H1 is chosen such as to have the desired
solution as its ground state. On the D-Wave machines, the Hamiltonian H0 is chosen to
be [1, 21]

H0 =
n−1∑
i=0

hiσ
x
i , (2.7)

for a system of n qubits, where hi < 0 for all i. Here σx
i = I⊗ ...⊗σx⊗ ...⊗ I, with I being

the identity matrix and σx being the x Pauli matrix placed at position i in the product.
This implies that the system starts in the state [1]

|ψ(0)⟩ =
(

1√
2

)n

(|00⟩+ |10⟩)⊗ · · · ⊗ (|0n−1⟩+ |1n−1⟩) (2.8)

in the σz basis, where the |0⟩ (|1⟩) state is interpreted as the spin-↑ (spin-↓) state from
quantum mechanics. Therefore, the system starts out in an equal superposition state in
the computational basis. Moreover, on the D-Wave machines the Hamiltonian H1 is chosen
to be an Ising spin glass Hamiltonian [1]

H1 =
n−1∑
i=0

hiσ
z
i +

n−1∑
i<j

Jijσ
z
i σ

z
j , (2.9)

such that its ground state, |q0...qn−1⟩, encodes the solution to the proposed problem. Since
the system starts in the superpostition state of eq. 2.8, it can use quantum tunneling to
end up in the ground state of the Hamiltonian in eq. 2.9 Therefore, if an optimization
problem can be recast into an Ising spin glass Hamiltonian, with the solution being the
ground state, it can theoretically be solved by a quantum annealer.

3 The D-Wave Machines

D-Wave Systems is a Canadian company that makes commercially available heuristic
solvers that use quantum annealing. Here, we will briefly describe how they work, for a
more detailed description of the physics of the system, the reader is referred to refs. [23–25].
The qubits in these machines are called flux qubits, and are built up of superconducting
circuits. The flux qubits are connected by so-called couplers, and both the couplers and
flux qubits are controlled by external magnetic fields. The parameters hi and Jij of the
final state Hamiltonian in eq. 2.9 are controlled by time-independent magnetic fields for
the qubits and couplers, respectively. Further, the annealing process is controlled by a
time-dependent magnetic fields which change the Hamiltonian in eq. 2.7 to the one in
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eq. 2.9 [21]. The collection of qubits and couplers is called the quantum processing unit
(QPU).

The QPU is subject to several limiting factors that may influence the result of the
annealing process. These include factors originating from the environment, such as the
temperature which affects the superconductivity of the qubits, or high energy photons that
may cause unwanted excitations of the qubits [28]. Other factors, that do not originate
from the environment, are the so-called integrated control errors [29]. These errors come
from an imperfect implementation of eq. 2.9, giving the new Hamiltonian [29,30]

Hδ =
n−1∑
i=0

(hi + δhi)σ
z
i +

n−1∑
i<j

(Jij + δJij)σ
z
i σ

z
j , (3.10)

where δhi and δJij are noise terms. When this occurs the D-Wave machine finds the ground
state of eq. 3.10 instead of eq. 2.9 [30]. It has been shown that the probability of eq. 3.10
and eq. 2.9 sharing the same ground state shrinks exponentially with increasing n [30].
Therefore, this causes an exponential decrease in the amount of successful anneals when
increasing the system size.

Besides the aforementioned limitations, the D-Wave also faces challenges due to the
sparse connectivity of the QPU. The most recent QPU is called Advantage and it contains
5000+ qubits and up to 15 couplers per qubit. The topology of Advantage is a Pegasus
graph of size 16 (P16) [17, 21] (see Fig. 1a for a P4 graph). The sparse connectivity of the
Pegasus graph implies that not all problems can be mapped onto a Pegasus subgraph. To
circumvent this issue D-Wave embeds the problem graph in the QPU by forming “chains”
of qubits. These chains consist of several qubits that have a strong coupling between them,
such that they effectively act as a single qubit (see Fig. 2). It is known that the upper
bound of extra qubits needed scales quadratically with system size [31]. The effective
qubits corresponding to chains can have a higher connectivity than that of the original
qubits, meaning that more problems can be solved at the cost of using more qubits [32].

