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Abstract

This paper investigates the best methods for modeling hourly profiles in the
German energy market for the period between 2018 and 2022. Modeling emphasized
variable renewable energy (VRE) and included information on the level of energy
production, oil price, COVID lockdowns, and historic hourly energy spot prices.
Previous research on energy prices has focused on interpretable models; while
investigations emphasizing predictive accuracy are sparse and sequestered in
industry. This paper is intended to contribute to the understanding of which algorithms
and what variables (endogenous and exogenous to the energy market) are best at
decreasing the discrepancies between predicted and observed hourly electricity
prices.

Four different algorithms were investigated for modeling, linear regression,
lasso regression, gradient boosted trees, and a feed forward neural network. Gradient
boosted trees accounted for the most variation with an R-squared of 87.7% and
promising results on periods of high volatility. Oil price and the share of electricity
generated by solar and wind were found to substantially improve predictive accuracy,
while COVID lockdowns were less important for prediction. The results from this paper
can be used to improve hourly energy price prediction or for comparison by future
researchers on different methods.
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Section 1: Introduction

Electricity is a unique commodity that experiences volatility in supply and demand
patterns that can be as extreme as they are hard to predict. Electricity behaves as a flow
commodity, with electricity storage not yet financially or technologically feasible at levels large
enough to impact supply behavior. The amount of electricity produced will often depend on
hard to predict factors like the weather and results in high disparities between expected and
observed prices. There are two types of energy markets, real-time energy markets and
day-ahead energy markets. The advantage for day-ahead energy markets is that companies
can bid, buy, or sell wholesale electricity 24 hours before the operating day. Companies use
these day-ahead markets to avoid some of the market volatility present in real-time markets
and reduce their risk. As a result, the modeling techniques for the day-ahead market that
companies can use to predict the prices play a large part in reducing the uncertainty involved
with day-ahead contracts.

As per a conversation with Green (personal communication, 23 May 2022) helped
explain how in Germany, energy is bought and sold on the EPEX SPOT day-ahead market, on
which buyers and sellers place bids for physical power volumes to be delivered the next day.
Bids are placed by noon the day prior to delivery and are financially binding. The buyer and
seller would then use the traded volumes for immediate delivery to their customers.
Day-ahead markets differ from real-time energy markets which allow for purchases of energy
an hour prior to delivery and expose energy suppliers and purchasers to higher volatility. The
resulting outcomes from the day-ahead auction produce the hourly spot prices. These hourly
spot prices carry the known hourly price profiles, and the resulting profiles will be used in this
paper for modeling. These models, the results of this paper, are used in the Hourly Price
Forward Curve (HPFC) for pricing other types of contracts.

The HPFC is constituted of hourly profiles and seasonal profiles calibrated together
based on recent energy prices, a technique suggested by Green (2014) and Crispin and
Jacobsson (2007). Hourly profiles account for patterns and factors that can affect a given
hour in a 24 hour day period. Seasonal profiles account for patterns and factors that can
affect a given month in a year. The outputs of both profiles are weights for a given period that
are used in the calibration procedure to calculate expected prices. The objective of this thesis
is to model the hourly profiles in the German day-ahead market, with a special emphasis on
the specific impact renewables have on the HPFC. For a more comprehensive discussion of
how profiles are taken together in the calibration procedure, see Green: ‘A Power Market
Forward Curve with Hydrology Dependence - An Approach based on Artificial Neural
Networks’.
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Figure 1.1: Flowchart of modeling process

In a general setting, the hourly profiles will be responsive to daily patterns of human
behavior on the demand side and to energy generation patterns on the supply side. Demand,
or consumption of energy, differs mainly due to intra-daily, intra-weekly, and seasonal
consumption variation, resulting in known patterns. Accounting for patterns on the demand
side will be discussed later, but it is important to introduce here the impact of renewables on
how the supply side behaves. In the German market, energy is supplied with regard to a merit
order, which is a ranking of energy supplies based on marginal cost (Ketterer, 2014). This
system sees production taken first from sources which have the lowest marginal cost to
produce additional units, placing renewables like photovoltaics (solar), wind, and hydro first in
the merit order due to their low (or in some cases negative) marginal cost of production
(Beolet, de Jong, & Enev, 2014). In any given market, this will lead to solar, wind, and hydro
energy being sold off before other sources that have higher marginal cost. Additionally, the
volatility of wind and solar energy production has a disproportionate impact on hourly profiles
as a result of wind and solar production being controlled in the short term only by
environmental conditions (Ketterer, 2014). This is in contrast to fossil fuel production which
can change production in the same direction as price. While some sources of energy can
move production levels with price to mitigate volatility, wind and solar produce energy
irrespective of demand and price and can exacerbate volatility in the market. This effect has
led to wind and solar being dubbed variable renewable energy (VRE) sources, a term to
differentiate wind and solar as a result of their volatile characteristics (Rintamäki, Siddiqui,
and Salo, 2017). VRE importance for modeling will only increase as wind and solar
photovoltaic power generation have the largest projected growth rates among renewable
energy systems (Buchholz, 2018).

