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Abstract

Recent focus on the negative effects of climate change has amplified the importance of
renewable sources of energy for electricity generation. The contribution of renewables to the
energy mix is growing steadily with profound effects on the price of electricity and
implications for market participants. In this paper, we employed a similar model to that
developed in (Green, 2015) to model the very important shaping vector of the Hourly Price
Forward Curve (HPFC) in the German electricity market that is dependent on solar and wind
sources of renewable energy. We trained our model using Artificial Neural Networks.
However, instead of using price weights as our response variable, we used deviations from the
mean to model the shape of the HPFC. We also included calendar information as a variable in
the model. We tested the effects of renewables on the shape vector with scenarios of a 15%
increase and a 15% decrease in wind and solar generation. Our model indicates that a 15%
increase in renewable generation reduces the average price of electricity while a 15% decrease
leads to an increase in price. This finding is consistent with the literature and in line with our
intuition and proves the existence of a merit order effect. Additionally, we trained a model for
short-term price forecasting using a combination of Light Gradient Boosting Machine
(LightGBM) and Artificial Neural Networks (ANN) in a two stage forecasting scheme. We
used the LightGBM to identify the spike prices and then train both spike prices and normal
prices separately using ANN. The predicted spike prices are added to the predicted normal
prices. This approach performed better than just training an ANN on the original dataset
without separately training the spike prices. We observed that a variable selection using
LassoNet did not include both solar and wind generation as important variables for short term
normal price prediction, but did include both variables for spike price forecasting.

Keywords: Hourly Price Forward Curves, Power Market, Renewables, Electricity spot prices,
Day-ahead market
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1 Introduction
Electricity is a very important commodity. It is present all around us and in everything we do.
From education to health to transportation and to agriculture and food production; nothing
will ever be the same without electricity. The ever-growing need for more electricity to power
different aspects of our life has helped fuel the demand for different types of fossil fuels for
electricity production. This has had very devastating effects on our environment. Our climate
is changing rapidly with destructive consequences for every part of the world – some more
than others. The secretary-general of the UN, Antonio Guterres, in a video message on the
launch of the third Intergovernmental Panel on Climate Change (IPCC) report on April 4th,
2022 warned that climate change is a global emergency affecting every part of the globe today
and reiterated the need for the immediate introduction of renewable sources of energy on a
large scale.

This renewed focus on the damaging effects of climate change on our environment and the
recent geopolitical tensions in Europe has amplified the focus on the need to increase
renewables’ contribution to the world’s energy mix. In Germany, the percentage of electricity
generated through renewable sources has grown steadily in the last 15 to 20 years and
currently stands at 47.9%. At the end of the first quarter of 2022, renewable generation was
up 20.8% and conventional generation was down 8.1% on 2021 numbers. Solar and Wind are
the major sources of renewable energy generation in Germany, jointly contributing 38.9% of
Germany’s electricity generation in the first quarter of 2022 (SMARD, 2022).

Electricity is a unique commodity in that it is almost impossible to store significant quantities
of it. It is also a flow commodity that is produced and delivered over time. Epex Spot (n.d.)
presents one of the consequences of this to be that the supply and demand of electricity need
to be matched continually to keep the grid stable. Solar and wind generation are dependent on
unpredictable weather conditions and are consequently intermittent. This intermittent nature
has sometimes caused wide swings in electricity prices depending on whether there are good
weather conditions, and therefore high generation, or not. The coupling of most European
power markets has made it possible for electricity to flow freely across countries and led to a
more efficient matching of suppliers and consumers (SMARD, 2017).

This unique characteristic of electricity and the liberalization of the electricity market in the
1990s has led to an upsurge of interest in research studying factors that affect the price of
electricity and how this price responds to changes in these factors. However, many of these
studies have used models exploring the impact of all sources of electricity generation
including renewables and conventional sources. Only a few of them have explored the effects
of different renewable conditions on the price of electricity.

Given that the electricity market is relatively capital intensive and requires upfront inputs that
are recouped over time, it is clear that precisely anticipating electricity price trajectory is
critical for market players. In this thesis, therefore, our main aim is to put forward models to
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predict the long-term shape of the HPFC and the short-term (Day-ahead) prices in the German
power market. In the short-term prediction, we combine an ANN model with the LightGBM.
We employ LightGBM to identify the electricity spike prices and use ANN to train and
predict both the spike and normal prices. For the long-term shape prediction, we make use of
ANN only because the most recent pricing information is unknown. We want to show the
effects of different renewable generation conditions on the accuracy of short- and long-term
forecasting and the shape of long-term forecasting. In the end, we hope to provide market
participants with a model to predict hourly forward-looking shapes given different renewable
conditions.

Our paper is focused on the German market - This market currently serves Germany and
Luxembourg. Austria was part of this market until October 2018. We believe that as the
largest country and biggest economy in Europe, and also recently a net electricity exporter,
Germany is well representative of Europe and the findings of our research can be successfully
applied and prove useful in other European markets. We have also limited our research to
solar and wind sources of electricity only because these two sources are by far the most
significant sources of renewable energy for the German market. As we can see in Figure 1,
wind and solar account for the majority of the total renewable generations.

Figure 1. Gross monthly electricity generation from renewables in Germany from 2018/01 to 2021/12

Constantly changing relationships between electricity and factors that determine its price
means that price and production data of just a few years ago is already unhelpful in predicting
future prices. For this reason, we have used only recent data which we consider to still be
relevant for our prediction model today. We are using data from 2018 to 2021 in this thesis.
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1.1 Outline of the Thesis

The thesis is organized as follows. In section 2 we review the literature in our research area
including a background of the electricity market in Germany. Section 3 contains key features
of our data. In section 4 we present our model and analyze the model results. We present our
conclusion in section 5 and suggest areas for further study.
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2 Literature/Theoretical Review
2.1 The Electricity Market in Europe

Before we go into the literature review, we believe an introduction to how the electricity
market works in Europe is in order. As we mentioned earlier, a unique characteristic that
makes electricity almost impossible to store makes it imperative that whatever quantity of
electricity is produced at any one time must be consumed immediately (SMARD, n.d.).
Electricity can be bought and sold in either the long-term or short-term market.

