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Abstract 

The aim of this paper is to compare the performance of the Merton model to a machine 

learning technique (random forest), in a context where the number of predictors is low or 

the dataset is quite small. Since random forest is a data-intensive method, the main goal 

is to find the minimum number of explanatory variables and observations that is needed 

for it to perform at least as well as the Merton model, an approach developed in the 70s 

that gives the probability of the firm defaulting. Results suggest that a minimum of 13 

predictors is required for both models to have a similar performance and that the dataset 

should be formed by no less than 9,600 observations for random forest to be as accurate 

as the classic approach by Merton, providing that the proportion of defaults in the dataset 

is around 0.18%. Our study also suggests that the application of the over-sampling 

technique SMOTE combined with 100% under-sampling of the majority class leads to 

superior results for the random forest, with an accuracy higher than 0.8 as measured by 

area under curve (AUC). In general, our findings indicate that, although machine learning 

techniques perform better in absolute terms when predicting corporate defaults, it is 

important to consider the amount of data available and its quality before trying to apply 

any of them, since, in extreme data scarcity scenarios, traditional approaches as the 

Merton model perform better. 

Keywords: Merton model, random forest, default prediction, SMOTE. 
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1. Introduction  

In this paper, we aim to compare one of the pioneering models for predicting the potential 

default of a company, the Merton model (1974) to more recent approaches based on 

machine learning algorithms, such as random forest. Since the Merton model has been 

the basis of all subsequent credit risk assessment models and it is still widely used among 

both practitioners and researchers, we intend to test to which extent methods such as 

random forest outperform it, especially in situations where data are scarce. Hence, a full 

assessment is to be made to provide some intuition on whether it is worth it to use machine 

learning algorithms instead of simpler approaches that also produce a highly reliable 

probability of default. 

Corporate defaults have been a major issue over the last decades. The recent financial 

crises have pointed out several weaknesses among companies that led many of them to 

default, and have revived the debate on which are the appropriate mechanisms to deal 

with those situations. Hence, credit risk models that evaluate the default probability of a 

certain company are a key instrument for the whole financial system, especially when 

they shed light on the health of privately held firms, which are not that much controlled 

by regulators. 

The development of such models started some decades ago, when Altman (1968) and 

Merton (1974) released their Z-score and Merton model, respectively. In contrast to the 

research by Altman that uses a regression-based approach, Merton conceives a model that 

gives importance to the economic mechanisms that produce default, therefore creating 

one of the first structural models for predicting default. His findings are the foundation 

for many subsequent studies on the matter, that focus on the improvement of predictive 

power, sensitivity, and specificity. 

Later in time, a completely different set of techniques were developed. Those, which 

include classification trees, logistic regression, Least Absolute Shrinkage and Selection 

Operator (LASSO), and random forest among others, are known as machine learning 

(ML) techniques since they use a built-in algorithm to perform the calculations rather 

than an economic approach. The application of ML in finance has become widespread 

within the last years, and further developments that will increase the predictive power of 

the models are to be expected. 
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In this setting, many have used these approaches to try to outperform the classic 

techniques, including Merton model. One of the problems of this method is that the 

probability of default it yields is not accurate on its own, which implies that it is not a 

sufficient statistic for default prediction even though the ranking it provides among firms 

is correct (Bharath & Shumway, 2008). ML techniques use the available data to solve 

classification problems and recent studies have shown that, when an adequate dataset is 

employed, their performance is superior to those from previously existing methods 

(Barboza, Kimura & Altman, 2017; Moscatelli et al., 2020). However, a widely 

recognized drawback of these methods is the need for having certain previous knowledge 

to implement them correctly, apart from their “black box” nature (Kim, Cho & Ryu, 

2020). 

Although it is true that most of the literature that aims to compare the performance of ML 

techniques for default prediction agrees on the fact that these approaches outperform the 

traditional methods, it must be taken into consideration that generally, these studies 

include very wide and rich datasets where almost all the information (public and private) 

that is needed to predict a default is accounted for. In our study, we aim to make a 

comparison between Merton model and random forest in a context of data scarcity, that 

is, where only some publicly known financial variables are available and the number of 

observations is small. We consider this to be insightful since, in reality, many 

practitioners do not have enough time or resources to access the relevant data, and hence, 

they might have to consider different alternatives. To our knowledge, no previous 

literature has directly compared such different approaches in a data-scarce environment 

as we are doing in this paper. 

In order to perform our study, we first use only the inputs from the original Merton model, 

and test how random forest performs with respect to Merton model. Then, we add a set 

of relevant financial variables obtained from publicly available datasets and compare both 

approaches again. Since the aim of the paper is to obtain the point where it would be more 

convenient to use a classic approach such as the Merton model instead of the more 

complex random forest, we drop some variables and reduce the number of observations 

in order to check how much the accuracy of the ML technique goes down.  

Since datasets used in corporate default studies are severely imbalanced, we use the 

Synthetic Minority Over-sampling Technique (SMOTE) suggested by Chawla et al. 

(2002) to artificially increase the number of defaults. This method, when combined with 
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100% under-sampling of the majority class, significantly increases the level of accuracy 

of the model, another important output from our study. 

The remainder of this paper is organized as follows. Section 2 reviews the main literature 

that has been written about default prediction models, starting from the first approaches 

by Altman (1968) and Merton (1974) and ending with the most recent techniques applied, 

that is, machine learning based models. Section 3 discusses the theoretical framework of 

the two main approaches applied in this study and gives further insight into their 

development over time and their current applications. Section 4 states the proposed 

methodology, which intends to give an insight into when machine learning techniques 

start outperforming the classic Merton model. Section 5 discusses the data collection 

process and the potential transformations that might have to be performed. Section 6 

includes the main results and findings of the study, with the relevant analysis on them 

being discussed in section 7. The paper ends with a conclusion that aims to summarize 

the approach followed and the results obtained, and it also includes a reference section 

and an appendix. 
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2. Literature review 

Over the last decades, a vast amount of literature has been written about corporate default 

prediction methods. After years of research, the development of new statistical and 

mathematical tools has increased the number of available options, albeit not all the 

techniques have performed as expected in this field and some older models have proved 

to be still fully valid. In this literature review, we aim to give insight into the main lines 

of corporate default study during the last fifty years, with an emphasis on the most 

relevant recent publications. 

Among the pioneering research in this field, the work of Altman (1968) is noteworthy 

since he develops one of the first credit score models, known as the Z-score. Applying 

multiple discriminant analysis (MDA) and relying on historical data, the author produces 

a multivariate regression with financial ratios as independent variables that aims to 

categorize the company as either distressed or safe, including a gray “inconclusive” zone. 

However, the original model can only be applied to public firms since the market value 

of equity is an input in the regression, a fact that is fixed by Altman (1983) when he 

frames two variations of the earliest regression to account for private and non-

manufacturing companies. 

Shortly after Altman develops his Z-score model, Merton (1974) establishes the 

foundation of all the subsequent credit risk models with his proposed approach. Starting 

from the consideration that the market value of equity can be seen as a long call option 

on the asset market value (with debt value being the strike price), he conceives a model 

where the company defaults if the market value of the assets is below the market value of 

the debt, or in other words, if the value of the call option that equity-holders have is zero. 

The model relies on previous assumptions by Black and Scholes (1973) and develops 

formulae to calculate the probability of default (PD) and the distance to default (DD) with 

relatively few inputs.  

Both models have proved to be valid to the present day and are still widely used among 

practitioners, as some authors like Altman et al. (2014) and Afik, Arad, and Galil (2016) 

point out. Altman et al. (2014) use a large dataset that includes a wide variety of countries 

to test the Z-score model proposed by Altman (1983) and show that it performs 

satisfactorily in an international context, although some variables in the regression may 

need to be slightly modified to account for country-specific factors. Meanwhile, Afik, 
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Arad, and Galil (2016) test the Merton model along with some variants of it and 

alternative approaches and find that the simplest versions of it perform better than the 

alternative methods, which are more computationally intensive. According to the authors, 

these positive results when tested empirically and the relatively few inputs that it needs, 

explain why the Merton model is still one of the most applied techniques for credit risk 

assessment nowadays. 

