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ABSTRACT 

Cryptocurrencies are highly volatile and risky assets, therefore, it is of vital importance 

to find an appropriate model for risk measurement. This thesis compares three 

parametric and three non-parametric estimation methods to estimate the value at risk 

and the expected shortfall of five cryptocurrencies, namely Bitcoin (BTC), Ethereum 

(ETH), Binance coin (BNB), Ripple coin (XRP), and Cardano (ADA). We estimate the 

value at risk and expected shortfall using these methods at the confidence level of 95% 

and 99%. We then perform five backtesting procedures and use these test results to 

compare the performance of these estimation methods. Consequently, we can conclude 

that the volatility-weighted historical simulation (VWHS) method using the exponential 

weighted moving average (EWMA) model and GARCH-type models to rescale 

cryptocurrency loss for VaR and ES estimation perform the best in most cases. The basic 

historical simulation (BHS) method and the peak over threshold (POT) method also 

show positive performance in several cases. Meanwhile, the age-weighted historical 

simulation (AWHS) has a poor performance in almost all cases. 
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1. Introduction 

The explosive growth of cryptocurrencies has become a major matter of concern 

for the financial market. The market capitalization of cryptocurrencies reached its all-

time-high peak of 3 trillion dollars in 2021. As of 30 April 2022, there are more than 19 

thousand types of cryptocurrencies in the market (coinmarketcap.com). Since its 

whitepaper was first published in 2008 (Nakamoto, 2008), Bitcoin has remained the 

largest cryptocurrency based on the market capitalization. It is followed by Ethereum, 

the cryptocurrency of a platform built to write smart contracts and decentralized 

applications (Buterin, 2014).  

Being driven by not only their intrinsic value but also market news and 

speculations, cryptocurrencies are highly volatile and risky assets. Risk management of 

cryptocurrencies is a primary concern of most investors, policymakers, governments, 

institutions, researchers, and economists. Finding a practical and prominent method to 

measure the risk of cryptocurrencies is therefore absolutely imperative, laying a concrete 

foundation for the development of a cryptocurrency policy framework, the enforcement 

of necessary laws and regulations, or the implementation of a more effective investment 

strategy.  

In this thesis, we propose the application of value at risk and expected shortfall to 

quantify the risk of cryptocurrencies. As there are several methods to estimate these risk 

measures, our research purpose is then to find out “which method performs the best in 

measuring the value at risk and expected shortfall of cryptocurrencies?”. Our general 

approach is to estimate the value at risk and expected shortfall of cryptocurrencies using 

three parametric and three non-parametric estimation methods, then perform several 

backtesting procedures to compare the performance of these methods in measuring the 

risk of cryptocurrencies. The conclusion about the best risk estimation method is 

beneficial to the cryptocurrency risk control process. 

 

1.1. Overview of cryptocurrencies 

Cryptocurrencies are decentralized digital assets that apply blockchain technology. 

Such technology allows the online transfer of value in a decentralized network without 

the participation of traditional financial intermediaries like banks. The cryptocurrency 
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blockchain is similar to a general ledger that records every transaction in this network. 

However, unlike the traditional ledger, it is enforced by a large number of computers by 

the consensus algorithm known as “proof-of-work”, in which the computers have to 

mine or solve the increasingly hard mathematic problems to verify a new transaction in 

the blockchain. Accordingly, all transactions in this network cannot be manipulated or 

reversed, except for the situation when more than 50% of computing power is controlled. 

It can also be enforced by an alternative mechanism named “proof-of-stake” that does 

not heavily rely on computer resources.  

 

1.2. Overview of literature on cryptocurrencies 

Due to the fast-growing market of cryptocurrencies, many research papers have 

been carried out. Literature on cryptocurrencies can be divided into three main research 

areas. The first strand of literature focuses on cryptocurrency characteristics, its main 

drivers, and its classification as a real currency or a speculative investment (Ariefianto, 

2020; Baldan & Zen, 2020; Baur, Hong & Lee, 2018; Chen Y. Wu & Pandey, 2014; 

Janson & Karoubi, 2021; Ratajczak-Mrozek & Marszałek, 2022; Yermack, 2015). The 

conclusions from these research works remain ambiguous, but most empirical results 

indicate that cryptocurrency is more similar to a speculative investment than a medium 

of exchange.  

The second strand of research investigates the use of cryptocurrencies as a 

portfolio hedge or a safe haven, and its relationship with other financial assets in a 

portfolio such as commodities, equities, and bonds (Bouri, Hussain Shahzad & 

Roubaud, 2020; Choi & Shin, 2022; Corbet et al., 2018; Dyhrberg, 2016a; Guesmi et 

al., 2019; Hasan et al., 2022; Mroua, Bahloul & Naifar, 2022; Platanakis & Urquhart, 

2020; Ustaoglu, 2022; Wang, Ma & Wu, 2020; Wang et al., 2019). These literature 

works produce different results related to the use of cryptocurrencies in investment 

strategies in turbulent periods.  

The third and most practical research area examines the risky aspects of 

cryptocurrencies and the application of different risk measures as a tool to improve the 

risk forecasting process and investment decisions. This research area on cryptocurrency 

risk measurement is also the focal point of this thesis. Overall, many research papers 
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focus on analyzing the volatility dynamics as a risk measure of cryptocurrencies and 

comparing the performance of different GARCH-type models in estimating volatility 

(for details of the model specification, see Section 3.2.1.3). In contrast, the number of 

research papers on measuring value at risk and expected shortfall of cryptocurrencies is 

relatively limited. These papers will be discussed in more details in Section 2. 

Upon reviewing the existing research papers, we note that there are several 

limitations in the sample selection process. First, due to the constraint of the research 

period, most research papers (all papers in the literature review section with date before 

2020) do not capture the recent volatility behavior of cryptocurrencies in their risk 

estimates. The price of cryptocurrencies fluctuates significantly from 2020 onwards due 

to the covid-19 pandemic and the explosive technological development. Therefore, their 

conclusions are based on the study of limited historical data, which may not be 

applicable to the current period. Second, many papers (Liu et al., 2020; Platanakis & 

Urquhart, 2020; Van der Auwera et al., 2020) use return or loss data from a specific 

cryptocurrency spot exchange (for example, Bitstamp, Kraken, Bitfinex…), which may 

not be representative of the whole market because cryptocurrencies may have different 

listing dates and trading volumes on different spot exchanges. Third, several research 

papers only focus on Bitcoin rather than other major types of cryptocurrencies, while 

some other papers still include cryptocurrencies that do not have any intrinsic value in 

the research. In contrast, we will improve the sample selection process by choosing the 

more representative, informative, and updated set of data, as discussed in more details 

in Section 4. 

 

1.3. Value at risk and expected shortfall as risk measures of cryptocurrencies 

Value at risk and expected shortfall are two commonly used risk measures for 

traditional financial assets, but they have not been widely applied to cryptocurrencies. 

Value at risk is a useful tool in both risk reporting and other stages of the risk 

management process, including setting the regulatory capital requirements (Basel III, 

Solvency II), defining the acceptable risk levels, establishing the risk budgets, or 

performing sensitivity analysis and stress testing.  
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Value at risk measures the maximum loss at the given confidence level, calculated 

by a quantile of the loss distribution Pr(L > VaRα) = 1 − α (1). In other words, we can 

interpret that the possibility of losing more than VaRα is equal to 1 − α. 

Despite its simplicity in interpretation, value at risk is not a coherent risk measure 

as it does not always satisfy the subadditivity requirement. Therefore, expected shortfall 

is also used in support of value at risk. Expected shortfall is a coherent risk measure that 

quantifies the average magnitude of the loss in case the tail events happen. However, 

backtesting procedures for expected shortfall is more difficult to implement than value 

at risk, thus these two risk measures are used simultaneously for risk management. 

  

Graph 1.1. Example of 𝑉𝑎𝑅0.95 and 𝐸𝑆0.95 

 

 

Graph 1.1 illustrates an example of value at risk and expected shortfall at the 95% 

confidence level. As Pr(L > 7.16) = 1 − 0.95 = 0.5, which satisfies the definition of 

VaR so that VaRα =  7.16. ESα is then equal to the average of all losses larger than VaR. 

An advantage of value at risk and expected shortfall is that they take all underlying 

risk factors into consideration by directly studying the loss distribution. Given that value 

at risk and expected shortfall can be applied to all asset classes, it is beneficial to carry 

out more research on the application of these risk measures to cryptocurrencies. Some 

recent papers started to introduce specific methods to estimate value at risk and expected 

shortfall of cryptocurrencies, which will be discussed in Section 2.2.  
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2. Literature review 

2.1. Volatility analysis of cryptocurrencies 

As cryptocurrencies are consistently more volatile than other traditional securities 

(Van der Auwera et al., 2020), risk management based on volatility modelling is of 

crucial importance. Many research works have carried out volatility analysis of 

cryptocurrencies, notably Bitcoin.  

The most frequently used model in literature for modeling volatility and estimating 

value at risk and expected shortfall is the Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) model. Some studies analyzed the volatility dynamics of 

Bitcoin with different GARCH-type models, including autoregressive jump-intensity 

GARCH (Gronwald, 2014), threshold GARCH (TGARCH) (Bouoiyour & Selmi, 2015; 

Dyhrberg, 2016a), exponential GARCH (EGARCH) (Dyhrberg, 2016b), component 

GARCH (CGARCH) (Katsiampa, 2017), fractionally integrated GARCH (FIGARCH) 

(Lahmiri, Bekiros & Salvi, 2018; Ulmer & Chen, 2021), mixed data sampling GARCH 

(GARCH-MIDAS) (Fang et al., 2019), Markov-switching GARCH (MSGARCH) 

(Ardia, Bluteau & Rüede, 2019; Caporale & Zekokh, 2019; Maciel, 2021). 

Several authors have measured and compared relative performance of different 

GARCH-type models. Bouoiyour & Selmi (2016) carried out many extensions of 

GARCH models to estimate Bitcoin price volatility and concluded that Bitcoin remains 

more reactive to negative news than positive news, consequently proposing the use of 

asymmetry TGARCH model. Chu et al. (2017) fitted twelve GARCH-type models to 

seven most popular cryptocurrencies, using their log return data from 2014 to 2017, and 

chose the best fitting models based on five model selection criteria. The results indicate 

that IGARCH (1,1) may be a good fit for five among seven selected cryptocurrencies, 

while GARCH (1,1) may fit Ripple coin better and GJR-GARCH (1,1) is the best fitting 

model for Dogecoin. Katsiampa (2017) compared six GARCH-type models in 

explaining Bitcoin volatility and concluded that asymmetric component GARCH (AR-

CGARCH) is the optimal model to fit the data. This result implies the importance of 

including both the long-term and short-term components of the conditional variance.  

Gyamerah (2019) evaluated Bitcoin volatility returns using three GARCH-type models 

and suggested the use of TGARCH models. Obeng (2021) compared SGARCH and 
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EGARCH model and concluded that EGARCH model perform better in measuring the 

volatility of 30 cryptocurrencies during the period from 2017 to 2020, due to the larger 

impact of bad news on volatility than positive news. 

There is no consensus about which is the best GARCH model to use. According 

to Jiménez, Mora-Valencia & Perote (2022), the inconsistent conclusions result from 

the fact that analyzing the high volatility of cryptocurrencies requires not only the 

conditional heteroskedastic processes, but also the full shape modeling of the density of 

the underlying stochastic process. Due to the existence of outliers, such density should 

reflect skewness, kurtosis, and extreme values at the tail ends. Following the idea of 

Cerqueti, Giacalone & Mattera (2020) to employ skewed non-Gaussian GARCH models 

for cryptocurrency volatility analysis, Jiménez, Mora-Valencia & Perote (2022) then 

propose the use of semi-nonparametric approach (SNP) based on Gram-Charlier series 

to approximate the distribution tails.  

Several research papers point out that the volatility of cryptocurrency returns has 

some characteristics similar to traditional financial assets, including heteroscedasticity 

(Gkillas & Katsiampa, 2018; Van der Auwera et al., 2020), leptokurtosis (Chan et al., 

2017), and long memory (Assaf, Alberiko Gil-Alana & Mokni, 2021; Lahmiri, Bekiros 

& Salvi, 2018; Phillip, Chan & Peiris, 2019). For example, Lahmiri, Bekiros & Salvi 

(2018) identify a fractional long-range memory and inherent stochasticity in Bitcoin 

volatility under normal, student-t, t-skewed, and generalized error distribution. 

According to Van der Auwera et al. (2020), the log returns of cryptocurrencies 

observe heavier tails than normal distribution. Therefore, to find the most appropriate 

distribution for the log returns of cryptocurrencies, these authors choose to fit different 

types of distributions that are more suitable for fat tails, namely lognormal, student t, 

Pareto, Cauchy, Burr, Weibull, and Frechet distribution. Using Kolmogorov-Smirnov 

test (KS test), Akaike's Information Criteria (AIC), and Bayesian Information Criteria 

(BIC) to select the most fitted distribution with respect to maximum likelihood, the 

results show that student t-distribution may be a better fit than others for most selected 

cryptocurrencies. However, this conclusion is drawn from the limited observation of 

historical returns of only four cryptocurrencies between Jan 2016 and Feb 2019. The 
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volatility behavior of cryptocurrencies has changed significantly from that time 

onwards, especially in 2021.  

More recently, by investigating the return behavior of 254 cryptocurrencies from 

March 2019 to March 2021, Fung, Jeong & Pereira (2021) confirm the conclusion of 

previous studies that common characteristics of cryptocurrencies’ return behavior 

include heavy tails, long memory, volatility persistence, and negative leverage effects. 

The research suggests that it is of vital importance to incorporate a heavy-tailed 

distribution into the GARCH-type models to capture the volatility clusters and large 

kurtosis of cryptocurrencies’ returns. In addition, this study also indicates that student t-

distribution is a good fit for most cryptocurrencies. 