In the futures market, futures contracts are used by sellers and purchasers to agree on the
quantity and price of electricity to be delivered long in the future (this can be some years) at a
price agreed on today. This allows market participants to lock in prices for future delivery of
electricity, hedge against future price fluctuations, and helps them with long-term planning
and investment decisions. Futures are traded on an exchange like the European Energy
Exchange (EEX) which eliminates counterparty risks as the exchange serves as the
counterparty to every transaction. Long-term electricity transactions can also happen in
over-the-counter (OTC) transactions – these are bilateral contracts consummated outside the
exchange. This however exposes the parties to counterparty risks (SMARD, n.d.).

The short-term electricity market is broken into the day-ahead market and the intraday
market. Electricity is traded at auctions (held by power exchanges) for next-day deliveries in
the day-ahead market. Every day before a set time (noon for most European markets and
11:00 am for Switzerland), traders submit buy and sell bids for every hour of the following
day (SMARD, n.d.). The participants indicate the quantity of electricity they are willing to
supply or purchase for each price between the minimum and maximum prices of the auction.
These bids from different power exchanges are aggregated in a clearinghouse to arrive at the
Market-Clearing Price (MCP) for each hour of the following day. The use of a clearinghouse
eliminates counterparty risks. The process of arriving at the MCP starts by considering the
lowest cost supplier (this is usually the producer or power plant with the lowest marginal cost)
and then the next lowest and so on. It also begins by considering the highest bidding
consumer and then the next highest and so on. This process continues until all demand is met
at a price. This process is known as the merit order because it orders producers from the
cheapest to the most expensive and ensures that electricity is produced and supplied by the
cheapest producers (SMARD, n.d.). Because renewable energy sources tend to have the
lowest marginal cost coupled with their increasing importance, they are said to have merit
order effects on prices (SMARD, n.d.).

Every supplier whose offer price is less than or equal to the MCP gets to supply electricity for
the hour and receives the MCP while every buyer whose bid price is higher than the MCP
receives electricity supply and pays the MCP. This process guarantees that every successful
supplier receives an amount that is not less than their offer price while every successful bidder

4



pays an amount that is not higher than their bid price for the hour. Figure 2 shows a graph of
the supply and demand for electricity from market participants in the German and
Luxembourg power market for the first hour (00 – 01) of May 9, 2022 (for delivery on the
10th of May, 2022). Demand and Supply intersect at the market-clearing price of 216.41 euros
per megawatt-hour.

Fig 2: The determination of the market-clearing price for the first hour (00-01) for 10th May 2022 delivery in the
German market. The MCP is determined at the intersection of the aggregate demand and supply orders from
market participants on the 9th of May. The MCP is 216 €/MWh. Source: (Epex Spot, n.d.)

Each day’s price profile (shape) would reflect the demand and supply dynamics for every
hour of that particular day – for example, prices may fall at night due to low demand and rise
during the day as people go about their daily activities and demand increases. Periods of
increased supply may also depress prices while the opposite effect may be witnessed during
low supply. These price profiles may differ for the seven days in a week, they may also differ
depending on the season of the year - that is whether it’s winter, autumn, summer, or fall.

The intra-day market is used for transactions of same-day delivery. The European market as a
whole is now so integrated and flexible enough that it can accommodate orders for as little as
5, 15, or 30 minutes deliveries depending on the market and trading area involved in the
transaction.

Bilateral short-term transactions can also be entered into through OTC transactions with their
attendant counterparty risks.
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The coupling of the European electricity market has enabled power exchanges to factor in
cross-border capacities in the calculation of electricity prices, reducing the price difference
between two or more markets and increasing benefits for consumers. (Epex Spot n.d.)

2.2 The German Electricity Market

The German electricity market, along with those of other European Union countries, was
liberalized in 1998. Before this liberalization, the industry was dominated by 9 regional
monopolies that produced and distributed all the electricity within their regions. This
monopoly arrangement limited the choices of the consumers within each region to only one
provider. It was inefficient and expensive (SMARD, 2017).

Following the liberalization, key aspects of the electricity infrastructure, including generation,
operation and distribution infrastructures, were unbundled and opened up to competition and
the markets. Today, all aspects of the German electricity market are fully market-driven and
the increased competition has led to a more efficient, cheaper and more environmentally
friendly electricity industry. This has also led to a dramatic change in the mix of energy
sources for the German market with renewable energy sources increasingly contributing a
larger and larger percentage (SMARD,  2017).

The passing of the Renewable Energy Sources Act (Erneuerbare Energien Gesetz – EEG) in
2000 paved the way for the increased contribution of renewables to the German energy mix.
Germany’s renewable energy generation has increased steadily, from about 10% in 2005 to
23% in 2012. It was at 30% in 2016 and as of the first quarter of 2022 renewables contributed
47.9% to the German electricity generation mix, making renewables possibly the most
important source of energy in Germany (SMARD, 2017). Figure 3 contains the current
breakdown of electricity generation by sources as of the first quarter of 2022.
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Figure 3: Breakdown of total electricity generation in the first quarter of 2022 by sources. Other renewable
include generation from geothermal energy, landfill gas, sewage gas and pit gas. Other conventional include
energy from derived gas from coal, mineral oil, waste, oxygen steel furnace gas, blast furnace gas, refinery gas,
gas with a high proportion of hydrogen, other by-products of production (for example steel and coke production)
and mixtures of more than one fuel type. Source: (SMARD, 2022)

2.3 The HPFC

The HPFC is a very important tool and indicator for energy market participants. In a study by
De Jong, Dijken and Enev (2013) for KYOS energy consulting, they noted that the forward
prices from the day-ahead market are transformed into a continuous curve of hourly
granularity and fed into shaping the so-called HPFC. This is done in two steps; in the first
step, an hourly forward-looking vector is estimated and in the second step, this shape vector is
calibrated into forward prices in a way that ensures that there is no arbitrage between spot and
traded forward prices (Green, 2015). Green (2015) argued in his paper that the HPFC is very
valuable for market players because it contains future hourly price patterns and is used by
these participants to price contracts more accurately. The shape of the HPFC reflects hourly
price differences across the 24 hours in a day revealing daily, weekly, and yearly seasonal
patterns. In line with this line of thought, Huisman, Koolen, and Stet (2021) agree that
forward power prices contain information about future spot power prices. This is very
significant because it means that by having an idea of power prices, traders might be able to
predict what future spot power prices will be at a certain time in the future.
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2.4 Electricity Price Forecasting

Much of the literature on electricity price forecasting is dedicated to the second step in the
HPFC determination: the calibration of forward prices themselves with the shaping step not
getting enough attention in our opinion. In a key study carried out by Fleten and Lemming
(2003), the authors used a quadratic model to construct smooth daily forward curves by
combining market prices with forecasts from a bottom-up model. Similarly, Koekebakker and
Ollmar (2005) used smoothed data and performed principal component analysis to reveal the
structure of the forward price curve, employing a standard lognormal spot price model. While
these studies noted that the estimation of seasonal shapes should be done from historical spot
prices employing forecasting tools, they were largely still focused on the calibration step and
did not provide a strong method for modeling the shape vector.