As time passed, some models which aimed to improve the one proposed by Merton (1974) 

arose. One of the most relevant ones is the KMV-Merton, which was first developed in 

1989 by the company KMV and subsequently acquired by Moody’s in 2002. Although 

this model is used daily by Moody’s to assess credit risk of thousands of companies, some 

authors have also tested it independently with dissimilar results. Bharath and Shumway 

(2004) test a naïve alternative of the KMV-Merton model and conclude that it does not 

provide a sufficient statistic to predict corporate default, in contrast to the research by 

Yusof and Jaffar (2011), who consider the KMV-Merton model to be an adequate tool to 

forecast potential company defaults, by using a sample of Malaysian firms. Nevertheless, 

these results should be considered carefully since the actual version of the model is 

privately held by Moody’s and hence, not known to most practitioners. 

The introduction of the models by Altman (1968) and Merton (1974) for predicting 

corporate default entailed a revolution in the field, and new statistical techniques started 

to be applied to relevant research on the matter. Thus, Ohlson (1980) proposes the use of 

logistic regression analysis for predicting bankruptcies with his O-score model and after 

that, many other researchers applied novel techniques to improve the forecasting power 

of the models. Among those approaches, ML techniques have been given a remarkable 

focus in recent literature, due to their potential to outperform existing methods. According 

to Kim, Cho, and Ryu (2020), the main ML approaches include support vector machines, 

decision trees, random forest, and artificial neural networks. The authors argue that under 

ML, corporate defaults are considered to be classification problems with two possible 

outcomes: default or normal (i.e. no default). That is considered to be a limitation of the 

techniques since it implies the assumption that defaults occur independently, a fact often 

disproved by empirical data (Kim, Cho & Ryu, 2020). Besides, the lack of use of 

macroeconomic variables is pointed out by the researchers as one of the main limitations 

of the previous ML studies. 
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There are several papers that aim to compare different ML methods with traditional 

statistical approaches in order to check which one is the most accurate to predict corporate 

defaults. Along these lines, Barboza, Kimura, and Altman (2017) use a large dataset 

involving several decades to test many different models in order to find the most accurate 

one for forecasting defaults. The approaches considered include support vector machine, 

bagging, boosting, random forest, and artificial neural networks, and are compared to 

classic models such as linear discriminant analysis and logistic regression. Barboza, 

Kimura, and Altman (2017) show that the ML-based models outperform the traditional 

approaches, with random forest, boosting, and bagging being the most accurate ones, 

which is noteworthy considering that no transformation was done to the variables. In their 

article, they also consider different sets of variables and conclude that the one initially 

selected by Altman (1968) performs worse than some others that include relevant 

information regarding bankruptcy. The findings by Moscatelli et al. (2020), who test 

random forest and gradient boosted trees in a dataset formed by more than 300,000 non-

financial Italian companies, point in the same direction. The authors find that ML 

techniques perform better than logistic regression and linear discriminant analysis when 

using only financial variables since they improve the forecasting accuracy by 10 

percentage points. Conversely, when Moscatelli et al. (2020) also consider credit 

behavioral indicators, the difference in discriminant power between traditional and ML 

approaches becomes smaller, probably as an effect of having higher quality data, which 

improves the overall accuracy of the models. 

Out of all ML techniques, random forest seems to be one of the most used and accurate 

approaches to predict corporate defaults. This method was introduced by Breiman (2001) 

and has been applied to many different fields and areas of study in order to deal with 

classification problems. For instance, Ali Khan et al. (2022) use random forest to model 

water surface salinity in Pakistan, Gurm et al. (2014) apply a random forest-based 

algorithm to predict the likelihood of needing a transfusion after certain coronary 

interventions, and Lock and Nettleton (2014) employ it to develop a model for estimating 

the winning probability of a certain team in an NFL game. Applications more related to 

finance have also been widely mentioned in the literature. As an illustration, we can cite 

the work by Tan, Yan, and Zhu (2019), who implement random forest to select stocks 

with the aim of forming a portfolio that outperforms a Chinese stock market index, with 

success in its application.  
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Many articles have focused on using random forest for corporate default prediction, with 

relevant findings in most cases. Zhu et al. (2019) use several machine learning techniques 

to conduct a study on loan default by using data from Lending Club, a P2P lending 

platform that allows individuals to borrow and invest. The results show that random forest 

outperforms the other methods used (decision trees, support vector machines, and logistic 

regression) to predict loan defaults, and results suggest that the model could be 

generalized due to its accuracy. One step further go Kim, Cho, and Ryu (2021), who use 

geometric-lag variables in their analysis of ML methods (including random forest), and 

conclude that it boosts the discriminatory power of the models. 

Although random forest models seem to perform well with large datasets, there can be 

differences in the outcomes depending on the data analyzed, especially when the study is 

performed in different countries (Behr & Weinblat, 2016). These authors employ ML 

techniques including random forest to analyze differences in corporate defaults in seven 

European countries (Germany, France, Finland, Spain, Portugal, Italy, and the United 

Kingdom), and find that the differences are significant, or in other words, that one model 

might not fit all countries. This opinion is also shared by Kim, Cho, and Ryu (2020), who 

also admit some limitations of ML techniques, such as the difficulty of its application or 

the absence of outputs apart from the probability of default. Nevertheless, Behr and 

Weinblat (2016) show that, despite country-specific differences, an international model 

for predicting credit default could be developed, with random forest outperforming the 

other techniques employed in their analysis.  

The selection of variables has also been a broadly discussed topic among academics and 

researchers over the last few years. The main limitations of recent studies in the field 

include the omission of the stock price as an independent variable and the lack of use of 

multi-period models (Kim, Cho & Ryu, 2020). In addition to that, the work by Kohv and 

Lukason (2021) highlights the importance of non-financial variables, since they find that 

tax arrears have great predictive power for forecasting loan defaults, even more than ratios 

from classic financial variables. On the other hand, delays in handing in financial reports 

are not a significant variable in loan default prediction models, whereas it is important for 

models that consider bankruptcy. Kohv and Lukason (2021) focus on loan defaults (that 

are more unpredictable than bankruptcies, which tend to be more systematic) and employ 

a dataset of loans from a well-established commercial bank that includes mostly small 

and medium enterprises (SMEs). 
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We aim to finish this literature review by giving a short insight into the use of artificial 

neural networks to predict defaults. In this sense, we remark on the contribution of Kim, 

Cho, and Ryu (2021), who test two different algorithms to process sequential data and 

find that neural networks perform better than the other methods considered, besides that 

an ensemble model which combines the predicted probabilities of the logistic regression, 

support vector machine, random forest, recurrent neural networks, and long short-term 

memory models performs better than all the models separately. However, they also point 

out that neural networks have pitfalls, such as they cannot clearly indicate the importance 

of each individual explanatory variable for bankruptcy prediction due to their 

complexity.  
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3. Theoretical framework 

Since the main purpose of this paper is to compare the performance of the Merton model 

to an ML technique (random forest) when data are scarce, it is essential to include a 

section in which the theory behind both methods is explained clearly. The 

abovementioned approaches were mainly chosen because of their dissimilar 

characteristics in terms of inputs needed and underlying mechanisms to predict defaults, 

as will be explained later in this part of the essay. 

3.1.  Merton model 

This approach was developed by Merton (1974), and it was the first of a subsequent series 

of structural credit risk models. These methods consider the underlying economic 

conditions of the firm to forecast the likelihood of a default, so they take into account 

company-specific variables and are especially useful since they can spot flaws in the 

capital structure that can make the firm be in a situation of distress. Hence, they differ 

from reduced-form models which rely exclusively on statistical models. 