Outside of a general market, there are factors to the German energy market that make
it a distinct setting to model. The share of renewables in Germany accounts for a large
percentage, 19.7%, of gross energy production (Umweltbundesamt, 2021; Appunn, Haas &
Wettengel, 2021). Importantly, the share of renewables is not allocated equally across energy
consumption sources, with renewables accounting for 41% of electricity, 16.5% of heating,
and 6.8% of transportation energy consumption in 2021 (Umweltbundesamt, 2021).
Additionally, Germany is uncommon in its share of electricity generation from wind and solar,
which accounted for 27% and 10.5% of electricity generation respectively in 2020 (Kost et al.
2020; Appunn, Haas & Wettengel, 2021). It is unusual to have a large market where wind and
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solar production account for this large of a proportion of energy production (DeLuca, 2018;
Rintamäki, Siddiqui, & Salo, 2017). This highlights the German energy market's unique
characteristics, where VREs are much more volatile in terms of absolute production in
comparison to other renewables, like hydropower, or fossil fuels (Xu, Gao, Qian, & Li, 2022).
As this relates to hourly profiles, it should be expected that hourly weights will be affected by
the absolute production of renewable energy, as well as the expected use for other
non-electric energy requirements.

Modeling the hourly profiles will then involve models being able to account for many
questions: What are absolute energy production levels expected to be?; What percentage of
energy production is required for electricity as opposed to heating?; What is the expected
level of low marginal cost renewable energy production?; How will consumption be impacted
by perceptions of energy cost?; Are hourly shapes differentiated during a shock to energy
demand such as the COVID-19 lockdowns?; etc. Extending from these questions, the
hypothesis for this paper is that for the period studied, the share of VRE generation, whether
there was a national lockdown for the COVID pandemic, and oil price will all play a complex
and substantial part in determining energy price levels. The impact of oil price, COVID
lockdowns, and the share of renewables will be the focus of analysis and reported in Results.
The paper will attempt to answer the question whether VRE related generation alone, along
with clock inputs, and further exogenous inputs can significantly capture volatility in the
hourly shape profiles of the German EPEX Spot market to model hourly price forward curves.

This paper will attempt to answer this by first providing an analysis of data from EPEX
SPOT on energy prices and energy generation, then comparing models of hourly profiles from
linear regression, lasso regression with polynomial transformations and variable interactions,
gradient boosted regression with decision trees as weak learners, and regression using a
feed-forward neural network. The comparative success in modeling daily profiles, as well as
insights from the models will be discussed to attempt to answer the research question.

Section 2: Literature Review
Renewable Energy’s feasibility in the energy market

To understand the importance of modeling the impact of renewable energy, first we
must assess VRE’s feasibility for electricity in the energy market compared to conventional
energy production sources. For the purpose of this paper, Variable renewable energy (VRE)
will only include solar, also known as photovoltaic (PV) energy, wind onshore and wind
offshore generation. Such sources like gas, hard coal, and coal lignite historically have been
viewed as cheaper and more reliable sources of energy, especially if you do not consider the
negative externality costs associated with fossil fuel production. The Levelized Cost of
Electricity (LCOE), the measure of sum price over the lifetime of energy production, is seen in
equation 2.1.

(2.1)𝐿𝐶𝑂𝐸
𝑡𝑦𝑝𝑒(€𝑐𝑒𝑛𝑡/𝑘𝑊ℎ)

 =
𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝐶𝑜𝑠𝑡

€𝑐𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑂𝑢𝑡𝑝𝑢𝑡
𝑘𝑊ℎ
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The differentiation in technological learning rates that renewable energy sources have
compared to conventional sources can be seen in Figure 2.1 from the Fraunhofer Institute
(Kost, Shammugam, Fluri, Peper, Jülch, Nyugen, & Schlegl, 2018). Four years ago, the LCOE
of renewable energy generation was comparable to or more expensive than conventional
sources like coal lignite and natural gas as seen in figure 2.1. In 2021, all non-battery solar
and wind generation now have a lower LCOE than most conventional sources as seen in
figure 2.2. Renewable energy is currently cheaper in terms of LCOE, which lowers reliance on
unstable fossil fuel production in foreign nations and produces less negative externalities
associated with fossil fuel production.

Figure 2.1: Levelized cost of electricity change in Germany 2018 (Kost et al. 2018)

Figure 2.2: Levelized cost of electricity in Germany 2021 (Kost, Shammugam, Fluri, Peper,
Memar, & Schlegl, 2021)
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According to the Kost et al. (2021) report on the LCOE of renewable energy
technology, renewable energy production has a lower levelized cost of energy than
conventional sources, namely biogas, biomass, coal lignite, and hard coal. Photovoltaic
energy, depending on it’s scale of production in Germany has a LCOE between 3.12 and
11.01 €cent/kWh, Wind onshore 3.94 and 8.29 €cent/kWh, and Wind offshore between 7.23
€cent/kWh and 12.13 €cent/kWh (Kost et al. 2021). Overall Utility Scale Photovoltaic has the
lowest cost of any electricity source as seen in Figure 2.2, and solar will only become cheaper
with an assumed technology specific learning rate of 15% for photovoltaic energy. (Kost et al.
2021). On figure 2.2, it can be seen that even the cheapest form of fossil fuel electricity
production coming from Combined Cycle Gas Turbine (CCGT), now has become relatively
more expensive in Germany than almost all solar energy production and wind energy (Kost et
al. 2021). For the purposes of building accurate predictive models, these results suggest it is
critical to understand the effects that renewable energy generation has on the shape of the
hourly spot price curve.

