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ABSTRACT 

 

Empirical EKC literature has conceptual flaws that arise due to the inclusion of 

polynomials and cointegrating relationships of powers of integrated processes. Additionally, 

previous studies focused on a narrow nexus between environmental degradation and 

economic growth that yield only a partial EKC. Considering hereinabove mentioned points 

the aim of this study is to assess the EKC hypothesis in the case of Georgia using a composite 

measure of environmental degradation and employing the appropriate estimation of the 

cointegrating polynomial relationship developed by Wagner (2015). The proposed estimation 

model is an extension of a fully modified estimator of Phillips and Hansen (1990). 

Additionally, the model specification and cointegrating relationship have been tested using a 

special KPSS-type test derived by Wagner (2015). The main findings suggest that an inverted 

U-shaped relationship exists when changes in biocapacity deficit/reserve, Kyoto basket of 

greenhouse gas emissions, and carbon dioxide emissions are incorporated into the analysis. 

However, Environmental Degradation Index does not support the existence of EKC. 

 

 

Keywords: Environmental Kuznets Curve, integrated processes, Planetary Boundary, 

Environmental Degradation Index 
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“Is this how our story is due to end? A tale of the smartest species doomed by that all too 

human characteristic of failing to see the bigger picture in pursuit of short-term goals?” 

- Sir David Attenborough 
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1. INTRODUCTION  

1.1 Acknowledgement of environmental problem 

The exponential growth of environmentally destructive human activities over the last 

century has reached such levels that become hard to be neglected and raised serious concerns 

regarding the stability and the balance of Earth Systems. The term Anthropocene Epoch, an 

unofficial unit of geologic time, describes the most recent interim in Earth’s history when it is 

being forced into planetary terra incognita by profound anthropogenic causes (Steffen et al., 

2007). The “Great Acceleration” graphs1 that illustrate Earth Systems trends over the 260 

years show that most of the indicators have grown exponentially, while only two, 

atmospheric methane concentration and stratospheric ozone loss, exhibited some stabilization 

pattern over the past decades (Steffen et al., 2015). According to Global Footprint Network2, 

Ecological Footprint from human activities exceeded Earth’s total Biocapacity by 

approximately 9.1 billion gha3 in 2018. In other words, to maintain the current level of 

consumption of goods and services and simultaneously for all the generated waste to be 

absorbed by nature we need the regenerative capacity of 1.56 Earth (World Wide Fund for 

Nature, 2020). In that respect, climate change and the concentration of greenhouse gases in 

the atmosphere is the most important chain of the Earth Systems, as its negative 

consequences are more pervasive. The latest Intergovernmental Panel on Climate Change 

(2021) report stated that climate changes have been observed in every region of the world 

(see Figure 1). The report used the words “irreversibility” and “irreversible” 28 and 74 times 

respectively, referring to the more visible aftermath of climate change. The fact that it took 

only 3.5 years for A68A4 (the largest iceberg that broke from Antarctica in 2017) to melt is 

just one of the recent examples of how climate change is a serious issue (Braakmann-

Folgmann et al., 2022). 

Starting from the second half of the last century, humanity started acknowledging 

environmental and climate change risks and their catastrophic consequences gravely. 1979 

was the first time when countries gathered under the same roof to discuss climate change 

issues at The First World Climate Conference in Geneva. This conference has been followed 

by a series of meetings and roundtables where several important action plans and treaties 

have been signed. 1997 Kyoto Protocol which is an extension of the 1992 United Nations 

 
1 The “Great Acceleration” graphs were last updated to 2010 and they comprise 12 Earth System indicators from 

atmospheric carbon dioxide concentration to terrestrial biosphere degradation. 
2 See: www.data.footprintnetwork.org  
3 Global hectares 
4 The iceberg was on average 230 meters thick and covered an area of nearly 6,000 square kilometres. 

http://www.data.footprintnetwork.org/
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Framework Convention on Climate Change was based on the scientific consensus that CO2 

emissions stemming from human activities are driving global warming and immediate action 

must be taken to reduce greenhouse gas emissions. Then, the 21st century started with the 

adoption of the United Nations Millennium Declaration, followed by the establishment of the 

Millennium Development Goals (MDG) for 2015. Although very important achievements 

have been made on many of the MDGs in the world, advancement has been uneven across 

regions and countries, leaving telling gaps. Hence, to close all these gaps and achieve a 

sustainable future for all, in 2015 UN General Assembly set up Social Development Goals by 

2030. A turning point for global climate action was the 2015 Paris Agreement where nearly 

all nations gathered at the United Nations Framework Convention on Climate Change’s 

(UNFCCC) 21st Conference of the Parties came to complete unanimity to combat climate 

change by setting a comprehensive goal for the century of limiting global temperature 

increase to 2o C. Followingly, it has been estimated that 6.35 trillion EUR is required yearly 

to meet Paris Agreement globally (OECD, 2017), which puts high pressure on economic 

growth in the context of sustainability. 

 

 

 

 

Figure 1. Air temperature anomaly on Earth 

Source: www.earthobservatory.nasa.gov/world-of-change/global-temperatures  

 

Note: NASA’s Goddard Institute for Space Studies (GISS) scientists have reported at least 1.1o C increase in 

the average global temperature on Earth since 1880. 2021 was the sixth warmest year on record.  
 

 

http://www.earthobservatory.nasa.gov/world-of-change/global-temperatures
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1.2 Environmental Kuznets Curve 

 As environmental awareness rose the nexus between economic growth and 

environmental degradation has become a hot topic since the late 1980s. The major studies on 

this topic can be traced back to Grossman and Krueger (1991) who realized that their findings 

resemble those of Simon Kuznets (1955), which they named after an Environmental Kuznets 

Curve (EKC) hypothesis. Since then, the vast literature in energy and environmental 

economics has evolved around it. Bashir et al. (2021) have identified 1775 studies (in nine 

languages) centred around EKC between 1999 and 2020 that are published in 20 major 

scientific journals. 

The main idea of the EKC hypothesis is that there is some type of a relationship 

between economic growth and environmental degradation which is positive at first but turns 

slowly into a negative one. Modern literature mainly specifies such a relationship as quadratic 

or cubic leading to an inverted U-shaped or N-shaped curve respectively. Although some 

researchers including Narayan and Narayan (2010) used linear specification of the EKC 

hypothesis, they have been criticised that the reduction of the value of elasticity of measure of 

pollution with respect to economic growth indicator does not provide any information that the 

EKC curve is downward, upward or constant sloping. It only represents how this relationship 

changes with time (Brown and McDonough, 2016). 