3.1 Programming on the D-Wave Quantum Annealers

In this section we briefly describe how to program on the D-Wave machines using the
Python package Ocean-SDK [33, 34], supplied by D-Wave. For more detail, the reader is
referred to ref. [21]. To minimize a function using the QPU, it has to be submitted as a
QUBO model [21]

n−1∑
i=0

aixi +
n−1∑
i<j

bijxixj =
n−1∑
i≤j

xiQijxj, xk = 0, 1 (3.11)
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Figure 1: (A) Pegasus graph of size 4 (P4) where the nodes are shown as blue dots and the
edges as gray lines. (B) A schematic view of the hybrids solvers. The portfolio solver reads
the input from the user, starts several hybrid solvers and calculates a time limit. The hybrid
solvers contain a classical algorithm and a quantum module (QM). The classical solvers
attempt to solve the problem, while the QM partitions the problem into subproblems and
sends them to the QPU. The QPU responds with the solutions to the subproblems, and
these responses helps to guide the classical solver. At the time limit, the hybrid solvers
deliver their results to the portfolio, which picks the best solution and send it to the user.

where the equality is true since xk = 0, 1 which implies that xk = x2k, or as an Ising
Hamiltoninan [21]

n−1∑
i=0

hisi +
n−1∑
i<j

Jijsisj, sk = −1, 1 (3.12)

where the solution is the vector x⃗ (s⃗) that minimizes eq. 3.11 (eq. 3.12). The functions
are communicated to the QPU as a dictionary containing the coefficients. The dictionary
either takes the form Q= {(i, j) : Qij} for QUBO or as two dictionaries h={i : hi} and
j= {(i, j) : Jij} for Ising. Further, the class DWaveSampler [33–35] chooses which QPU to
send the problem to (in our case it is the Advantage). This sampler has two functions,
sample qubo and sample ising, which submit the dictionary Q, or h and j to the chosen
QPU [21]. These functions also submit additional parameters such as the Annealing time,
τ , specified in µs, and the number of samples obtained per submission (num reads), which
must be < 106/(τ/µs). Typically, these parameters have to be optimized for each individual
problem.

As stated previously, if the problem has higher connectivity than the QPU it has to be
embedded in the QPU. Generating an optimal embedding is itself NP-hard, thus Ocean

offers a heuristic algorithm to generate a Pegasus embedding. This algorithm uses the class
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Figure 2: Schematic view of how an embedding is made on the D-Wave machines. A
triangular graph with nodes a,b and c is embedded in a square graph, with nodes 0,1,2 and
3, by letting 0 and 2 ”play” the role of b. In this case, 0 and 2 form a chain of length 2.
The triangular graph is the problem graph and the graph furthest to the right represents
its embedding into the QPU topology.

EmbeddingComposite [33,34], which allows for probabilistic generation of embeddings or a
user-submitted one. The strength of the biases for the chains in the embedding is regulated
by the parameter chain strength, which is often chosen to be the smallest value that does
not cause chains to break. This parameter is submitted, along with the other parameters,
using the functions sample qubo and sample ising. Ocean also offers classes that combine
DWaveSampler with a specific embedding. One such class is DWaveCliqueSampler, which
combines DWaveSampler with an embedding for a fully connected graph. This class is
designed for dense problems [35].

3.2 Hybrid Quantum-Classical Computations

Besides solvers based entirely on quantum annealing, D-Wave also offers hybrid quantum-
classical solvers. The hybrid approach uses classical solvers while sending subproblems
of the submitted problem as queries to the QPU. The subproblems are constructed using
classical heuristic partitioning algorithms and are small enough to be solved effectively on
the QPU. The solutions to the subproblems serve to guide the classical solvers [36] (see
Fig. 1b). The goal is to speed up the solution of challenging problems by queries to the
QPU. With the hybrid approach, it is possible to tackle much larger problems, with many
thousands of fully connected variables, than what can be dealt with using quantum anneal-
ing alone. However, the internal function of the hybrid solvers is proprietary information
(see the documentation on Leap Hybrid solvers [35,36]).
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4 Lattice Protein Folding and its QUBO Encoding

We intend to tackle the problem of folding HP lattice proteins [10] using quantum com-
puting. Therefore, in this section, we present it along with our novel QUBO encoding of
the HP model, which we used to obtain the results presented in sec. 6.

4.1 The HP Model

The HP model is a lattice protein model [10], where the protein is represented as a self-
avoiding chain of hydrophobic (H) and polar (P) beads residing on a lattice [10, 18, 19].
The energy function of the protein is computed as a sum of interaction energies between
all beads. Therefore, the energy function takes the form [19]

E =
∑
f<f ′

U(hf , hf ′)Cff ′ (4.13)

where hf denotes the type of bead (H or P) at position f in the sequence and Cff ′ is
defined as [19]

Cff ′ =

{
1, if beads f, f ′ are nearest neighbors on the lattice but |f − f ′| > 1.

0, otherwise.
(4.14)

The function U(hf , hf ′) determines the interaction energy, which is often set to −1 if hf
and hf ′ are both H, while being 0 otherwise. Therefore, in this convention, the energy of
the protein is −NHH, where NHH is the number of HH nearest-neighbor contacts.