In our thesis, we will use the popular GARCH-type models, including GARCH, 

EGARCH and GJR-GARCH models, to incorporate the volatility clustering in our VaR 

and ES estimates. More details about the model specification and the motivation for 

model selection are stated in Section 3.2.1.3. Using a more updated and representative 

sample, we can investigate whether there is any significant change in the volatility 

behavior compared to the previous research. We also fit normal distribution and student 

t-distribution to our loss sample (following the idea of Van der Auwera et al. (2020) and 

Fung, Jeong & Pereira (2021) that student-t distribution may be a good fit for 

cryptocurrencies). Moreover, we will employ the generalized Pareto distribution in our 

VaR and ES estimates, which have not been examined by the existing research papers.  

  

2.2. Risk measures of cryptocurrencies 

Value at risk (VaR) and expected shortfall (ES) have been popularly employed for 

risk management of different asset classes, however, research papers on the application 

of these risk measures for cryptocurrencies are relatively limited. Recent literature 

started to investigate the use of value at risk and expected shortfall for risk measurement 

of cryptocurrencies. 

Likitratcharoen et al. (2018) used historical simulation VaR and Gaussian 

parametric VaR to measure the risk of cryptocurrencies. A similar method is employed 

in a more recent paper to test the accuracy of Bitcoin’s risk measures during Covid-19 
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pandemic (Likitratcharoen et al., 2021). Gkillas & Katsiampa (2018) applied the 

extreme value theory to study the tail behavior for VaR and ES estimates.  

Many authors considered including the time-varying volatility of cryptocurrencies 

in their risk estimation. An early paper by Stavroyiannis (2017) showed some 

preliminary calculations of value at risk and expected shortfall for several major 

cryptocurrencies at that time, using GARCH modeling. His later paper then focused on 

the VaR and ES estimation of Bitcoin, implementing a GJR-GARCH model with 

residuals following the standardized Pearson type-IV distribution (Stavroyiannis, 2018). 

The results show that Bitcoin violates VaR measures more than other assets, 

consequently being subject to higher capital requirements.  

Troster et al. (2019) concluded that heavy-tailed generalized autoregressive score 

(GAS) models yielded a better result than GARCH-type models when estimating VaR 

of Bitcoin. Meanwhile, Trucíos (2019) proved that the robust-based residual bootstrap 

method outperformed GARCH-type and GAS models for Bitcoin’s VaR forecast.  

In a later research paper, Trucíos, Tiwari & Alqahtani (2020) proposed a vine 

copula-based approach to estimate VaR and ES of seven cryptocurrencies with daily 

return series from 1 January 2015 to 14 June 2019. Such approach based on robust 

volatility models to some extent solved the existence of extreme values and the 

correlation between cryptocurrencies.  

Using high-frequency data of Bitcoin, Pele & Mazurencu-Marinescu-Pele (2019) 

suggested a new VaR estimation procedure based on the entropy of the intraday log-

return distribution. The VaR backtesting results show that this method produces better 

VaR forecasts than traditional GARCH models.  

Liu et al. (2020) estimated VaR of three cryptocurrencies (Bitcoin, Ethereum, 

Litecoin) with exponentially weighted moving average (EWMA) model. Using different 

VaR backtesting methods, they concluded that EWMA model can be used to forecast 

VaR of cryptocurrencies. Similar to the conclusion of Trucíos (2019), they also observed 

that GAS models showed a good performance at most levels.  

Görgen, Meirer & Schienle (2022) proposed to use the quantile version of 

generalized random forests (GRF) for out-of-sample VaR prediction of four popular 

cryptocurrencies. The results indicate that GRF method outperformed other methods in 
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measuring the tail risk of cryptocurrencies, especially in unstable periods. In addition, 

Li (2022) suggested using a forecast combination of value at risk and expected shortfall 

for the risk management of cryptocurrencies. This combination, under some certain 

conditions, is more useful compared to individual forecasts. 

Most research papers above employed similar methods for VaR and ES 

backtesting, among which the most frequently used methods are Kupiec test (1995), 

Christoffersen test (1998), and a joint conditional coverage test named Christoffersen 

and Pelletier (2004). Some literature papers also used Engle & Manganelli test (2004), 

and model confidence set procedure (MCS) of Hansen et al. (2011). 

To the best of our knowledge, none of the above papers conduct a full comparison 

between the performance of different non-parametric and parametric VaR and ES 

estimation methods which we intend to use in our thesis. More specifically, no existing 

research compare the performance between the basic historical simulation method, the 

age-weighted historical simulation method, the generalized Pareto distribution with 

other popular methods to estimate VaR and ES. Therefore, we aim to contribute to the 

current research papers by comparing the ability of six estimation methods to measure 

VaR and ES of cryptocurrencies (more details in Section 3) and finding the best model 

among them. 
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3. Methodology 

3.1. General approach 

This thesis evaluates the performance of several non-parametric and parametric 

methods in estimating VaR and ES. A general approach is to divide the total loss sample 

into a rolling estimation window and a testing window. The one-day ahead VaR and ES 

are estimated along with the testing window by rolling the fixed-size estimation window 

forward. For example, with a rolling estimation window of size 1000, the first 1000 loss 

observations (ℓ1 − ℓ1000) are used to estimate the first VaR and ES in the testing window 

at day 1001. These estimates are then compared with the corresponding actual data at 

day 1001. For the second VaR and ES estimates in the testing window, we remove the 

first loss observation ℓ1 and add the latest one ℓ1001, meaning that we keep the estimation 

window size unchanged, and use the next 1000 loss observations (ℓ2 − ℓ1001) to estimate 

VaR and ES at day 1002. Similar steps are repeated until the end of the testing window. 

Graph 3.1 below illustrates this approach. 

 

Graph 3.1. Rolling estimation window for VaR estimates and testing window 

 First estimation window Testing window 

  Second estimation window    

Days 1 2 (…) 1000 1001 1002 (…) M 

VaR estimates     VaR1001 VaR1002 (…) VaRM 

Actual losses ℓ1 ℓ2 (…) ℓ1000 ℓ1001 ℓ1002 (…) ℓM 

 

We implement different parametric and non-parametric methods (more details in 

Section 3.2) to estimate 95% and 99% one-day ahead VaR and ES using observations 

in the rolling estimation window. A 95% one-day ahead value at risk of X million dollars 

indicates that the probability of losing more than X million dollars in the next day is 5%. 

The 95% expected shortfall of Y million dollars means that the average of VaR at all 

confidence levels larger than 95% in the next day is Y million dollars. We then use 

several backtesting procedures (more details in Section 3.3) to measure the accuracy of 

VaR and ES estimates in the testing window for the purpose of comparing these 

methods. 
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3.2. Estimating value at risk and expected shortfall 

We choose several non-parametric and parametric methods to estimate VaR and 

ES. Non-parametric methods are based on empirical or historical loss distribution, 

meaning that historical data is used as a guide for the future (Hull, 2018). Meanwhile, 

parametric methods assume a parametric distribution for losses. Three popularly used 

non-parametric methods to estimate VaR and ES include basic historical simulation, 

age-weighted historical simulation, and volatility-weighted historical simulation. To 

estimate volatility of cryptocurrencies for the VaR and ES calculations using the 

volatility weighted historical simulation method, we use several conditional variance 

models (GARCH-type models). We also use three different parametric methods, 

assuming normal distribution, student t-distribution, and generalized Pareto distribution 

to estimate parameters of the distribution, which are then used to calculate VaR and ES. 

 

3.2.1. Non-parametric methods 

3.2.1.1. Basic historical simulation (BHS) 

The basic historical simulation method estimates VaR and ES directly by sorting 

the sample of historical losses from the greatest to the smallest loss, then choosing the 

loss that satisfies VaR and ES definition. For example, given a sample of T historical 

loss observations, the one-day ahead VaR estimate at the 𝛼 confidence level is the 

(1 − 𝛼)𝑇 + 1 largest loss, and correspondingly, the ES estimate is the average of 

(1 − 𝛼)𝑇 losses that are greater than VaR.  

The intuition behind this method can be explained by considering the probability 

of losing more than the (1 − 𝛼)𝑇 + 1 largest loss as follows. 

Pr(𝐿 > ℓ(1−𝛼)𝑇+1
𝑠𝑜𝑟𝑡𝑒𝑑 ) =

(1 − 𝛼)𝑇

𝑇
= 1 − 𝛼 =>  𝑉𝑎𝑅𝛼 = ℓ(1−𝛼)𝑇+1

𝑠𝑜𝑟𝑡𝑒𝑑  (2) 

As proved by equation (2), the (1 − 𝛼)𝑇 + 1 largest loss satisfies the 𝛼-quantile 

definition of VaR that Pr(𝐿 > 𝑉𝑎𝑅𝛼) = 1 − 𝛼, therefore it is an estimate of VaR at the 𝛼 

confidence level.  

The basic historical simulation method is simple to implement and interpret, 

however, one problem of this method is that the uncertainty of VaR and ES estimates 

remains unknown. Therefore, we also use the bootstrapping method to deal with the 
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estimation uncertainty. We simulate a large number of new bootstrapping samples from 

the original loss sample, then estimate VaR and ES for each new sample. By re-

sampling, the uncertainty in VaR and ES estimates can be measured by the standard 

error of these new VaR and ES estimates. 

Another major drawback of this method is that it does not take time variation into 

account. As such, all historical loss observations are equally weighted when estimating 

the one-day ahead VaR and ES. This problem can be solved by the next two non-

parametric methods. 

 

3.2.1.2. Age-weighted historical simulation (AWHS) 

The underlying motivation for the age-weighted historical simulation method is 

that the more recent loss observation is more relevant for VaR and ES estimates than 

those observed in longer time ago, as it may contain more updated and similar 

information for the near future estimate. Therefore, higher weights should be allocated 

to the newer loss observations, and lower weights should be assigned to the more remote 

observations in the past. Table 3.2 illustrates the weights of each loss observation from 

the beginning point of estimation period t = 1 to the most recent time t = T. In our VaR 

and ES estimates, we use the decay factor 𝜆 = 0.94, which is a standard value proposed 

in the RiskMetricsTM technical document (J.P. Morgan & Reuters, 1996). 

Table 3.2. Allocated weights to each loss distribution (AWHS method) 

Loss Weight (probability) Note 

ℓ𝑇 𝑤𝑇 =
1 − 𝜆

1 − 𝜆𝑇
 

Highest weight/probability for the most recent 

loss observation 

ℓ𝑇−1 𝑤𝑇−1 = 𝜆𝑤𝑇  

… … As 0 < 𝜆 < 1, the weight is decreasing 

ℓ2 𝑤2 = 𝜆𝑤3 = 𝜆𝑇−2𝑤𝑇  

ℓ1 𝑤1 = 𝜆𝑤2 = 𝜆𝑇−1𝑤𝑇 Lowest weight for the furthest loss observation 

 

It is noted that the allocated weights can be interpreted as probabilities, because all 

the weights sum up to one.  

∑ 𝑤𝑡

𝑡=𝑇

𝑡=1

= ∑ 𝜆𝑇−𝑡𝑤𝑇 = 𝑤𝑇(1 + 𝜆 + ⋯ + 𝜆𝑇−1) = 𝑤𝑇 (
1 − 𝜆𝑇

1 − 𝜆
) = 1

𝑡=𝑇

𝑡=1

 (3) 
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Due to this interpretation, we can estimate VaR by sorting losses in the descending 

order (the greatest loss is the first), then accumulating the corresponding probabilities 

until Pr(𝐿 > ℓ𝑘+1
𝑠𝑜𝑟𝑡𝑒𝑑) > 1 − 𝛼. In this case, VaR estimate is equal to ℓ𝑘

𝑠𝑜𝑟𝑡𝑒𝑑 because it is 

the smallest loss that meet the VaR definition that Pr(𝐿 > ℓ𝑘
𝑠𝑜𝑟𝑡𝑒𝑑) ≤ 1 − 𝛼. ES is the 

average of losses that larger than ℓ𝑘
𝑠𝑜𝑟𝑡𝑒𝑑. 

 

3.2.1.3. Volatility-weighted historical simulation (VWHS) 

Volatility-weighted historical simulation method aims to include volatility 

clustering effect and time-varying volatility into VaR and ES estimates. The motivation 

for this method can be explained by a common empirical finding that the volatility of 

financial assets’ returns or losses is not always constant over time. Normally unstable 

days happen in clusters, leading to the higher market risk during the turbulent period, 

which should be reflected in the estimates of VaR and ES. 

The general approach is that the original losses ℓ𝑡 (t ranges from time 1 to time T) 

should be scaled up or down according to the forecast volatility 𝜎𝑇+1 on the day after 

the estimation period. The volatility scaling formula is as follows, where ℓ𝑡
∗ is the 

rescaled loss at time t (with t = 1, 2, …, T). 

ℓ𝑡
∗ =

𝜎𝑡+1

𝜎𝑡
ℓ𝑡 (4) 

After that, we can implement similar steps as the basic historical simulation 

method to the rescaled losses (not the original losses) to estimate VaR and ES. VaR is 

then equal to the smallest rescaled loss that satisfies Pr(𝐿 > ℓ𝑘
∗ ) ≤ 1 − 𝛼, and ES is the 

average of all rescaled losses greater than VaR.  

The volatility in the scaling formula can be estimated by several GARCH-type 

models. The GARCH-type models have the proven capability to capture clustering 

pattern of volatility. As discussed in the literature review section, there is no consistent 

conclusion on the best GARCH model to estimate volatility of cryptocurrencies. In this 

thesis, we use four conditional variance models, including (i) EWMA model as 

suggested in the RiskMetricsTM technical document by J.P. Morgan & Reuters (1996) 

to forecast variances, (ii) GARCH model which is a popular standard model, (iii) 

EGARCH model to capture the additional leverage effect, and (iv) GJR-GARCH model 
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that is similar to TGARCH model, proposed as the most suitable model to model the 

volatility of cryptocurrencies by Bouoiyour & Selmi (2016) and Gyamerah (2019).  