However, in a remedy to this lack of a strong model for the shaping vector, Green (2015) in
his paper developed a shaping model for an hourly forward curve for the Nordics power
market, where the profiles depend on the level of the hydrological balance. His model is
based on a feed-forward ANN trained on historical hourly electricity spot prices from the
Nord pool market. Green (2015) estimated the yearly seasonal effects with historical forward
prices from the Nasdaq OMX commodities exchange. He defined the hydrological balance as
the amount of available and potential resources used for hydropower production. In order to
capture the shape vector, he transformed the spot prices as weights and used these weights as
the response variables. His study found that intra-day and intra-week seasonal effects were
impacted by changes in the hydrological balance.

In this thesis, we have adopted a similar method to that used by Green. We have modeled a
shaping vector for the hourly price forward curve in the German market that depends on the
level of renewable energy production in the energy mix. Our model is trained using ANN. We
have also developed a short-term spot price forecasting model combining LightGBM and
ANN.

Machine Learning is increasingly being employed in the modeling and prediction of
electricity prices. However, a range of ML models has been employed by different researchers
including long short-term memory, linear regression, convolutional neural networks,
Bayesian neural networks, extreme learning machines, and support vector machines.
According to Tschora, Pierre, Plantevit, and Robardet (2022) there is currently no consensus
reference machine learning model benchmark for electricity price forecasting and model
comparison. This is seen as a limitation to good research writing in this field as different
research works are not measured by one common standard. Time series based models
including seasonal and non-seasonal autoregressive integrated moving average models have
been traditionally employed in short-term forecasting but Lago, Marcjasz, Schutter, and
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Weron (2021) found that studies comparing machine learning and statistical methods have
been contradictory at best.

In a bold attempt to provide a standard reference benchmark for electricity price forecasting,
Lago et al. (2021) suggested what they called a state-of-the-art forecasting method and best
practice guidelines which includes standards for feature selection and performance
measurement. They proposed the adoption of the Lasso Estimated Autoregressive model and
the Deep Neural Networks as benchmark models. They trained and tested their models on a
set of open-access datasets containing 6 years of price data from 5 different electricity
markets around the world. The authors ran their model using the python programming
language and documented all their codes and steps in a Github account. They argued that
these two models were being suggested because they are easy to reproduce and perform well
on price data. The idea is for the industry to adopt their methodology (including the models
and their performances on these specific datasets) as the benchmark against which any other
model for electricity price forecasting would be measured.

We note that Tschora et al. (2022) adopted the guidelines, put forward in Lago et al. (2021) in
their own forecast of electricity prices in three European markets – Germany, France and
Belgium using four different Machine Learning models – Convolutional Neural Networks,
Deep Neural Networks, Random Forests, and Support Vector Regression over two distinct
periods. The authors employed the Diebold & Marino test to compare different models. The
Diebold & Marino test is more robust because it compares the loss difference between two
model predictions instead of taking an average of the loss over a full dataset. Their results
found that different models performed better in different datasets and under different
conditions but generally, the Random Forests model performed worse in all situations. They
specifically found Random Forests and Convolutional Neural networks to be unsuitable for
the price forecasting concept that they studied.

However, given that the study and recommendation by Lago et al. (2021) was only published
in July of 2021, there is no evidence in the literature that it has been rigorously examined by
others and hence it is yet to be generally accepted and adopted by industry practitioners as a
reference benchmark. Because of this, we have not fully adopted these recommendations.
Instead, for our long-term shaping model, we have adopted the approach in Green (2015) but
modified the response variable as deviations from the average instead of the weights
employed by Green (2015). We consider this method easier to understand and communicate.
The method is also in line with that presented by Wagner, Ramentol, Schirra and Michaeli
(2022). Wagner et al. (2022) adopted the method of spot price transformation in creating a
long-term profile for forward curve generation using a Dense Neural Network with an
embedding layer to encode calendar information.

Numerous energy and financial companies rely on electricity spot price forecasts, particularly
short-term predictions. Price modeling is traditionally made more robust by recognizing and
forecasting spike prices independently from the typical time-series spot price prediction.
There are also a few publications that focus on using machine learning-algorithms to identify
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the spike prices with machine learning models such as the ANN used to construct the spike
and non-spike prices in order to reduce spike price prediction error and improve the overall
performance of short-term spot price forecasts. These procedures are referred to as a
two-stage scheme (Shi, Wang, Chen & Ma, 2022).

For the short-term price forecasting, we employed a two stage scheme similar to that
presented in Shi et al (2022). The authors employed a Dense Neural Networks framework in
the first stage for spike price forecasting and in the second step they employed different
variance stabilizing techniques for spike and normal prices to improve electricity price
forecasting. In our work, we employ LightGBM which is a novel model developed by
Microsoft in 2016. We adopted LightGBM because it employs a leaf-wise split rather than a
level-wide split and therefore performs better than most other models in spike price
identification. We then train and forecast both the spike prices and the normal prices,
separately, using ANN. The output of both is merged together to get our predicted spot prices

According to Janczura, Trück, Weron and Wolff (2013) and Weron (2014), spike prices are
broadly classified as, fixed price thresholds, recursive filters, variable price thresholds, fixed
price change thresholds, percentage filter, regime-switching classification, and wavelet
filtering. Different identifications resulting from different threshold definitions may
necessitate the development of different models for capturing price spikes. In this study, we
have chosen the percentage filter and have defined spike prices as the top 1% highest prices
and the lowest 2.5% smallest prices. These thresholds were chosen subjectively because we
consider them to be consistent with the nature of prices in our dataset - there are a lot more
negative spike prices than positive ones.
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3 Data
For this study, we made use of hourly consumption, generation, and day-ahead price data
from the German electricity market for 42 months from 2018/01/01 to 2021/12/31. The data is
from the German Federal Agency Network which provides various types of electricity related
data for Germany and other European countries and is accessed through www.smard.de/en.
The dataset contains 30,660 observations and 14 variables. A list of the variables is shown in
Table 1

Table 1: List of all variables.