There are several effects (see Figure 2) that could explain the curvature of the EKC: 

scale, composition, and technical (Grossman and Krueger, 1991). Also, there is a technical 

obsolescence effect that is valid for N-shaped EKC (Lorente and Álvarez-Herranz, 2016). 

- Scale effect: the transitional period from pre-industrial to industrial economy causes 

intensified use of natural and energy resources. This gradually leads to the 

regeneration rate of natural resources falling behind their depletion rate. 

Amplification of non-recyclable waste by spurring industrialization results in 

increased pollution. Consequently, the scale effect contributes to environmental 

degradation (Torras and  Boyce, 1998; Prieur, 2009). 

- Composition effect: further economic growth makes knowledge and technology-

intensive economy surpass agrarian centred one. Through this structural 

transformation a more developed, efficient, and environmentally friendly economy 

emerges. As a result, the developed economy starts exploiting more efficient energy 

sources and procedures, which lessens the demand for non-renewable resources and 

reduces pollution (Hettige et al., 2000). 
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- Technique effect: allocation of more resources to R&D, replacement of outmoded and 

contaminating production technologies with cleaner alternatives enhances 

environmental quality level (Copeland and Taylor, 2004). Moreover, the increase in 

environmental awareness initiates stricter environmental laws and regulations. Porter 

and Van Der Linde (1995) asserted that stringent environmental regulation can 

stimulate innovation and induce efficiency while reducing environmental degradation 

(also known as Porter Hypothesis).  

- Technical obsolescence effect: among all stated effects technical effect is the most 

important one as it is the reason for the amelioration of environmental degradation 

(Andreoni and Levinson, 2001). However, technical obsolescence ensues once the 

scale effect transcends the technical effect leading to rises in the environmental 

deterioration. Eventually, growing yields from the technical innovations do not persist 

in the long term and they begin catalysing the economy to rebound to a state of 

growing ecologic destruction (Lorente and Álvarez-Herranz, 2016). Therefore, the 

technical obsolescence effect gives a rise to the N-shaped EKC. 

 

 

Figure 2. EKC curvature formation 

Source: author’s own drawing 

 

Note: N-shaped EKC is validated by calculating local maxima and minima (inflection points) of the first 

derivative of cubic equation. Inflection points must be real numbers: 

                                                     Ymaxima > Yminima: N-shaped EKC 

                                                     Ymaxima < Yminima: inverted N-shaped EKC 
 

 



5 
 

1.3 Planetary Boundaries  

Even though the majority of EKC studies use air pollutants as a proxy for 

environmental degradation, other pollutants (or causes) should not be overlooked as well. In 

that respect, the use of Planetary Boundaries (PB) presents a more integrated perspective to 

EKC. PB framework has been developed by 29 leading Earth System experts to 

conceptualize and define certain global environmental limits within which the humanity is 

expected to operate safely. Nine key boundaries and thresholds with their respective 

approximations of how close humanity is to the maximum capacity of Earth Systems have 

been identified. Of those proposed nine, seven were quantified (see Figure 3) according to 

current scientific understanding (Rockström et al., 2009): 

- PB-1: Climate change 

- PB-2: Ocean acidification 

- PB-3: Stratospheric ozone depletion 

- PB-4: Biogeochemical nitrogen and phosphorus cycle changes 

- PB-5: Global freshwater use 

- PB-6: Land-system changes 

- PB-7: Rate at which biological diversity is lost 

- PB-8: Chemical pollution (not quantified) 

- PB-9: Atmospheric aerosol loadings (not quantified) 

Following this study, Steffen et al. (2015) conducted an updated and extended 

analysis of the PB framework and concluded that humanity has already exceeded the safe 

limits of four key boundaries: climate change, biodiversity loss, land-system changes, and 

biogeochemical cycle changes. Rockström et al. (2009, p. 1) stressed that going beyond each 

of these limits will induce a domino effect for environmental destruction: “Transgressing one 

or more planetary boundaries may be deleterious or even catastrophic due to the risk of 

crossing thresholds that will trigger non-linear, abrupt environmental change within 

continental- to planetary-scale systems” 

 The main difference between PB and other previously presented global sustainability 

indices is that it provides more viable and meaningful grounds for the assessment of studies 

that use sustainability and environmental measures (Whiteman et al., 2013). In this regard, 

PB might serve as a good proxy for a more comprehensive aggregate measure of 

environmental degradation to understand the relationship between economic growth and the 

environment. 
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1.4 Motivation and aim of study 

The motivation behind this study is stemming from critiques of the previous EKC 

publications and country sample selection rationale: 

(i) Vast majority of previous studies focused on a narrow relationship 

between environmental degradation and economic growth. Carbon dioxide (CO2), carbon 

monoxide (CO), sulphur dioxide (SO2), nitrogen dioxide (NO2), total suspended particulates 

(TSP), smoke, faecal and heavy-metal contamination in rivers, and oxygen regimes are the 

most studied pollutants in the voluminous EKC literature (Pincheira and Zuniga, 2021). 

However, associating only one pollutant with economic development does not yield a 

complete picture, because many causes of environmental degradation are interconnected (Jha 

and Murthy, 2003). Also, specific physical/chemical properties of pollutants under 

consideration might also have different impacts on the EKC profile. Therefore, recent works 

started considering composite and more sophisticated measures of environmental quality, 

 

Source: Steffen et al. (2015) 

 

 

Figure 3. Planetary Boundaries 
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such as ecological footprint (Caviglia-Harris et al., 2009; Aurélien, B et al., 2006), index 

constructed using a group of pollutants (Jha and Murthy, 2003; Liuet al., 2018), etc.  

(ii) Empirical EKC literature has conceptual flaws that arise due to the 

incorporation of polynomials and cointegrating relationship of powers of integrated 

processes. One of the criticisms of the methodological aspect of EKC specification is related 

to the possible multicollinearity problems while incorporating polynomials (Al-Mulali et al., 

2015; Narayan and Narayan, 2010). Apart from that Wagner (2015) argued that previous 

studies ignored the fact that powers of integrated processes (quadratic or cubic) are not 

integrated processes of any order. Instead, the quadratic (or cubic) transformation of a 

variable is deterministically related to the basal integrated process. Hence, the use of 

cointegration techniques is inadequate in this case and the results of studies that used 

inappropriate methodologies are potentially misleading. 