Appropriate Time Window of Study

For this paper we will use the last 4 years of data ranging from 31 January 2018 to 31
January 2022. The first reason for such a constraint is that the proportion of renewable energy
in the German energy market has been more substantial within the last few years, which has
a pronounced impact on the day-ahead spot price when compared to previous daily shape
curves (Beolet, de Jong, & Enev, 2014). The second reason for only including data from the
last four years is due to the decreasing renewable energy prices driven by a high technology
specific learning rate within renewables (Duffy, 2020). For example, wind onshore production
in Germany saw a 33% decline in LCOE in 2020 (Duffy, 2020). Internationally, there has been
a trend toward larger, taller wind turbines with higher capacity factors for both onshore and
offshore wind production (Duffy, 2020). The recent reduction in the price of renewable energy
is also a result of economies of scale for renewable energy infrastructure (Holm & McIntosh,
2008), German government incentive programs for renewable energy (Matschoss, 2018), and
increasing prices of CO2 certificates in Germany (Kost et al., 2021).

VREs are noted to have a direct impact on German energy market prices. De Jong
(2013) showed how photovoltaic energy largely influenced daytime energy pricing as a 10%
increase in electricity production from renewable resources during daytime hours leads to a
6.6% reduction in electricity prices. The effect of photovoltaic production has likely increased
in scale of effect as in 2013 wind and solar generation in Germany only accounted for around
15% of the electricity market (Matschoss, 2018) compared to 41% of electricity in 2021
(Umweltbundesamt, 2021). Therefore the effect of VREs in the current time window should
have an even more pronounced effect.

Renewable Energy and Exogenous Variable Influence
on Day-Ahead Energy Market

One key paper, Effects of Renewables in the Stylized Facts of Electricity Prices, by
Ballester and Furió (2015), provides a foundation on the negative relationship between
renewable generation share and the day-ahead market marginal prices in Spain, and that the
generation share volatility is transferred to price volatility. Additionally, Ballester and Furió
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(2015) gave evidence of the effect of renewable generation to drive down day-ahead prices,
even with the higher cost of renewables in 2015. Their research provides good evidence that
renewable energy generation has a negative correlation on price and that the stochastic
generation of renewable energy brings forth the price volatility in the hourly price profiles
which this paper attempts to capture with the models.

Further evidence of renewable’s effects on the intra-daily shapes on day-ahead spot
prices specifically within the German market can be seen in the KYOS Analysis Report named
Improved Hourly Shaping using Renewable Production Information (Beolet, de Jong, & Enev,
2014). The report depicts historical spot prices in Germany from 2001 to 2013, figure 2.3, in
order to show the effects of hourly spot price patterns, especially concerning how solar is
related to a steeper price drop in 2013 compared to previous years (Beolet, de Jong, & Enev,
2014). The paper also reports a 1% increase of wind generation is related to a 1-5% decrease
in power price in Germany, while power prices are also shown to be dependent on solar
production during daylight hours (Beolet, de Jong, & Enev, 2014). Additionally, the KYOS
report predicts that later years saw the renewable component have a larger impact for
longer-term curves (Beolet, de Jong, & Enev, 2014). Therefore, the data for this paper from
2018-2022 is expected to yield an even larger impact from renewable energy on the
intra-daily shapes.

Figure 2.3: Historical spot prices on average monday in Germany (Beolet, de Jong, & Enev,
2014)

Many variables were considered for inclusion within tested models to account for
macroeconomic factors into the spot prices. Previous research by Jones (1996) provided
evidence that macroeconomic information is encapsulated by oil prices, specifically when oil
price shocks occur. Jones discussed how oil prices, specifically oil shocks, are indicators of
disruptive macroeconomic trend changes and how oil prices contain asymmetry of
macroeconomic responses for recessions (Jones, 1996). Oil also now competes with
electricity for transportation and heating, so often when oil prices increase or decrease,
energy prices follow suit. Therefore it was considered to be the appropriate inclusion as a
covariate into the model.
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Autoregressive Time Series Models

In previous modeling of spot price and price volatility, Generalized AutoRegressive
Conditional Heteroskedasticity (GARCH) algorithms have been popular due to the general
characteristics observed in the energy market (Frömmel, Han, & Kratochvil, 2014; Rintamäki,
Siddiqui, & Salo, 2017; Ketterer, 2014). An autoregressive approach is a natural fit for
predicting price over time. Although research using these methods have highlighted potential
shortcomings (Frömmel, Han, & Kratochvil, 2014; Rintamäki, Siddiqui, & Salo, 2017; Ketterer,
2014).

Autoregressive based research in the form of a seasonally adjusted autoregressive
model using variable renewable energy in the German market provided evidence for the
pronounced impact of wind and solar on spot price volatility (Rintamäki, Siddiqui, and Salo,
2017). However, Rintamäki, Siddiqui, and Salo’s (2017) use of a distributed lag model
emphasized interpretable coefficient impacts, rather than predictive accuracy. Their
seasonally adjusted autoregressive model was able to draw conclusions regarding the
relationship of VRE’s on price, but different approaches would be needed to capture the
energy market's complexity involving high peaks.

Using a more flexible approach, Frömmel, Han, and Kratochvil (2014) drew important
conclusions regarding modeling energy price volatility in the German market using a GARCH
model. Core to Frömmel, Han, and Kratochvil’s (2014) methodology were specific stylized
facts; namely large price volatility and long persistence of the volatility. The authors also
noted high mean reversion of price, multiple seasonality and a stationary price level, the last
point noteworthy because it was not observed in the period studied for this paper (Frömmel,
Han, & Kratochvil, 2014). In their research, a GARCH approach was pursued as opposed to
more standard autoregressive algorithms because of the volatility characteristics of energy
price, with the authors suggesting that the characteristics of traditional autoregressive
algorithms were ill suited towards capturing the spike characteristics in mid to long term
projections. To circumvent this, a realized GARCH model with a skewed t-distribution was
developed to better account for spike characteristics, but was not able to necessarily improve
prediction on out-of-sample forecasts (Frömmel, Han, & Kratochvil, 2014).