We consider the time series of losses ℓ𝑡 = 𝜇 + 𝜀𝑡, where 𝜇 is the expected loss and 

𝜀𝑡 = 𝜎𝑡𝑧𝑡 is the stochastic error, which can be interpreted as the unexpected loss. The 

term 𝑧𝑡 reflects the shock to the market, which can be negative or positive. The 

motivation behind the equation 𝜀𝑡 = 𝜎𝑡𝑧𝑡 is that the unexpected loss is influenced by the 

shock to the market, where the size of the influence is equal to the volatility. In other 

words, the volatility impacts the magnitude of unexpected loss, and consequently 

impacts the total loss.  

The conditional variance is calculated differently by four GARCH-type models, 

but generally, the variance of the unexpected loss at time t+1 is conditional on the set of 

historical information 𝐻𝑡 available at time t.  

𝜎𝑡+1
2 = 𝑉𝑎𝑟(𝜀𝑡+1|𝐻𝑡) (5) 

The historical information includes past variances 𝜎1
2, 𝜎2

2, … , 𝜎𝑡
2 and past 

innovations 𝜀1, 𝜀2, … 𝜀𝑡. With four GARCH-type models in this thesis, two common 

characteristics of loss series, namely volatility clustering and leverage effect, can be 

incorporated into the estimates. While all four models can address the volatility 

clustering, the EGARCH and GJR-GARCH models can reflect the leverage effect, 

which will be discussed in more details in the following subsections (i) to (iv).  

 

i) EWMA model 

The original form of the exponential weighted moving average (EWMA) model 

forecasts the conditional variance 𝜎𝑇+1
2  by taking the weighted average of past loss 

innovations 𝜀1, 𝜀2, … 𝜀𝑡. The interpretation of the decay factor 𝜆 and the weights are 

similar to the age-weighted historical simulation method. 

𝜎𝑇+1
2 =  

1 − 𝜆

1 − 𝜆𝑇
∑ 𝜀𝑡

2

𝑇

𝑡=1

 (6) 

When the number of loss observations is reasonably large, the EWMA model can 

also be interpreted as the simplified GARCH model without the constant term.  

𝜎𝑇+1
2 = 𝜆𝜎𝑇

2 + (1 − 𝜆)𝜀𝑇
2 (7) 
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The first variance is set equal to the variance of 1000 first loss observations. We 

also use the standard decay parameter 𝜆 = 0.94, which is recommended for EWMA 

model when dealing with the daily data set (J.P. Morgan & Reuters, 1996). There is a 

trade-off between the convenience of using a fixed parameter and the possibility that 

this parameter may not always be optimal. 

 

ii) GARCH (1,1) model 

The generalized autoregressive conditional heteroscedastic (GARCH) model 

(Bollerslev, 1986) was developed from the ARCH model (Engle, 1982). Empirical 

studies find that GARCH (1,1) model with one lag of past variance and one lag of past 

innovation is normally sufficient to capture the dynamics of volatility (Asgharian, 2021). 

In GARCH (1,1) model, the conditional variance is calculated as: 

𝜎𝑇+1
2 = 𝜅 + 𝛾𝜎𝑇

2 + 𝛼𝜀𝑇
2 (8) 

The parameters in this equation are estimated by maximum likelihood, in which 

we choose the values of parameters that maximize the probability that the fitted 

distribution generates the observed innovations. We fit two types of distribution to the 

innovation process, the Gaussian-normal distribution (denoted as GARCHn) and the 

student t-distribution (denoted as GARCHt), to estimate three parameters of the 

GARCH (1,1) model.  

To ensure the stationarity and positivity, the following constraints on the 

parameters should be satisfied: 𝜅 > 0, 𝛾 ≥ 0, 𝛼 ≥ 0, 𝛾 +  𝛼 < 1. The first variance and 

innovation follow the default set-up in the Matlab programming language. Accordingly, 

the first variance 𝜎1
2 is equal to the long-term unconditional variance, calculated by 

taking the sample average of the squared disturbances of input data. The first innovation 

𝜀1 is by default the squared root of the average squared value of the loss data set. These 

settings minimize the initial temporary effects. 

 

iii) EGARCH (1,1) model 

The motivation for the use of the exponential GARCH (EGARCH) is that it can 

model the leverage effect, which is not captured by EWMA or GARCH model. The 

leverage effect indicates that negative shocks to the market may have a more significant 
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impact on volatility than positive news. The EGARCH model aims to reflect this 

asymmetric characteristic by calculating the logarithm of variance as follows. 

log 𝜎𝑇+1
2 = 𝜅 + 𝛾 log 𝜎𝑇

2 + 𝛼 [
|𝜀𝑇|

𝜎𝑇
− 𝐸 {

|𝜀𝑇|

𝜎𝑇
}] + 𝜉 (

𝜀𝑇

𝜎𝑇
) (9) 

The four parameters 𝜅, 𝛾, 𝛼, and 𝜉 in this model are also estimated by the maximum 

likelihood method. As this model measures the logarithm of variance, the constraint for 

positivity is eliminated. The constraint for stationarity still holds. The first variance is 

similar to GARCH (1,1) model, but the first innovation is equal to zero by Matlab default 

set-up.  

We also estimate EGARCH (1,1) model in two cases of normal (denoted as 

EGARCHn) and student-t innovation distribution (denoted as EGARCHt). If the 

innovation follows Gaussian-normal distribution, then:  

𝐸 {
|𝜀𝑇|

𝜎𝑇
} = 𝐸{|𝑧𝑇|} = √

2

𝜋
 (10) 

If the innovation follows student’s t distribution and v > 2, then: 

𝐸 {
|𝜀𝑇|

𝜎𝑇
} = 𝐸{|𝑧𝑇|} = √

𝑣 − 2

𝜋

Γ (
𝑣 − 1

2 )

Γ (
𝑣
2)

 (11) 

 

iv) GJR-GARCH (1,1) model 

Similar to the EGARCH (1,1) model, the GJR-GARCH (1,1) model also 

incorporates the leverage effect into the variance estimation as follows.  

𝜎𝑇+1
2 = 𝜅 + 𝛾𝜎𝑇

2 + 𝛼𝜀𝑇
2 + 𝜉𝑰[𝜀𝑇 < 0]𝜀𝑇

2 (12) 

with 𝑰[𝜀𝑇 < 0] = {
1 if 𝜀𝑇 < 0
0 if 𝜀𝑇 ≥ 0

 

In this model, the indicator function 𝑰[𝜀𝑇 < 0] = 1 implies that additional weight 

of innovations (𝜉) should be added to the variance estimate when there is a negative 

shock (𝜀𝑇 < 0). Otherwise, in case of positive information (𝜀𝑇 ≥ 0), 𝑰 = 0 then the 

conditional variance is calculated in the same way as the standard GARCH model.  

Similar to GARCH (1,1) and EGARCH (1,1) models, we also use the maximum 

likelihood estimation method to obtain the four parameters of GJR-GARCH (1,1) 

model. For stationarity and positivity, these constraints on parameters should be applied: 
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𝜅 > 0, 𝛾 ≥ 0, 𝛼 ≥ 0, 𝛼 + 𝜉 ≥ 0, 𝛾 +  𝛼 + 1/2𝜉 < 1. The default set-up in Matlab for the 

first variance and the first innovation in the GJR-GARCH model is exactly the same as 

the GARCH model. 

This model has a close similarity with the below threshold GARCH (TGARCH) 

model, with the same interpretation of the indicator function. 

𝜎𝑇+1 = 𝜅 + 𝛾𝜎𝑇 + 𝛼|𝜀𝑇| + 𝜉|𝜀𝑇|𝑰[𝜀𝑇 < 0] (13) 

The TGARCH model has been proven to perform properly in modeling volatility 

of some types of cryptocurrencies as discussed in the review of existing research papers. 

Given that the GJR-GARCH (1,1) and the TGARCH (1,1) have a similar interpretation, 

we choose the GJR-GARCH (1,1) model for more convenient implementation using 

Matlab programming language. We also consider two types of innovation distribution, 

including normal (denoted as GJRGARCHn) and student-t (denoted as GJRGARCHt), 

in our estimates. 

 

3.2.2. Parametric methods 

 The parametric method fits a specific type of distribution to the losses. To obtain 

the parameters for the distribution, typically we apply the maximum likelihood, which 

is similar to the method to estimate parameters of GARCH-type models.  

 

3.2.2.1. Normal distribution 

The normal distribution is a symmetric distribution around the mean, which has 

the following probability distribution function (pdf). 

𝑓(ℓ) =
1

𝜎√2𝜋
exp [−

1

2
(

ℓ − 𝜇

𝜎
)

2

] (14) 

In which, the two parameters are the mean 𝜇 (or location) and the standard 

deviation 𝜎 (or scale). First, we fit the normal distribution to loss data, using maximum 

likelihood method to estimate these parameters. Then, we use these parameters to 

calculate the VaR and ES at the 𝛼 confidence level as follows. 

𝑉𝑎𝑅𝛼 = 𝜇 + 𝜎𝑧𝛼 where 𝑧𝛼 =
𝑉𝑎𝑅𝛼−𝜇

𝜎
 (15) 

 

𝐸𝑆𝛼 = 𝜇 + 𝜎
𝑓𝑠𝑡𝑑(𝑧𝛼)

1−𝛼
 where 𝑓𝑠𝑡𝑑(𝑧𝛼) =

1

√2𝜋
exp (−

1

2
𝑧𝛼

2)  (16) 
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3.2.2.2. Student t-distribution 

The student t-distribution has heavier tails than the normal distribution, therefore 

it is suitable for modeling distribution that is more sensitive to outliers. Some research 

papers show that the student t-distribution is the most fitted distribution for several types 

of cryptocurrencies (Fung, Jeong & Pereira, 2021; Van der Auwera et al., 2020). The 

student t-distribution has three parameters, including the location parameter 𝜇, the scale 

parameter 𝜎∗, and the shape parameter 𝑣, which can be interpreted as the mean, the 

standard deviation, and the degree of freedom respectively.  

The pdf of student t-distribution is as follows. 

𝑓∗(ℓ) =
Γ[(𝑣 + 1)/2]

𝜎∗√𝑣𝜋 Γ(𝑣/2)
[1 +

1

𝑣
(

ℓ − 𝜇

𝜎∗
)

2

]

−(𝑣+1)/2

 (17) 

Given the relationship between 𝜎 and 𝜎∗ in case the degree of freedom is higher 

than 2, the pdf can be rewritten as below. 

𝑓(ℓ) =
Γ[(𝑣 + 1)/2]

𝜎√(𝑣 − 2)𝜋 Γ(𝑣/2)
[1 +

1

𝑣 − 2
(

ℓ − 𝜇

𝜎
)

2

]

−(𝑣+1)/2

 (18) 

The steps to estimate VaR and ES are similar to those of normal distribution. We 

fit the student t-distribution to the losses to find the value of three parameters 𝜇, 𝜎∗, and 

𝑣 with the maximum likelihood method, then calculate the 𝛼 confidence level VaR and 

ES using these parameters. 

𝑉𝑎𝑅𝛼 = 𝜇 + √
𝑣−2

𝑣
𝜎𝑡𝛼,𝑣 where 𝑡𝛼,𝑣 =

𝑉𝑎𝑅𝛼−𝜇

𝜎∗
 (19) 

𝐸𝑆𝛼 = 𝜇 + √
𝑣−2

𝑣
𝜎

𝑓𝑠𝑡𝑑
∗ (𝑡𝛼,𝑣)

1−𝛼
(

𝑣+𝑡𝑎,𝑣
2

𝑣−1
) where 𝑓𝑠𝑡𝑑

∗ (𝑡𝛼,𝑣) =
Γ[𝑣+1)/2]

√𝑣𝜋Γ(𝑣 2⁄ )
[1 +

1

𝑣
𝑡𝛼,𝑣

2 ]
−

𝑣+1

2
 

 

(20) 

3.2.2.3. Generalized Pareto distribution (GPD-POT) 

The general approach is to fit the generalized Pareto distribution to a subsample of 

the largest losses. This employs the idea of the peaks over threshold (POT) method, 

which is a popular version of the extreme value theory (EVT). 

The POT method provides a solution to estimate VaR and ES with an unspecified 

loss distribution 𝑓. VaR is by definition the 𝛼-quantile of 𝑓. Given the corresponding 

cumulative distribution 𝐹, we can estimate VaR by solving the equation 𝐹(𝑉𝑎𝑅) =  𝛼. 
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According to the extreme value theory (Balkema & de Haan, 1974; Gnedenko, 1943; 

Pickands, 1975), the unknown equation 𝐹(𝑉𝑎𝑅) =  𝛼 can be approximated by the 

generalized Pareto distribution (GDP) as below, if the threshold level 𝑢 is large enough. 

𝐹(𝑉𝑎𝑅)  ≈  𝐺𝐷𝑃(𝜉, 𝛽) = 1 − (1 + 𝜉
ℓ − 𝑢

𝛽
)

−
1
𝜉 (21) 

In which, the parameters 𝜉 and 𝛽 are related to the right tail and the volatility 

respectively in the unspecified loss distribution 𝑓. 

Overall, the POT method is conducted in three steps. First, we draw a subsample 

of the largest losses from the original loss sample. Second, we estimate the parameters 

of the generalized Pareto distribution, using maximum likelihood method. Finally, these 

parameters are used to estimate VaR and ES.  

In the first step, the largest losses are defined as all losses in the sample that are 

beyond the threshold level 𝑢. A practical choice is using roughly 4% - 6% largest losses 

in the sample (Nilsson, 2021), thus we choose to use 5% of the largest losses in this 

thesis. As our main focus is the largest losses, the POT method is mainly used to estimate 

VaR and ES at a high confidence level. In this thesis, we choose to use the POT method 

at the 99% confidence level. 