S/n Variable Name S/n Variable Name

1 Wind onshore generation 8 Nuclear Generation

2 Wind offshore generation 9 Fossil brown coal generation

3 Photovoltaics (Solar) generation 10 Fossil hard coal generation

4 Biomass generation 11 Fosil gas generation

5 Hydropower generation 12 Hydro pumped storage

6 Other renewables generation 13 Other conventional generation

7 Total grid load 14 Residual load

Note: All the variables are measured in megawatt hours (MWh)

A review of the price data revealed a very significant increase in the average price of
electricity in Germany in the last half of 2021 as shown in Fig 4. To avoid the severe volatility
of power spot prices, we adjudged the period after 2021/06/30 to belong to a different data
regime and therefore excluded them from our analysis. One reason for this change in regime
could be the fact that much of the world economies were beginning to come out from the
lockdowns imposed due to the Covid19 pandemic and this led to increased demand for energy
(including fossil fuel sources of energy) causing a huge rise in energy prices.
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Figure 4: Average monthly electricity prices in Germany from 2018/01 to 2021/12

3.1 Data Preprocessing

To obtain hourly generation data, all rows in the dataset were grouped and aggregated to an
hourly frequency using a time-stamp obtained by concatenating the Date and Time of the day
columns. The German prices are calculated by adding the columns Germany/Luxembourg and
Germany/Austria/Luxembourg together. The reason is that the single electricity market for
Germany/Austria/Luxembourg was divided into two different markets: Germany/Luxembourg
and Austria in 2018/10/01 The timestamps of three different tables are then used to merge
them together. In subsequent sections, future processes corresponding to each specific model
will be described.
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4 Empirical analysis
As indicated in the Introduction, we will build two applications in this section: short-term and
long-term forecasting.

Short-term forecasting
In the section on short-term forecasting, the importance is placed on predicting day-ahead
hourly prices as accurately as possible. A two-stage model will be used, which is consisting
of:

1. A LightGBM classifier will be employed to identify price spikes with deseasonalized
prices and supply and demand information. In this stage, an oversampling approach
will be used to boost the minority's weight in order to improve classification
performance.

2. ANN with a variable selection will be used to forecast the spike price and normal
price separately. This procedure is referred to as price calibration.

In the final step, we will compare the results of two-stage models with varying factors to
those of non-two-stage models with varying factor combinations.

Long-term forecasting
In the section on long-term forecasting, the importance is placed on creating hourly profiles
based on historical hourly prices. Instead of the realized price, two new modified time-series
will be applied, along with a sinusoidal approach and calendar data to capture seasonality. We
will compare the outcomes of the model with renewables to those of models without
renewables. Various renewable generation scenarios will be explored as part of the final step.
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4.1 Short-term forecasting

4.1.1 Seasonal decomposition

The spot price for electricity can be viewed as a combination of a stochastic component ( )𝑋
𝑡

and a seasonal component ( ), i.e.𝑆
𝑡

(1)𝑝
𝑡

= 𝑋
𝑡

+ 𝑆
𝑡

It has been pointed out by Janczura et al. (2013) that many existing literatures use the
stochastic component rather than the real-time spot price data for spike prices identification
method. Therefore, We must first discover seasonal patterns to accomplish this.𝑆

𝑡

According to Janczura et al. (2013), the seasonal component is composed of a long-term𝑆
𝑡

seasonal component (LTSC) and a short-term seasonal component (STSC), i.e.𝑇
𝑡

𝑠
𝑡

(2)𝑆
𝑡

= 𝑇
𝑡

+ 𝑠
𝑡

In recent studies, it has been discovered that LTSC removal has a beneficial impact on model
performance, despite the fact that LTSC removal is not historically acknowledged as a
productive method and was previously believed to be used merely to enhance model
complexity (Marcjasz et al. 2017).

As numerous previous studies propose using a sinusoidal function to model periodic patterns
(German & Roncoroni, 2006; De Jong, 2005), we could express the long-term component
using the sinusoidal Exponentially Weighted Moving Average (sin-EWMA) presented by
Janczura et al. (2013).

(3)𝑇
𝑡

= 𝑎
1
𝑠𝑖𝑛 2π( 𝑡

365 + 𝑎
2
)( ) + 𝑎

3
+ 𝑎

4
𝐸𝑊𝑀𝐴

𝑡
0.975

and

(4)𝐸𝑊𝑀𝐴
𝑡
𝑎 = 1 − 𝑎( )𝑃

𝑡
+ 𝑎𝐸𝑊𝑀𝐴

𝑡−1
𝑎

where in equation 3 are derived using a non-linear least square, and is a decay𝑎
1
, 𝑎

2
, 𝑎

3
, 𝑎

4
𝑎

factor set to 0.975 following the work done by Janczura et al. (2013) and De Jong (2005).
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The weekly average deseasonalized price can therefore be used to express the short-term
seasonal component,

(5)𝑠
𝑡

= 1
7×24

𝑖=1

7×24

∑ 𝑆
𝑖

− 𝑇
𝑖( )

The deseasonalized stochastic component can be stated as the difference between the spot𝑋
𝑡

price and the sum of LTSC and STSC.

Fig 5: Deseasonalized electricity spot prices

4.1.2 Spike threshold and further data preprocessing for short-term forecasting

As Janczura et al. (2013) pointed out, most literature chooses the threshold for identifying
spikes subjectively. In this particular instance, we would like to define a stringent threshold by
choosing a type of variable threshold by combining the standard upper 1 percent prices
threshold and Janczura et al. (2013)'s Variable Price Threshold 1 (VPT1) scenario. In the
VPT1, 2.5 percent of the highest and lowest prices are considered to be spike prices. Thus, the
1 percent highest and VPT1's 2.5 percent lowest prices are used as the spike price in our
scenario. The negative deseasonalized spike prices shown above in figure 5, are more spikey
and occur more frequently than the positive spike prices in this particular time period, thus we
decided to place more weights on the negative spike prices.