Merton’s idea is mainly based on the assumption that the firm defaults if and only if the 

value of assets is lower than the face value of debt (i.e. what must be paid to debtholders) 

at the time of maturity. This implies that the value of equity can be seen as a long call 

option written on assets, with the strike price equal to the face value of debt. This premise 

is key for the further development of the model since it means that an option pricing 

model can give some insight into the probability of default of the firm. In this sense, 

Merton continues with the previous work by Black and Scholes (1973). 

In order for the model to work, some assumptions need to be made beforehand. Probably, 

the most relevant one is that debt is a zero-coupon bond with a face value of K, that 

matures at the time when the firm is terminated, T. This means that the firm defaults when 

the value of assets is below K, but since debt is only serviced once, that can only happen 

at T. Obviously, the firm cannot issue new debt or equity to pay the old debt. 

Consequently, there are two possible scenarios at time T: default or not default. 

When the firm is terminated, both debt holders and equity holders get their share. It is 

common knowledge that debt holders have to be paid back before equity holders. 

Therefore, the value for them will be K unless the firm has defaulted. A default would 
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mean that the value of assets at time T is lower than K, and then this would be the amount 

appropriated by the creditors. The following equation summarizes the outcome 

𝐵𝑇 =  {
𝐾 𝑖𝑓 𝐴𝑇 ≥ 𝐾                                                      

𝐴𝑇  𝑖𝑓 𝐴𝑇 < 𝐾                                                       
(1) 

Following the previous discussion, equity holders do not get anything if the firm defaults, 

since debt holders receive the total asset value. Only if the firm does not default, they do 

receive the difference between the asset value and the face value of debt (i.e. the 

remaining value of the company after all debt holders have been serviced), as can be 

summarized in equation 2. 

𝐸𝑇 =  {
𝐴𝑇 − 𝐾 𝑖𝑓 𝐴𝑇 ≥ 𝐾

0 𝑖𝑓 𝐴𝑇 < 𝐾
                                            (2) 

The most important outcome of the previous discussion is that equity can be seen as a 

long call option with the asset value as underlying and with strike price equal to the value 

of K, since the payoff to the equity holders is the difference between both if there is no 

default and zero otherwise. This is stated in  

 𝐸𝑇 = 𝑚𝑎𝑥[𝐴𝑇 − 𝐾, 0]                                                      (3) 

which implies that an option pricing model could give some information regarding the 

probability of the company defaulting, this being the reason why Merton continues with 

the previous work by Black and Scholes (1973). Concretely, he applies the assumption 

that the asset value follows a geometric Brownian motion (GBM), which is a stochastic 

process where the logarithm of the underlying variable follows a standard Brownian 

motion with a drift. Hence, this implies that the logarithm of AT  is normally distributed 

according to 

𝑙𝑛𝐴𝑇  ~ 𝛷 (𝑙𝑛𝐴0 + (𝜇𝐴 −  
𝜎𝐴

2

2
) 𝑇, 𝜎𝐴√𝑇)                                      (4) 

where A0 stands for the initial asset value, μA represents the return on assets (ROA) or the 

expected growth rate (and is usually proxied by the risk-free rate) and σA is asset volatility. 

By knowing this, it is straightforward to get the probability of default as the probability 

of the value of K being lower than the value of AT at time T. Applying natural logarithms 

to both sides and standardizing the normally distributed variable, Merton found that the 

probability of default is 

 𝑁(−𝐷𝐷)                                                                   (5) 
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where DD is a newly defined variable known as distance to default which measures the 

number of standard deviations that the firm is away from distress (see equation 6) and N 

is the cumulative normal distribution. Consequently, DD allows direct comparisons 

between firms, and although some studies have revealed that it is not a sufficient statistic 

for predicting defaults, it gives an adequate ranking of firms with respect to how far they 

are from financial distress (Bharath & Shumway, 2008).  

𝐷𝐷 =
𝑙𝑛𝐴0+(𝜇𝐴− 

𝜎𝐴
2

2
)𝑇−𝑙𝑛𝐾

𝜎𝐴√𝑇
                                              (6) 

When implementing the model in practice, it is important to note that it is difficult to find 

accurate estimates for all the inputs in the model. As stated before, μA is usually proxied 

by the risk-free rate. This yields the risk-neutral probability of default, which is higher 

than the actual one since equity holders demand a return that is higher than the risk-free 

rate to compensate for risk, and this implies that PD goes down because DD is smaller. 

For σA and A0, a system of two equations is generally required since they are not 

observable. The standard procedure is to use the initial equity value E0 (calculated as 

market capitalization) and equity volatility σE to solve the following equations, obtained 

by employing the Black-Scholes formula for option pricing backwards (equation 7) and 

the Ito (1944) formula (equation 8), a mathematical approach that can be used since the 

underlying asset value follows a GBM: 

𝐸0 = 𝐴0𝑁 (
𝑙𝑛

𝐴0
𝐾

+(𝑟+
𝜎𝐴

2

2
)𝑇

𝜎𝐴√𝑇
) − 𝐾𝑒−𝑟𝑇𝑁 (

𝑙𝑛
𝐴0
𝐾

+(𝑟−
𝜎𝐴

2

2
)𝑇

𝜎𝐴√𝑇
)                         (7) 

 𝜎𝐸𝐸0 = 𝜎𝐴𝐴0𝑁 (
𝑙𝑛

𝐴0
𝐾

+(𝑟+
𝜎𝐴

2

2
)𝑇

𝜎𝐴√𝑇
)                                            (8) 

In the paper, we use this traditional approach, since more recent adaptations such as the 

KMV model are privately held and not all details are known. Therefore, we calculate the 

risk-neutral probability of default and get our estimates of asset volatility and asset value 

by using the market values of equity of the selected firms. 
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3.2.  Random forest 

Machine learning techniques have become extremely popular to deal with classification 

problems, i.e., those in which the dependent variable can only take discrete values. Within 

finance, one of the fields in which these kinds of situations arise the most is default 

prediction, since there are only two possible outcomes: default or not default. Hence, a 

dummy variable approach is necessary to create a relationship between a set of predictors 

and a binary independent variable. 

Among the vast number of different techniques that are applied nowadays, tree-based 

methods have taken a step forward due to their strong performance in terms of accuracy. 

Trees can be used for both regression and classification problems and are especially useful 

when the number of predictors is large or when there are non-linear relationships between 

the dependent and the independent variables.  

Random forest is ultimately based on regression trees. Those are simply splits of the data 

into different branches, according to a decision rule decided by the algorithm so that it 

splits the data on a certain variable at each node. A regression tree will have n nodes and 

n+1 branches, where at each node a decision is taken by the tree. In figure 1, an example 

of a basic regression tree is provided for better illustration. 

 

Figure 1. Example of regression tree. In this figure, the regression tree stands for the possibility of a certain 

company getting a subsidy from the government. Only firms with sales lower than 3 MUSD and less than 

200 employees are allowed to get the subsidy, as shown in the picture. 
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Regression trees can also be seen as algorithms that split the data into a certain number 

of regions, with the aim of getting the smallest possible residual sum of squares (RSS) 

for all of them. Several methods exist to grow the trees, but avoiding overfitting is 

essential. Hence, pruning complex trees to make them simpler and more likely to predict 

accurately is a common procedure, and several methods for this are used in practice. Some 

advantages of regression trees include their easiness to be understood and to mirror human 

decisions and their ability to produce outcomes based on qualitative variables without the 

need for dummies (James et al., 2013). 

For classification problems such as the one which involves default prediction, 

classification trees are needed. Their mechanism is essentially the same as those of 

regression trees, but instead of using RSS, they minimize a node purity measure. The Gini 

index is the most common one and it is defined as 

𝐺 = ∑ 𝑝𝑚𝑘(1 − 𝑝𝑚𝑘)𝐾
𝑘=1                                               (9) 

where pmk is the fraction of training observations in the mth region that belong to the kth 

class (James et al., 2013). This means that the index will be lower the closer the 

observations are to zero or one, which is consistent with the intuition of the concept of 

node impurity. In contrast, the highest node impurity would be having half of the 

observations from one class and the other half from the other class. 