For the estimates of parameters 𝜉 and 𝛽 by maximum likelihood in the second step, 

the generalized Pareto probability density function 𝑔(𝜉, 𝛽) is required. It can be 

calculated by taking the derivative of GDP with respect to loss ℓ as follows. 

𝑔(𝜉, 𝛽) =
𝑑𝐺𝐷𝑃(𝜉, 𝛽)

𝑑ℓ
=

1

𝛽
(1 + 𝜉

ℓ − 𝑢

𝛽
)

−
1
𝜉

−1
 (22) 

Then the value of parameters 𝜉 and 𝛽 can be estimated by maximizing the 

following log-likelihood function. 

𝑙𝑜𝑔𝐿(𝜉, 𝛽) = ∑ 𝑙𝑛
𝑁𝑢

𝑖=1
. [

1

𝛽
 (1 + 𝜉

ℓ𝑖 − 𝑢

𝛽
)

−1/𝜉−1

] (23) 

As a final step, we can use these parameters to estimate VaR and ES by the 

following formulas, in which 𝑁 is the size of the original sample, and 𝑁𝑢 is the size of 

the subsample of largest losses.  

𝑉𝑎𝑅𝛼 = 𝑢 +
𝛽

𝜉
[(

𝑁

𝑁𝑢
(1 − 𝛼))−𝜉 − 1] (24) 

𝐸𝑆𝛼 =
𝑉𝑎𝑅𝛼 + 𝛽 − 𝜉𝑢

1 − 𝜉
 (25) 
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3.3. Backtesting procedures 

The purpose of VaR and ES backtesting procedures is to assess the performance 

of VaR and ES estimation methods. Normally, VaR and ES are estimated daily, using 

information available at time T to forecast one-day ahead VaR and ES at time T+1. Then 

when actual loss is known at the end of day T+1, it can be compared with the estimate 

of VaR one day before. Similarly, we can compare ES estimated on the previous day 

with the actual number when the loss data is available at day T+1. Therefore, actual 

daily loss data can be employed to measure the accuracy of VaR and ES models.  

A violation is constituted when the actual loss ℓ is larger than the estimated VaR 

for the same day. If ℓ𝑡 > 𝑉𝑎𝑅𝑡, then we record a violation as “one”, otherwise we record 

a non-violation as “zero”. Consequently, the stochastic variable that represents the 

number of violations is a Bernoulli variable, following a binomial distribution.  

To measure the performance of VaR models, we use several popular backtesting 

procedures, including the unconditional coverage test of Kupiec (1995), the traffic light 

test proposed by the Basel Committee (1996), the conditional coverage test and the 

independence test of Christoffersen (1998). For the backtesting of ES, we employ the 

unconditional test of Acerbi & Szekely (2014). For all the tests, we choose the pragmatic 

test confidence level of 95%.  

 

3.3.1. Backtesting value at risk 

3.3.1.1. Kupiec test (POF) 

 The Kupiec test is also known as the proportion of failures (POF) test. The purpose 

of this test is to assess whether the proportion of actual VaR violations is in line with 

the probability of failures indicated by the VaR confidence level.  

The POF test follows the idea of the binomial test that the actual number and the 

expected number of VaR violations should be consistent if the VaR estimation method 

is correct. The actual number of violations is counted directly from the testing sample 

of size N. According to VaR definition, the expected number of violations is then equal 

to N(1 - VaR level). Following this idea, Kupiec (1995) develops the test by using the 

likelihood ratio for the comparison of probabilities. The POF’s likelihood ratio or test 

statistic is calculated as follows. 
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𝐿𝑅𝑃𝑂𝐹 = −2 log (
(1 − 𝑝)𝑁−𝑥𝑝𝑥

(1 −
𝑥
𝑁)

𝑁−𝑥

(
𝑥
𝑁)

𝑥

 
) ~ 𝜒2(1) (26) 

In which, x represents the number of observed violations, N is the size of testing 

sample and p = 1 - VaR level is the probability of violations inferred from the VaR 

confidence level.  

If the test statistic is lower than the critical value, which depends on the test 

confidence level, the test result is to accept. Otherwise, the VaR estimation model fails 

the POF test. 

 

3.3.1.2. Christoffersen tests (CC and CCI) 

Two VaR backtesting procedures proposed by Christoffersen (1998) include the 

conditional coverage independence (CCI) test and the conditional coverage (CC) test. 

While the former tests for the independence of VaR violations and non-violations on the 

consecutive days, the latter tests for both the independence and the frequency of the VaR 

violations.  

 

(i) The CCI test 

The CCI test examines if the probability of violation on the following day depends 

on the violation today or not. Christoffersen (1998) states that the series of violations 

and non-violations (the string of “ones” and “zeros”) follows the Markov chain with two 

states (violation state 𝑠1 and non-violation state 𝑠0). We can interpret that 𝜋01 is the 

probability of transition to a violation day on the next day, given that there is no violation 

today. Similarly, the matrix of conditional transition probabilities between two states are 

as follows. 

(
𝜋00 𝜋01

𝜋10 𝜋11
) = (

Pr (𝑠0|𝑠0) Pr (𝑠0|𝑠1)

Pr (𝑠1|𝑠0) Pr (𝑠1|𝑠1)
) (27) 

Under the null hypothesis, violations and non-violations are independent over time 

(𝜋11 = 𝜋01). In other words, the next day is a violation day, regardless today is a 

violation day or a non-violation day.   
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The test statistic of the CCI test is calculated as: 

𝐿𝑅𝐶𝐶𝐼 = −2 log (
𝜋0

𝑛0𝜋1
𝑛1

𝜋00
𝑛00𝜋01

𝑛01𝜋10
𝑛10𝜋11

𝑛11
) ~ 𝜒2(1) (28) 

In which, 𝑛1 is the number of ones, 𝑛0 is the number of zeros, 𝑛𝑖𝑗 is the number of 

transitions from state 𝑠𝑖 to state 𝑠𝑗 (i and j can be 0 or 1). If the test statistic is higher 

than the critical value at the given significant level, the null hypothesis of independence 

is rejected.  

 

(ii) The CC test 

 The CC test is a combination of the POF test and the CCI test, thus its test statistic 

is measured as follows. 

𝐿𝑅𝐶𝐶 = 𝐿𝑅𝑃𝑂𝐹 + 𝐿𝑅𝐶𝐶𝐼 ~ 𝜒2(2) (29) 

Similar to POF test and CCI test, we compare the CC test statistic with the critical 

value at a statistical significant level. If it is higher than the critical value, then the VaR 

estimation method is rejected.  

 

3.3.1.3. Traffic light test (TF) 

The traffic light test, also known as the three zones test, is developed by the Basel 

Committee (1996) as a proxy to set up the bank’s capital requirement. This test focuses 

on the underestimation of VaR, as it is an incentive for a lower capital reserve. It is 

originally used for bank regulation, but we can employ this test for cryptocurrencies to 

see the probabilities of observing up to a specific number of VaR violations.  

There are three zones in the traffic light tests, including red zone, yellow zone, and 

green zone. The red zone starts when the cumulative probability of VaR violations is 

equal to or higher than 99.99%. The yellow zone covers the number of VaR violations 

where the probability is lower than 99.99% and higher than 95%. Otherwise, it enters 

the green zone.  

The red zone implies an issue with the estimation method. If the VaR model is 

correct, it is not likely that there are too many violations. It is noted that only a too high 

number of VaR violations result in the rejection, as this test only covers the risk of VaR 

underestimation. 
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3.3.2. Backtesting expected shortfall 

We use the unconditional test proposed by Acerbi and Szekely (2014) for the 

backtesting of ES. While most ES backtesting procedures require information about the 

loss distribution or the tail distribution, this unconditional test allows us to produce 

approximate test results without specifying the distribution.  

The test statistic of Acerbi and Szekely test is derived from the ES definition, in 

which the indicator function I = 1 if loss is larger than VaR and I = 0 otherwise.  

𝐸𝑆𝛼,𝑡 =
𝐸[𝐿𝑡𝐼𝑡]

1 − 𝛼
⟺ −

𝐸[𝐿𝑡𝐼𝑡] 1 − 𝛼⁄

𝐸𝑆𝛼,𝑡
+ 1 = 0 (30) 

The unconditional test statistic is then defined as follows. 

𝑍𝑢𝑛𝑐𝑜𝑛𝑑 = −
1

𝑁(1 − 𝛼)
∑

𝐿𝑡𝐼𝑡

𝐸𝑆𝛼,𝑡
+ 1

𝑡=𝑁

𝑡=1
 (31) 

Under the null hypothesis, we expect that the test statistic is equal to zero, as a 

correct estimate of ES indicates that 𝐸𝑆𝛼,𝑡 = 𝐸[𝐿𝑡𝐼𝑡] (1 − 𝛼)⁄  for all days t. A negative 

value of the test statistic implies that 𝐸𝑆𝛼,𝑡 < 𝐸[𝐿𝑡𝐼𝑡] (1 − 𝛼)⁄  for at least one day t. 

Therefore, the test result is rejection if the test statistic is largely negative. In this test, 

the critical values for this test are precomputed and stable. The unconditional test is 

conducted in two cases that the critical values follow the normal distribution or student 

t-distribution.  
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4. Data 

4.1. Data selection  

As discussed in the introduction section, we aim to obtain a more representative, 

informative, and updated set of data than the existing research papers.  

First, we collect the daily closing cryptocurrency prices from coinmarketcap.com, 

which is more representative of the market than the price obtained from an individual 

spot exchange. As stated in the metric methodology paper developed by CoinMarketCap 

(2019), the prices of cryptocurrencies are calculated as a volume-weighted average of 

all pair prices available on the market. The higher volume has a greater impact on the 

average price. The underlying motivation for this calculation is that markets with larger 

transaction volumes have higher liquidity and are possibly less susceptible to price 

fluctuation than those with lower volumes.  

Second, the data is obtained for the entire period that the cryptocurrencies are listed 

on the market, from the first available date to 30 April 2022. It is more informative, 

containing both information further in the past and more updated information.  

Third, we select cryptocurrencies that satisfy the requirements of (i) being in the 

top 20 cryptocurrencies by market capitalization as of 30 April 2022, (ii) having more 

than 1500 observations to obtain more robust results, and (iii) excluding stable coins 

that attempt to maintain a relatively stable price, and meme coins that are inspired by 

humorous ideas and jokes. Consequently, our sample of cryptocurrencies includes 

Bitcoin (BTC), Ethereum (ETH), Binance coin (BNB), Ripple coin (XRP), and Cardano 

(ADA). The main characteristics of these cryptocurrencies are stated in Appendix 1. 

These five cryptocurrencies account for roughly 67% of total market cap as of 30 April 

2022, and mostly maintain dominance in the market (See Appendix 2). Therefore, this 

sample of cryptocurrencies is fairly representative of the market. 

 

4.2. Descriptive statistics 

Based on historical price series of all selected cryptocurrencies, we calculate the 

losses ℓ𝑡 at time t as follows, where 𝑃𝑡 and 𝑃𝑡−1 are the daily closing prices of 

cryptocurrencies at time t and the day before respectively. 

ℓ𝑡 = −100[ln (𝑃𝑡) − ln (𝑃𝑡−1)] (32) 
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It is notable that the loss here is defined as a positive number, so that it is more 

convenient to perform the tests and examine the test results. Table 4.1 below describes 

the descriptive statistics of the cryptocurrency loss sample. We also test for the 

normality assumption of the loss distribution using the Jarque-Bera test, and the 

stationarity of the loss time series using the Augmented Dickey-Fuller (ADF) test. More 

details about the methodology, the test statistic, and the expected results of these tests 

are stated in Appendix 3 and Appendix 4. 

Table 4.1. Descriptive statistics of cryptocurrency losses 
 

BTC ETH BNB XRP ADA 

Mean -0.171 -0.280 -0.470 -0.144 -0.204 

Median -0.185 -0.081 -0.120 0.182 0.000 

Minimum -35.745 -41.241 -67.506 -102.746 -86.123 

Maximum 46.473 130.214 54.281 61.638 50.371 

Variance 17.657 42.837 49.184 50.603 49.754 

Standard deviation 4.202 6.545 7.013 7.114 7.054 

Skewness 0.514 3.201 -0.938 -1.591 -1.891 

Kurtosis 13.916 72.009 18.074 29.823 25.545 

Jarque-Bera statistic  16,475   491,933   16,729   97,007   36,406  

Jarque-Bera result reject reject reject reject reject 

Jarque-Bera p-value 0.000 0.000 0.000 0.000 0.000 

ADF test statistic -58.254 -52.806 -38.784 -54.676 -41.439 

ADF test result reject reject reject reject reject 

ADF p-value 0.001 0.001 0.001 0.001 0.001 

Starting date 29/4/2013 8/8/2015 26/7/2017 5/8/2013 2/10/2017 

Ending date 30/4/2022 30/4/2022 30/4/2022 30/4/2022 30/4/2022 

Total observations  3,289  2,458   1,740   3,191   1,672  

 

As can be seen from Table 4.1 and Graph 4.3, the mean and median value of losses 

for each cryptocurrency are relatively similar (approximately zero), however, its 

minimum and maximum value of losses range broadly, indicating the presence of 

outliers. Among five cryptocurrencies, ETH observed the largest loss of 130.214 due to 

a substantial drop in its price at the beginning of the period (See Graph 4.3). After that, 

the greatest losses of all cryptocurrencies are around 50 to 60. On the contrary, XRP and 

ADA achieved the exceptionally high returns of 102.746 and 86.123 respectively in 

2017, while the highest return of BTC is only 35.745.  
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Overall, BTC losses are less volatile than other cryptocurrencies with the lowest 

standard deviation of roughly 4.2. Meanwhile, XRP, ADA, and BNB experience the 

highest volatility in their loss series, with the standard deviation of around 7. Graph 4.3 

also illustrates the same conclusion. It can be explained by the fact that BTC is more 

well-known with the larger trading volume and market capitalization, so it is less prone 

to price fluctuation than other cryptocurrencies. 