To construct the week and day before lagged variables, the time window of the first week
(2018/01/01-2018/01/07) is removed. The variables with a time lag are shown below.

Table 2: Lagged variables

Lagged variable Description

𝑋
𝑡−24

24 hour lag variable, deseasonalized price
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𝑃
𝑡−24

24 hour lag variable, un-deseasonalized price

𝑃
𝑡−168

168 (24 7) hour lag variable, un-deseasonalized price×

The time window of 2018/01/15-2021/01/31 (the first 87.5th of the data) serve as training set,
the 2021/02/01-2021/03/03 (the 87.5th-90th of the data) serve as our validation sets, and
2021/03/04-2021/07/02 (the 90th-100th of the data) serve as our test sets, allowing us to limit
the number of calculation sources we need to process.

The spike prices are determined using our stated thresholds for the positive and negative
spikes on deseasonalized prices. Given the small number of positive and negative spike prices
in the sample, in order to improve the classifier's learning ability and increase the sample size,
we merged positive and negative spike prices and specified that all prices exceeding the
threshold are labeled as category 1 and normal prices as 0. All variables are standardized
using z-score standardization.

4.1.3 Oversampling

Even when positive and negative spike prices are combined into a single category, they only
account for 3.5 percent of the overall data. Since the data has a high degree of imbalance, the
classifier will be prevented from gaining sufficient information about a minority category
throughout the training process, resulting in the classifier's output being biased towards the
majority category. When dealing with imbalanced samples, the model can achieve
extraordinarily high accuracy by categorizing all data from minority categories into majority
categories; as a result, normal estimates of accuracy cannot be applied to the data in this
situation, and we'll go through some more appropriate estimation strategies in the following
section. With imbalanced data, industry can increase the minority sample size or lower the
majority sample size by oversampling or undersampling, depending on the circumstances.
Borderline-Smote 1, a commonly used oversampling technique, which oversample the
borderline minority based on its k-nearest neighbors (Han, Wang & Mao, 2005), is used in
this case to assist our classifier in capturing the properties of the minority category. To avoid
overfitting, we carefully select the two parameters, sampling strategy and m neighbors,
depending on the model's performance in the validation set. The model will be presented in
section 4.1.4. The number of spikes in the training set was increased from 933 to 1288, and
the percentage of oversampled data was increased to 101.32 percent.

4.1.4 Identifying the spike price occurrence with LightGBM

Support vector machines (SVM) or Artificial Neural Networks (ANN) are commonly used to
predict the occurrence of power spike prices. For the one-hour ahead spike prices forecast,
Stathakis, Papadimitriou & Gogas (2021) used an SVM as the target classifier and ANN and
XGBoost as the benchmark, while Shi et al. (2021) used ANN as the target model and SVM
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as the benchmark. Rather than employing the preceding traditional methodologies, we are
now introducing LightGBM as our target model. LightGBM has various advantages to many
other boosting method like XGboost, including faster training speed, as well as higher
accuracy and lower loss by using a leaf-wise (best-first) split approach, as explained by author
Erlich_bachman (2017) in the Analytics Vidhya online community.

In our occurrence identification model, the variables we are subjectively considering for
classification are deseasonalized lagged prices, , as well as the actual in-feed data Wind𝑋

𝑡−24

offshore, Wind onshore, and Solar, as the same variables were selected by the work done by
Stathakis et al. (2021). We also want to improve the performance by sequentially adding other
renewable sources from our data, and data from the demand side to see its performance on the
validation set with an unconfigured LightGBM. We finally add Hydropower, and Total (grid
load), into our model, as they reflect supply and demand data for the energy market. The
LightGBM's two key hyperparameters, max depth and num leaves, were set to 5 and 20
respectively by using a 10-fold cross validation grid search. The default value is used for all
other parameters.

Commonly, performance is measured with the f-measure for binary unbalanced data that
balances both precision and recall rate, rather than accuracy, since a high level of accuracy is
achievable with a model that predicts only the majority of categories. The f-measure is
defined as:

(6)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

(7)𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

(8)𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = (1+β2)×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

β2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

Where is the relative importance of precision vs. recall and often to be set to 1. Theβ
f-measure for our validation and test set are 0.61 and 0.56.

4.1.5 Replace spike price with normal price

Before estimating the electricity spot price, many literatures would remove the spike price
from the spot price and replace it with a less spikey price, i.e. the mean of the normal price.
The normal price here is either defined as the threshold value, calculated as the price average
before and after the spike, or substituted by the same weekday in a different week in the same
month. We used the mean of the average of the prices before and after the identified spike
prices, ie, as a normal price, and if the are also identified as spike1

2 (𝑃
𝑡−1

+ 𝑃
𝑡+1

) 𝑃
𝑡+1

prices, the preceding pricing information, , is supplied at normal prices by following the𝑃
𝑡−1

work done by Weron (2008) and German & Roncoroni (2006). It’s normal as our model
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contains numerous consecutive identified spike prices. We will later refer to these prices as
normal prices.

4.1.6 Variable selection

The earlier literature focuses on the electricity spot price forecast selecting their features
subjectively (Shi et al., 2021) or using a standard technique, such as testing with all
conceivable combinations of features with a single-output Gaussian Process Regression
(GPR) model (Gabrielli, Wüthrich, Blume, & Sansavini, 2022).

However, we would like to give a more consistent criteria for choosing features when
predicting future spot prices, since we are now using ANN to forecast the electricity prices
and would like to employ a neural network-based approach with a similar ability to capture
non-linearity. Our feature selection model is therefore LassoNet, a recently developed
state-of-the-art variable selection method based on the application of Lasso regression to
neural networks. Similarly to Lasso regression, LassoNet can arbitrarily establish feature
sparsity using a residual feedforward neural network by setting the skip-layer weight for that
feature to zero, given a budget. This is not elaborated upon in our work, but it is available for
study if interested (Lemhadri, Feng, Abraham & Tibshirani, 2019).