One of the main disadvantages of classification trees is that they have a high variance. In 

order to solve this and to improve the forecasting power of the model, some approaches 

have been suggested. Breiman (1996) develops bootstrap aggregation (mostly known as 

bagging) to get an average prediction from many different trees rather than one single 

forecast. The underlying idea of this approach is to create different samples by 

bootstrapping. That means many samples will be obtained since bootstrapping works as 

random sampling with replacement. An unpruned tree will be fitted for each sample and 

the final tree will be the average of all the sample trees created. An advantage of this is 

that no validation dataset is required since the data that has not been used constitutes the 

out-of-bag (OOB) sample and is used to validate the data (Breiman, 1996). One main 

drawback of this procedure is that trees are highly correlated with each other, a 

contingency solved by the random forest approach. 
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Random forest was suggested by Breiman (2001) and is basically decorrelated bagged 

trees. According to the definition provided by the author in the original paper, 

a random forest is a classifier consisting of a collection of tree-structured classifiers 

{h (x, k), k = 1,...} where the {k} are independent identically distributed random 

vectors and each tree casts a unit vote for the most popular class at input x (Breiman, 

2001, p.6).  

This means that all trees grown vote for the dependent variable to belong to one class or 

another, and eventually it is assigned to the class that gets the most votes. To decorrelate 

the trees, the number of predictors taken into account at each node is reduced to m, an 

arbitrarily picked number that is lower than P, the number of predictors. The standard 

practice suggested by Breiman (2001) is to set m = √𝑃. This incorporates a great 

advantage compared to bagging since not all the predictors are used in every tree and 

implies that all significant predictors will be considered at some point, because there will 

be some trees in which they are the main splitting variables. Hence, random forest uses 

all the available information, which leads to stronger predictive power. It is noteworthy 

that m should be lower if the predictors are highly correlated.  

The number of trees to grow is an arbitrary decision, but it is standard to set it between 

50 and 2,000. Intuitively, the computational time will increase if more trees are grown, 

which is one of the drawbacks of this approach. Another limitation is its data-intensive 

nature, which implies that predictions are generally poor in an environment of data 

scarcity, a fact that we intend to show in this paper by comparing this method to the less 

data-intensive Merton model in a corporate default framework. 
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4. Methodology 

The aim of our study is to evaluate the performance of the Merton model compared to 

random forest in predicting corporate defaults. It is important to note that the Merton 

model is not exactly constructed to predict whether a default is to occur, as it rather returns 

a normalized distance to default which can then be transformed into a default probability. 

Hence, the strength of this approach lies in the proper ranking of firms according to their 

expected probability of default, since the actual numerical probability of default is not 

nearly as accurate on its own (Afik, Arad & Galil, 2016). Nevertheless, it is possible to 

introduce some threshold probability of default that separates high-risk and low-risk 

firms, where one could more accurately interpret a numerical value of the probability of 

default as a prediction of either solvency or insolvency. These values then can be directly 

compared to the actual condition of the firm later in time and also to predictions from 

other models.  

Our research includes a comparison between the predictions of random forest and those 

of the Merton model. Initially, only the variables that are employed to calculate distance 

to default in Merton are used in both models, i.e., market value of equity, face value of 

debt, growth rate (this could be approached in different ways, but we stick to the standard 

assumption of setting it equal to the risk-free rate), and equity volatility. In this situation, 

it could be expected that the Merton model outperforms random forest, given that the 

initial number of variables is relatively small. However, we intend to find out at which 

moment the random forest algorithm starts outperforming the Merton model, and whether 

it is a consequence of expanding the sample size or adding more key variables. 

The addition of variables is limited by variable preselection using a logit regression and 

checking correlation coefficients and multicollinearity between factors. Furthermore, for 

random forest to work properly it is needed to artificially expand the subset of defaults, 

since in most studies about defaults the dataset is quite imbalanced, with many more non-

default observations than default ones. An oversampling method is preferable in this case 

in order to not lose valuable information.  

To compare the methods, the receiver operating characteristic (ROC) curve is used, where 

the value to be compared is the area under curve (AUC). This measure mostly takes values 

between 0.5 and 1, where 1 is a perfect classifier and 0.5 is a completely random classifier. 

Therefore, the method with a higher AUC would be considered a better classifier. The 
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curve is created by plotting false positive and true positive rates for all possible decision 

thresholds. We aim to analyze which approaches perform better in which circumstances 

and whether the added calculation time and data mining outweigh the potential gains from 

getting superior results over simpler calculations (i.e., those from the Merton model) 

without the need for other observations. 

Another way to compare methods and show performance is by using a confusion matrix, 

where it can be directly seen how the observations are classified. However, to build a 

confusion matrix one has to decide on a decision threshold, which works well for random 

forest but not for the Merton model. In contrast, the ROC curve is acquired from results 

for all possible decision thresholds. This is why we have decided to include only ROC 

curves and the corresponding AUCs. 

Since the dataset is severely imbalanced, a way to make it more proportionate is necessary 

for better results. That can be achieved by either under-sampling the majority class, over-

sampling the minority class, or a mixture of both. In this setting, over-sampling is 

preferable because it does not lead to a loss of potentially valuable information, despite 

being slightly more challenging to implement. This is so since doing over-sampling with 

replacement is potentially not too effective, due to the fact that it does not introduce new 

data but rather has the same exact observations introduced as new ones, effectively not 

expanding the minority dataset. This is where Synthetic Minority Over-sampling 

Technique (SMOTE), developed by Chawla et al. (2002), is used. This method generates 

synthetic new observations in order to create a balanced dataset, which in our case leads 

to having the same number of default and non-default observations. 

We choose SMOTE over some other over-sampling techniques such as Borderline- 

SMOTE (Han, Wang & Mao, 2005), Adaptive Synthetic Sampling Approach for 

Imbalanced Learning (ADASYN) (He et al., 2008), and Safe-Level SMOTE 

(Bunkhumpornpat, Sinapiromsaran & Lursinsap, 2009) because it yields more accurate 

results. Borderline-SMOTE only takes the borderline observations into account for the 

over-sampling process. ADASYN considers the characteristics of every class to assign it 

a weight according to its difficulty to learn. Finally, Safe-Level SMOTE uses a measure 

known as “safe level” to increase the quality of the process when many classes with 

different weights are involved. The reason why SMOTE works better on our dataset can 

be that we only consider two classes: default and non-default, and the remaining 

techniques are mainly designed for datasets with a larger number of classes. 
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First, the required rate of oversampling is calculated, which in our case is the one that 

provides a balanced dataset (for example, a 100% oversampling rate doubles the number 

of observations for the selected class). Then, the synthetic data are produced by usually 

using the 5 nearest neighbors. When taking one of the nearest neighbors, the difference 

between those two can be obtained in a two-dimensional form, which means that the 

difference between the observations is taken for all their variable values. This difference 

is then multiplied by a random number between 0 and 1, giving the new data point. In 

essence, a line is drawn between two observations and then a random point on it is chosen 

to be the new synthetic observation. 

 

Figure 2. Illustration of the underlying mechanism of SMOTE. Source: GitHub. 

To verify if random forest performs better than the Merton model in an environment of 

rather few observations but with all available information for them, the training sample 

is to be reduced in size. Since the performance of the Merton model is unchanged 

independently of the number of observations, a point can be found when the ML 

technique has enough information to outperform the Merton model. 