(iii) Most studies cover the same set of countries. OECD, SSA, EU, GCC, 

MENA, and ASEAN countries are the most used samples for panel EKC studies, while 

China, USA, Turkey, Pakistan, India, UK, Spain, Brazil, and several developed countries are 

the most used for time series analysis (Aslan and Altinoz, 2019). To the best of my 

knowledge, there is only one publication that focused on EKC estimation of emerging 

Industry 4.05 economies and no study on the Republic of Georgia. However, this country 

represents an interesting case regarding its commitment to Paris Agreement. Georgia set a 

target to unconditionally reduce its greenhouse gas emissions by 35% below the business-as-

usual scenario for the year 2030 (Government of Georgia, 2021). However, this target was 

already achieved in 1993 and according to World Bank data in 2019, Georgia’s greenhouse 

gas emissions were about 63% below the business-as-usual scenario. The loose 

environmental target gave freedom to the government to exploit it, which it does by 

incentivizing and highly subsidizing carbon-intensive cryptocurrency mining industry in the 

country. Consequently, Georgia ranked third in the world for Bitcoin mining in 2018 (World 

Bank, 2018).  

Considering hereinabove mentioned points the aim of this study is to assess the EKC 

hypothesis in the case of Georgia using a composite measure of environmental degradation 

and employing the appropriate estimation of the cointegrating polynomial relationship 

developed by Wagner (2015). The proposed estimation model is an extension of a fully 

modified estimator of Phillips and Hansen (1990). Additionally, the model specification and 

 
5 Refers to 4th industrial revolution: when transformative technologies (smart factories, artificial intelligence-
based production lines, connected machines and intelligent robots) are changing the industry. 
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cointegrating relationship have been tested using a special KPSS-type test derived by Wagner 

(2015). 

PB indicators have been utilized in a single environmental index using Principal 

Component Analysis. Moreover, to check the robustness of calculations biocapacity 

reserve/deficit6 (BR) indicator, greenhouse gas and carbon emissions also were used as 

environmental quality measures in the model. 

The framework of this paper is organized as follows: Section 2 gives some insight 

into existing EKC literature from a critical and innovative perspective, while employed 

methodology and utilized data are described in Section 3. Section 4 presents empirical results 

and Section 5 concludes. 

 

2. LITERATURE REVIEW 

In their research, Pincheira and Zuniga (2021) identified that the current research 

direction of the EKC literature comprises four new streams: (i) methodological critique of 

previous EKC studies, (ii) extension of EKC studies by incorporating new environmental 

indicators, (iii) identification of new factors/determinants that affect the EKC and (iv) 

examination of income-energy nexus in the context of EKC hypothesis. The study also 

showed that Grossman and Krueger (1991; 1995), Selden and Song (1994), and Shafik 

(1994) are the most cited papers in the EKC literature. In his bibliometric review, Anwar et 

al. (2022) identified evolutionary articles7 that connect several clusters of research streams. In 

that sense, Cole (2004) has been identified as the most influential evolutionary study, where 

he found relatively small effects of the pollution haven hypothesis8 on EKC compared to 

other explanatory variables. The rest of this section is mainly based on the literature review of 

studies that can be classified as evolutionary in criticising existing and developing new 

methodologies for EKC estimation, and studies that used different and more sophisticated 

environmental indicators. 

Notably, the studies that confirm the EKC hypothesis outnumber those that do not 

find any evidence in favour of its validity (Aslan et al., 2019). As EKC varies with model 

specification, econometric techniques used, data and its quality, environmental indicators, 

and countries, it is accepted that there is no universal shape of EKC. All these factors raise 

 
6 This concept has been defined by Global Footprint Network. 
7 Innovative studies that initiate new directions or change the previous understanding of a subject. 
8 The hypothesis postulates that the inverted U-shaped relationship between economic growth and 

environmental pollution can be explained by the strategy of developed countries that displace dirty industries in 

developing countries. 
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many concerns regarding the validity of existent literature. For example, Sinha et al. (2019) 

identified that many studies (Martínez-Zarzoso and Bengochea-Morancho, 2004; Bagliani et 

al., 2008; Dijkgraaf and Vollebergh, 2005; Galeotti and Lanza, 2005; Mazzanti et al., 2008; 

Akbostancı et al., 2009; Mohapatra and Giri, 2009; Brajer et al., 2011; Uddin et al., 2016; das 

Neves Almeida et al., 2017; etc.) reported the establishment of N-shaped EKC, which were 

actually invalid. All those studies concluded their findings based on the respective signs of 

coefficients and failed to mathematically validate their results9. In the end, turnaround points 

of reported N-shaped curves lay on the imaginary plane. On top of that, Wagner  (2008; 

2015) and Wagner and Hong (2015) argue that empirical literature has been ignoring two 

major econometric problems that fundamentally invalidate commonly used cointegration 

techniques in the context of EKC: first, stochastic properties of non-linear terms of integrated 

processes, and second, cross-sectional dependence in panel data. The authors proposed new 

methodologies to overcome those problems. Also, to address the same issues Stern (2010) 

suggested using the between estimation technique. Moreover, the implementation of between 

estimator allows not only to overcome problems identified by Wagner (2008) but also 

addresses the concerns raised by Vollebergh et al. (2009) regarding the identification of time 

effects in the EKC model. Furthermore, the work of Apergis (2016) on time-specific effects 

showed that EKC is not time-invariant by proving the time dependency of coefficients, which 

puts the appropriateness of commonly used methodologies under the question. Additionally, 

Van Hoa and Limskul (2013) pointed out that previous literature did not account for the 

possibility of reverse and directional causality between economic growth and the 

environment. Hence, to provide robust empirical findings, they developed a  new dynamic 

endogenous multi-equation model. Contrary to parametric approaches, there is a strand of 

studies that employed more flexible techniques, such as semi and nonparametric methods 

(Shahbaz et al., 2017; Xie et al., 2019; Xu et al., 2017; Wang, 2011; Tsurumi and Managi, 

2010). Among them, the works of Millimet et al. (2003) and Ordás et al. (2011) empirically 

showed that semi and nonparametric methods actually performed better than parametric ones. 

It is also notable that several researchers started exploiting machine learning techniques, such 

as wavelet coherence approaches (Adebayo, 2020; Rej et al., 2022) in the EKC analysis 

recently. 

 
9 In an EKC model with a cubic specification as: 𝑦 =  𝛼0 + 𝛼1 𝑥 + 𝛼2𝑥2 + 𝛼3𝑥3 + 𝜀,  the following conditions 

must be satisfied for N-shaped EKC to be valid: 

  1) 𝛼2
2 − 3𝛼1𝛼3 > 0 (Sufficient condition) 

  2) 𝛼1, 𝛼3 > 0 and 𝛼2 < 0 

Sufficient condition guarantees that the turnaround points are on the Cartesian plane. Otherwise, N-shaped EKC 

can never be estimated. 
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 To bring forth width and depth in the study, and to avoid omitted variable bias it is 

necessary to include more variables in the EKC model (Stern, 2004). However, the choice of 

variables should not be done arbitrarily, otherwise, the model might suffer from 

misspecification bias. Temporal and geographical contexts must be considered, and the 

chosen variables must comply with those contexts (Sinha et al., 2019). For example, Sinha 

and Bhattacharya (2016) explain the rationale for including population, petroleum 

consumption, and electricity consumption in their study by arguing that air pollution in Indian 

cities is strongly connected to the population of a particular city, which consumes electricity 

generated from fossil fuels. Shahbaz et al. (2018) exploited the fact that since the mid-1950s 

French public and private corporations poured heavy financial resources into the research and 

development process and imported technological innovations to make production cleaner. 