We constructed the LassoNet model separately for the realized price, normal prices, and
identified spike prices. To identify a regularization path, the hyperparameters hidden

dimension is manually set to 256 for realized price and normal price from ,𝑘 [26, 27,..., 211]

and 128 from for spike prices, and the dropout layer is set to 0.2 from[23, 24,.., 29] 𝑑
for both realized prices, normal prices and the spike prices, where and[0,  0. 1,  ...,  0. 9] 𝑘 𝑑

are chosen based on validation performance, and the default for all other parameters.

The training set for realized prices and normal prices, is the training set that was defined
previously, while the training set for spike prices will consist of the identified spike prices on
the training set. The ideal combination of -Penalty and features are determined by the𝑙

1

model’s lowest Mean Squared Error (MSE) on the validation set. The model suggests that the
combination of fossil brown coal, fossil hard coal, residual load, and undeasonalized price
features, , and , yields the lowest MSE for realized prices and normal prices,𝑃

𝑡−24
𝑃

𝑡−168

whereas the combination of biomass, hydropower, wind offshore, wind onshore,
photovoltaics, other renewable, nuclear, fossil brown coal, fossil hard coal, fossil gas, hydro
pumped storage, other conventional, residual load, and undeasonalized prices, , and𝑃

𝑡−24

, yields the lowest MSE for identified spike prices.𝑃
𝑡−168

It also proposes a very interesting result, as solar and wind power generation, which were
deemed to be two of the most important features for spot prices forecast in the German market
due to the renewables' non-negligible share of total electricity generation, were completely
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removed from our model for normal price forecasts, and similar results are generated with
other different combinations of hidden dimension and dropout layers. This becomes a new
question to be studied in the future.

4.1.7 Price calibration

This section will discuss the practice of price calibration, which involves forecasting
identified price spikes and normal prices separately. Here, only the identified spike price
samples from the first stage's output will be entered into the spike price forecasting model.
This is the second step of the two-stages model. We will develop three price-calibrated
models (two-stage model 1,2,3) with varied input feature combinations, as well as two
non-price-calibrated models (original and original+) that forecast the realized spot price only,
with varying input features. Models are detailed in Table 3,

Table 3: List of model

Name Description

Original realized spot prices, selected variables

Original + realized spot prices,  selected variables + solar & wind

Two-stage 1 spike prices, selected variables - solar & wind
normal prices, selected variables

Two-stage 2 spike prices, selected variables
normal prices, selected variables + solar & wind

Two-stage 3 (Target) spike prices, selected variables
normal prices, selected variables

A two-layer Artificial Neural Network was utilized to train all models, as it is often used for
constructing electricity prices (Lago et al. 2021), with two additional dropout layers to
enhance model generalization, and an additional batch normalization layer to enhance our
model's performance. Hyper-parameters are selected via Hyperband optimization from the

sequence for hidden dimension of spike price, for hidden[23, 24,..., 28] [26, 27,..., 211]
dimension of normal and realized price, and for dropout layers for all[0,  0. 1,  ...,  0. 9]
models. These parameters are then configured as follows:

Table 4: Hyper-parameter setting I

Model Hidden dimension Dropout

spike prices, two-stage 1 32/16 0.1/0.4

spike prices, two-stage 2, 3 32/16 0.1/0.2

normal prices, two-stage 2 256/256 0.2/0.2
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normal prices, two-stage 1, 3 2048/128 0.3/0.3

realized prices, original 128/256 0.2/0.2

realized prices, original + 256/256 0.2/0.2

All models' loss function and activation are ADAM and Rectified Linear Unit (RELU), which
are one of the most commonly used by data scientists. All other configurations, like early
stopping rules based on the model’s performance on the validation set, are the same for all
models. We then replace the suspected spike prices in the forecasted normal price with the
forecasted value of spike price to derive the forecasted spot prices for two-stage 1, 2, and 3.

4.1.8 Result

Using the mean absolute error, we evaluate the performance of our model as follows:

Table 5: Suspected spike price forecasting performance

Scenarios Mean Absolute Error

original 27.50

original + 26.86

two-stage 1 16.50

two-stage 2 and two-stage 3 13.87

Table 6: Forecasted spot prices performance

Scenarios Mean Absolute Error

original 10.72

original + 12.85

two-stage 1 10.47

two-stage 2 11.66

two-stage 3 10.40

Note: The two-stage models show the results of a normal pricing model in which the normal prices
corresponding to the identified spike prices have been replaced with the results of a spike prices model.

In addition, a Diebold-Mariano test based on the MSE is used to examine the statistical
significance of the forecasting accuracy of the benchmark and our model in order to establish
the effectiveness of the two-stage treatment, which is shown below,

Table 7: DM-test results

Scenarios DM-statistics p-value
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original and original + -14.53 2.44e-46

original and two-stage 1 5.85 5.30e-09

original and two-stage 2 -0.61 0.53

original and two-stage 3 5.86 5.01e-09

two-stage 1 and two-stage 3 3.36 7.77e-04

two-stage 2 and two-stage 3 19.88 7.94e-83

Note: In a DM test, a positive value indicates that the model listed first has a higher error than the model listed
second while a negative value indicates that the first model has a lower error than the second.

The slight increase in the prediction results of the two-stage models 1 and 3 relative to the
original model is attributable to the slight improvement in the results of the spike price
calibration models relative to the original model, as shown in Table 5 and 6. The result of the
p-value in the DM-test indicates that the improvement of our two-stage model is statistically
significant given a 0.01 cutoff when compared to the original model, as it improves the spike
price prediction accuracy. This shows that a two-stage approach would be quite useful when
forecasting the short term, particularly the day ahead price forecast.

The MAE results in Table 6 demonstrates that the improvement in prediction outcomes
between the original and the original+ is noticeable, as is the improvement between the
two-stage 1,3 and the two-stage 2. The statistically significant DM-test statistics and p-value
between two-stage 2 and two-stage 3 presented in Table 7 lend credence to the accuracy of the
variable selection result. This means that commonly used features such as solar and wind,
which are likely to degrade the performance of our model, should not be included in the
normal pricing model.