In part due to its simplicity, the HP model has been extensively studied [18–20, 37].
In particular, through exhaustive enumeration, all HP sequences which have a unique
minimum-energy structure, and this structure, have been determined for chains with ≤
30 beads [18, 19]. This enumeration also showed that several sequences can have the
same unique minimum-energy structure. Such a sequence is said to design that structure
and the number of sequences that designs a given structure is called the designability of
the structure. Structures with high designability thus show robustness to mutation [19].
Further, on a 2D square lattice approximately 2% of all HP sequences with ≤ 30 beads have
well-defined minimum-energy structures [18]. These ground state structures, and other low
energy configurations, tend to display a hydrophobic core of H beads.

Besides the exact enumerations, Monte Carlo methods have been employed to find
low-energy structures. In particular, sequences of lengths 48 and 64 beads have been
studied [20,37,38]. However, the structures found using these methods are not guaranteed
to be the ground state structure.
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4.2 Binary Quadratic Model for HP Lattice Proteins – QUBO
Encoding

Given an HP sequence (h1 . . . , hN), hi ∈ {P,H}, we wish to determine its ground state
using quantum annealing. To this end, we present a binary encoding for HP lattice proteins,
assuming a square grid with L2 sites.

Inspired by the binary representation of homopolymers of ref. [14], instead of directly
encoding chain configurations, we introduce fields of binary variables along with penalty
terms, the latter of which serve to ensure that the final binary field configurations corre-
spond to proper chain configurations. To reduce the number of binary variables, we make
a checkerboard division of the lattice into even and odd sites, and use the fact that in a
valid chain configuration all even (odd) beads share the same lattice site parity (see Fig. 3).
Therefore, we may assume that even (odd) beads reside on even (odd) lattices sites. Thus,
we introduce one set of binary fields, σf

s , to describe the location of even beads, and another
set for odd beads σf ′

s′ . Here, the indices f and s run over even beads and sites, respectively,
while f ′ and s′ run over odd beads and sites. We set σf

s = 1 if bead f is located on site s,
and σf

s = 0 otherwise. The odd fields σf ′
s′ are defined in the same way. The division into

even and odd sites reduces the number of variables required from N × L2 to ≈N × L2/2.

Having defined the degrees of freedom, we now describe the energy function. In our
QUBO model, the total energy E has the form

E = EHP +
3∑

i=1

λiEi , (4.15)

where EHP is the energy of the HP model (see above) and the remaining three terms E1, E2

and E3 are constraint energies. The strengths of the constraints are set by the parameters
λi.

Specifically, in terms of the binary fields, the four energies can be expressed as follows.

• The HP energy EHP = −NHH can be rewritten as

EHP = −
∑

|f−f ′|>1

C(hf , hf ′)
∑
⟨s,s′⟩

σf
sσ

f ′

s′ , (4.16)

where the second sum runs over all nearest-neighbor pairs of sites, ⟨s, s′⟩. Such a
pair always consist of one even and one odd site. The beads f and f ′ must both be
of type H for a non-zero energy contribution, and must not, with our definition of a
contact, be adjacent along the chain.

• The first constraint energy, E1, is given by

E1 =
∑
f

(∑
s

σf
s − 1

)2

+ {same for odd parity} , (4.17)
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Figure 3: Evolution of the binary model described in Sec. 4.2 in a hypothetical SA run for
the 6-bead sequence HPHPPH. Circles represent beads, and numbers indicate bead posi-
tions along the sequence. By construction, odd/even beads can reside only on grey/white
sites. (A) Early stage. Typically, all the three constraints are violated (E1, E2, E3 > 0).
(B) Intermediate stage. Some but not all of the constraints are satisfied (in this example:
E1 = E2 = 0, E3 > 0). (C) The final state, in this example corresponding to the desired
minimum-energy structure of the given sequence (EHP = −2, E1 = E2 = E3 = 0).

and serves to ensure that each bead is located at exactly one lattice site.

• The energy E2 makes the chain self-avoiding. It is given by

E2 =
1

2

∑
f1 ̸=f2

∑
s

σf1
s σ

f2
s + {same for odd parity} , (4.18)

and provides an energy penalty whenever two beads occupy the same site.

• The final energy, E3, has the form

E3 =
∑

1≤f<N

∑
s

σf
s

∑
|s′−s|>1

σf+1
s′ +{same with odd/even parity interchanged} , (4.19)

and is responsible for connecting the beads to a chain. It provides an energy penalty
whenever two adjacent beads along chain are not nearest neighbors on the lattice.