Consequently, the authors included FDI, energy consumption, and energy innovation as 

explanatory variables in their model. Karasoy (2019) explains that the use of renewable 

energy consumption and trade openness as explanatory variables in the EKC study for 

Turkey is valid because more than half of the primary energy needs in Turkey have been met 

by imports since 2011. Also, Turkey introduced a new policy, called “Turkey’s vision 2023”, 

to maximize the use of renewable energy sources to raise the share of renewables in energy 

mix to 30% by 2023.  

 It is a fact that the researchers were more prone to using single pollutants along with 

CO2, such as NO2 (Sinha and Bhattacharya, 2016; Rudra and Chattopadhyay, 2018; Gao et 

al., 2017), SO2 (Chen et al., 2019; Ridzuan, 2019; Hao et al., 2018a), total suspended 

particulates (Marbuah and Amauakwa-Mensah, 2017; Stern and Zha, 2016;) and so on. 

However, several studies focused not on the factors that cause environmental damage, but 

rather on the result of deterioration. Zambrano-Monserrate et al. (2018) and Bhattarai and 

Hammig (2001) used deforestation as a proxy for environmental degradation and both studies 

found supporting evidence for EKC. Biodiversity loss has been a variable of interest in the 

studies of McPherson and Nieswiadomy (2005), and Mills and Waite (2009). Unlike the 

former study, the latter did not find any support for the presence of EKC. The study by 

Pincheira et al. (2021) is the first study that incorporated the Planetary Boundary framework 

into EKC analysis. The authors used PB variables and economic output in a worldwide 

sample and implemented a panel dynamic system generalized method of moments approach. 

EKC hypothesis was supported only for the climate change and ocean acidification panels. 

Unlike mentioned indicators, several studies considered the existing EKC 

methodology inappropriate to fully illustrate the nexus between environmental pollution and 
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economic growth. Hence, they used indicators that represent a cumulative measure of 

environmental degradation such as Ecological Footprint (Charfeddine and Mrabet, 2017; 

Destek and Sarkodie, 2017; Mrabet and Alsamara, 2017; Khan et al., 2022; Pata, 2021) or 

custom constructed pollution/degradation index (Pata et al., 2022; Hao et al., 2018b; Başar 

and Tosun, 2021). Jha and Murthy (2003) used six different environmental variables to 

construct an environmental degradation index using Principal Component Analysis. The 

authors reported the establishment of an inverted N-shaped global EKC.  

 Table 1 briefly outlines different measures of environmental quality that have been 

present in the empirical EKC literature. 

 

Table 1. EKC studies with various environmental quality indicators 

Environmental 

indicator 
Authors Title Findings 

SO2, suspended 

particulate matter, 

oxygen regime, 

concentration of heavy 

metals 

Grossman and 

Krueger (1995) 

Economic growth and the 

environment. 

Supporting 

EKC 

Deforestation Bhattarai and 

Hammig 

(2001) 

Institutions and the 

Environmental Kuznets Curve 

for deforestation: A cross-

country analysis for Latin 

America, Africa, and Asia. 

Supporting 

EKC 

Threatened bird and 

mammal species 

McPherson and 

Nieswiadomy 

(2005) 

Environmental Kuznets Curve: 

threatened species and spatial 

effects 

Supporting 

EKC 

Ratio of good 

efficiency performance 

and bad efficiency 

measure 

Halkos and 

Tzeremes 

(2009) 

Exploring the existence of 

Kuznets curve in countries’ 

environmental efficiency using 

DEA window analysis 

Not 

supporting 

EKC 

Ecological Footprint Charfeddine 

and Mrabet 

(2017) 

The impact of economic 

development and social-political 

factors on ecological footprint: A 

panel data analysis for 15 MENA 

countries. 

Supporting 

EKC 

Land consumption Bimonte and 

Stabile (2017) 

Land consumption and income in 

Italy: a case of inverted EKC. 

Not 

supporting 

EKC 
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The percentage of 

national protected areas 

Bimonte 

(2002) 

Information access, income 

distribution, and the 

Environmental Kuznets Curve. 

Supporting 

EKC 

Land footprint Dai et al. 

(2022) 

Whether ecological measures 

have influenced the 

environmental Kuznets curve 

(EKC)? An analysis using land 

footprint in the Weihe River 

Basin, China 

Not 

supporting 

EKC 

Fisheries production Rashdan et al. 

(2021) 

Investigating the N-shape EKC 

using capture fisheries as a 

biodiversity indicator: empirical 

evidence from selected 14 

emerging countries. 

Supporting 

EKC 

Environmental 

Pollution Index 

Başar and 

Tosun (2021) 

Environmental Pollution Index 

and economic growth: evidence 

from OECD countries. 

Supporting 

EKC 

Bird population Lantz and 

Martínez-

Espiñeira 

(2008) 

Testing the Environmental 

Kuznets Curve Hypothesis with 

Bird Populations as Habitat-

Specific Environmental 

Indicators: Evidence from 

Canada. 

Mixed 

results 

Water quality Farzin and 

Grogan (2013) 

Socioeconomic factors and water 

quality in California. 

Not 

supporting 

EKC 

 

3. METHODOLOGY AND DATA 

3.1 Methodology 

Cointegrating polynomial relationships require a different approach for testing and 

estimation because nonlinear functions of integrated processes cannot be treated as integrated 

processes (Wagner, 2015; Wagner and Hong, 2015). Wagner (2015) proposed a new 

estimation and inference tool based on the extension of the FM-OLS estimator claiming that 

the use of inappropriate methods leads to conceptually problematic and invalid conclusions.  

 

3.1.1 Unit-root test 

 No consensus exists between researchers on which test should be preferred while 

checking for the stationarity of series. Augmented Dickey-Fuller (ADF), Phillips-Perron 

(PP), and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit root tests are the most common 

tests that have been used in the EKC literature. However, there are some criticisms regarding 
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the preference of one over another (Chaudhuri and Wu, 2003; Halkos and Kevork, 2005; 

Zivot and Wang, 2006). Besides those commonly used unit-root tests, there is a class of 

“efficient tests” with much better statistical properties.  A Monte-Carlo experiment by Elliot 

et al. (1996) demonstrated that a modified version of the Dickey-Fuller (DF-GLS) test 

(member of the efficient test family) dominated its counterparts in terms of power and size. 