The increase in prediction results of the two-stage model 3 relative to the two-stage model 1
suggests that while the exclusion of solar and wind generation improves the performance of
the normal pricing model, excluding them from the spike price value forecasting would
decrease the overall performance. Even though the original+ has the worst overall
performance, it performs somewhat better in spike price value predictions compared to the
original model. This is seen in table 5. The improvement of our two-stage 3 model compared
to two-stage 1 is statistically significant as shown in the DM-test, as it increases the accuracy
of spike price prediction. This indicates that solar and wind generation play a significant part
in the formation of price spikes, which makes sense given that a high volume of solar and
wind power is typically associated with extreme low and negative pricing (Smard, 2020),
which may also cause negative spikes. Therefore, solar and wind generation should not be
excluded from the spike price forecast.
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4.2 Long-term forecasting

For a very long time, renewables have been regarded as indispensable components for
electricity forecasting. In contrast, it was removed from our normal pricing model of
short-term prediction in the preceding section. In this section, we are instead constructing a
stable long-term electricity forecasting model devoid of two-stage model, as it is hard to
forecast spike prices without the most recent pricing information, with the goal of capturing
the seasonal patterns of the spot prices and understanding how the supply of renewables,
particularly solar and wind power generation, effects predicted hourly profile.

4.2.1 Long-term forecasting model

We took a different approach to configuring the seasonality. Since the recent hourly electricity
spot prices and are not observed, unknown factors would reduce the accuracy of𝑃

𝑡−24
𝑃

𝑡−168
 

forecasts by influencing the average price level of electricity. In order to stabilize the price
level, we no longer use actual spot electricity prices as a measurement for price forecasting,
but instead use two indicators called hour to daily deviation (H2D) and hour to month
deviation (H2M), which are very similar to the hour-to-month ratio presented by Green
(2015), is derived from the deviation of the daily average presented by Wagner et al. (2022).
Two indicators are characterized by,

(9)𝐻2𝐷
𝑡

= 𝑝
𝑡

− 1
24

𝑖=1

24

∑ 𝑝
𝑖

(10)𝐻2𝑀
𝑡

= 𝑝
𝑡

− 1
𝑚

𝑡| |×24
𝑖=1

𝑚
𝑡| |×24

∑ 𝑝
𝑖

as our response variables, where represents the number of days corresponding to that𝑚
𝑡| |

month.

4.2.2 Further data preprocessing for long-term forecasting

The time window of 2018/01/01-2019/10/01 (the first 50 percentage of the data) serve as
training set, the 2019/10/02-2020/02/06 (the first 50-60 percentage of the data) serve as our
validation sets, and 2020/02/07-2021/07/02 (the first 60-100 percentage of the data) serve as
our test sets. All variables are standardized using z-score standardization.

The lagging prices , and , are omitted from our sample because the short-term𝑃
𝑡−24

𝑃
𝑡−168

price information is unknown. We also include cosine-sine transformed time variables for the
seasonality (Green, 2014; Wagner et al., 2022),
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𝑦
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(11)ℎ
𝑥
(𝑡) = 𝑠𝑖𝑛( 2π𝑡
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𝑦
(𝑡) = 𝑐𝑜𝑠( 2π𝑡

24 ),  

Likewise, we use one-hot to encode the variable ‘holiday’ to indicate whether it is a German
public holiday, where 1 indicates a holiday and 0 indicates a non-holiday.

4.2.3 Variable selection

In keeping with the preceding section, a variable selection LassoNet would be employed here
as well. The hyperparameters hidden dimension is manually set to 256 and 512 from𝑘

for H2D and H2M, and the dropout layer is set to 0.2 from[26, 27,..., 211] 𝑑 [0,  0. 1,  ...,  0. 9]
for both models based on its validation MSE, and the default for the remaining parameters.
After adding the cosine-sine transformation and removing the price lagged variables from our
model, we observed that all renewables, including our primary interest, solar, offshore wind,
and onshore wind, are included. In addition, we are excluding these three variables from our
model as a benchmark in order to evaluate the performance of the forecast.

4.2.4 Long-term forecasting

Long-term predictions are made using a two-layer ANN with two dropout layers and an
additional batch normalization layer. With the Hyperband, two hyper-parameters, the hidden

dimensions and the dropout values are selected from and ,[26, 27,..., 211] [0,  0. 1,  ...,  0. 9]

Table 8: Hyper-parameter setting II

Model Hidden dimension Dropout

H2D, selected variables 2048/512 0.3/0.3

H2D, selected - solar & wind 512/1024 0.3/0.1

H2M, selected variables 1024/512 0.3/0.4

H2M, selected - solar & wind 512/2048 0.2/0.4

The loss function and activation of both models are ADAM and RELU. Other configurations,
such as early stopping rules, are identical between the models.

4.2.5 Result

The results are measured using MAE and are displayed below,
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Table 9: Forecasting performance for selected variables without solar & wind and selected variables using MAE.

Scenarios H2D H2M

selected variables 5.32 6.66

selected variables - solar & wind 5.56 7.22

An additional Diebold-Mariano test based on the MSE is used to examine the statistical
significance of the forecasting accuracy of the original scenario and the original scenario
excluding the solar and wind components.

Table 10: DM-test for Original without solar & wind and Original

Scenarios DM-statistics p-value

H2D 20.72 8.03e-94

H2M 14.91 7.17e-50

Note: In a DM test, a positive value indicates that the model listed first has a higher error than the model listed
second while a negative value indicates that the first model has a lower error than the second.

The result from Table 9 indicates that the average difference between our model and the
actual H2D and H2M deviations is 5.32 and 6.66, respectively, which is a reliable indicator of
the actual spot prices over the long term. In addition, unlike the short-term forecast, the
inclusion of solar and wind generation sources effectively improves the long-term forecasting
performance by capturing the long-term pricing scheme, as demonstrated in the above
DM-test from Table 10, which should be emphasized in our study. The positive DM-statistics
indicate a better performance by the original model over the original without solar and wind.
Given the long-term model, we can assess the effect of renewable energy on the price of
electricity.

The following figure 6 and 7 shows the H2D and H2M curve from 2019/10/02/00:00 to
2019/10/08/13:00 in the validation set.