The dataset is originally split into a training sample and a validation sample, with the 

respective weights being 75% and 25%. The AUC values are obtained by running random 

forest 10 times and averaging the result, with a different random sample being used each 

time. In this way, we simulate different situations in real life where some data might be 

the same, but the combination is different. After that, changes in the size of the training 
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sample are made in order to find the point where random forest starts outperforming the 

Merton model, as developed further in the results section. 

The software chosen to implement all the aforementioned models is MATLAB. 
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5. Data 

5.1. Data description 

It is common knowledge that a large dataset is generally required for studies that involve 

predicting corporate defaults, since defaults are generally rare events that do not happen 

often. For this study, we start from the same dataset as in Forssbæck and Vilhelmsson 

(2017), which includes data from 1980 to 2015 of all non-financial listed firms from the 

United States. This original dataset includes 164,803 observations and 1,018 defaults, 

which means the proportion of defaults in the total sample is 0.62%. In Forssbæck and 

Vilhelmsson (2017), a default is considered to happen when the firm is delisted due to the 

application of Chapter 7 or Chapter 11. Apart from the default dummy and the year of the 

observation, this dataset also includes the distance to default according to the Merton 

model, as obtained by the authors. 

Since more variables are required, we gather data on the inputs of the Merton model 

(equity volatility, total equity, total debt, and risk-free rate) for the firms of the original 

dataset. This information was also included in the paper by Forssbæck and Vilhelmsson 

(2017). Since we could not find the values for all the observations, the dataset is reduced 

to 95,722 observations which include 254 defaults. This implies a default ratio of 0.27%, 

lower than before. In addition, we remove some observations that are copies of each other 

and non-numerical values. This leaves us with a final dataset of 76,656 observations and 

140 defaults, which means that the default ratio goes down again to 0.18%. The 

imbalanced nature of the dataset was to be expected beforehand and is solved by applying 

the SMOTE technique, as explained in the methodology part. 

In table 1 some descriptive statistics of the inputs of the Merton model are shown. The 

first row for each value shows the results for all the companies, the second one includes 

only the firms who did not default, and the last column involves the numbers of the firms 

who defaulted. 
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Table 1. Descriptive statistics for the inputs of the Merton model for the whole sample, the firms who did 

not default and the firms who defaulted. Equity volatility is measured as the annual standard deviation of 

equity, total equity and total debt are expressed in MUSD and the risk-free rate is the monthly 3-month T-

Bill in percent. Asset value and asset volatility are obtained as outputs of the system of equations presented 

in equations (7) and (8). The sample corresponds to all listed non-financial companies in the United States 

between 1980 and 2015. 

 

In the table, it can be clearly seen that both the median and the average values of total 

equity, debt, and assets are lower for the defaulted companies. This means that, on 

average, the firms who experienced financial distress are smaller in size, which goes in 

line with the general intuition that smaller companies default more often or, in other 

words, that size is a good default predictor. The standard deviation is lower for the firms 

who defaulted in all variables but the risk-free rate, but that was something to be expected 

since the sample of not defaults is way bigger, so more values mean more dispersion 

around the mean. Is it noteworthy though that the standard deviation of asset volatility is 

really close for both subsamples, which implies that the firms who defaulted were quite 

volatile before, another stylized fact mentioned in previous literature. The fact that having 

a smaller dataset for defaulted firms distorts the final results can be checked while looking 

at the first and third quantiles of the distribution of each variable, also stated in table 1, 

since the values for the defaults are always smaller except for the risk-free rate. To 

conclude, is it noteworthy that the risk-free rate has a larger median, average, and standard 

deviation for the defaulted firms. 

5.2.  Variable preselection  

Since our paper aims to detect the point at which random forest starts outperforming the 

Merton model, more variables are needed. We collect several data and financial ratios 

Equity volatility Total equity Total debt Risk-free rate Asset value Asset volatility

All 0.3566 425.9598 126.1538 0.2450 577.3849 0.2590

Median Non-defaults 0.3568 426.5343 126.3443 0.2450 578.6780 0.2591

Defaults 0.2720 111.9758 73.0820 0.3817 174.6872 0.1772

All 0.4403 4828.1653 2761.6902 0.2557 7185.9939 0.3349

Average Non-defaults 0.4405 4831.0857 2766.0814 0.2555 7192.6377 0.3351

Defaults 0.3411 3232.0552 361.7331 0.3918 3554.8725 0.2548

All 0.3155 19845.9764 20504.3693 0.2382 32004.8536 0.2769

Standard deviation Non-defaults 0.3156 19861.5398 20522.8404 0.2378 32032.0402 0.2769

Defaults 0.2645 7344.8026 698.1752 0.3493 7748.6392 0.2447

All 0.2329 87.1700 23.1288 0.0075 122.9512 0.1634

Q 1 Non-defaults 0.2330 87.4046 23.1398 0.0075 123.2154 0.1635

Defaults 0.1752 36.7740 21.0625 0.0467 52.0925 0.1093

All 0.5528 2015.8606 689.8573 0.3958 2741.7898 0.4198

Q 3 Non-defaults 0.5530 2016.3682 690.5833 0.3958 2742.4280 0.4200

Defaults 0.4168 1129.0049 293.2278 0.6263 1831.4091 0.3310
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from Refinitiv Eikon for all the firms and years of our dataset. We initially select 50 

variables, with the aim of including all the relevant publicly available information. It is 

important to note that we do not consider private data because the goal of our study is to 

determine which model performs better when data are scarce and it is impossible to access 

undisclosed information. In order not to forget any relevant financial variable, we base 

our selection on the previous work by Behr and Weinblat (2016), Barboza, Kimura, and 

Altman (2017), and Moscatelli et al. (2020), since all of them consider financial ratios in 

their studies. In the following table, the initial 50 variables considered are stated: 

Table 2. List of initial variables considered. All values correspond to the relevant year except the changes 

in variables, which stand for the one-year difference as measured in relative terms. The selection of 

variables is based on previous research by Behr and Weinblat (2016), Barboza, Kimura, and Altman (2017) 

and Moscatelli et al. (2020). Source: Refinitiv Eikon. 

Variable Code Variable Code Variable Code 

Revenue REV Total assets AST EBIT EBIT 

EBITDA EBITDA Net debt N_DBT Total equity EQT 

Cash CASH Total debt DBT Cash flow CFL 

Fixed 

assets 

FIX_AST Current 

assets 

CRR_AST Short-term 

debt 

ST_DBT 

Working 

capital 

W_CAP Retained 

earnings 

RET_EAR Shares 

outstanding 

N_SHA 

Share 

price 

SHA_P Earnings per 

share 

EPS ROE (pre-tax) ROE 

Return on 

assets 

ROA Enterprise 

value / 

Market 

capitalization 

EV/MCAP Net profit 

margin 

NPM 

Total debt 

/ Total 

assets 

DBT/AST Fixed assets / 

Total assets 

FIX_AST/AST Short-term 

assets / Short 

term debt 

ST_AST/ST_DBT 

Equity / 

Fixed 

assets 

EQT/FIX_AST Total debt / 

Cash flow 

DBT/CFL Short-term 

debt / Total 

debt 

ST_DBT/DBT 

Working 

capital / 

Total 

assets 

W_CAP/AST Retained 

earnings / 

Total assets 

RET_EAR/AST EBIT / Total 

assets 

EBIT/AST 
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Sales / 

Total 

assets 

REV/AST EBIT / Sales EBIT/REV EBITDA / 

Sales 

EBITDA/REV 

Net debt / 

Equity 

N_DBT/EQT Net debt / 

EBITDA 

N_DBT/EBITDA Cash / Total 

assets 

CASH/AST 

Cash flow 

/ Total 

debt 

CFL/DBT Market 

capitalization 

/ Total debt 

MCAP/DBT Change in 

assets 

ΔAST 

Book 

value per 

share 

BVPS Share price / 

Book value 

per share 

SHA_P/BVPS Change in 

sales 

ΔREV 

Change in 

employees 

ΔEMP Change in 

ROE 

ΔROE Log revenue LOG_REV 

Log assets LOG_AST Log cash LOG_CASH Log total debt LOG_DBT 

Log 

current 

assets 

LOG_CA Log short-

term debt 

LOG_STD   

 