The Jarque-Bera test statistics of all cryptocurrencies in Table 4.1 are significantly 

higher than zero, clearly showing the rejection of normal distribution. Graph 4.4 presents 

the shape of each cryptocurrency loss distribution, with a closer display to the right and 

the left of the distribution. BTC and ETH losses witness the positive skewness, meaning 

the loss data spreads out more to the left than to the right of the mean, while the other 

cryptocurrencies observe the negative skewness. The kurtosis values of all five 

cryptocurrencies are greater than the standard value of three (See Appendix 3), 

indicating that the distribution is peaked with heavier tails. The high kurtosis results 

from the existence of extreme values. This observation is similar to the existing research 

papers (Stephen Chan et al., 2017). Among all, ETH is the most skewed and leptokurtic 

cryptocurrency, with the highest skewness of 3.2 and an extremely large kurtosis of 72. 

The ADF test statistics of all five cryptocurrencies are negative and far from zero, 

indicating that we can reject the null hypothesis of having unit roots in the time series 

of cryptocurrency losses. In other words, we can reject the possibility of a non-stationary 

process. Graph 4.3 also shows that the time series of cryptocurrency losses are to some 

extent stationary, while the cryptocurrency prices do not follow a stationary process. 

Following the approach in section 3.1, Table 4.2 divides the total loss observations 

into a rolling estimation window of size 1000 and a testing window as below. 

Table 4.2. First estimation window and testing window 

 
Total 

losses 

First estimation window Testing window 

Period Days Period Days 

BTC 3,289 29/04/2013 - 23/01/2016 1,000 24/01/2016 - 30/04/2022 2,289 

ETH 2,458 08/08/2015 - 03/05/2018 1,000 04/05/2018 - 30/04/2022 1,458 

BNB 1,740 26/07/2017 - 20/04/2020 1,000 21/04/2020 - 30/04/2022 740 

XRP 3,191 05/08/2013 - 30/04/2016 1,000 01/05/2016 - 30/04/2022 2,191 

ADA 1,672 02/10/2017 - 27/06/2020 1,000 28/06/2020 - 30/04/2022 672 
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Graph 4.3. Cryptocurrency loss, loss distribution, and price movement 
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Graph 4.4. Cryptocurrency loss distribution 

  



29 

 

5. Results and analysis 

5.1. Estimation results  

Graphs 5.1 to 5.5 presents the results of one-day ahead VaR estimates for five 

cryptocurrencies (BTC, ETH, BNB, XRP, ADA) by different non-parametric and 

parametric VaR estimation methods (in Section 3.2), at 95% and 99% confident levels. 

By visual inspection, the VWHS method using the EWMA model and all GARCH-

type models reacts more swiftly to the market movement than other estimation models 

at all VaR levels. It is followed by the AWHS model that also has a fairly quick reaction 

to the loss fluctuation. On the contrary, the BHS method and all three parametric 

methods seem to react more slowly. It can be explained by the fact that these methods 

do not incorporate the time variation in VaR estimation. 

Under most circumstances, the POT method generates higher VaR estimates than 

the two other parametric methods, since this method fits a distribution to a subsample 

of highest losses, not all loss observations, for the parameter estimation. As expected, 

the VaR estimates at 99% confidence level are higher than those at 95% VaR level, as 

it investigates further to the tails of the distribution which is more sensitive to outliers. 

The VWHS method using EGARCH models tends to overreact to the market, 

meaning that it generates a substantially higher VaR estimate than the actual loss. The 

overreaction of EGARCH models can be clearly seen in Graph 5.1, 5.2, and 5.4. The 

GJR-GARCH models have the same tendency in several cases, especially at 99% level 

of confidence, for example in case of BTC and XRP (illustrated in Graph 5.1 (b) and 

Graph 5.4 (b) respectively).  

Regarding BHS method, as noted in section 3.2.1.1, VaR and ES estimated by this 

method are subject to the uncertainty in estimation, hence we use the bootstrapping 

method to solve this problem. By resampling 1000 times with replacement, we are 95% 

certain that our loss ranges within the confidence interval 95% of the time (for VaR level 

of 95%) and 99% of the time (for VaR level of 99%). Further information about the VaR 

and ES confidence intervals for each cryptocurrency under the BHS method are stated 

in Appendix 5. Due to the greater uncertainty in ES estimates, it is observable that the 

confidence intervals for ES-BHS are wider than VaR-BHS in all cases. The distribution 

of VaR-BHS and ES-BHS is illustrated in Appendix 6.   
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Graph 5.1. (a) 95% one-day ahead VaR estimates (BTC) 

 

(b) 99% one-day ahead VaR estimates (BTC) 
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Graph 5.2. (a) 95% one-day ahead VaR estimates (ETH) 

 

(b) 99% one-day ahead VaR estimates (ETH) 
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Graph 5.3. (a) 95% one-day ahead VaR estimates (BNB) 

 

 (b) 99% one-day ahead VaR estimates (BNB) 
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Graph 5.4. (a) 95% one-day ahead VaR estimates (XRP) 

 

(b) 99% one-day ahead VaR estimates (XRP) 
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Graph 5.5. (a) 95% one-day ahead VaR estimates (ADA) 

 

(b) 99% one-day ahead VaR estimates (ADA) 
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Table 5.6 below summarized all parameters of the GARCH-type models estimated 

by the maximum likelihood method and the standard parameter values of the EWMA 

model as proposed by the Basel Committee. For most cryptocurrencies excluding XRP, 

the GARCH (1) term is typically higher than the ARCH (1) term, indicating that the past 

variance has a more considerable influence on the current conditional variance than the 

past innovation. This is somewhat similar to the standard parameters (γ = 0.94) of the 

EWMA model. The parameters of the GARCH-type models are statistically significant. 

As for XRP, the impacts of the historical variance and past innovation on the conditional 

variance are relatively equal.  

For all cryptocurrencies, it is observable that the EGARCH models have the 

highest value of the GARCH (1) term and the lowest value of the constant term. The 

differences in parameter estimation between the EGARCH models and other GARCH-

type models are particularly striking in cases of ETH and XRP. It is possibly the reason 

for the overreaction of EGARCH models to the market as observed before. 

The leverage terms of the EGARCH and the GJR-GARCH models are negative in 

several cases (see Table 5.6). Notably, ETH experiences negative leverage terms in all 

EGARCH and GJR-GARCH models. Similarly, the leverage terms of the EGARCH 

models for XRP are also smaller than zero. If the leverage term is positive, then the bad 

news has a greater effect on volatility than good news. The reverse is true for the 

negative leverage term, meaning that the volatility of cryptocurrencies is likely to be 

higher after positive news. This observation is to some extent different from the 

conclusion of Obeng (2021) that bad news has a more significant impact on the market. 

In our cases, we observe both positive and negative leverage terms. Such difference may 

result from the fact that Obeng (2021) observed the price index of all 30 

cryptocurrencies for a period of only four years from 2017 to 2020, rather than 

examining a particular cryptocurrency for a longer period.  
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Table 5.6. Maximum likelihood estimation of GARCH-type model parameters and 

standard EWMA parameters 

BTC 

 Constant 
𝜅  

GARCH(1) 
𝛾 

ARCH(1) 
𝛼 

Leverage 
𝜉 

EWMA (standard) value N/A 0.94 0.06 N/A 

      

GARCHn value  0.9913   0.8321   0.1242  N/A  
p-value  (0.0000)   (0.0000)   (0.0000)  

 

GARCHt value 1.0584 0.7641 0.2359 N/A  
p-value (0.0021)  (0.0000)   (0.0000)  

 

EGARCHn value  0.1715  0.9507 0.2420 0.0224  
p-value  (0.0000)   (0.0000)   (0.0000)   (0.0025)  

EGARCHt value  0.1904  0.9411 0.4955 -0.0035  
p-value (0.0023)  (0.0000)   (0.0000)  (0.9361) 

GJRGARCHn value 1.0008 0.8311 0.1219 0.0059  
p-value  (0.0000)   (0.0000)   (0.0000)  (0.7155) 

GJRGARCHt value  1.0600  0.7636 0.2328 0.0072  
p-value (0.0021) (0.0000)  (0.0011)  (0.9175) 

 

ETH  𝜅 𝛾 𝛼 𝜉 

EWMA (standard) value N/A 0.94 0.06 N/A 

      

GARCHn value 3.9964 0.6386 0.3615 N/A  
p-value  (0.0000)   (0.0000)   (0.0000)   

GARCHt value 3.6216 0.6810 0.3190 N/A  
p-value  (0.0000)   (0.0000)   (0.0000)   

EGARCHn value 0.3505 0.9146 0.3915 -0.0360  
p-value  (0.0000)   (0.0000)   (0.0000)   (0.0035)  

EGARCHt value 0.3223 0.9148 0.4283 -0.0213  
p-value  (0.0000)   (0.0000)   (0.0000)   (0.5135)  

GJRGARCHn value 4.0247 0.6375 0.3686 -0.0122  
p-value  (0.0000)   (0.0000)   (0.0000)   (0.7918)  

GJRGARCHt value 3.6697 0.6785 0.3415 -0.0400  
p-value  (0.0000)   (0.0000)   (0.0000)   (0.6447)  

 

BNB  𝜅 𝛾 𝛼 𝜉 

EWMA (standard) value N/A 0.94 0.06 N/A 

      

GARCHn value 1.7292 0.8003 0.1879 N/A 

 p-value  (0.0000)   (0.0000)   (0.0000)   

GARCHt value 1.1245 0.8635 0.1365 N/A 

 p-value  (0.0080)   (0.0000)   (0.0000)   
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Table 5.6. (continued) 

BNB (continued)  𝜅 𝛾 𝛼 𝜉 

EGARCHn value 0.2130 0.9523 0.3595 0.0242 

 p-value  (0.0000)   (0.0000)   (0.0000)   (0.0085)  

EGARCHt value 0.0770 0.9801 0.2532 -0.0177  
p-value  (0.0145)   (0.0000)   (0.0000)   (0.4955)  

GJRGARCHn value 1.6885 0.7993 0.2078 -0.0307  
p-value  (0.0000)   (0.0000)   (0.0000)   (0.0553)  

GJRGARCHt value 0.6943 0.9080 0.0661 0.0519  
p-value  (0.0156)   (0.0000)   (0.0112)   (0.0000)  

 

XRP  𝜅 𝛾 𝛼 𝜉 

EWMA (standard) value N/A 0.94 0.06 N/A 

      

GARCHn value 5.0469 0.4879 0.5121 N/A  
p-value  (0.0000)   (0.0000)   (0.0000)   

GARCHt value 3.5141 0.5651 0.4349 N/A  
p-value  (0.0000)   (0.0000)   (0.0000)   

EGARCHn value 0.7266 0.8195 0.7222 -0.1044  
p-value  (0.0000)   (0.0000)   (0.0000)   (0.0000)  

EGARCHt value 0.5404 0.8592 0.8698 -0.0919  
p-value  (0.0000)   (0.0000)   (0.0000)   (0.0991)  

GJRGARCHn value 5.7782 0.4406 0.4003 0.3183  
p-value  (0.0000)   (0.0000)   (0.0000)   (0.0000)  

GJRGARCHt value 3.8295 0.5403 0.3639 0.1916  
p-value  (0.0000)   (0.0000)   (0.0000)   (0.0954)  

 

ADA  𝜅 𝛾 𝛼 𝜉 

EWMA (standard) value N/A 0.94 0.06 N/A 

      

GARCHn value 1.6894 0.8539 0.1221 N/A  
p-value  (0.0000)   (0.0000)   (0.0000)   

GARCHt value 1.3539 0.8945 0.0868 N/A  
p-value  (0.0124)   (0.0000)   (0.0008)   

EGARCHn value 0.1719 0.9616 0.2706 -0.0133  
p-value  (0.0000)   (0.0000)   (0.0000)   (0.0830)  

EGARCHt value 0.1107 0.9704 0.2068 0.0090  
p-value  (0.0160)   (0.0000)   (0.0000)   (0.7081)  

GJRGARCHn value 1.7621 0.8526 0.1152 0.0121  
p-value  (0.0000)   (0.0000)   (0.0000)   (0.2874)  

GJRGARCHt value 1.3966 0.8914 0.0953 -0.0103  
p-value  (0.0136)   (0.0000)   (0.0053)   (0.7565)  
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5.2. Backtesting results 

5.2.1. Summary report on violations 

Table 5.7 below summarizes the number of actual VaR violations for all 

cryptocurrencies, in comparison with the expected number of violations at 95% and 99% 

confidence levels, given that the VaR estimation method is correct. In this table, the red-

colored number illustrates the highest number of VaR violations at a certain level of 

confidence for each cryptocurrency, while the blue number indicates the lowest one. 