Fig 6: H2D Deviation Fig 7: H2M Deviation
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4.2.6 Simple linear model

Prior to advancing to the effect of renewable energy on our long-term forecasting model, we
will examine the following simple relation between the change in real spot prices and change
in solar and wind power using a simple linear approach that was proposed by De Jong, et al.,
(2013),

∆𝑝
ℎ

=− β
1

· 𝑝
ℎ−24

− β
2

· ∆𝑠
ℎ

− β
3

· ∆𝑤
ℎ
𝑜𝑓𝑓𝑠ℎ𝑜𝑟𝑒 − β

4
· ∆𝑤

ℎ
𝑜𝑛𝑠ℎ𝑜𝑟𝑒 + ε

ℎ

Where represents the change in spot prices, represents 24 hour lagged prices,∆𝑝
ℎ

𝑝
ℎ−24

∆𝑠
ℎ

represents the change in solar energy generation, and represents the change in wind∆𝑤
ℎ

power generation. All features except for the response variable, , have been standardized∆𝑝
ℎ

prior to modeling.

Table 11: Linear regression coefficients

𝑝
ℎ−24

∆𝑠
ℎ ∆𝑤

ℎ
𝑜𝑓𝑓𝑠ℎ𝑜𝑟𝑒 ∆𝑤

ℎ
𝑜𝑛𝑠ℎ𝑜𝑟𝑒

β -4.2851 -2.2422 -0.6482 -8.1483

standard Error 0.070 0.069 0.078 0.080

with a of 0.433.𝑅2

The output suggests that both change in solar and wind power generation have a significant
negative impact on electricity spot prices, as it is in line with our intuition, although
renewables would have a non-linear impact on electricity spot prices, and the following step
is to construct a model that can capture those non-linear impact. We anticipate, however, that
the following section will reach a similar conclusion.

4.2.7 Sensitivity analysis

In addition to assessing how the incorporation of renewables affects the forecast performance,
as we did in the preceding sections, we were interested in evaluating how solar and wind
energy affect the price of electricity with our model.

To be clear, this is a preliminary study that makes no causal inferences; we are only interested
in determining whether the change in solar and wind power will affect electricity prices. We
refer to this as a sensitivity test.

Consequently, we added two additional scenarios to our long-term forecast: a low wind/solar
energy scenario in which solar and wind power generation are each reduced by 15 percent,
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and a high wind/solar energy scenario in which solar and wind power generation are each
increased by 15 percent, in addition to the original scenario.

In the previous section, we used the original model to forecast the h2d and h2m deviations for
three different scenarios; the results are shown below.

Table 12: Sensitivity test

Model H2D H2M

low solar/wind -0.26 -1.69

normal solar/wind -0.31 -1.79

high solar/wind -0.35 -1.89

Given our well-trained long-term forecasting model with three distinct scenarios, the result
reveals that the model predicts the low renewable scenario would have the highest mean
output while the high renewable scenario will have the lowest mean output for both H2D and
H2M models, and, the outcomes correspond to our intuition and the merit order effect of
electricity prices. This also indicates that our model captures the true patterns of the effect of
renewables on energy spot prices to some extent.
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5 Conclusion
In this thesis, we set out to develop a model for a long-term shaping vector of the hourly price
forward curve in the German power market which is dependent on renewable conditions. We
limited our considerations to solar and wind sources of renewable generations only.
Additionally, we also proposed a model for short-term day-ahead predictions of electricity
prices in the German market.

We employed a simple linear regression to estimate the association between changes in
renewable generation and changes in electricity prices. Our regression found that solar,
onshore wind, and offshore wind generation are all negatively related to electricity prices with
onshore wind generation having the biggest coefficient. This is in keeping with general
literature and in line with our intuition.

To avoid the impact of unknown factors, we used variations from the daily and monthly
means as our response variable. We then went ahead to use this model to predict the shape of
the HPFC for a week in October 2019 (October 2 - 8) and found that the model performs quite
well especially when using deviations from the Daily mean (H2D) as our response variable.
In an attempt to quantify the effects of renewables on electricity prices, we compared the
average electricity prices in three scenarios - low renewables, normal, and high renewables.
We assumed a situation of a 15% reduction in renewable generation as the low renewable
scenario and a 15% increase in renewable generation as the high renewable scenario while the
current data is assumed to be a normal scenario. Our model measured the average prices in
the three scenarios and, in line with our expectations, we found that a low renewable scenario
led to a higher average prices than the normal and high renewable scenarios, with the high
renewable scenario having the lowest average prices of the three (results are contained in
table 9). We figured that this will enable us to capture the pure effects of renewables. In the
model for long-term shape prediction, we excluded the lagged variables because they are
unknown for long-term price predictions

In our models, we did not use features that may be currently considered important in
electricity price determination like crude oil, coal and natural gas prices for instance. This is
in line with the stated objectives of the thesis but also because we foresee a future where
renewables are so much more important than they are today. However, given the intermittent
nature of renewables, there will always be energy from conventional sources and, for further
studies, it might be helpful to incorporate these conventional features into our model to see if
our observed relationships and effects change in any way. For the short-term electricity price
forecasting, we first employed the LightGBM to identify the spike prices. We then replaced
the spike prices with the averages of the two non-spike prices before and after the spike prices
to get the normal prices. The normal prices and identified spike prices were trained on an
ANN model and used to predict normal prices and spike prices separately. This predicted
spike prices is then added to the predicted normal prices to get the predicted spot prices from
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our model. The result from our model was compared with a result from training the original
dataset (without any adjustments) on an ANN and was found to outperform the result from
the unaltered dataset. This result is not surprising because we can look at spike prices as
deviations which may be more difficult for a single model to capture, hence the two
separately helps improve the performance of our model when compared to the model trained
on the original data.

A variable selection, conducted using lassonet, for the short-term price prediction produced
some interesting results. Both solar and wind generations were found not to be important in
predicting short-term normal prices, but were essential in forecasting price spikes. The
variable selection for the long-term shape forecasting found all the variables to be important
and hence they were all used in our study.

In conclusion, we state that both our long- and short-term models have performed very well in
our studied dataset capturing seasonal and non-seasonal patterns in electricity prices in the
German market. However, we think that there are areas that should be studied further, for
example, the effects of electricity prices and production capacities in neighboring countries on
prices in the German market should be investigated. This point is very relevant considering
that the electricity market in Europe is currently very integrated. It would also be interesting
to study the effects (if any) of electricity prices in Switzerland on the prices in other European
countries given that bidding in its day-ahead market closes one hour before those of other
countries.
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