Variable preselection is done in the following way (including both the inputs of the 

Merton model and the 50 variables previously discussed). First, univariate logit 

regressions are run for each potential explanatory variable. The AUC is acquired for every 

regression, where the ones with a value higher than 0.55 are kept, that is, those who 

provide some explanatory or discriminatory power. After doing that, 28 variables remain: 

volatility (Merton), total equity (Merton), risk-free rate (Merton), EBIT, EBITDA, EQT, 

CFL, ST_DBT, RET_EAR, SHA_P, ROE, ROA, EV/MCAP, NPM, DBT/AST, 

DBT/CFL, ST_DBT/DBT, RET_EAR/AST, EBIT/AST, REV/AST, EBIT/REV, 

CFL/DBT, MCAP/DBT, ΔAST, BVPS, SHA_P/BVPS, ΔROE and LOG_STD. The 

AUC of the logit regression for each of the variables can be consulted in the appendix. It 

is noteworthy that some look-ahead bias might be present, since we use the full sample 

for the preselection with logit. 

The next step consists of creating a correlation matrix, in which pairs of variables with a 

strong correlation (equal or higher than 0.7) are identified. Then, only one of them is kept, 

the one with the higher AUC (calculated in the previous point). This is done to avoid 

multicollinearity and to improve the performance of the model. The correlation matrix is 

also located in the appendix. 
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The first two steps of the preselection return the following 20 variables, which are the 

final variables for our study: volatility (Merton), total equity (Merton), risk-free rate 

(Merton), ST_DBT, RET_EAR, SHA_P, ROE, ROA, EV/MCAP, NPM, DBT/AST, 

DBT/CFL, ST_DBT/DBT, RET_EAR/AST, CFL/DBT, MCAP/DBT, ΔAST, 

SHA_P/BVPS, ΔROE, and LOG_STD. 

It is important to remark that some selection of the variables happens also after acquiring 

the results of the random forest algorithm, where the aim is to identify the most important 

predictors and check the point where the random forest approach gives the same results 

as the Merton model. After running the random forest model with these variables as the 

predictors their importance is acquired, and even further selection of variables can be 

done to identify the difference in performance between the two models. 
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6. Results 

In this section, we present the results of the study. We first compare the two approaches 

when using only the inputs of the Merton model, and after that, we include the key 

financial variables obtained in the previous step.  

6.1.  With Merton model inputs only 

First, the power of the Merton model and random forest is compared only with the data 

that is necessary to obtain the distance to default measure within the Merton model, i.e. 

value and volatility of equity, risk-free rate (as a proxy of expected growth) and total debt.  

We test four different approaches. Firstly, we use the original imbalanced dataset without 

any kind of over-sampling. The second procedure uses over-sampling with replacement, 

this is, by just repeating the same default observations until the dataset is balanced. Then, 

we use SMOTE as explained in the methodology section. In order to do that, we use the 

5 closest neighbors after checking that increasing the number of closest neighbors does 

not improve the final result. Eventually, we combine the SMOTE technique with 100% 

under-sampling of the majority class (i.e., we reduce the majority class to half), as 

suggested in Chawla et al. (2002) to get a synthetic dataset where the former minority 

class is now the most frequent.  

In table 3, the results are shown for each of the approaches, and for both the Merton model 

and random forest. It is important to highlight that the AUC of the Merton model changes 

slightly among methods because every time we run the models, a different validation 

sample is used. 

Table 3. Area Under Curve (AUC) of Merton model and random forest when using only the inputs of the 

Merton model as explanatory variables. 

 Original 

dataset (no 

change) 

Over-

sampling with 

replacement 

 

SMOTE 

SMOTE + 

under-

sampling 

Merton model 0.7307 0.7280 0.7328 0.7359 

Random forest 0.5747 0.5594 0.6654 0.7152 
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The expectation of random forest performing poorly in this setting is confirmed, as 

Merton model outperforms random forest in terms of AUC. This is to be expected, due 

to the data-intensive nature of the ML technique. However, the over-sampling method 

can increase the accuracy of the AUC of random forest. This can be seen in figures 3, 4, 

5 and 6, which represent the ROC curve of Merton model and random forest for each of 

the scenarios. 

 
 

Figure 3. Receiving Operating Characteristic (ROC) curve for Merton model and random forest when 

using the original dataset (with Merton model inputs only). 

 

 
 

Figure 4. Receiving Operating Characteristic (ROC) curve for Merton model and random forest when 

using over-sampling with replacement (with Merton model inputs only). 
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Figure 5. Receiving Operating Characteristic (ROC) curve for Merton model and random forest when 

using SMOTE (with Merton model inputs only). 

 

 
 

Figure 6. Receiving Operating Characteristic (ROC) curve for Merton model and random forest when 

using SMOTE and 100% under-sampling (with Merton model inputs only). 

 

In the previous figures, it can be seen how the ROC of random forest becomes slightly 

better when the over-sampling technique used is more sophisticated, a fact that goes in 

line with both intuition and the AUC results. Therefore, the closest results to the Merton 

model ROC are achieved when SMOTE is used, especially if combined with under-

sampling of the majority class as suggested in previous literature. This finding is 
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important because it gives insight into how to obtain better results when using an ML 

technique if the number of predictors is low. 

6.2.  Using all key financial variables 

The next step of the study includes all the financial variables considered after the 

preselection process discussed in section 5. Since ML algorithms perform better when a 

great amount of data are available, it is to be expected that random forest outperforms 

Merton model in this setting, especially when applying the over-sampling techniques to 

balance the dataset. 

In table 4, the AUCs of the Merton model and random forest are stated when all the key 

financial variables are used. It can be seen that, in this situation, random forest 

outperforms the Merton model in every scenario, with great improvement when the over-

sampling techniques are applied (an AUC of 0.8404 means that the underlying approach 

has a decent predicting power). The clear conclusion at this point is that, when using 

imbalanced datasets, it is essential to apply some kind of technique to balance them in 

order to improve the accuracy of the ML-based algorithm used.  

Table 4. Area Under Curve (AUC) of Merton model and random forest when using all the key financial 

variables as explanatory variables. 

 Original 

dataset (no 

change) 

Over-

sampling with 

replacement 

 

SMOTE 

SMOTE + 

under-

sampling 

Merton model 0.7400 0.7254 0.7269 0.7439 

Random forest 0.7567 0.7556 0.7916 0.8404 

 

As in the previous subsection, we also plot the ROC for each of the models in all 

scenarios. Results are displayed in figures 7, 8, 9, and 10 and show how the accuracy of 

random forest improves when more variables are taken into account, always 

outperforming Merton even when the dataset is not balanced. The brilliant performance 

of random forest when SMOTE and 100% under-sampling is applied is especially 

noteworthy, since it confirms the findings by Chawla et al. (2002) that the application of 

both methods yields more accurate results as measured by AUC. 
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Figure 7. Receiving Operating Characteristic (ROC) curve for Merton model and random forest when 

using the original dataset (with all key financial variables). 

 

 
 

Figure 8. Receiving Operating Characteristic (ROC) curve for Merton model and random forest when 

using over-sampling with replacement (with all key financial variables). 
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Figure 9. Receiving Operating Characteristic (ROC) curve for Merton model and random forest when 

using SMOTE (with all key financial variables). 

 

 
 

Figure 10. Receiving Operating Characteristic (ROC) curve for Merton model and random forest when 

using SMOTE and 100% under-sampling (with all key financial variables). 