Table 5.7. Summary report on number of observations and failures 
  

95% confidence level 99% confidence level 

VaR methods Obs. failures expected 1st failure failures expected 1st failure 

BTC        

BHS 2289 124 114.45 150 20 22.89 348 

AWHS 2289 144 114.45 31 56 22.89 95 

EWMA 2289 116 114.45 95 19 22.89 95 

GARCHn 2289 121 114.45 95 24 22.89 192 

GARCHt 2289 124 114.45 95 24 22.89 192 

EGARCHn 2289 117 114.45 95 23 22.89 192 

EGARCHt 2289 118 114.45 95 22 22.89 192 

GJRGARCHn 2289 121 114.45 95 24 22.89 192 

GJRGARCHt 2289 124 114.45 95 23 22.89 192 

Normal-fit 2289 112 114.45 150 51 22.89 151 

t-fit 2289 167 114.45 150 23 22.89 348 

 POT 2289    23 22.89 348 

ETH        

BHS 1458 63 72.9 20 10 14.58 125 

AWHS 1458 88 72.9 8 43 14.58 38 

EWMA 1458 74 72.9 19 17 14.58 38 

GARCHn 1458 72 72.9 8 16 14.58 38 

GARCHt 1458 74 72.9 8 16 14.58 38 

EGARCHn 1458 72 72.9 19 15 14.58 38 

EGARCHt 1458 74 72.9 19 16 14.58 38 

GJRGARCHn 1458 73 72.9 8 16 14.58 38 

GJRGARCHt 1458 73 72.9 8 16 14.58 38 

Normal-fit 1458 49 72.9 38 23 14.58 125 

t-fit 1458 65 72.9 20 7 14.58 675 

 POT 1458    3 14.58 679 

  



39 

 

Table 5.7. (continued) 

BNB        

BHS 740 31 37 20 7 7.4 136 

AWHS 740 42 37 20 17 7.4 20 

EWMA 740 37 37 20 5 7.4 136 

GARCHn 740 36 37 20 7 7.4 20 

GARCHt 740 36 37 20 7 7.4 20 

EGARCHn 740 33 37 20 6 7.4 20 

EGARCHt 740 35 37 20 6 7.4 20 

GJRGARCHn 740 36 37 20 7 7.4 20 

GJRGARCHt 740 37 37 20 7 7.4 20 

Normal-fit 740 22 37 136 10 7.4 136 

t-fit 740 38 37 20 7 7.4 136 

 POT 740    3 7.4 306 

XRP        

BHS 2191 125 109.55 139 26 21.91 329 

AWHS 2191 129 109.55 25 56 21.91 52 

EWMA 2191 119 109.55 25 24 21.91 139 

GARCHn 2191 126 109.55 139 30 21.91 139 

GARCHt 2191 121 109.55 139 32 21.91 139 

EGARCHn 2191 121 109.55 87 29 21.91 139 

EGARCHt 2191 121 109.55 25 30 21.91 139 

GJRGARCHn 2191 116 109.55 139 29 21.91 139 

GJRGARCHt 2191 116 109.55 139 30 21.91 139 

Normal-fit 2191 68 109.55 139 25 21.91 329 

t-fit 2191 162 109.55 139 32 21.91 329 

 POT 2191    31 21.91 329 

ADA        

BHS 672 34 33.6 68 7 6.72 68 

AWHS 672 50 33.6 12 23 6.72 30 

EWMA 672 31 33.6 55 5 6.72 68 

GARCHn 672 26 33.6 55 6 6.72 68 

GARCHt 672 29 33.6 55 5 6.72 68 

EGARCHn 672 28 33.6 53 5 6.72 68 

EGARCHt 672 29 33.6 53 5 6.72 68 

GJRGARCHn 672 26 33.6 55 6 6.72 68 

GJRGARCHt 672 29 33.6 55 5 6.72 68 

Normal-fit 672 27 33.6 68 7 6.72 68 

t-fit 672 33 33.6 68 4 6.72 68 

 POT 672    1 6.72 326 
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Overall, the first violation happens earlier when using AWHS and VWHS 

estimation methods than BHS or parametric methods. Especially, it occurs very late in 

case we fit student t-distribution to loss observations or use POT methods at 99% 

confidence level. While BTC, ETH, and XRP seem to underestimate VaR in most cases 

at both 95% and 99% confidence level, BNB and ADA mostly experience VaR 

overestimation.  

At 95% confidence level, the normal distribution fitting method witnesses the 

lowest number of VaR violations for four cryptocurrencies apart from ADA. The first 

violation when using this method appears relatively late in most cases. Meanwhile, the 

lowest number of violations for ADA is observed when we use GARCHn and 

GJRGARCHn method.  

The student t-distribution fitting method and AWHS seem to have the worst 

performance in terms of violations at 95% confidence level. Using AWHS method 

results in the highest number of failures for ETH, BNB, ADA, and also the second-

highest number for BTC and XRP at the confidence level of 95%. The largest number 

of violations is witnessed when we use the student t-distribution fitting method for BTC 

and XRP at this confidence level. 

At 99% confidence level, the POT method seems to perform the best for ETH, 

BNB, and ADA regarding the number of VaR violations, while using EWMA method 

leads to the smallest number of failures for BTC and XRP. In contrast, AWHS has the 

highest 99% VaR violations for all cryptocurrencies. Also, the first violation appears 

very early when using this method in all cases. 

Compared to the expected number of violations, the VWHS estimation method 

using GARCH-type models for BTC and ETH mostly generates a closer number of 

actual VaR violations to the expectation than other estimation methods, at both 

confidence level. However, this observation is not applicable to other cryptocurrencies. 

As for the number of VaR violations, all GARCH models and the EWMA model have 

a relatively similar performance. 

In conclusion, considering the number of violations and the first failure, the AWHS 

method seems to perform the worst with the early failure occurrence and high 

probability of VaR violation at both confidence levels. The POT method has an 
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outstanding performance at 99% confidence level. The number of failures using this 

method is low, and the first failure happens relatively late compared to other estimation 

methods. Meanwhile, at 95% confidence level, the normal distribution fitting method 

appears to have a good performance in most circumstances. It is notable that the above 

conclusions are merely drawn from the number of observed violations, not the extent to 

which this number of violations is acceptable at the given statistical test level (it may be 

too high or too low compared to the expected value). This matter will be discussed in 

the next section. 

 

5.2.2. VaR backtesting results 

Table 5.8 summarizes all VaR backtesting results for five cryptocurrencies at 95% 

and 99% VaR levels. This table shows the results of the traffic light test (TL), the Kupiec 

test (POF), and the Christoffersen tests (CCI and CC) as introduced in the methodology. 

The AWHS method consistently delivers a poor performance in most cases. It fails 

most of the tests at both 95% and 99% confidence levels, except for the independence 

test (CCI test) of all cryptocurrencies at 95% VaR level. The exceptional case is BNB 

where the AWHS method does not fail any test, however, it still has the highest number 

of violations among all methods. Therefore, it seems to perform poorly overall. 

Despite having the lowest number of violations for four cryptocurrencies (apart 

from ADA) at the confidence level of 95%, the normal distribution fitting method fails 

at least two tests for each cryptocurrency. The only exception for this method at 95% 

VaR level is ADA, where it passes all tests and shows a relatively good performance. 

At 99% confidence level, this method does not perform well for BTC and ETH, while 

it still gives a satisfying performance for the other three cryptocurrencies. 

As for BTC, all estimation methods fail the CCI test at 95% confidence level 

except for AWHS. However, the AWHS method gets rejected in both frequency tests 

(TL test and POF test) and the conditional coverage test (CC). Also, almost all methods 

excluding EWMA do not pass the CC test. Therefore, EWMA proves to the best 

estimation model for BTC at 95% VaR level. It also passes all the backtesting 

procedures for BTC and generates the least number of violations at 99% VaR level (19 

violations). All GARCH-type models seem to perform well for BTC. However, these 
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methods produce more violations than EWMA model at both levels, thus they are not 

possibly the best.  

Regarding ETH, the EWMA method and the BHS method pass all tests at both 

confidence levels, while other methods get rejections at the minimum of two tests. 

Considering the number of actual violations, the BHS method performs better than the 

EWMA method. All GARCH-type models fail the conditional coverage test and 

independence test at 95% VaR level. This result suggests that the VaR violations may 

not be independent, and as a consequence, it is likely that a violation may follow another 

one in the previous day. These models seem to perform better at 99% VaR level without 

failing any test, but the number of failures produced by these models are fairly high.  

Considering BNB, the POT method is obviously the best method at 99% 

confidence level, which passes all the tests and produces the lowest number of failures. 

Except for the AWHS, normal and t-fitted methods, the remaining methods pass all of 

the tests. Among them, the BHS method stands out with the lowest number of violations 

at 95% VaR level, and EWMA generates the second-lowest number of failures at 99% 

VaR level (only higher than POT method). 

All estimation methods get rejected at least one test in the case of XRP. The 

EWMA method continues to perform fairly better than others, given that the number of 

tests it fails is smallest. In addition, this method gives the lowest number of failures at 

99% confidence level, and relatively low number of violations at 95% confidence level.  

Although the POT method produces only one failure for risk estimates of ADA, it 

does not pass the frequency test and the conditional coverage test. Apart from the AWHS 

method and the POT method, none of the other methods fail any test at both confidence 

levels. The number of violations generated by each method is roughly similar. At 95% 

VaR level, the GARCHn and the GJR-GARCHn have the lowest failure number of 26, 

followed by the EGARCHn with 28 failures. At 99% VaR level, the t-fitted method 

observes 4 failures, and other GARCH-type methods witness around 5 to 6 violations. 

To sum up, for all cryptocurrencies, the EWMA method and the BHS method 

prove to have a remarkable performance. All GARCH-type models perform relatively 

well, but not outperform other methods due to the higher number of violations. The 99% 

POT method is the best method for BNB. 



43 

 

Table 5.8. VaR backtesting results 

 
METHOD TL POF 

  
CC 

  
CCI 

  

  
Result Result LR ratio P-value Result LR ratio P-value Result LR ratio P-value 

BTC 95% BHS  green  accept   0.818   0.366   reject   7.757   0.021   reject   6.939   0.008   
AWHS  yellow   reject   7.450   0.006   reject   7.895   0.019   accept   0.445   0.505   
EWMA  green   accept   0.022   0.882   accept   5.611   0.060   reject   5.589   0.018   
GARCHn  green   accept   0.388   0.534   reject   8.167   0.017   reject   7.779   0.005   
GARCHt  green   accept   0.818   0.366   reject   11.568   0.003   reject   10.750   0.001   
EGARCHn  green   accept   0.059   0.807   reject   7.132   0.028   reject   7.073   0.008   
EGARCHt  green   accept   0.115   0.735   reject   18.027   0.000   reject   17.912   0.000   
GJRn  green   accept   0.388   0.534   reject   8.167   0.017   reject   7.779   0.005   
GJRt  green   accept   0.818   0.366   reject   11.568   0.003   reject   10.750   0.001   
Normal-fit  green   accept   0.056   0.814   reject   8.583   0.014   reject   8.527   0.003   
t-fit  red   reject   22.384   0.000   reject   34.943   0.000   reject   12.559   0.000              

BTC 99% BHS  green   accept   0.385   0.535   accept   2.293   0.318   accept   1.908   0.167   
AWHS  red   reject   34.467   0.000   reject   38.037   0.000   accept   3.570   0.059   
EWMA  green   accept   0.709   0.400   accept   2.794   0.247   accept   2.085   0.149   
GARCHn  green   accept   0.054   0.817   accept   0.562   0.755   accept   0.509   0.476   
GARCHt  green   accept   0.054   0.817   accept   0.562   0.755   accept   0.509   0.476   
EGARCHn  green   accept   0.001   0.982   accept   1.445   0.486   accept   1.444   0.229   
EGARCHt  green   accept   0.035   0.851   accept   0.463   0.794   accept   0.427   0.513   
GJRn  green   accept   0.054   0.817   accept   0.562   0.755   accept   0.509   0.476   
GJRt  green   accept   0.001   0.982   accept   0.468   0.792   accept   0.467   0.494   
Normal-fit  red   reject   25.845   0.000   reject   28.084   0.000   accept   2.239   0.135   
t-fit  green   accept   0.001   0.982   accept   5.377   0.068   reject   5.376   0.020   
POT  green   accept   0.001   0.982   accept   1.445   0.486   accept   1.444   0.229  
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Table 5.8. VaR backtesting results (continued) 

 
METHOD TL POF 

  
CC 

  
CCI 

  

  
Result Result LR ratio P-value Result LR ratio P-value Result LR ratio P-value 

ETH 95% BHS green accept 1.480 0.224 accept 1.510 0.470 accept 0.030 0.863  
AWHS yellow accept 3.097 0.078 accept 3.193 0.203 accept 0.096 0.756  
EWMA green accept 0.017 0.895 accept 2.553 0.279 accept 2.536 0.111  
GARCHn green accept 0.012 0.914 reject 6.744 0.034 reject 6.732 0.009  
GARCHt green accept 0.017 0.895 reject 6.076 0.048 reject 6.058 0.014  
EGARCHn green accept 0.012 0.914 reject 9.080 0.011 reject 9.068 0.003  
EGARCHt green accept 0.017 0.895 reject 8.279 0.016 reject 8.262 0.004  
GJRn green accept 0.000 0.990 reject 6.390 0.041 reject 6.390 0.011  
GJRt green accept 0.000 0.990 reject 6.390 0.041 reject 6.390 0.011  
Normal-fit green reject 9.278 0.002 reject 9.353 0.009 accept 0.076 0.783  
t-fit green accept 0.934 0.334 accept 0.938 0.626 accept 0.004 0.951             

ETH 99% BHS green accept 1.633 0.201 accept 1.771 0.412 accept 0.138 0.710  
AWHS red reject 36.737 0.000 reject 37.120 0.000 accept 0.384 0.536  
EWMA green accept 0.385 0.535 accept 2.096 0.351 accept 1.710 0.191  
GARCHn green accept 0.135 0.713 accept 0.491 0.782 accept 0.355 0.551  
GARCHt green accept 0.135 0.713 accept 0.491 0.782 accept 0.355 0.551  
EGARCHn green accept 0.012 0.912 accept 2.156 0.340 accept 2.144 0.143  
EGARCHt green accept 0.135 0.713 accept 2.053 0.358 accept 1.917 0.166  
GJRn green accept 0.135 0.713 accept 0.491 0.782 accept 0.355 0.551  
GJRt green accept 0.135 0.713 accept 0.491 0.782 accept 0.355 0.551  
Normal-fit yellow reject 4.178 0.041 accept 4.916 0.086 accept 0.738 0.390  
t-fit green reject 4.927 0.026 accept 4.995 0.082 accept 0.068 0.795  
POT green reject 13.766 0.000 reject 13.779 0.001 accept 0.012 0.911 
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Table 5.8. VaR backtesting results (continued) 