Most importantly, the experiment indicated that the proposed DF-GLS performed particularly 

well in small samples. Müller (2004) by studying the performance of commonly used unit-

root tests versus efficient tests also concluded that the former have much less discriminatory 

power than the latter.  

By considering the small sample size and trending pattern of data used and several 

comparative studies that conducted simulations, the DF-GLS test with constant and trend has 

been chosen for this study. This test uses interpolated critical values from tables presented by 

Elliot et al. (1996). The optimal lag order has been chosen based on Ng-Perron’s (1995) 

sequential t-test criterion. 

 

3.1.2 Extended Fully Modified Ordinary Least Squares (FM-OLS) estimator 

 This paper utilizes quadratic specification of the EKC curve without polynomial time 

trends, but it can also be extended to the cubic formulation as described by Wagner (2015) 

and Wagner and Hong (2015). Hence, the EKC curve is constructed as: 
 

𝑦𝑡 =  𝛼 + 𝛽1𝑥𝑡 + 𝛽1𝑥𝑡
2 + 𝛾𝑧𝑡 + 𝑢𝑡            (1) 

𝑥𝑡 = 𝑥𝑡−1 +  𝑣𝑡                          (2) 

𝑧𝑡 = 𝑧𝑡−1 +  𝜌𝑡                  (3) 

     𝜀𝑡 =  [  

𝑢𝑡

𝑣𝑡

𝜌𝑡

 ]      (4) 

 

where 𝑦𝑡 is environmental degradation measure, 𝑥𝑡 is economic development 

indicator, 𝑧𝑡 is a control variable, and 𝑡 = 1, … , 𝑇. 𝛼 is a constant and 𝜀𝑡 is a stationary 

ergodic martingale difference sequence with the finite covariance matrix. The long-run and 

one-sided long-run covariance matrices are defined as 𝜔 and 𝛿 respectively, and Bartlett 

kernel function with Newey and West (1994) automatic bandwidth selection techniques has 

been implemented in their estimation. Both matrices are partitioned as in Phillips and Hansen 

(1990): 
 

𝜔 = [ 
𝜔𝑢𝑢 𝜔𝑢𝑣

𝜔𝑣𝑢 𝜔𝑣𝑣
 ]      𝛿 = [ 

𝛿𝑢𝑢 𝛿𝑢𝑣

𝛿𝑣𝑢 𝛿𝑣𝑣
 ]    (5) 
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Estimation of FM-OLS requires series of transformations. Firstly, dependent variable 

must be transformed as: 
 

𝑦𝑡
∗ =  𝑦𝑡 − 𝑣𝑡𝜔̂𝑣𝑣

−1𝜔̂𝑣𝑢      (6) 

𝑦∗ = [ 𝑦1
∗, … … . , 𝑦𝑇 

∗ ]′     (7) 
 

where 𝜔̂𝑣𝑣  and 𝜔̂𝑣𝑢 are consistent estimators of 𝜔𝑣𝑣 and 𝜔𝑣𝑢. This procedure is done exactly 

as proposed by Phillips and Hansen (1990): considering standard assumptions on the kernel 

and bandwidth, long-run and one-sided long-run variances/covariances are estimated using 

OLS residuals of equation (1) and first differences of 𝑥𝑡 as indicated in equation (2). 

However, the correction factor has been modified to fit cointegrating polynomial regression 

and a detailed discussion of relevant assumptions and their proofs are provided by Wagner 

(2015): 
 

Φ = Δ [ 

0
T

2 ∑ 𝑥𝑡
𝑇
𝑡=1

T

 ]       (8) 

 

where Δ = 𝛿𝑣𝑢 − 𝜔̂𝑢𝑣𝜔̂𝑣𝑣
−1𝛿𝑣𝑣. Here again consistent estimators of long-run and one-sided 

long-run variances/covariances are used. Finally, the FM-OLS estimator 𝜃 is computed as: 
 

𝜃 = (𝑍′𝑍)−1(𝑍′𝑦∗ − Φ)     (9) 
 

where 𝜃 = [ 𝛼, 𝛽1, 𝛽2, 𝛾 ]′, 𝑍 = [ 𝑍1, … … , 𝑍𝑇  ]′, and 𝑍𝑡 = [ 1, 𝑥𝑡 , 𝑥𝑡
2, 𝑧𝑡 ]′. The asymptotic 

distribution of 𝜃 is Gaussian mixture with zero-mean and its covariance matrix Σ is calculated 

as: 
 

Σ̂ = Ω̂(𝑍′𝑍)−1        (10) 
 

with Ω̂ being a consistent estimator of Ω:= 𝜔𝑢𝑢 − 𝜔𝑢𝑣𝜔𝑣𝑣
−1𝜔𝑣𝑢. Wagner (2015) notes that 

limiting distribution of FM-OLS estimator allows for derivation of standard Wald and LM 

test statistics which are asymptotically Chi-squared distributed under the null hypothesis. 

 

3.1.3 KPSS-type test 

 Numerous cointegration tests are currently used by researchers which have several 

pros and cons depending on model specification, sample size, and other factors. However, 

neither of them can be directly applied to the extension of FM-OLS that has been derived 

above. For that purpose, Shin’s (1994) test of cointegration has been retrofitted for 

cointegrating polynomial regressions as well (Wagner, 2015). This KPSS-type test is based 
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on FM-OLS residuals. Because it is not possible to observe the true error process, the test 

needs to be calculated based on observable residuals of FM-OLS: 
 

𝜖𝑡̂ =  𝑦𝑡
∗ − 𝑍𝑡

′𝜃           (11) 
 

Then the test statistics is calculated as: 
 

𝐶𝑇 =  
1

𝑇Ω̂
∑ (

1

√𝑇
∑ 𝜖𝑗̂

𝑡
𝑗=1 )

2
𝑇
𝑡=1           (12) 

 

Wagner (2015) mentions that there is no limiting distribution for general cases when 

multiple integrated polynomial regressors are present. However, by considering certain 

factors such as the number of polynomials and their order, specification of the deterministic 

component, etc. it is possible to derive relevant critical values. For the case with only one 

integrated regressor with a polynomial of degree two critical values have been simulated by 

Wagner (2015). 

One of the advantages of using this test is that it can be interpreted as a specification 

test to a certain extent. If 𝑢𝑡 in equation (1) is a stationary process, then this test converges to 

a well-defined distribution, otherwise, it diverges. Non-stationarity in errors can be a result of 

omitted relevant regressors, which will cause the KPSS test to reject its null. Hence, the null 

hypothesis can be specified as the presence of cointegration as well as stationarity of 𝑢𝑡.  