Research conducted around the same time as Frömmel, Han, and Kratochvil (2014),
Ketterer (2014) drew similar conclusions regarding the shortcomings of GARCH with regard to
volatility. Ketterer (2014) analyzed price levels and volatility in the German market, concluding
that wind production has a negative effect on prices but increases price volatility. This
research also confirmed that the merit order effect, which can be thought of as the downward
effect on prices from VRE, is stronger during the day (Ketterer, 2014). Ketterer’s intent was to
grow the understanding of VRE’s impact on price and volatility and the author notes that
predictive modeling using GARCHs would need extensive exogenous variables to enhance
the predictability of volatile episodes.

Complimentary research done on observations of negative energy prices in the
German market by Genoese, Genoese, and Wietschel in 2010 highlight both how extreme the
periods of volatility can be for the energy market and how VREs are the most critical factors
to understanding those periods. They provide evidence that wind generation was found to be
the most important factor related to the observation of negative prices, of which there were
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86 negative spot prices between September 2008 and December 2009. Similar research by
Gonzalez-Aparicio and Zucker (2015) in the Spanish market confirmed wind volatility as
critical to accurate forecasting. In the period studied for this paper, 741 observations of hours
with negative prices were observed over a period of 4 years for the German market, with
certain periods exhibiting higher rates of negative prices than Genoese, Genoese, and
Wietschel (2010).

An alternative approach to autoregressive models was concurrently developed based
on modeling time spot price profiles over a given period and combining them in a calibration
procedure which tailors these profile predictions to prevailing forward prices (Green, 2014;
Crispin & Jacobsson, 2007). The profile calibration design with hydrological balance as a key
input was shown to account for price spread among low and high hydrological balances over
10 years in the Nordic market by Green (2014). Subsequent research into VREs and further
exogenous variables in order to apply the profile calibration modeling procedure to the more
volatile German EPEX Spot market is the basis of this paper.

Outlook on the Future of the Energy Market

As will be discussed in the Data section, it is important to note the importance of
model validity in the future. Beolet, de Jong, and Enev (2014) outlined the impact renewables
have on prices, while renewable energy has nearly tripled in absolute production (Matschoss,
2018). By 2030, new photovoltaic panel installation and wind installations could be cheaper
than running existing conventional power plants (Kost et al. 2021). According to Hansen
(2018), there is evidence that Germany is undergoing a full energy sector transition to become
100% renewable energy base by 2050. The goal of 100% renewable generation is not limited
to electricity, but also includes heating, industry, and transport (Hansen, 2018).

The proposed models for this research will not limit our focus on conventional sources
of electricity which may result in more accurate predictions, but may become irrelevant in the
future of the market. Conventional sources are adjusted when demand and price require
additional energy and could be poor indicators for forecasting price in the future. Including all
conventional sources of energy would create more noise, adapt less to days which have a
highest share of renewable energy production and, as Hansen (2018) suggests, would create
a largely unimpactful model for the future of the EPEX SPOT day-ahead market.

Section 3: Data

Outline of SMARD.de and Other Data Sources

The data used for this thesis is for the period of 00:00 January 31 2018 to 23:00
January 31 2022. The main source for the data is SMARD.de, an electricity market
information platform run by the Bundesnetzagentur in Germany (SMARD, 2022). SMARD is an
abbreviation of a German term referring to electricity market data. From SMARD, market data
of hourly spot prices was pulled, along with information on hourly generation for solar, wind,
nuclear, biomass, hydroelectric, hard coal, lignite, hydro-pumped storage, and other fossil
fuels. Consumption data was also pulled from SMARD, consisting of total grid load, and
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hydro pumped storage consumption data. Information regarding daily crude oil prices in the
EU was pulled from the ALFRED archival economic data website and information on Germany
lockdown requirements during the COVID pandemic was pulled from a variety of sources
(Miller, 2020; Seythal & Carrel, 2020; DW News, 2020; Sky News, 2020; DW News, 2021) as
there is not yet in place an official German lockdown database. Information on German
national holidays was taken from the Workalendar package for Python (Bord, 2022).

It is important to note that the actual historical energy generation data was used for
this study, as opposed to the forecasted historical generation data, which is also available on
SMARD. Models created for this study are intended to pick up on true relationships that affect
hourly profiles, rather than artificial relationships possibly developed as a result of forecasting
models. Actual energy generation data is self-evidently only available ex-post, and can not
provide a true idea of the performance of these models in forecasting. However, the disparity
between forecasted and actual energy generation for solar and wind are being refined and
can be expected to receive more research in the future to reduce this disparity
(Gonzalez-Aparicio & Zucker, 2015). This subject will be explored further in the Limitation
section of Results.

In this paper the hourly profiles will attempt to capture yearly, monthly, and daily
patterns into a single output vector which can be used with predictions of the average spot
price per hour for a given month. The models attempt to account for time patterns through
the inclusion of the weekly, seasonal, and hourly clocks. In theory, this allows the target
vector to be detrended and resilient to shocks, such as the jump in energy prices in Germany
in the winter of 2022.