 

6.3.  Number of predictors  

At this point, we have confirmed the expectations of Merton performing better only when 

its four inputs are considered, and random forest being more accurate when financial 

information is available. Hence, we aim to find the point when random forest starts 

performing better in terms of accuracy. In order to do that, we perform two separate 
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studies. First, we test how many financial variables are needed for the ML technique to 

be better than the classic approach by Merton. To perform this test, we obtain the relative 

importance of each of the variables for the random forest algorithm. This way we can 

rank the variables according to their predictive power. This is shown in figures 11 and 

12.  

 

Figure 11. Variable importance (I) for the random forest approach.  

 

Figure 12. Variable importance (II) for the random forest approach. Please note that the y-axis has a 

different scale than in the previous figure. 
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It can be seen that the variables with the highest predictive power are the risk-free rate 

and total equity, both inputs of the original Merton model. This gives credit to Merton 

because even using a completely different approach, those values seem to be relevant for 

default prediction, which means his selection of variables was fairly good. On the other 

hand, we observe that the variables with the lower predictive power are CFL_DBT, ROE, 

and RET_EAR/AST. 

The next step consists of gradually removing the least important variables and running 

the model until we find the point where the AUC of both approaches is the same. This 

way we can have an idea of how many financial variables are needed for the random 

forest to be an adequate model to predict default, or in other words, when is it worth it to 

employ this computationally intensive technique instead of the classic Merton model. The 

results from this study are shown in table 5, where the AUC of taking the x most important 

variables is shown and compared with those from the Merton model. Again, the 

differences in AUC in the Merton model are due to different random samples used every 

time. 

Table 5. AUC comparison between Merton model and random forest with a different number of 

variables. 

Number of predictors Merton model Random forest 

10 0.7339 0.7070 

11 0.7332 0.7228 

12 0.7356 0.7313 

13 0.7338 0.7415 

 

From these results, it seems that the 13 most important financial variables are needed for 

random forest to outperform the Merton model. This is valuable information because it 

gives an idea of the minimum number of predictors that are needed to start considering 

random forest as an actual option to predict defaults. This can be more clearly seen in 

figures 13 and 14, where the ROC curve of random forest when using 10 variables and 

13 variables respectively is plotted against the same values for the Merton model. It is 

important to mention that these values for random forest are obtained by applying 

SMOTE with 100% under-sampling of the minority class, since that approach yields 

better results as shown in the previous subsection. 
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Figure 13. Receiving Operating Characteristic (ROC) curve for Merton model and random forest when 

using only the 10 most important variables for random forest. 

 

 
 

Figure 14. Receiving Operating Characteristic (ROC) curve for Merton model and random forest when 

using only the 13 most important variables for random forest. 

6.4.  Data size 

The study considered in this subsection consists of deliberately reducing the training 

sample until we reach the point where the AUC of both methods is similar. Since random 

forest is a data-intensive approach, we aim to test which is the minimum number of 

observations that are needed for it to be considered a suitable alternative for predicting 
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corporate defaults. As expected, when reducing the training sample the AUC gets lower, 

as can be seen in table 6. 

 

Table 6. AUC comparison between Merton model and random forest with different training sample sizes. 

In this study, we use the 20 selected predictors as in subsection 6.2. 

Size of training sample Merton model Random forest 

50% 0.7391 0.7784 

45% 0.7462 0.7823 

40% 0.7387 0.7788 

35% 0.7294 0.7686 

30% 0.7358 0.7729 

25% 0.7334 0.7759 

20% 0.7332 0.7575 

15% 0.7311 0.7403 

12.5% 0.7295 0.7293 

10% 0.7284 0.7232 

5% 0.7297 0.7191 

3% 0.7297 0.6897 

2.5% 0.7309 0.6740 

 

Results in table 6 show that, when using 12.5% of the total dataset as the training sample, 

the results in terms of AUC are similar to those of the Merton model. Since the dataset is 

formed by 76,656 observations, an approximate number of 9,600 observations is then 

needed for random forest to be a good method for predicting corporate defaults. It is 

noteworthy that, again, we apply SMOTE and 100% under-sampling of the majority class 

to test the accuracy of random forest. 

For better insight, figure 15 can be consulted. It shows the AUC for different training 

sample sizes. It can be clearly seen that the Merton model is stable in terms of AUC (what 

is to be expected since its accuracy does not depend on the sample size), while random 

forest performs worse when the training sample is smaller. From 25% and larger training 

samples, both approaches show a similar behavior, as they move up and down together 

due to the randomness of the samples. At the 25% mark random forest stabilizes and only 

a slight increase in performance is observed, since from previous results we know its 

AUC reaches 0.8404 when the 75% of the dataset is used (see table 4). 
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Figure 15. AUC for different training sample sizes for both the Merton model and random forest. 

 

A further illustration is provided in figures 16 and 17. They show the difference between 

the ROC curve of the random forest when using 50% of the total dataset as the training 

sample in contrast to using only 10% of it. As can be spotted, in the first case the ML 

technique clearly outperforms Merton model, while in the second case both approaches 

seem to have a similar predictive power. 

 

 

Figure 16. Receiving Operating Characteristic (ROC) curve for Merton model and random forest when 

using 50% of the original dataset as training sample. 
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Figure 17. Receiving Operating Characteristic (ROC) curve for Merton model and random forest when 

using 10% of the original dataset as training sample. 

As is developed in the following section, our findings confirm that ML techniques are not 

suitable for every situation if the goal is to predict corporate defaults accurately. Hence, 

according to our study, random forest requires a dataset containing at least 9,600 

observations, plus 13 or more relevant financial variables. Besides, the application of an 

over-sampling technique is key to gaining predictive power, with SMOTE with 100% 

under-sampling of the majority class being the best option. 

 

 

 

 

 

 

 

 

 

 



43 

 

7. Discussion and analysis 

In this paper, we review two completely different methods to predict corporate defaults. 

While the classic Merton model has been used for decades, newer techniques based on 

algorithms are becoming more and more popular. In recent literature, there is a trend of 

highlighting the accuracy of ML techniques for default prediction. However, many of 

those studies do not consider the fact that, in practice, the access to relevant data can be 

very limited, so their findings can be misleading for practitioners. Our results show in 

which cases is it better to avoid the use of those data-intensive techniques and stick to a 

more conventional approach. 

7.1.  Discussion of the main findings 

According to our results, there are several conditions that should be fulfilled to get a 

decent accuracy from random forest. First of all, a sufficient number of predictors is 

necessary. Using the full dataset, at least 13 explanatory variables have to be used to 

match the performance of Merton model. If considering all the predictors, around 9,600 

observations should be taken into account, where there should be approximately a 

minimum of 20 default observations. It has to be added that neither of those mentioned 

prerequisites would be enough without SMOTE and under-sampling of the majority class. 

If the previous requirements are not fulfilled it is better to use Merton model, since its 

performance does not depend on the sample size and only requires four input variables. 

Thus, in a real-life situation, given the case that one has to evaluate whether some 

companies are going to default, it is more convenient to apply Merton model for cases of 

few observations. It also takes much less time to perform, which is a clear advantage 

when time constraints occur. Hence, even if there is some mathematical optimization 

going on to solve the two simultaneous equations, it is yet much quicker than going the 

random forest route. Merton model does also not require any variable preselection or any 

additional manipulations with the data. Additionally, using ML techniques requires some 

advanced knowledge, whereas calculations with the Merton model do not need deeper 

technical skills, since it can almost be simplified down to plugging in numbers in an 

equation. 

The dataset we use is not ideal, and shuffling up the validation sample for each iteration 

makes it even more imperfect. However, this is supposed to represent the randomness of 
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data that could be encountered in a practical setting, in addition to the luck factor of what 

data goes to the training and validation sample, with the associated increase or decrease 

in performance. The necessity for practicality would mean that, in any scenario of subpar 

data, lack of time, or absence of specific knowledge, Merton model should be used, which 

explains why it is still widely used to estimate default probabilities.  