It is worth noting that we have a physical chain configuration if and only if E1 = E2 =
E3 = 0.

As indicated in sec. 1, the above binary model shares similarities with the “diamond”
encoding proposed in ref. [15]. The latter method is able to reduce the number of binary
variables required for very short chains, by fixing the position of the first bead and using the
fact that odd and even beads can be assumed to belong to different layers of the “diamond”.
For long chains, our choice of a freely moving chain on a simple odd/even checkerboard
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is more resource-efficient since, in general, the search for the ground state can be carried
out on a smaller grid if the chain is freely moving. Besides scaling, our constraint energies
Ei also differ from those of ref. [15]. In our encoding, all three constraint energies are
manifestly non-negative for both physical and unphysical spin configurations, which makes
our method more robust to changes in the strength parameters λi . Since the encoding in
ref. [15] was never implemented, its dependence on the parameters is not known.

5 Computational Methods

5.1 Simulated Annealing

Before turning to quantum annealing, we tested this QUBO model using SA, with the
system defined by the partition function Z =

∑
{σf

s ,σ
f ′
s′ }
e−βE, where β denotes inverse

temperature and E is given by eq. 4.15. All runs spanned the same set of 25 temperatures,
given by β0 = 1 and βi+1 = 1.05βi. At each temperature, 104 sweeps were performed,
where one sweep comprises, on average, one attempted update per spin variable. The
updates were single-spin flips, controlled by a Metropolis acceptance criterion. All runs
were started from random initial spin configurations, and used a 102 grid.

For comparison, we also conducted SA runs based on the conventional explicit-chain
representation of the HP model. Here, the energy was given by EHP, without the constraint
terms. The set of temperatures was the same as in the QUBO SA runs. The simulations
used three Metropolis-type elementary moves: local one- and two-bead updates, and a non-
local pivot update. The one-bead updates move changes the position of a single randomly
selected bead without breaking the chain. The two-bead update works similarly. The
non-local pivot move chose one bead at random and pivots all beads coming after it in
the sequence, through a rigid-body rotation or reflection. The pivot move speeds up the
simulation of long flexible chain, which evolve much more slowly if only one- and two local
moves are used. The local moves are needed if the chain is in a compact folded state,
because pivot moves are unlikely to be accepted in this case. At each temperature, 105

sweeps were performed, with one sweep consisting of N−1 one-bead moves, N−2 two-bead
moves and one pivot move. The chains were not confined to a finite-sized grid.

The simulations were run on a standard desktop computer. For N = 30, each QUBO
SA run required 21 CPU-core-seconds, whereas each explicit-chain SA run required 5 CPU-
core-seconds. To gather statistics, for each sequence, we performed 1000 runs with each
method, using different random number seeds.
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5.2 Hybrid Quantum-Classical Computations

We conducted hybrid quantum-classical computations for HP chains with up to 64 beads,
using D-Wave’s Leap hybrid sampler service and a D-Wave Advantage quantum annealer.
All sequences were folded on a 102 grid. For N = 64 (N = 30), each hybrid run required
8 (4) seconds. To gather statistics, 100 runs were performed for each sequence, except for
the N = 64 chain where 200 runs were performed.

5.3 QPU Computations

For the pure QPU computations, we used the DWaveCliqueSampler, designed for dense
binary quadratic models. All the computations used a chain strength between 1 and 7.5
and the annealing time was set to τ = 2000µs, its maximum allowed value. The number
of output reads per run, num reads, was set to 490.

5.4 HP Sequences

As a testbed, we used a selected set of HP sequences with 4–30 beads, all of which are
known from exhaustive enumerations to have a unique minimum-energy structure [18,19].
The sequences are labeled SN , where N indicates the number of beads, and are shown
in Table A1 along with their minimum energies, Emin. The corresponding structures are
illustrated in Figs. 7, 9 and A1..

For a given N ≤ 30, the selected sequence SN is one of those that design the structure
with highest designability for that N . The two sequences S48 and S64 probably do not have
a unique minimum-energy structure. They were chosen since they have been widely used
to test (novel) classical algorithms [20,37,38].

6 Results

Using the spin representation of sec. 4.2, we wish to find minimum-energy structures of
given HP sequences by minimizing the total energy E = EHP +

∑
i λiEi (Eq. 4.15) on a

quantum annealer. As a first step toward this goal, we investigate the power of the QUBO
approach under SA, and how it depends on the Lagrange parameters λi. We next do the
same using the hybrid quantum-classical solver. Finally, we compare the results by using
the QPU annealer only.
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Figure 4: Run-time evolution of the HP energy EHP and the constraint energies E1, E2

and E3 in a QUBO SA folding simulation for the 30-bead sequence S30 (Table A1) on 102

grid, with λ⃗ = (2.1, 2.4, 3.0).