Feature Engineering and Variable Selection

Spot prices are registered on the German market in Euros per Megawatt hour(€/MWh).
Unlike previous papers using different time periods which observed a high degree of mean
reversion, the spot prices between 2018 and 2022 show an upwards trend in figure 3.1.
Figure 3.1 displays the trending price, beginning with a slight increase in price beginning in
October 2020, then a rapid increase in price from September 2021.
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Figure 3.1: Observed hourly spot prices between 2018 and 2022

To remove longer-term trends, which should be accounted for in the complementary
models to hourly profiles, the Hour-to-Month ratio or H2M ratio, equation 3.1, is used as a
target vector.

(3.1)𝐻2𝑀
ℎ

=
𝑃

ℎ

𝑃
ℎ, 𝑚

Many explanatory variables were taken from SMARD.de, including 13 different types
of energy generation and three energy grid load variables, most importantly residual load.
Residual load can be understood as the energy capacity that is left, after renewable sources
have cleared, that can be used for conventional power plants to supply electricity. Residual
load increases as the capacity of VRE grows, VRE power output begins to affect the load
balance of the power system and was first defined by Bofinger, Saint-Drenan, von Oehsen,
Gerhardt, Sterner, & Rohrig (2009) for the German market. Residual load encompasses
conventional energy sources. Consequently, inclusion of specific conventional generation in
our data could create covariance with residual load, while taking away focus from the primary
focus on renewable energy. Therefore residual load will only be the only reference to
conventional energy generation, and will be included in models as a reference for the
proportion of renewable energy. This process will be described in the feature engineering
portion of the Data section.

New variables were created during a feature engineering phase which were
hypothesized to have a significant relationship with the target vector. Most features had little
relationship with the dependent H2M ratio, as was the case for the solar-to-wind ratio. The
most significant feature created was the sum of VRE generation, wind onshore, ; 𝑊𝑜𝑛

ℎ

offshore, ; and photovoltaic energy, , over the residual load, , as seen below in𝑊𝑜𝑓𝑓
ℎ

𝑃𝑉
ℎ

𝑅𝐿
ℎ

equation 3.2. This ratio was suggested by de Jong, van Dijken, & Enev (2013) to be relevant to
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the behavior of spot price. This ratio will be referred to as the ‘renewable ratio’, ,𝑅𝑅
ℎ

throughout the paper.

(3.2)𝑅𝑅
ℎ
 = 𝑖=1

𝑁

∑  𝑊𝑜𝑛
ℎ 

+𝑊𝑜𝑓𝑓
ℎ 

+𝑃𝑉
ℎ( )

𝑅𝐿
ℎ

Another target vector for modeling was initially considered for based target vectors
used in previous research, a target vector with daily weight to sum to unity for the day (Green,
2014). Each hour’s spot price would be divided by the sum of 24 hours for that day as seen in
equation 3.3 represented by . This would be applied to all hours in all 1462 days during𝑆𝐷

ℎ, 𝑑 

the 4 years of data. The issue identified with this target vector was that it could not easily
interpret the effects of the days of the week, and required a second network to compensate
for that shortcoming. Further into research, it was discovered that the shift to using the H2M
ratio, as seen before in equation 3.1, kept more variation in the distribution of the target
vector, and provided more accurate results.

(3.3)𝑆𝐷
ℎ, 𝑑 

=  
𝑃

ℎ

𝑖=1

𝑑

∑ 𝑃
ℎ, 𝑑( )

 

This modeling environment was felt to not include enough variables exogenous to the
electricity market which were identified by Ketterer (2014) as critical for encapsulating spike
pricing. New variables were researched, and two variables were implemented to account for
these conditions.

A significant portion of the data studied was during the COVID-19 lockdowns. Overall
energy demand decreased during these periods (Abu-Rayash, 2020). Therefore, there is a
need to specify the dates in which lockdowns are incorporated into the model. For this, a
binary variable known as ‘COVID’ was created to indicate the time of the two national
lockdowns. First, the initial shutdown of schools and large events when COVID-19 from
2020-03-10 to 2020-03-16 (Miller, 2020),between 2020-03-16 to 2020-05-10 for the first
national lockdown (Seythal & Carrel, 2020; DW News, 2020), and between 2020-11-02 to
2021-03-01 for the second national lockdown (Sky News, 2020; DW News, 2021).

Figure 3.2 displays the distribution of the spot prices during the COVID-19 lockdown
in Germany in orange, and no lockdown periods in blue. The dotted lines represent the
average price for COVID and non-COVID lockdown periods. The resulting average spot price
during the pandemic is 36.6, while it is 57.9 when there was no lockdown. Additionally, the
distribution of the prices during the COVID-19 lockdowns appears different from the
distribution of normal periods. Lockdown periods exhibit characteristics of a bimodal
distribution, while the non-lockdown distribution has a very long upper tail, which extends
past the limits of this plot to the maximum price of 620 and pushes the mean of the
non-lockdown period much higher. The difference in distribution of the COVID variable could
be due to a lack of data points or because there were 2 main lockdown periods, where prices
were rather consistent.
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The differences in distribution suggests the COVID binary variable could have a
significant effect on the dependent spot price. For this study it is important to detrend the
data, to show the effect that energy generation has on the price, and apply the H2M ratio as
discussed previously. In figure 3.3 the plot compares the lockdown distribution compared for
the H2M ratio in both periods. In figure 3.3, COVID-19’s effect on price is almost negated
when you compare the H2M averages. During COVID lockdown the average hour over
monthly ratio is 0.995, while normal periods have an average of 1.005. It may be that the
effects of COVID-19 lockdowns itself could have a lagged effect on energy prices, and
therefore not all information is captured within the nature of a binary variable. Therefore it may
be expected that COVID-19 variable will have a direct impact on the target vector.