 
METHOD TL POF 

  
CC 

  
CCI 

  

  
Result Result LR ratio P-value Result LR ratio P-value Result LR ratio P-value 

BNB 95% BHS green  accept   1.081   0.298   accept   2.900   0.235   accept   1.819   0.177   
AWHS green  accept   0.683   0.409   accept   1.816   0.403   accept   1.133   0.287   
EWMA green  accept  -0.000   1.000   accept   0.013   0.994   accept   0.013   0.910   
GARCHn green  accept   0.029   0.865   accept   0.852   0.653   accept   0.823   0.364   
GARCHt green  accept   0.029   0.865   accept   0.852   0.653   accept   0.823   0.364   
EGARCHn green  accept   0.472   0.492   accept   0.659   0.719   accept   0.187   0.665   
EGARCHt green  accept   0.116   0.734   accept   1.103   0.576   accept   0.987   0.321   
GJRn green  accept   0.029   0.865   accept   0.852   0.653   accept   0.823   0.364   
GJRt green  accept  -0.000   1.000   accept   0.013   0.994   accept   0.013   0.910   
Normal-fit green  reject   7.443   0.006   reject   7.611   0.022   accept   0.168   0.682   
t-fit green  accept   0.028   0.867   accept   3.876   0.144   reject   3.847   0.050              

BNB 99% BHS green  accept   0.022   0.881   accept   0.156   0.925   accept   0.134   0.714   
AWHS yellow  reject   9.205   0.002   reject   9.911   0.007   accept   0.706   0.401   
EWMA green  accept   0.887   0.346   accept   0.956   0.620   accept   0.068   0.794   
GARCHn green  accept   0.022   0.881   accept   0.156   0.925   accept   0.134   0.714   
GARCHt green  accept   0.022   0.881   accept   0.156   0.925   accept   0.134   0.714   
EGARCHn green  accept   0.286   0.593   accept   0.384   0.825   accept   0.098   0.754   
EGARCHt green  accept   0.286   0.593   accept   0.384   0.825   accept   0.098   0.754   
GJRn green  accept   0.022   0.881   accept   0.156   0.925   accept   0.134   0.714   
GJRt green  accept   0.022   0.881   accept   0.156   0.925   accept   0.134   0.714   
Normal-fit green  accept   0.831   0.362   accept   1.106   0.575   accept   0.274   0.600   
t-fit green  accept   0.022   0.881   accept   0.156   0.925   accept   0.134   0.714   
POT green  accept   3.409   0.065   accept   3.434   0.180   accept   0.024   0.876  

  



46 

 

Table 5.8. VaR backtesting results (continued) 

 
METHOD TL POF 

  
CC 

  
CCI 

  

  
Result Result LR ratio P-value Result LR ratio P-value Result LR ratio P-value 

XRP 95% BHS green  accept   2.198   0.138   reject   13.737   0.001   reject   11.539   0.001   
AWHS yellow  accept   3.448   0.063   accept   4.236   0.120   accept   0.788   0.375   
EWMA green  accept   0.836   0.361   accept   5.177   0.075   reject   4.341   0.037   
GARCHn green  accept   2.485   0.115   reject   11.680   0.003   reject   9.194   0.002   
GARCHt green  accept   1.220   0.269   reject   14.297   0.001   reject   13.077   0.000   
EGARCHn green  accept   1.220   0.269   reject   12.121   0.002   reject   10.901   0.001   
EGARCHt green  accept   1.220   0.269   reject   10.110   0.006   reject   8.890   0.003   
GJRn green  accept   0.393   0.531   reject   13.180   0.001   reject   12.788   0.000   
GJRt green  accept   0.393   0.531   reject   13.180   0.001   reject   12.788   0.000   
Normal-fit green  reject   19.069   0.000   reject   32.906   0.000   reject   13.837   0.000   
t-fit red  reject   23.187   0.000   reject   32.867   0.000   reject   9.681   0.002              

XRP 99% BHS green  accept   0.728   0.394   accept   5.049   0.080   reject   4.321   0.038   
AWHS red  reject   37.460   0.000   reject   43.311   0.000   reject   5.851   0.016   
EWMA green  accept   0.195   0.659   accept   1.439   0.487   accept   1.244   0.265   
GARCHn yellow  accept   2.705   0.100   accept   3.330   0.189   accept   0.624   0.429   
GARCHt yellow  reject   4.110   0.043   accept   4.583   0.101   accept   0.474   0.491   
EGARCHn green  accept   2.104   0.147   accept   2.813   0.245   accept   0.709   0.400   
EGARCHt yellow  accept   2.705   0.100   accept   3.330   0.189   accept   0.624   0.429   
GJRn green  accept   2.104   0.147   accept   2.813   0.245   accept   0.709   0.400   
GJRt yellow  accept   2.705   0.100   accept   3.330   0.189   accept   0.624   0.429   
Normal-fit green  accept   0.421   0.516   accept   1.542   0.463   accept   1.121   0.290   
t-fit yellow  reject   4.110   0.043   accept   4.583   0.101   accept   0.474   0.491   
POT yellow  accept   3.375   0.066   reject   6.483   0.039   accept   3.108   0.078  
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Table 5.8. VaR backtesting results (continued) 

 
METHOD TL POF 

  
CC 

  
CCI 

  

  
Result Result LR ratio P-value Result LR ratio P-value Result LR ratio P-value 

ADA 95% BHS green  accept   0.005   0.944   accept   0.052   0.974   accept   0.047   0.828   
AWHS yellow  reject   7.375   0.007   reject   8.780   0.012   accept   1.406   0.236   
EWMA green  accept   0.217   0.641   accept   0.440   0.803   accept   0.223   0.637   
GARCHn green  accept   1.956   0.162   accept   1.956   0.376   accept   0.000   0.994   
GARCHt green  accept   0.694   0.405   accept   0.753   0.686   accept   0.060   0.807   
EGARCHn green  accept   1.039   0.308   accept   1.055   0.590   accept   0.016   0.899   
EGARCHt green  accept   0.694   0.405   accept   0.753   0.686   accept   0.060   0.807   
GJRn green  accept   1.956   0.162   accept   1.956   0.376   accept   0.000   0.994   
GJRt green  accept   0.694   0.405   accept   0.753   0.686   accept   0.060   0.807   
Normal-fit green  accept   1.459   0.227   accept   1.466   0.480   accept   0.008   0.930   
t-fit green  accept   0.011   0.915   accept   0.102   0.950   accept   0.091   0.763              

ADA 99% BHS green  accept   0.012   0.914   accept   0.159   0.923   accept   0.148   0.701   
AWHS red  reject   24.440   0.000   reject   26.073   0.000   accept   1.633   0.201   
EWMA green  accept   0.488   0.485   accept   0.563   0.755   accept   0.075   0.784   
GARCHn green  accept   0.081   0.776   accept   0.189   0.910   accept   0.108   0.742   
GARCHt green  accept   0.488   0.485   accept   0.563   0.755   accept   0.075   0.784   
EGARCHn green  accept   0.488   0.485   accept   0.563   0.755   accept   0.075   0.784   
EGARCHt green  accept   0.488   0.485   accept   0.563   0.755   accept   0.075   0.784   
GJRn green  accept   0.081   0.776   accept   0.189   0.910   accept   0.108   0.742   
GJRt green  accept   0.488   0.485   accept   0.563   0.755   accept   0.075   0.784   
Normal-fit green  accept   0.012   0.914   accept   0.159   0.923   accept   0.148   0.701   
t-fit green  accept   1.301   0.254   accept   1.349   0.509   accept   0.048   0.827   
POT green  reject   7.679   0.006   reject   7.682   0.021   accept   0.003   0.956  
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5.2.3. ES backtesting results 

Table 5.9 presents the ES backtesting results for all cryptocurrencies, using the 

unconditional test by Acerbi and Szekely (2014). Overall, most estimation methods 

cannot be rejected at the 5% level, except for the AWHS method and the normal 

distribution fitting method.  

At the VaR level of 99%, the AWHS and the normal distribution fitting method 

are rejected for most cryptocurrencies. Between these two methods, the AWHS has a 

worse performance with largely negative test statistics. The AWHS method is also 

rejected at 95% VaR level for BTC and ADA when the critical values are based on the 

normal distribution. At 95% confidence level, the normal distribution fitting method for 

BTC is rejected in both cases when we assume the critical values follow the normal 

distribution or the student-t distribution. Though the student t-distribution fitting method 

cannot be rejected in any case, its overall performance is not good due to the high value 

of test statistics. 

The VWHS estimation method using the EWMA model and GARCH-type models 

seems to perform well in all cases, with the test statistics being approximately zero. The 

best performance among these models varies for each cryptocurrency. For BTC and 

XRP, the GARCH model that fits normal distribution to the innovation process 

outperforms the same type of GARCH model that fits student t-distribution (for instance, 

EGARCHn is better than EGARCHt). Meanwhile, ETH shows the opposite observation.  

The best estimation methods for BTC at both VaR levels are GARCHn and GJR-

GARCHn. For the risk estimation of XRP, GARCHn performs the best at the 95% VaR 

level and EGARCHn is the best model at the 99% VaR level. EWMA and EGARCHt 

prove to be the best estimation models for ETH at 95% and 99% respectively.  

Despite its simplicity in implementation, the BHS method shows an outstanding 

performance for BNB and ADA, with the test statistics very close to zero at both VaR 

levels. This method also performs well for BTC at the 95% confidence level. This result 

is really impressive as the BHS method does not take volatility clustering into the risk 

estimates. However, as we use the rolling window, this method seems to work well. 

Currently, not many existing research papers examine the application of this method to 

VaR and ES estimates for cryptocurrencies.
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Table 5.9. ES backtesting results  

  
95% CONFIDENCE LEVEL 

 
99% CONFIDENCE LEVEL   

Unconditional Normal Unconditional t  
 

Unconditional Normal Unconditional t    

Result 

Test 

statistic 

Crit 

value Result 

Test 

statistic 

Crit 

value  Result 

Test 

statistic 

Crit 

value Result 

Test 

statistic 

Crit 

value 

BTC BHS accept -0.0144 -0.1556 accept -0.0144 -0.1849 
 

accept 0.1467 -0.3586 accept 0.1467 -0.4183  
AWHS  reject -0.1707 -0.1557 accept -0.1707 -0.1850 

 
 reject -1.4740 -0.3613  reject -1.4740 -0.4214  

EWMA accept 0.1369 -0.1556 accept 0.1369 -0.1849 
 

accept 0.2721 -0.3586 accept 0.2721 -0.4183  
GARCHn accept 0.0250 -0.1556 accept 0.0250 -0.1849 

 
accept 0.0632 -0.3586 accept 0.0632 -0.4183  

GARCHt accept 0.0511 -0.1556 accept 0.0511 -0.1849 
 

accept 0.0838 -0.3586 accept 0.0838 -0.4183  
EGARCHn accept 0.0648 -0.1556 accept 0.0648 -0.1849 

 
accept 0.1044 -0.3586 accept 0.1044 -0.4183  

EGARCHt accept 0.1165 -0.1556 accept 0.1165 -0.1849 
 

accept 0.1805 -0.3586 accept 0.1805 -0.4183  
GJRn accept 0.0251 -0.1556 accept 0.0251 -0.1849 

 
accept 0.0601 -0.3586 accept 0.0601 -0.4183  

GJRt accept 0.0519 -0.1556 accept 0.0519 -0.1849 
 

accept 0.1103 -0.3586 accept 0.1103 -0.4183  
normal  reject -0.2175 -0.1556  reject -0.2175 -0.1849 

 
 reject -1.7413 -0.3586  reject -1.7413 -0.4183  

t accept 0.6937 -0.1556 accept 0.6937 -0.1849 
 

accept 0.8263 -0.3586 accept 0.8263 -0.4183  
 POT       

 
accept 0.1415 -0.3586 accept 0.1415 -0.4183                

ETH BHS accept 0.2267 -0.1950 accept 0.2267 -0.2327 
 

accept 0.3897 -0.4512 accept 0.3897 -0.5267  
AWHS accept -0.1230 -0.1952 accept -0.1230 -0.2330 

 
 reject -1.8090 -0.4565  reject -1.8090 -0.5324  

EWMA accept 0.0731 -0.1950 accept 0.0731 -0.2327 
 

accept -0.0702 -0.4512 accept -0.0702 -0.5267  
GARCHn accept 0.1187 -0.1950 accept 0.1187 -0.2327 

 
accept 0.0545 -0.4512 accept 0.0545 -0.5267  

GARCHt accept 0.0955 -0.1950 accept 0.0955 -0.2327 
 

accept 0.0492 -0.4512 accept 0.0492 -0.5267  
EGARCHn accept 0.1078 -0.1950 accept 0.1078 -0.2327 

 
accept 0.0603 -0.4512 accept 0.0603 -0.5267  

EGARCHt accept 0.0934 -0.1950 accept 0.0934 -0.2327 
 

accept 0.0213 -0.4512 accept 0.0213 -0.5267  
GJRn accept 0.1101 -0.1950 accept 0.1101 -0.2327 

 
accept 0.0553 -0.4512 accept 0.0553 -0.5267  

GJRt accept 0.1021 -0.1950 accept 0.1021 -0.2327 
 

accept 0.0512 -0.4512 accept 0.0512 -0.5267  
normal accept 0.1618 -0.1950 accept 0.1618 -0.2327 

 
 reject -0.9723 -0.4512  reject -0.9723 -0.5267  

t accept 0.6457 -0.1950 accept 0.6457 -0.2327 
 

accept 0.7708 -0.4512 accept 0.7708 -0.5267  
 POT       

 
accept 0.7273 -0.4512 accept 0.7273 -0.5267 
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Table 5.9. ES backtesting results (continued) 