 

3.2 Data 

 The data used in this study has been collected from 10 different sources and has a 

yearly frequency from 1993 to 2018 (Table 1). Some of the indicators in panel A of Table 1 

represent aggregated values and consist of several components. There are 6 pollutants in the 

Kyoto greenhouse gas basket (Kyoto-GHG), which have been weighted by their global 

warming potential: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), sulphur 

hexafluoride (SF6), hydrofluorocarbons and perfluorocarbons (PB-1). Seawater acidity 

represents an index constructed by using different measures of acidity, alkalinity, and their 

subcomponents in the Black Sea (PB-2). 30 institutions including universities, research 

centres, and observatories from 6 Black Sea basin countries gathered this data from 1899. As 

there were multiple observations in a single timeframe the average value has been chosen as 

an indicator of seawater acidity. Total ozone-depleting substances comprise 4 components in 

the case of Georgia: chlorofluorocarbons (CFCs), halons, hydrochlorofluorocarbons 

(HCFCs), and methyl bromide (PB-3). A set of three fertilizers - nitrogen (N), phosphate 

(P2O5), and potash (K2O) (fertilizers that are used in Georgia) - are included in the total 
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fertilizer use (PB-4). The sum of surface water (from rivers, lakes, and reservoirs) and 

groundwater (from aquifers) withdrawals make up total freshwater withdrawal data (PB-5). 

Agricultural land represents the total share of land area that is arable, under permanent crops, 

and permanent pastures (PB-6). Red List Index (RLI) measures the extinction risk of sets of 

species, which include mammals, birds, and amphibians (PB-7). The lower the value of the 

index the higher the risk of extinction. 

 Panel B of Table 2 illustrates two variables that have been used to derive Georgia’s 

BR. Global Footprint Network10 defines ecological footprint as “how much area of 

biologically productive land and water an individual, population, or activity requires to 

produce all the resources it consumes and to absorb the waste it generates” and biocapacity as 

“the capacity of ecosystems to regenerate what people demand from those surfaces”. 

 The last panel of Table 2 outlines the variables that are used as regressors: real GDP 

and renewable share in the final energy consumption. Energy consumption has been 

established as the major factor that links economic development to the environment (Inglesi-

Lotz, 2019). Several studies emerged advocating that without energy consumption economic 

growth cannot be achieved (Ahmed et al., 2015; Kohler, 2013; Saboori and Sulaiman, 2013; 

Yavuz, 2014). In spite of continuous GDP growth and increasing demand for energy 

resources,  renewable share in the final 

energy consumption has been decreasing in 

Georgia since 2002. A clear negative 

relationship can be observed in Figure 4 

between Kyoto-GHG and the share of 

renewable energy in final consumption. 

Considering this decrease, in 2016 the 

government aimed to attract new 

investments to increase the share of 

renewables in the total energy mix and during the next four years 98% of new electricity 

generation projects fell into the category of renewables: hydropower, wind power, and solar 

photovoltaic (OECD, 2021). For these reasons, renewable share in total final consumption 

has been accepted as a reasonable control variable for the EKC model. 

 

 
 

 
10 See: www.data.footprintnetwork.org/#/abouttheData  

 

Figure 4. Renewable energy-GHG 

relationship 
 

 

http://www.data.footprintnetwork.org/#/abouttheData


17 
 

Table 2. Data  

Variable Unit of measure Source 

A: Planetary Boundaries 

1. Kyoto-GHG (GHG) MtCO2e
11 Climate Watch12 

2. Red List Index (RLI) unit International Union for Conservation of 

Nature’s Red List of Threatened 

Species13 

3. Total ozone depleting 

substances (ODP) 

ODP tonnes14 United Nations Environment Programme 

– The Ozone Secretariat15 

4. Seawater acidity 

 (Acidity) 

mg/l SeaDataNet - Pan-European 

Infrastructure for Ocean & Marine Data 

Management16 

5. Total fertilizer use 

 (Fertilizer) 

thousand tonnes of 

nutrients 

International Fertilizer Association17 

6. Fresh water 

withdrawal (Water) 

109 m3/year Food and Agriculture Organization of the 

United Nations18 

7. Agricultural land  

(Land) 
 

km2 World Bank19 

B: Environmental quality indicators 

8. Ecological footprint gha Global Footprint Network20 

9. Biocapacity gha Global Footprint Network 

C: Other indicators 

10. GDP (GDP) USD World Bank 

11. Renewable share in 

the final energy 

consumption (Energy) 

% International Energy Agency21 

Note: Short names in the brackets have been introduced to make communication easier. 

 

 

 
11 Metric ton of carbon dioxide 
12 See: www.climatewatchdata.org  
13 See: www.iucnredlist.org  
14 Ozone Depleting Potential tonnes 
15 See: www.ozone.unep.org  
16 See: www.seadatanet.org  
17 See: www.ifastat.org  
18 See: www.fao.org  
19 See: www.data.worldbank.org  
20 See: www.footprintnetwork.org  
21 See: www.iea.org  

http://www.climatewatchdata.org/
http://www.iucnredlist.org/
http://www.ozone.unep.org/
http://www.seadatanet.org/
http://www.ifastat.org/
http://www.fao.org/
http://www.data.worldbank.org/
http://www.footprintnetwork.org/
http://www.iea.org/
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3.2.1 Constructing Environmental Degradation Index (EDI)  

 Principal Component Analysis (PCA) has become a very handy tool for index 

construction in modern literature. It is an unsupervised machine learning algorithm that 

enables dimensionality reduction. In other words, PCA captures variation in a large set of 

interdependent observations and converts them into a low-dimensional vector of significant 

and linearly uncorrelated components using orthogonal transformation. This vector is 

interpreted as the common shock that is responsible for co-movements in the data (Bai and 

Ng, 2006). In this context, EDI can be understood as a latent or unobserved variable, which is 

assumed to have a linear relationship with other observable variables plus a disturbance term.   

EDI is a composite index consisting of weighted PB variables that are indicated in 

panel A of Table 2. It is constructed in a way that the higher the index, the greater the 

environmental degradation. From Figure 4 it is visible that consumption of ozone-depleting 

substances, freshwater withdrawals, and total share of arable land has decreased significantly. 

Also, the average value of the Black Sea acidity indicator was lower in recent years. It is 

evident that only Kyoto-GHG and biodiversity loss (decreasing RLI) showed an increasing 

pattern, while total use of fertilizers remained almost constant. Visual inspection of Figure 5 

hints that EDI is not likely to have an increasing trend.  