Figure 3.2: Distribution of price during COVID Lockdown and without COVID Lockdown

Figure 3.3: Distribution similar to figure 3.2, with H2M ratio instead of spot price

The oil price variable used in modeling represents crude oil prices within the EU,
represented in US dollars per barrel (US Federal Reserve, 2022). The data for this variable
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contains daily prices, and therefore remains for all 24 hours in each day modeled. The data
contained NA values, as prices during holidays and weekends were not accounted for. The
previous day’s prices were used in place of these NA values. Figure 3.4 shows oil prices
along with German energy spot prices, both standardized. A positive correlation between the
two prices for the beginning of 2021 to the end of the data period suggests that oil price
could be increasing in importance for prediction in the future.

Figure 3.4: Standardized oil price with standardized spot price

At the beginning of our paper we sought to do polynomial transformations with all
generation and consumption variables from SMARD.de, along with the features engineered as
previously noted. By including all variables along with their polynomial transformations into a
Lasso regression, the L1 norm removed insignificant variables as a tool for variable selection,
as recorded in other studies (Fonti, 2017). This variable selection technique was used to
analyze the possible significance of engineered features, and suggested that the renewable
ratio, VRE over residual load, would be important for modeling.

Figure 3.5 gives box plots of the variables that will be used for modeling. Here total
grid load is also displayed as a representation of energy demand, to represent the fluctuation
in the total demand for energy. As displayed in the distribution it is to be noted that it is quite
consistent, and will mainly vary by time of day, day of the week, and time of the year. Other
variables are included on the plot showing much more drastic variability, and a good amount
of outliers. The amount of outliers within the target shape vector H2M ratio is quite extensive,
and should be accounted for in the methodology of the models. Additionally the renewable
ratio has a very large amount of outliers as well, signifying days where renewable energy
production is drastically greater than average. These days will be discussed later in the
discussion section.
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Figure 3.5: Boxplots of input variables and total grid load

Intra-daily and Intra-weekly Shapes

Stylized facts presented by Green (2014) are reevaluated for the German market for
the period between 2018 and 2022. Green (2014) showed that day types exhibit characteristic
differences that change hourly profiles . Figure 3.7 gives the average weights for each day for
the German market between 2018 and 2022, so that the weights sum to one. There is a clear
drop in weights for Saturday and Sundays, in line with Green’s (2014) findings for the Nordic
market between 2002 and 2011.

Figure 3.6: Weights of average hourly price for each day of the week

Green (2014) also presents the stylized fact that hourly profiles of energy will behave
differently depending on the day of the week. Figure 3.7 is taken from Green (2014) and
shows the weights of average energy prices for each hour by daytype, normalized to sum to
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one, for a period between 2002 and 2011 in the Nordic market. To confirm this stylized fact in
the German energy market between 2018 and 2022, the same graph is presented in figure
3.8.

Figure 3.7: Hourly profiles of different days of the week for the Nordic market between 2002
and 2011(Green, 2014)

Figure 3.8: Hourly profiles of different days of the week for the German market between 2018
and 2022

Both figures demonstrate that each day of the week has a different level of
consumption, which then in turn has an effect on prices. Tuesday-thursday are similar, but all
other days of the week behave differently. Day of the week prices have different trends
especially during the weekends, with Sunday and Saturday reflecting lower overall prices as
seen in figure 3.8. Intra-daily clocks, and intra-weekly clock representations will be included in
all models.

There are a few differences worth highlighting between the two figures. First, the
German market in the second figure features a more pronounced dip around the afternoon,
likely as a result of Germany’s higher solar production with respect to the Nordic market. A
second key difference is the larger disparity between daytype trends in the German market for
2018 to 2022, as can be seen by the larger gap between lines seen in figure 3.8. This analysis
suggests the stylized fact presented by Green (2014) holds, and the greater disparity between
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daytype weights seen in figure 3.8 suggests that daytypes behave more distinctly in the
period of this paper than seen in the Nordic market between 2002 and 2011.

Final Network inputs

The inputs for each model vary slightly given the requirements of each algorithm, but
largely attempt to account for the same features, which will be described here. A total of
35084 hours were used for modeling, with 80% being allocated for training. Table 3.1
provides the first 5 rows of the dataframe used to train the linear model. Table 3.2 gives
description statistics for the dataframe used to train the linear model.

Table 3.1: Heading of inputs included in each algorithm

Table 3.2: Summary statistics for each input in the training set

The yearly clock is an input that identifies the time of the year for the model. Except
for the neural network, this is in the form of a sine function sampled at equal intervals 12
times between 0 and pi. This transforms the categorical variable of month into a continuous
variable in which winter months are closer than summer months, etc. The second input, daily
clock, informs the model of the given time of the day. Different methods are used to build the
daily clock for each algorithm and will be discussed in the methodology section, but figure
3.4 presents a graph of two different daily clocks explored, a sin function similar in design to
the yearly clock previously explained and the average daily weight for a given hour of a
certain daytype (in this case a Wednesday).
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Figure 3.9: Hourly clocks from a sine function and average daily weights

The next three inputs are taken directly from SMARD.de as previously discussed,
photovoltaic, onshore wind, and offshore wind production, all in megawatt hours (MWh). The
sixth input is the renewable ratio as previously noted. The seventh input is a binary class
variable that indicates whether Germany was under a federal government mandated
lockdown during that specified hour. The last variable is the oil prices.