6.1 Simulated Annealing with QUBO Encoding

In the binary model presented in sec. 4.2, the EHP energy can become substantially lower
than it is in any proper chain state. For this QUBO approach to work, it is therefore
essential that the λi parameters that force the solutions to be “legal” are sufficiently large.
On the other hand, by choosing large λi values, there is a risk of making the energy
landscape rugged, and therefore the dynamics potentially slow. Hence, the λi parameters
should be neither too large nor too small.

To gain insight into the behavior of the binary model and its dependence on the λi
parameters, a set of classical Monte Carlo-based SA runs (Sec. 5.1) were conducted, using
the HP sequences S18–S30 in Table A1. The runs had a fixed length and were deemed
successful if the final state corresponded to the known minimum-energy structure of the
given HP sequence. As expected, in order to have an acceptable hit rate, it was necessary
to choose the λi parameters with some care. Nevertheless, without excessive fine-tuning,
it was possible to find a single set of parameters, λ⃗ = (2.1, 2.4, 3.0), that gave a hit rate
≳0.1 for all the sequences S18–S30 (see below). We refrained from attempting any further
optimization of the parameters, as the optimal values need not be the same on a quantum
annealer. The optimal parameters would, of course, also depend on both HP sequence and
grid size.

Fig. 4 shows the run-time evolution of the four different energy terms in one of 1000
QUBO SA runs for the sequence S30. At the end of the run, all the three constraint
energies Ei are zero, while EHP takes its known minimum value for an HP chain with
this sequence (Emin = −15). Hence, the final spin configuration corresponds to the S30

ground state in the HP model. The fraction of runs ending in the ground state, the hit
rate, was 0.226 ± 0.013. The remaining runs ended in spin configurations that either did
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Figure 5: Parameter dependence of the fraction of correct solutions (hit rate) in the vicinity

of a reference point λ⃗∗, when using QUBO SA and hybrid quantum-classical computation
to search for the ground state of the S30 sequence (Table A1) on a 102 grid. The hit rate
is plotted against ∆λi = λi − λ∗i , keeping λj = λ∗j for j ̸= i. Lines are drawn to guide the

eye. (A) QUBO SA with λ⃗ = (2.1, 2.4, 3.0). (B) Hybrid quantum-classical computations

with λ⃗ = (2.0, 3.0, 3.0). Note the difference in scale between the two panels, reflecting the
difference in performance as shown in Fig. 6.

not correspond to a proper chain, or corresponded to a structure with EHP > Emin. In
the beginning of the runs, the spin system undergoes a rapid relaxation, which brings the
energies from initial values EHP ∼ −103 and λ1E1 + λ2E2 + λ3E3 ∼ 105 to the plotted
range before the first measurement is taken (after 103 sweeps). It is interesting to note that
among the three constraint energies, E1 and E3 tend to relax much more slowly than E2,
as is the case in Fig. 4. Note also that the HP energy takes values EHP < Emin many times
during the course of the run. Such values can occur only when at least one constraint is
broken.

Based on a limited set of preliminary runs, the parameters λ⃗ = λ⃗∗ = (2.1, 2.4, 3.0) were
chosen for this QUBO SA run (Fig. 4). Figure 5a shows the parameter dependence of the

hit rate in the vicinity of λ⃗∗, when changing one λi at a time. For all three parameters, the
hit rate stays tiny until a threshold is passed, followed by a steep increase to the maximum
observed hit rate, for λi = λ∗i . When further increasing λi beyond λ

∗
i , the hit rate decays,

most likely due to an increasingly rugged energy landscape. This decay leads to an upper
limit on the parameter λ1, beyond which the hit rate is impractically small. By contrast,
the hit rate stays significant even for λ2 and λ3 values much larger than those in Fig. 5a.
In fact, setting λ2 = 100 or λ3 = 100, we still obtained hit rates of 0.132 ± 0.011 and
0.074 ± 0.008, respectively. Hence, overall the parameter sensitivity is low, although λ1
must be chosen with some care.

The fact that the λ1 dependence has a different shape than the dependencies on λ2 and
λ3 can be, at least in part, understood. With the single-spin updates employed, the system
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the QUBO SA runs, and to (2.0, 3.0, 3.0) when using the hybrid solver. All QUBO-based
results were obtained using a 102 grid.

cannot move from one chain-like configuration to another, both with E1 = E2 = E3 = 0,
without visiting intermediate non-chain configurations with E1 > 0. By contrast, E2 and
E3 may stay zero during such a move. This observation suggests that the energy landscape
becomes rugged for large λ1, but not necessarily so for large λ2 or λ3.