 

 

Figure 5. Planetary Boundary indicators in Georgia 
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To form EDI, the methodology introduced by Nagar and Basu (2002) has been 

employed. As a first step, selected indicators must be transformed into a standard scale, and 

to fit the outlined structure all variables are considered to have a positive effect (increasing) 

on environmental degradation except Red List Index and agricultural land.   

Positive indicator: 𝑧𝑡 =
𝑥𝑡−min (𝑥𝑡)

max (𝑥𝑡)−min (𝑥𝑡)
                (13a) 

Negative indicator: 𝑧𝑡 =
max (𝑥𝑡)−𝑥𝑡

max (𝑥𝑡)−min (𝑥𝑡)
                (13b) 

where, 𝑧𝑡 is the standardized value, 𝑥𝑡 is original observation and 𝑡 = 1, … , 𝑇. 

Secondly, before PCA analysis correlation between PB indicators has been checked 

since the uncorrelated variables should be removed from the analysis. As is seen in Table 3, 

seawater acidity shows almost no correlation with other variables, hence it is excluded from 

PCA. 

 Thirdly, after implementing PCA, the components with eigenvalues higher than one 

have been Kaiser-Varimax rotated to maximize the sum of the variance of the squared 

loadings. This procedure leads to maximization of information involved among the set of 

indicators  

(Gupta, 2008). As a result, only two components have eigenvalues over one and they together 

capture 88% of the variation in the data (Figure 6).  The Kaiser-Meyer-Olkin (KMO) Test 

value  (0.734) greater than 0.7 (threshold level) confirms that the sampling adequacy is at a 

satisfactory level (Jolliffe, 1972). Variances and scores of rotated principal components are 

illustrated in Table 4. 

Lastly, to establish EDI following calculations are made: 
 

            𝑃𝑡𝑗 =  𝑧𝑡𝑖𝑆𝑖𝑗                                 (14) 

 

where, 𝑆𝑖𝑗 is a score of a principal component 𝑗 for respective variable 𝑖, and 𝑃𝑡𝑗 is a principal 

component j. Then, proportion of total variance is accounted as a weighting factor: 
 

Table 3. Correlation matrix of PB indicators 
 

Variables GHG RLI ODS Acidity Fertilizer Water Land 

GHG 1.00       

RLI 0.61 1.00      

ODS -0.15 -0.79 1.00     

Acidity 0.01 -0.01 -0.08 1.00    

Fertilizer 0.13 -0.46 0.76 0.01 1.00   

Water -0.35 -0.86 0.76 0.03 0.37 1.00  

Land 0.50 0.93 -0.79 0.04 -0.52 -0.81 1.00 
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𝐸𝐷𝐼𝑡 =
∑ 𝜆𝑗𝑃𝑡𝑗

𝐽
𝑗=1

∑ 𝜆𝑗
𝐽
𝑗=1

                 (15) 

 

where, 𝜆𝑗 is a variance of component 𝑗. 

 The final index has been depicted in Figure 7. As has been expected the EDI does not 

have an upward slope.  

 

 

 

Table 4. PCA result  Figure 6. Scree plot of eigenvalues 

 Comp. 1 Comp. 2  
   

Variance 3.938 1.383 

Difference 2.555  

Proportion 0.656 0.231 

Cumulative 0.656 0.887 

Principal component scores 

GHG -0.102 0.741 

RLI -0.440 0.262 

ODS 0.495 0.219 

Fertilizer 0.413 0.533 

Water 0.421 -0.146 

Land -0.450 0.170 
  

 

Figure 7. Environmental Degradation Index in Georgia 

 

 

Note:  EDI indicates that from 1993 to 2018 the environmental deterioration in Georgia has declined 

significantly. Even though greenhouse gas emission is increasing in Georgia, other factors such as notable 

decrease of population, quantitative decrease of carbon intensive industries,  etc. slowed the degradation 

process. 
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3.2.2 Other environmental degradation measures and descriptive statistics 

BR has been considered in this study as another measurement of environmental 

quality. BR is a difference between biocapacity and ecological footprint, and it measures how 

fast we consume resources and generate waste compared to how fast nature can absorb our 

waste and generate new resources (Figure 8). According to the Global Footprint Network 

data, Georgia has been experiencing a growing biocapacity deficit since 2004.  

Apart from that, to make comparisons with composite and more sophisticated 

indicators such as EDI and BC, GHG and CO2 have also been utilized to estimate EKC. As a 

result, 4 models have been established where each dependent variable indicates a different 

scale of environmental degradation – from general to specific. 

   

 Table 5 presents descriptive statistics of the variables, where GHG, CO2, and GDP 

indicate the per capita level of respective observations. Additionally, GHG and CO2  have 

also been rescaled to metric kilograms of carbon dioxide equivalent (MkgCO2e). It is notable 

that per capita GHG and CO2 emissions are about two times lower than the world average for 

the same time frame.  

 

 
 

 

Figure 8. Biocapacity reserve/deficit for Georgia 

 

 

Source:  www.data.footprintnetwork.org/#/countryTrends?cn=73&type=BCtot,EFCtot  
 

http://www.data.footprintnetwork.org/#/countryTrends?cn=73&type=BCtot,EFCtot
http://www.data.footprintnetwork.org/#/countryTrends?cn=73&type=BCtot,EFCtot
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Table 5. Descriptive statistics 

 Mean Median Std. dev. Min. Max. 
      

EDI 0.089 -0.057 0.409 -0.366 1.255 

BR -0.315 -0.303 0.379 -1.135 0.223 

GHG 0.004 0.004 0.001 0.003 0.005 

CO2 0.002 0.002 0.001 0.001 0.003 

GDP 2540.264 2446.557 1148.372 969.713 4539.087 

Energy 0.388 0.370 0.102 0.227 0.568 
 

 

4. EMPIRICAL RESULTS AND DISCUSSION 

 Depending on the measure of environmental degradation following four models have 

been estimated: 

Model I : 𝐸𝐷𝐼𝑡 =  𝛼 +  𝛽1𝑙𝑛𝐺𝐷𝑃𝑡 + 𝛽1(𝑙𝑛𝐺𝐷𝑃𝑡)2 + 𝛾𝐸𝑛𝑒𝑟𝑔𝑦𝑡       

Model II: 𝐵𝑅𝑡 =  𝛼 + 𝛽1𝑙𝑛𝐺𝐷𝑃𝑡 + 𝛽1(𝑙𝑛𝐺𝐷𝑃𝑡)2 + 𝛾𝐸𝑛𝑒𝑟𝑔𝑦𝑡       

Model III: 𝑙𝑛𝐺𝐻𝐺𝑡 =  𝛼 +  𝛽1𝑙𝑛𝐺𝐷𝑃𝑡 + 𝛽1(𝑙𝑛𝐺𝐷𝑃𝑡)2 + 𝛾𝐸𝑛𝑒𝑟𝑔𝑦𝑡       

Model IV: 𝑙𝑛𝐶𝑂2𝑡 =  𝛼 +  𝛽1𝑙𝑛𝐺𝐷𝑃𝑡 + 𝛽1(𝑙𝑛𝐺𝐷𝑃𝑡)2 + 𝛾𝐸𝑛𝑒𝑟𝑔𝑦𝑡       

 As is seen all the variables have been converted to the logarithmic scale except EDI 

and BR. Because these two composite measures of environmental quality are indices, and 

they only assign some numeric value or rank (∈ ℝ) to the environmental state of Georgia at a 

certain year. Hence, it makes no economic sense to convert them into logarithmic scale, so 

Models I and II have a level-log specification. Consequently, the coefficients of the first two 

models are interpreted as (1/100) unit change, while the coefficients of the last two models 

are elasticities. 