Renewable Energy and H2M ratio

To explore the central object of this study, the relationship between hourly energy
price and renewables, a pair of scatterplots are presented in figure 3.10. The graphs show
solar and wind offshore generation on the y axis, while the x axis is the observed spot price
over the average spot price for the month.

Figure 3.10: Scatterplots of VRE variables and detrended spot price

From the graph it is not immediately clear whether there exists a relationship between
the renewable generation sources and the deviation of spot price from the monthly average.
Arguably, the only clear pattern is a grouping around 1 on the x axis, near the monthly
average spot price, in line with the stylized fact that the spot price features a high degree of
mean reversion, suggested by Frömmel, Han, and Kratochvil (2014).
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A more interesting relationship is shown between the renewable ratio and H2M ratio,
shown in figure 3.11. A complex and distinct relationship can be seen between a drop in the
share of renewables and a rise in the hourly spot price. This relationship should be expected,
but less intuitive is the large heteroskedasticity as the renewable ratio increases. Figure 3.11
gives an indication that complex relationships exist between the hourly energy price and the
share of renewables, that will require a dynamic algorithm to adequately capture.

Figure 3.11: Scatterplot of the share of renewables and detrended spot price

Section 4: Methodology of 4 Algorithms

After defining the final input variables and the target vector, we investigated 4 different
algorithms to best create a shape curve to use for the day-ahead energy market in Germany.
The four algorithms were linear regression, linear regression with lasso penalization and
polynomial transformations and interactions, a feed-forward neural network (FNN), and
gradient boosted decision trees. Each algorithm will have its own detailed methodology.

Linear Regression

The baseline algorithm chosen to start the modeling was linear regression. Linear
regression gives predictions based on explanatory variables with the assumption of linearity,
that increases or decreases of inputs produce scalar increases or decreases in the output.
Each explanatory variable is thereby associated with a coefficient value which informs the
model of how an increase in that variable will affect the output. Linear regression can be
expressed as equation 4.1 where the matrix, X, is transposed such that the multiplication with
the vector of coefficient values, β, occurs with their associated regressors and are summed to
reach the output (Hastie, Friedman, & Tisbshirani, 2009). These coefficient values are such
that they minimize equation 4.2, which is the summed distance between observed and
estimated outputs, or residual sum of squares (Hastie, Friedman, & Tisbshirani, 2009). Such
estimates of these coefficients are developed on training data, provided the input matrix is
nonsingular, by taking the inverse of the inner product of matrix X and its transpose with XT

and output of the training observations y, equation 4.3 (Hastie, Friedman, & Tisbshirani, 2009).
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Certain manipulations of our data were needed for use in a linear model. In particular,
variables relating to informing the model of the time, the hour of the day and the day of the
week. Two forms of the daily clock were explored for use with the linear model, both
discussed in the section Data. One daily clock to inform the model of the time of day was 24
hourly samples from 0 to π of a sine function with a periodicity of 48 hours. The other daily
clock, which slightly outperformed the sine clock, was the average weights of hours for given
daytypes, shown in equation 4.4. The average weight clock informs the model of time of day
by how much weight a price for a given hour for a given daytype has on average in the
sample period.
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Examples of both these daily clocks are provided in figure 3.9 in the section Data. The
day of the week, a categorical variable, was given to the linear model as one-hot vectors,
where day of the week was converted into seven variables where only the relevant weekday
variable is assigned a value of 1 and the rest are left with values of 0.

Lasso with Polynomial Transformations and
Interactions

The second algorithm explored was a lasso regularized linear regression which was
given the same linear regression variables, as well as degree 2 polynomial transformations of
those variables and multiplicative interactions between the original variables. LASSO, or Least
Absolute Selection & Shrinkage Operator, is a regularization method which assigns a
constraint on the sum of the absolute values of the coefficients (Hastie, Friedman, &
Tisbshirani, 2009). Seen in equation 4.5, estimates of β coefficients with Lasso regularization
are reached by minimizing the residual sum of squared residuals plus a penalty term which is
the product of 𝝀, a hyperparameter, and the sum of the absolute value of coefficients (Hastie,
Friedman, & Tisbshirani, 2009).
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The value of 𝝀 controls the strength of penalization, where there is no penalization
when 𝝀 equals zero. For the case of this paper, the optimal 𝝀 value to minimize error was
chosen via 5 fold cross validation with 10000 iterations, ending up at 7e^-4.
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Lasso penalization allows for reduced variance between samples with small increases
to model bias and can help with overfitting. Additionally, as the name suggests, lasso can be
used as a selection tool of variables, providing insight into relevant predictors (Hastie,
Friedman, & Tisbshirani, 2009). These characteristics allow lasso regularized models to be
given a wide range of variables and use only the variables that are relevant to prediction. For
this reason, the lasso model was given extra transformations of inputs in the form of degree
two non-linearities that had better explanatory ability than the linear trend. Additionally, which
regressors were selected by the lasso model could provide general insight for modeling the
spot price when using the provided variables.

Neural Network

This paper had a lot of its initial research based off of the previous paper by Green
(2014). He utilized an Artificial Neural Network, or more notably a feed-forward Neural
Network. As previously discussed, he utilized the combination of an hourly network (where
the target vector was represented by the price of the hour divided by the sum of all 24 hours
price for that day) and a daily network, (which accounted for the noticeable different shape
curves that each day of the week). The daily model used a 6-60-24 feed forward model with
24 nodes for the output layer representing hours of the day, and the daily network used a
10-60-7 feed forward network. For the network we initially attempted to replicate a similar
version of the model outlined by Green (2014).