To explore how the performance of the QUBO SA approach depends on chain length,
we conducted calculations for all the HP sequences S18–S30 in Table A1, using λ⃗ = λ⃗∗.
As expected, the measured hit rates show a decreasing trend with increasing N (Fig. 6).
However, the decrease is not monotonous, indicating that the hit rate is sequence-dependent
and not a simple function of N .

For comparison, we also carried out a set of direct SA minimizations of EHP based on
conventional explicit-chain Monte Carlo methods (Fig. 6). Despite being faster, the hit
rate is higher in these runs than it is with QUBO-based SA. However, the difference in hit
rate is modest given that state space in comparison is tiny with explicit chains. Note the
similarities in shape between the hit rates obtained from these two unrelated sets of SA
calculations. These similarities suggest that some target structures are relatively easy or
difficult to find, independent of the method employed.

6.2 Hybrid Quantum-Classical Computations

A promising approach that D-Wave offers is provided by hybrid quantum-classical methods,
by which large systems can be studied. To assess the power of this approach, we conducted
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hybrid computations for all the HP sequences studied in sec. 6.1, S18–S30 (Table A1).
We additionally included two longer sequences [20], which have been extensively used as
testbeds for various (classical) methods.

As in the SA case, with the hybrid solver, a rough search was sufficient in order to
find a single λ⃗, λ⃗∗ = (2.0, 3.0, 3.0), for which all the sequences S18–S30 could be correctly

folded on a 102 grid. Figure 5b shows the parameter dependence of the hit rate near λ⃗∗

when using the hybrid solver. Compared to QUBO SA (Fig. 5a), the measured hit rates
are significantly higher with the hybrid solver. At the same time, the shapes of the λi
dependencies are similar in both cases. In particular, in both cases, the hit rate is more
sensitive to changes in λ1 than to changes in λ2 or λ3. Similarly to the SA case, the hit rate
stays significant for values of λ2 or λ3 that are larger than those in Fig. 5b. In particular,
when setting λ2 = 100 or λ3 = 100, we obtained hit rates of 0.980±0.014 and 0.540±0.05,
respectively. Overall, the parameter sensitivity of the model is lower with the hybrid solver
than with QUBO SA.

When comparing hit rates from our hybrid and QUBO SA runs for the sequences S18–
S30, we find that it is consistently highest in the hybrid case (Fig. 6). In fact, the hit rate
is one across this entire set of sequences for the hybrid solver. It is important to note
that when folding the sequences S18–S30, the hybrid solver did not always make use of the
QPU. The fraction of runs that used the QPU increased with N and was above one half for
N > 21. Still, the precise contribution of the QPU to the final results is hard to judge since
the details of the inner-workings of the hybrid solver are not publicly available information
(see sec. 3.2). Nevertheless, the impressive results obtained for these sequences motivated
us to also test the hybrid solver on two significantly longer sequences, namely S48 and S64

(Table A1) with 48 and 64 beads, respectively.

For these two sequences, exact results are not available, but both belong to a set of HP
sequences that have been widely used to test novel (classical) algorithms [20]. The lowest
known energies are EHP = −23 for S48 [38] and EHP = −42 for S64 [37]. We performed
hybrid computations for both sequences on a 102 grid. In order to obtain good results,
the λi parameters had to be adjusted. For S48, the lowest known energy, EHP = −23, was
recovered in 10 of 100 hybrid runs, using λ⃗ = (2.0, 3.5, 3.0). One of these 10 structures

is shown in Fig. 7a. For S64, with λ⃗ = (3.0, 4.0, 4.0), a structure with the lowest known
energy, EHP = −42, was obtained in 1 of 200 hybrid runs. This folded structure is depicted
in Fig. 7b. Although the hit rate is low, particularly for S64, it is encouraging that the
hybrid solver is able to locate these complex low-energy structures.

Lastly, it is interesting to note that both structures in Fig. 7 exhibit a hydrophobic (H)
core and a polar (P) shell. This is in agreement with the observation that most low-energy
configurations contain a hydrophobic core. In fact, the structure in Fig. 7a has a perfect
square of H beads, while the structure in Fig. 7b almost has a rectangle. This hints at the
energies being very close, if not equal, to the global minimum-energies.
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Figure 7: Low-energy structures from hybrid classical-quantum computations for the se-
quences S48 and S64 (Table A1) obtained on a 102 grid. Filled and open symbols indicate H
and P beads, respectively for both structures. (A) S48-structure with energy EHP = −23,

obtained with parameters λ⃗ = (2.0, 3.5, 3.0). (B) S64-structure with energy EHP = −42,

obtained with parameters λ⃗ = (3.0, 4.0, 4.0)).