Table 6 illustrates unit-root test results 

of variables in level and differenced form. 

According to the DF-GLS test, all variables 

are stationary at their first difference at least at 

a 5% significance level.  

 Estimation output is reported in Table 

7. Firstly, KPSS-type test results should be 

inspected, where they suggest that the null 

hypothesis of cointegration cannot be rejected. 

The test statistics have been compared to the 

critical values derived by Wagner (2015). With 3 degrees of freedom the critical value at the 

5% significance level is 2.421, and 1.934 at 10%. Additionally, as discussed in Section 3.1.3 

Table 6. DF-GLS test results 

 Level 1st difference 
   

EDI -1.118    -4850*** 

BR -0.605    -5.397*** 

lnGHG -2.923    -4.376*** 

lnCO2 -2.649    -4.256** 

lnGDP -3.001    -3.990** 

lnGDP2 -3.091    -3.946** 

lnEnergy -2.395    -6.307*** 
   

Note: Significance level:        ** 5% 

                                              *** 1% 
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the null hypothesis also indicates the stationarity of residuals, which confirms the correct 

specification of the model. Hence, the correct specification of the model has been supported 

by the test.  

 To establish an inverted U-shaped relationship between environmental degradation 

and economic development the signs of the regression coefficients 𝛽1 and 𝛽2 must be positive 

and negative respectively. In that respect, all models meet these criteria. However, neither of 

the coefficients of Model I is statistically significant and as a result, only Models II, III, and 

IV support the EKC hypothesis.  
 

 

 

Considering the environmental scope of EDI and the evolution of its components over 

time, the results were expected. Because only two out of seven planetary boundary indicators 

in Georgia illustrated increasing negative impact. During the Soviet period, heavy 

contaminating industry with little to no regard for deteriorative environmental consequences 

was prevalent in the country. After gaining independence, production and economic 

development decreased considerably due to political and economic turmoil and long-lasting 

civil war. These, in turn, also lowered industrial waste. However, that was only a quantitative 

decrease. In terms of quality, nothing changed: there were still no industrial waste treatment 

facilities during the 1990s and early 2000s. Hence, the shape of EDI regarding these facts is 

apropos. From the 1990s to the early 2000s environmental degradation decreased mainly 

because of quantitative changes in polluting activities. Then, towards the 2010 EDI curve 

became flattered as economic recovery and increase in production started increasing the 

pressure on the environment.  

Table 7. FM-OLS estimation results 

 I II III IV 
     

𝛼 
-6.010 

(3.985) 

-83.944*** 

(4.625) 

-35.459*** 

(3.470) 

-44.518*** 

(7.231) 

𝛽1 
2.286 

(1.042) 

22.546*** 

(1.210) 

5.656*** 

(0.908) 

7.656*** 

(1.892) 

𝛽2 
-0.195 

(0.067) 

-1.514*** 

(0.080) 

-0.355*** 

(0.060) 

-0.480*** 

(0.125) 

𝛾 
-0.097 

(0.060) 

-0.263* 

(0.070) 

-0.541*** 

(0.053) 

-0.919*** 

(0.110) 

     

𝐶𝑇 1.336** 1.503** 1.471** 1.043** 
     

Note: Significance level:          * 10% 

                                                ** 5% 

                                              *** 1% 
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 As is seen from Models II-IV, the increase of renewable energy share in final 

consumption has a positive environmental effect. It decreases CO2 emissions by 0.92% and 

GHG by 0.54%. Considering that CO2 share in total GHG emissions has been approximately 

50% over the specified period in Georgia, the obtained results complement this fact. 

Additionally, as indicated by Model II Energy decreases biocapacity deficit (or increases 

biocapacity reserves), which can stem from three possible scenarios: either a decrease in 

consumption of goods and services that have environmentally damaging consequences or an 

increase in nature’s regenerative power (possibly by increasing environmental awareness, 

more efficient use of resources, more efficient waste disposal and recycling technology) or a 

mix of both stated scenarios. Furthermore, from a BR perspective, higher GDP has a greater 

positive effect on the environment than Energy. Because renewable energy plays only a 

partial role in the overall environmental quality that BR captures. This is also visible from the 

fact that 𝛾 in Model II is only significant at a 10% significance level.  

 

5. CONCLUSION 

 This study has been developed to apply an appropriate methodology that can deal 

with conceptual shortcomings in the previous empirical EKC literature rooting from the 

implementation of standard methods for linear cointegrating relationships to powers of 

integrated processes that are not integrated processes themselves. Hence, the methodology 

introduced by Wagner (2015) has been utilized to examine the relationship between 

environmental degradation and economic growth in Georgia. Estimation of equations 

performed by using an extension of FM-OLS model and cointegration of the variables has 

been tested by modified KPSS-type test.  

Four environmental measures allowed to see the relationship between environmental 

quality and economic growth from a broad to more specific perspective. The environmental 

degradation index based on the PB framework and BR presented the general and more 

sophisticated measure, while the Kyoto basket of greenhouse gases and carbon dioxide 

emissions focused specifically on air pollution. Findings present mixed evidence.  

Estimated results illustrate that an inverted U-shaped relationship with economic 

growth exists when changes in BR, GHG, and CO2 are incorporated into the analysis. 

However, EDI does not support the existence of the EKC hypothesis in Georgia. Paruolo et al 

(2015) mention that failing to find any evidence in favour of EKC cannot prove the absence 

of it. Ergo, additional investigation in the future when more datapoints and extra explanatory 

variables are available might be undertaken. In fact, the use of only one additional 
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explanatory variable (Energy) is the main limitation of this study. Wagner (2015) also 

mentions that this methodology cannot cope with the use of cross-products of explanatory 

variables and in this respect more general specification tests need to be developed. 
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