In contrast, even though the classifications are not perfect every time, from a regulator 

perspective the most important observations are the default ones, that is, misclassifying 

high-risk firms as low risk. The opposite ones are not that destructive to get wrong, since 

a regulator would usually rather overestimate risk than underestimate it. That is an 

argument against the use of Merton model, since it has been empirically proved that it 

underestimates the probability of default (Bharath & Shumway, 2008). 

Finally, it is important to remark that, in previous literature, models are usually tested in 

an environment that maximizes their performance. Contrary to that, our research has more 

to do with cases when the perfect environment is not reached and the circumstances are 

not constructed to create a certain outcome. 

7.2.  Limitations 

When it comes to limitations, the hardware available to us imposes some restrictions, 

since running machine learning algorithms takes a relatively long time and is resource-

intensive. Theoretically, random forest gives the best results when an infinite number of 

trees are grown. Hence, one is supposed to attempt to grow as many trees as possible for 

better results. In our case, due to time and resource constraints, the number of trees grown 

for each iteration is limited to 50, and despite the out-of-bag classification error stabilizing 

even before that number of trees, growing a larger forest would have probably been more 

insightful. However, we are of the opinion that the number is adequate for our research 

purpose. 

In terms of variable preselection, the use of LASSO was to be optimal. Nonetheless, it 

takes an excessive amount of time to run on ordinary devices which are not tailored to do 

heavy computing work. Therefore, given the time frame for writing this essay, it was not 

a suitable option to apply. 

From a data perspective, a larger dataset is always preferable, both in terms of 

observations and variables. However, data on defaults and the associated financial 
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variables can be difficult to find, since quite many defaulted companies later go on to be 

delisted from public stock trading. However, gaining more information would lead to the 

problem mentioned before, i.e., excessive computational time. Furthermore, it makes 

sense not to have a huge dataset since the study focuses on data scarcity scenarios. 

Additionally, one might argue that a direct comparison between the two methods is not 

completely possible and does not give a clear picture of what the takeaway from this 

should be. Merton model is not created to have a clear decision threshold to classify firms 

as defaults or non-defaults, whereas random forest is based on classification trees, which 

are built just for that purpose. Therefore, one might have to critically judge what the 

comparison means exactly: if one method ranks observations better than the other without 

giving an accurate classification or if the methods can be compared by performance of 

classification at every decision threshold. If it is the latter, then it does not help in a real-

life setting, since then a decision threshold must be decided to distinguish defaults from 

non-defaults and high risk from low risk. 

Another fact to think about is that for models such as random forest there is no statistical 

inference, meaning that it is not clear whether the acquired results are statistically 

significant or just a fluke. Running the model 10 times with different samples might not 

be enough to say how the model performs exactly on average every time, while Merton 

model always performs in the same specific way. In essence, random forest still is a black 

box while Merton model provides clear intuition for the outcomes produced. 
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8. Conclusion 

In this paper, we compare two different methods for predicting corporate defaults: the 

Merton model, developed by Merton in 1974, and random forest, created by Breiman in 

2001. Both are different in terms of the underlying mechanism they use to predict 

defaults. Hence, while the Merton model is a structural model formed by various 

equations that take the economic situation of the firm into account, random forest is an 

ML technique that generates decorrelated classification trees to predict whether a 

company will default or not.  

Although previous literature shows that ML techniques generally outperform classic 

approaches when predicting situations of distress in firms, it is important to consider that 

those studies usually include large datasets, non-financial variables, or non-public 

information that is difficult to acquire in practice. Our study aims to obtain the minimum 

required number of observations and financial variables that are needed to consider 

random forest as a suitable option when predicting corporate defaults, since in reality 

there can be constraints in terms of time or resources that make the application of ML 

techniques unsuitable or, at least, not recommendable. Therefore, we only use publicly 

available financial variables and a dataset with a small number of defaults, with the 

purpose of simulating a real-life scenario of data scarcity. 

We first run random forest using only the four inputs of the Merton model as explanatory 

variables: debt value, growth rate (proxied by the risk-free rate), equity value, and equity 

volatility. As expected, its accuracy as measured by AUC is lower than the one of the 

Merton model.  

Then, we add more financial variables to the study in order to check how much the 

accuracy improves. Initially, 50 variables are obtained, but after a preselection process 

that involves running a logit regression and checking for multicollinearity, we get a final 

number of 20 variables that are added to the dataset. Besides, due to the imbalanced nature 

of the data (only 0.18% of all the observations correspond to defaulted companies) we 

apply SMOTE, an over-sampling technique developed by Chawla et al. (2002). Results 

show that, when using the aforementioned variables and SMOTE with 100% under-

sampling of the majority class, the predicting power of random forest visibly outperforms 

that from the Merton model, again as expected. 
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The key point of the whole paper is to find both the minimum number of predictors and 

the minimum number of observations required for random forest to be a better option than 

Merton model in predicting corporate defaults. We find that the 13 best predictors are 

needed to have a similar AUC between both models and that at least 9,600 observations 

are required for random forest to perform acceptably, providing that the percentage of 

non-default observations holds. 

According to our findings, random forest should only be used when the previous 

conditions are met. Since it is a data-intensive technique, it is important to know the point 

where it actually starts working, especially for empirical studies where data are scarce. 

Besides, we also show that the application of an over-sampling technique is indispensable 

when dealing with such an imbalanced dataset and that for default prediction and random 

forest, SMOTE with 100% under-sampling of the minority class seems to be the 

preferable option.  

This paper also aims to give some food for thought for future research. Along these lines, 

it could be optimal to test different ML techniques to check their performance when data 

are scarce and compare it with the one from the Merton model. Concretely, we consider 

artificial neural networks to be an interesting method that should be tested in the future 

in this kind of setting. Besides, adding non-financial variables and focusing the data 

scarcity situation only on a reduced number of observations would be insightful since it 

is to be expected that those variables have a higher predicting power, which could imply 

that the sample size might be reduced without losing accuracy. 

Corporate default prediction has been a major topic in finance for decades and nothing 

seems to indicate that situation will change in the future. Therefore, it is essential to keep 

applying the most innovative techniques in order to obtain models that can accurately 

predict whether a firm is to be in distress. However, keeping in mind the importance of 

not losing touch with the most classic approaches is also key, since there will always be 

situations where they have something to say.  
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Appendix 

 
Table A-1. Area Under Curve (AUC) of all predictors after running a logit regression. 

Volatility Total Equity Total debt Risk-free REV 

0.6853 0.6015 0.4961 0.7572 0.5096 

AST EBIT EBITDA N_DBT EQT 

0.5085 0.6736 0.6210 0.4324 0.5721 

CFL/DBT DBT CFL FIX_AST CRR_AST 

0.4742 0.4610 0.6656 0.4207 0.4669 

ST_DBT W_CAP RET_EAR N_SHA SHA_P 

0.5692 0.4975 0.7720 0.5027 0.6337 

EPS ROE ROA EV/MCAP NPM 

0.2986 0.7122 0.6961 0.6304 0.7158 

DBT/AST FIX_AST/AST ST_AST/ST_DB EQT/FIX_AST DBT/CFL 

0.6194 0.5326 0.5069 0.3244 0.6092 

ST_DBT/DBT W_CAP/AST RET_EAR/AST EBIT/AST REV/AST 

0.6076 0.5082 0.7551 0.6872 0.5524 

EBIT/REV EBITDA/REV N_DBT/EQT N_DBT/EBITDA CASH/AST 

0.5879 0.5412 0.4550 0.4391 0.4794 

CFL/DBT MCAP/DBT ΔAST BVPS SHA_P/BVPS 

0.6370 0.6321 0.5888 0.5807 0.6312 

ΔREV ΔEMP ΔROE LOG_REV LOG_AST 

0.4223 0.4768 0.5929 0.5179 0.5227 

LOG_CASH LOG_DBT LOG_CA Log STD   

0.4841 0.5287 0.4805 0.5706   
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Table A-2. Correlation matrix of the 28 remaining variables after running the logit regression. 
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