6.3 Pure QPU Computations

The QUBO problem that we wish to solve for finding minimum-energy HP structures con-
tains ≈ NL2/2 logical qubits (variables). Moreover, the system is almost fully connected,
implying that its embedding into the QPU topology requires a significant amount of addi-
tional qubits. Therefore, pure QPU computation is effectively limited to relatively short
HP chains.

To explore how the performance of the pure QPU approach depends on system size,
we conducted computations for the six sequences S4, S6, S7, S8, S9 and S10 (Table A1)
for various grid sizes. Figure 8a shows the fraction of all annealing cycles that recovered
the known minimum-energy structure, for these systems, plotted against the number of
physical qubits required. The parameters λi and the annealing time were the same for
all systems, whereas the chain strength was chosen individually for each system, for best
performance (among the values 1.0, 1.5,. . . , 4.5, 5.0). Albeit with some scatter, the hit
rate shows a roughly exponential decay with system size, as expected the decay is due to
stems from integrated control errors (eq. 3.10) [30]. This system-size dependence is more
severe than the polynomial scaling of the number of qubits required, and remedies are
being explored [30].

The embeddings of our almost fully connected problem into the QPU topology using
the DWaveCliqueSampler, require the use of chains of physical qubits. As a result, when
the problem size increases, the number of physical qubits differs from the number of logical
qubits. In Fig. 8b, the number of physical qubits is plotted against the number of logical
qubits for the same systems as in Fig. 8a. We find that the data are well described by a
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Figure 8: Pure QPU computations. (A) The hit rate on a logarithmic scale against the
number of physical qubits used for the sequences S4, S6, S7, S8, S9 and S10 for various
grid sizes. For every choice of sequence and grid size studied, we conducted 100 runs with
490 annealing cycles each, using λ⃗ = (1.0, 4.0, 1.5). Statistical errors are in many cases
comparable with or smaller than the symbol sizes. (B) The number of physical qubits
against the number of logical qubits for the sequences S4, S6, S7, S8, S9 and S10 with various
grid sizes. The curve shows the fitted function f(x) = ax+bx2, with a = 1.85 and b = 0.093.
The embeddings into the QPU topology was generated using DWaveCliqueSampler.

quadratic function f(x) = ax+ bx2, with a = 1.85 and b = 0.093.

The longest sequence whose ground state was successfully recovered in our pure QPU
computations was S14 with 14 beads (Table A1). This sequence, whose minimum-energy
structure can be seen in Fig. 9, was studied using a 42 grid, which required 112 logical
and 1214 physical qubits. The chain strength was set to 7.5. To our knowledge, this is
the largest protein successfully folded using a quantum computer. It should be possible
to simulate larger chains using this encoding, as only 1214 of the +5000 qubits were used.
However, this will most likely prove to be cumbersome due to the aforementioned drastic
decay of the hit rate. In fact, the ground state of S14 was only recovered in one of a
total of 100 × 490 annealing cycles. This number of cycles is larger than the number
of states available to a chain with 14 beads on a 42 grid (counting all conformations of
homopolymers of size 14 on a 42 grid yields 416). On the other hand, it is tiny compared
to the 2112 ≈ 5.2 × 1033 states of the binary system, the vast majority of which do not
correspond to proper chain configurations.

It is possible that the pure QPU results can improved by further tuning of the simulation
parameters. However, at present, we conclude that pure QPU computation cannot match
classical SA or the hybrid quantum-classical approach (secs. 6.1, 6.2).
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Figure 9: The minimum-energy structure for the sequence S14, which was successfully
recovered on a 42 grid. This structure was obtained using the parameters λ⃗ = (2.0, 7.0, 4.0)
and a chain strength of 7.5. Filled and open symbols indicate H and P beads, respectively.
The sequences can be found in Table A1.

7 Conclusion and Outlook

In this project, we have developed a novel spin system representation of HP lattice proteins,
for structure prediction by energy minimization on a quantum annealer. This approach uses
an energy function that contains three auxiliary penalty terms, whose role is to ensure that
the generated spin configurations correspond to proper chains. A configuration is chain-like
if and only if all three penalty terms vanish.

To make sure that our energy function gives the correct structures upon minimization,
we tested it using classical SA, with the HP sequences S18–S30 in Table A1 as a testbed.
We also wanted to gauge how the performance of this approach depends on the λi pa-
rameters. All three parameters have to be sufficiently large in order to obtain chain-like
configurations. However, if λ1 is chosen too large, the energy landscape becomes rugged,
leading to a poor success rate. In contrast, λ2 and λ3 can be increased without any drastic
drop in hit rate. Thus, the approach is robust to changes in the λi parameters, especially
for λ2 and λ3.