  
95% CONFIDENCE LEVEL 

 
99% CONFIDENCE LEVEL   

Unconditional Normal Unconditional t  
 

Unconditional Normal Unconditional t  

  Result 

Test 

statistic 

Crit 

value Result 

Test 

statistic 

Crit 

value  Result 

Test 

statistic 

Crit 

value Result 

Test 

statistic 

Crit 

value 

BNB BHS accept 0.1696 -0.2759 accept 0.1696 -0.3288  accept 0.0475 -0.6445 accept 0.0475 -0.7477  
AWHS accept -0.0522 -0.2759 accept -0.0522 -0.3288   reject -1.3537 -0.6445  reject -1.3537 -0.7477  
EWMA accept 0.2374 -0.2759 accept 0.2374 -0.3288  accept 0.3577 -0.6445 accept 0.3577 -0.7477  
GARCHn accept 0.2171 -0.2759 accept 0.2171 -0.3288  accept 0.1760 -0.6445 accept 0.1760 -0.7477  
GARCHt accept 0.2024 -0.2759 accept 0.2024 -0.3288  accept 0.1802 -0.6445 accept 0.1802 -0.7477  
EGARCHn accept 0.2581 -0.2759 accept 0.2581 -0.3288  accept 0.2896 -0.6445 accept 0.2896 -0.7477  
EGARCHt accept 0.2544 -0.2759 accept 0.2544 -0.3288  accept 0.3040 -0.6445 accept 0.3040 -0.7477  
GJRn accept 0.2156 -0.2759 accept 0.2156 -0.3288  accept 0.1793 -0.6445 accept 0.1793 -0.7477  
GJRt accept 0.2053 -0.2759 accept 0.2053 -0.3288  accept 0.1936 -0.6445 accept 0.1936 -0.7477  
normal accept 0.2123 -0.2759 accept 0.2123 -0.3288   reject -0.8256 -0.6445  reject -0.8256 -0.7477  
t accept 0.5150 -0.2759 accept 0.5150 -0.3288  accept 0.5656 -0.6445 accept 0.5656 -0.7477  
 POT        accept 0.6038 -0.6445 accept 0.6038 -0.7477   

             

XRP BHS accept -0.1542 -0.1591 accept -0.1542 -0.1890  accept -0.3089 -0.3668 accept -0.3089 -0.4279  
AWHS accept -0.1457 -0.1594 accept -0.1457 -0.1894   reject -1.6060 -0.3740  reject -1.6060 -0.4364  
EWMA accept 0.1573 -0.1591 accept 0.1573 -0.1890  accept 0.0378 -0.3668 accept 0.0378 -0.4279  
GARCHn accept 0.0271 -0.1591 accept 0.0271 -0.1890  accept -0.1926 -0.3668 accept -0.1926 -0.4279  
GARCHt accept 0.0647 -0.1591 accept 0.0647 -0.1890  accept -0.2371 -0.3668 accept -0.2371 -0.4279  
EGARCHn accept 0.1643 -0.1591 accept 0.1643 -0.1890  accept 0.0006 -0.3668 accept 0.0006 -0.4279  
EGARCHt accept 0.2489 -0.1591 accept 0.2489 -0.1890  accept 0.1362 -0.3668 accept 0.1362 -0.4279  
GJRn accept 0.1016 -0.1591 accept 0.1016 -0.1890  accept -0.1314 -0.3668 accept -0.1314 -0.4279  
GJRt accept 0.1106 -0.1591 accept 0.1106 -0.1890  accept -0.1508 -0.3668 accept -0.1508 -0.4279  
normal accept 0.1767 -0.1591 accept 0.1767 -0.1890   reject -0.7885 -0.3668  reject -0.7885 -0.4279  
t accept 0.7090 -0.1591 accept 0.7090 -0.1890  accept 0.7397 -0.3668 accept 0.7397 -0.4279  
 POT         reject -0.3774 -0.3668 accept -0.3774 -0.4279 
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Table 5.9. ES backtesting results (continued) 

  
95% CONFIDENCE LEVEL 

 
99% CONFIDENCE LEVEL   

Unconditional Normal Unconditional t  
 

Unconditional Normal Unconditional t    
Result Test 

statistic 

Crit 

value 

Result Test 

statistic 

Crit 

value 

 
Result Test 

statistic 

Crit 

value 

Result Test 

statistic 

Crit 

value 

ADA BHS accept 0.0587 -0.2934 accept 0.0587 -0.3491 
 

accept 0.0303 -0.6862 accept 0.0303 -0.7949  
AWHS  reject -0.2966 -0.2934 accept -0.2966 -0.3491 

 
 reject -2.0291 -0.6862  reject -2.0291 -0.7949  

EWMA accept 0.2484 -0.2934 accept 0.2484 -0.3491 
 

accept 0.4041 -0.6862 accept 0.4041 -0.7949  
GARCHn accept 0.3284 -0.2934 accept 0.3284 -0.3491 

 
accept 0.3026 -0.6862 accept 0.3026 -0.7949  

GARCHt accept 0.2580 -0.2934 accept 0.2580 -0.3491 
 

accept 0.3950 -0.6862 accept 0.3950 -0.7949  
EGARCHn accept 0.3077 -0.2934 accept 0.3077 -0.3491 

 
accept 0.3969 -0.6862 accept 0.3969 -0.7949  

EGARCHt accept 0.2677 -0.2934 accept 0.2677 -0.3491 
 

accept 0.3846 -0.6862 accept 0.3846 -0.7949  
GJRn accept 0.3303 -0.2934 accept 0.3303 -0.3491 

 
accept 0.3030 -0.6862 accept 0.3030 -0.7949  

GJRt accept 0.2548 -0.2934 accept 0.2548 -0.3491 
 

accept 0.3923 -0.6862 accept 0.3923 -0.7949  
normal accept 0.1286 -0.2934 accept 0.1286 -0.3491 

 
accept -0.2529 -0.6862 accept -0.2529 -0.7949  

t accept 0.4603 -0.2934 accept 0.4603 -0.3491 
 

accept 0.6801 -0.6862 accept 0.6801 -0.7949  
 POT       

 
accept 0.8614 -0.6862 accept 0.8614 -0.7949 



52 

 

6. Conclusion 

 This thesis contributes to the existing research papers by thoroughly examining a 

more informative, representative, and updated data set of five cryptocurrencies (BTC, 

ETH, BNB, XRP, ADA) obtained from the first available day to 30 April 2022 on 

coinmarketcap.com. In addition, by implementing three parametric and three non-

parametric VaR and ES estimation methods, fitting both normal distribution and student 

t-distribution to the innovation process and loss process, we examine a wide range of 

possibilities (11 models at 95% VaR level and 12 models at 99% VaR level) to obtain a 

more diversified and broader set of data for comparison. Totally, we carry out 575 tests 

and use these test results to compare the performance of the given models in estimating 

VaR and ES. Our major findings are summarized as follows. 

First, the volatility-weighted historical simulation (VWHS) method shows a good 

performance in measuring VaR and ES. Among them, the exponential weighted moving 

average (EWMA) model consistently proves its outstanding capability in adequately 

estimating the volatility, and consequently the value at risk. Despite the use of fixed 

parameters, this model still passes almost all VaR backtesting procedures at both 95% 

and 99% VaR level. VWHS-EWMA is among the best VaR estimation models for all 

cryptocurrencies. Meanwhile, all GARCH-type models do not perform well in 

estimating VaR of BTC, ETH, and XRP at 95% VaR level. However, they are still 

among the best models for ES estimation.  

Second, the basic historical simulation (BHS) method shows an impressive 

performance in both VaR and ES estimation. Despite the simple calculation, it still 

proves to be the best model for the ES estimate of ADA, and surprisingly the best model 

for the VaR estimates of BNB and ETH. It also performs relatively well in the VaR and 

ES estimation of other cryptocurrencies. Given these positive results, it can be 

implemented practically thanks to the simple calculation and good performance. 

Third, the peak over threshold (POT) method that fits the Generalized Pareto 

distribution (GPD) to a subsample of the largest loss displays it good performance at the 

99% level of confidence. It generates the lowest number of violations in most cases, and 

the first failure occurs relatively late. This method is the best model to estimate VaR of 

BNB, however, it does not perform well at ES estimates of most cryptocurrencies. 
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Finally, the age-weighted historical simulation (AWHS) seems to perform the 

worst in almost all cases, though it is expected to perform better due to the incorporation 

of time variation in the VaR and ES estimates. Therefore, this model should not be 

applied to measure VaR and ES of these five cryptocurrencies. 

These conclusions satisfy our initial research question of finding the model with 

the best performance. The findings from this thesis are of crucial importance to the risk 

managers or policymakers to choose a convenient and appropriate method to estimate 

VaR and ES for cryptocurrencies, and subsequently establish the proper level of capital 

requirement. It is also valuable for investors to build a more adequate trading and 

investment strategy.
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APPENDIX 

Appendix 1: Characteristics of selected cryptocurrencies 

Cryptocurrencies Main characteristics 

Bitcoin BTC - A decentralized cryptocurrency, being the very first 

cryptocurrency on the market 

- First described in a whitepaper by Satoshi Nakamoto in 2008, 

then official launched in January 2009 

- Total supply in circulation is limited within 21,000,000 coins; 

new coins are added through a mining process based on “proof 

of work” consensus, which is operated using a large number of 

computers 

- An application of blockchain technology 

Ethereum ETH - A “proof of work” decentralized blockchain platform which 

allows the execution of smart contracts and applications 

- First introduced by Vitalik Buterin in 2013 

- Smart contracts are internet-based computer programs that 

automatically carry out the steps required to complete a contract 

between many parties, which was designed to reduce the 

intermediary organizations between parties 

Binance 

coin 

BNB - Binance is the world's largest cryptocurrency exchange, which 

created a whole ecosystem of services for its users. 

- First launched by Changpeng Zhao in 2017 

- An application of blockchain technology 

Ripple 

coin 

XRP  - A open-source ledger using decentralized technology, offering 

many payment-related applications and use cases, including 

micropayments, DeFi, and NFTs 

- Founded by David, Jed, and Arthur in 2012 

Cardano  ADA - A “proof-of-stake” blockchain platform, aiming to consume 

less energy than the “proof-of-work” 

- Founded by Charles Hoskinson in 2017 

(Source: coinmarketcap.com)  
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Appendix 2: Cryptocurrency dominance chart from 5 May 2013 to 30 April 2022 

 

(Source: coinmarketcap.com) 

 

Appendix 3: Jacque-Bera test to validate the normality assumption 

Normal distribution (also named Gaussian distribution) is a symmetric probability 

distribution around the mean. The normality assumption can be tested using the third 

moment (skewness) and the fourth moment (kurtosis) of a distribution, or a joint test of 

both moments known as the Jacque-Bera test.  

Skewness measures the shape of a distribution. In other words, it illustrates how 

asymmetric the distribution is around the sample mean. Kurtosis measures the fatness 

of the distribution tails. Skewness and kurtosis are defined as below, in which 𝜇 is the 

mean and 𝜎 is the standard deviation. 

𝑠𝑘𝑒𝑤 =
𝐸(𝑥 − 𝜇)3

𝜎3
;  𝑘𝑢𝑟𝑡 =

𝐸(𝑥 − 𝜇)4

𝜎4
 

The Jacque-Bera test statistic is calculated as follows, where n is the sample size. 

𝐽𝐵 =
𝑛

6
(𝑠𝑘𝑒𝑤2 +

(𝑘𝑢𝑟𝑡 − 3)2

4
 

Due to the symmetry of normal distribution, the skewness is expected to be zero, 

and the kurtosis is expected to be three. Accordingly, Jacque-Bera test statistic is 

expected to be zero.  
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Appendix 4: Augmented Dickey Fuller (ADF) test for stationarity 

 A process is (weakly) stationary if it has finite mean and variance, the mean and 

the autocovariance is constant. The purpose of Augmented Dickey Fuller (ADF) test is 

to examine whether there is a unit root in the time series 𝑦𝑡. In case of a unit root, the 

time series is not stationary and the estimated parameters may be biased. We consider 

the following time series 𝑦𝑡: 

𝑦𝑡 = 𝜇 + 𝛿𝑡 + ∅𝑦𝑡−1 + 𝛽1∆𝑦𝑡−1 + ⋯ + 𝛽𝑝∆𝑦𝑡−𝑝 + 𝜀𝑡 

In which, ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1, 𝜇 is the mean or the drift term, 𝛿 is the trend coefficient, 

and 𝜀𝑡 is the innovation or error term. The time series has a unit root when the parameter 

∅ = 1, which is also the null hypothesis of the ADF test. The test statistic is then 

computed as follows, where SE is the standard error.  

𝑡 =
∅̂ − 1

𝑆𝐸(∅̂)
 

Under the null hypothesis, the test statistic is expected to be zero. The alternative 

hypothesis is ∅ < 1, therefore, the test statistic is negative. 

 

Appendix 5: VaR-BHS and ES-BHS confidence interval (CI) using bootstrapping  
  

VaR-BHS ES-BHS  
VaR level Lower CI Upper CI Lower CI Upper CI 

BTC 95% 5.9385 6.6797 9.4791 11.4140  
99% 11.1035 14.7977 15.5512 21.4007 

ETH 95% 7.8280 9.1762 12.4415 17.1328  
99% 14.6581 17.8901 20.0334 38.6334 

BNB 95% 7.8253 9.2097 12.6871 16.9512  
99% 14.0667 22.7106 21.6942 34.6823 

XRP 95% 8.1028 9.5368 13.5830 16.7299  
99% 15.6842 20.7614 23.2348 33.1942 

ADA 95% 8.6899 10.2522 12.5280 15.5564  
99% 14.1668 18.7754 18.1008 27.9774 
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Appendix 6: VaR-BHS and ES-BHS distribution using bootstrapping method 

a) At 95% VaR confidence level 
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Appendix 6 (continued) 

b) At 99% VaR confidence level 

 

 

 

 

 