Having verified that this mapping can be used to determine structure by classical SA,
we moved on to hybrid quantum-classical computations. For the sequences S18–S30, the
hybrid approach recovered the minimum-energy structure in 100 % of the runs. In fact, it
outperformed classical SA with the same encoding, both in terms of hit rate and speed.
The robustness to changes in λi parameters was found to be even better with the hybrid
method than it was with SA. The strong performance of the hybrid approach motivated us
to attempt to fold the two longer sequences S48 and S64, for both of which the lowest-known
energy was recovered. Especially for S64, this energy level is non-trivial to find, as shown
by the fact that some advanced classical algorithms failed to do so.
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Finally, we performed pure quantum annealing computations based on this mapping.
When doing this, we gauged the hit rate of the method for the sequences S4–S10 for various
grid sizes. The hit rate showed a steep decrease with increasing system size, implying that
pure QPU computations cannot match classical methods yet. We attributed this decrease
to integrated control errors (eq. 3.10) [30]. However, we were able to recover the minimum-
energy structure for S14 on a 42 grid. To our knowledge, this is the largest lattice protein
that has been successfully folded using a quantum computer.

All calculations in this project focused on the 2D HP model. It should therefore be
pointed out that the approach can be extended in at least two ways. Firstly, it can handle
models with larger alphabets, such as the 20-letter Miyazawa-Jernigan model [39], as it
amounts to simply changing the C(hf , hf ′) parameters in eq. 4.16. Secondly, although the
checkerboard division into odd and even sites may have to be modified or abandoned, the
approach can be used on an arbitrary graph. Thus, it can handle three-dimensional grids
or any other graph of relevance.

Further, we hope that this approach can be useful for gate-based quantum computations
as well. This could potentially be in the form of a quantum variational algorithm or a
quantum search algorithm.

Acknowledgments

I would like to thank Professor Anders Irbäck for his excellent guidance. I would also
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Supercomputing Centre (https://www.fz-juelich.de/ias/jsc) for supporting this project by
providing computing time on the D-Wave Advantage™ System JUPSI through the Jülich
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Appendix

Table A1: The HP sequences studied. The sequences are labeled SN , where N indicates the
number of beads. All SN withN ≤ 30 have a known, unique minimum-energy structure [18,
19]. The minimum energy is denoted by Emin. For all N ≤ 30, the sequence SN is chosen
among those having the most highly designable structure for this N as its unique minimum-
energy structure. For the additional and longer sequences S48 and S64, the ground states
are unknown. Here, the Emin values, marked with an asterisk, are the currently lowest
known energies, found with classical methods [37, 38]. Low-energy structures for all the
sequences studied can be found in Figs. 7 (S64 and S48), 9 (S14), and A1 (all other SN).

Name Sequence Emin

S4 HPPH −1
S6 HPPHPH −2
S7 PHPPHPH −2
S8 HPHPHPPH −3
S9 HHPPHPPHP −3
S14 HHHPPPHPPHPPPH −5
S18 HHHPPHPPHPHPPHPHPH −9
S19 PHPHPHPPHPHPPHPPHHH −9
S20 HPHPHPPHPHPPHPPPPHHH −9
S21 PHHPPHPHPPHPHPPHPPHHH −10
S22 HPPHPPHPHPPHPHPPHPPHHH −11
S23 PPHHHHPPHPPHPHPPHPHPPHP −10
S24 HPPPPHPPHPHPPHPHPPHPPHHH −11
S25 PHPHPHPHPPHPHPHPPHPPHHHHH −13
S26 HHHHPPHHPPHPHPPHPHPPHHPPHH −14
S27 PHPHPHPHPPHPHPHPPHPPPPHHHHH −13
S28 PPHHHPPHPPHPHPHPPHPHPPHPPHHH −13
S29 PHPHPHPPHHPPHPHPPHPPHHHHPPHHH −15
S30 PPHHHHPPHPPHPHPPHHPPHPHPHPPHHH −15
S48 PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPHPPHHHHH −23∗
S64 HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPPHHPPHHPP-

HPHPHHHHHHHHHHHHH −42∗
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Figure A1: Ground states for all the sequences SN in Table A1 with N ≤ 30 [18,19] except
S14 (whose ground state can be found in Fig. 9). Low-energy structures for the two final
sequences in Table A1, S64 and S48, can be found in Fig. 7.
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