When constructing this neural network, initial issues were made as no matter how the
model architecture was formed, the models could not account for low variability within the
daily target vector, and predictions did not accurately predict the daily sum target vector. One
fix was applying a logarithmic transformation to the target vector as the values should have all
been between 0 and 1. This was successful at improving the neural network’s predictive
accuracy, although it required removing a sizable proportion of the data as negative prices
caused values to go below 0, or above 1. Therefore, a logarithmic transformation could not be
applied, as negative price data constituted meaningful data points which needed to be
accounted for in modeling. As a result, the H2M ratio was implemented as the target vector.

For the neural network, unlike previous models, the day of the week, a categorical
variable, was not fed into the neural network as a one-hot encoded categorical variable.
Instead a sin/cosine function stood inplace to represent the weekly clock. Additionally, the
time of the year as in previous models was given a cosine model which helped to represent
the time of year, which the neural net could register. This technique was used by Green (2014)
and in practice, did indeed register better results than categorical variables used in the
alternative models.

Initially grid-search cross-validation was implemented to select the best parameters in
the model with little success. A more unconventional approach was taken after the neural net
results were consistently lower than the baseline linear regression. Automated Machine
Learning, a package which can help find reasonable neural net hyperparameters and
architecture. Automated Machine Learning was implemented through a keras package, and
helped identify a few differences in model construction which were used. Data was then fed
through 50 different trials or unique preconstructed models all with unique parameters and
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hyperparameters. After the auto-machine learning process was completed, additional
adjustments to the model were made. Surprisingly, it was discovered that normalization of the
standardized input variables slightly improved results compared to standardized data alone.
Regularization for the neural network was implemented by using a combination of dropout
layers and early stopping. Three different dropout layers were applied throughout the model,
with a 25% rate of dropping inputs. This was done to prevent overfitting.

Likewise, early stopping was implemented. Because the neural networks use the
backprop algorithm for fits, the neural networks require multiple iterations known as epochs.
Therefore it needs a measure to minimize the loss to the target vector, while preventing
overfitting of the model. Early stopping also selects the appropriate number of epochs to be
run through the network. For this model, an early stopping was implemented to stop if loss
has not decreased within 7 epochs. Additionally, using weight decay with the L2 penalization
was originally implemented, but it decreased accuracy on the test data.

The model loss here is determined through Mean Absolute Error (MAE) or also known
as the L1 loss function can be seen in equation 4.6. Using MAE here is appropriate, as
mean-squared error is highly sensitive to outliers, which as discussed in the Data section are
extremely prevalent in the H2M ratio target vector. If instead the loss function used mean
squared error(MSE), the L2 loss would square the errors which would amplify the outliers
effect on loss.
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Additionally learning rate needs to be adjusted, the learning rate describes the

magnitude in which the stepwise parameter updates. If it is too small it may never reach the
minima, and if the learning rate is too large it may miss the true minimum value. The learning
rate used in this process was 0.001. After selecting the appropriate parameters, the model
loss can be viewed by running through the parameters in figure 4.1. Originally a validation set
was used to determine early stopping, but due to data limitation, it was not implemented.

Figure 4.1: Model loss of the neural network over epochs
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The final model used is displayed in figure 4.2. This neural network uses 3 hidden
layers. The first hidden layer consisted of 32 nodes, 128 nodes in the second hidden layer,
and 32 nodes for the third hidden layer. All hidden layers utilized ReLu activation functions. All
32 nodes in the third hidden layer were then fed into the final node representing the output or
the regression head, for all 35,084 observations.

Figure 4.2: Final neural network model summary

The results of the neural network often varied. In the loss function in figure 4.1 above,
the model was run through 81 epochs. This process was repeated 5 times to account for
variation in the results. The model would run through 55-90 epochs. The resulting means of
the three loss metrics for all 5 runs will be provided in the results section.

Gradient Boosted Trees

The final algorithm was gradient boosted decision trees. Gradient boosting is an
ensemble method which builds predictions by taking the sum of many sequential weak
learner models, each built by trying to minimize the loss left over by previous models (Hastie,
Friedman, & Tisbshirani, 2009). The weak learners are frequently chosen to be decision trees
of low depth, and were selected as the weak learner in this case given their robust
characteristics and strong historic performance (Wang, Shi, Lyu, & Deng, 2017). Equation 4.7
shows how the boosted model, fm(x), is built using the sum of many models, in this case trees
T. The small decision trees are built given the variables and a partition, Θ, from equation 4.8.
The partition for each weak learner, equation 4.8, is defined by minimizing the loss function,
squared error in the case of our model, given the unexplained variance from the previous
trees. (Hastie, Friedman, & Tibshirani, 2009).
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The python package XGBoost was used for implementation of the boosted trees, as it
is a widely used library and has strong historical performance (Wang et al. 2017). The
hyperparameters considered for tuning were the learning rate, max tree depth, the percentage
of variables to sample for each weak learner, whether to apply lasso regularization, and the
minimum loss reduction required by the algorithm to warrant splitting a leaf. Learning rate is
similar to as explained previously with neural nets, it is the constant value applied to each
model to scale down the contributions from each weak learner. The max tree depth is how
many splits are allowed for each tree, with a larger depth allowing for more complicated weak
learners. Hyperparameters were tuned using 5 fold cross validation from 2304 candidate
hyperparameter value combinations with the CVGridSearch package. Different loss functions
for the cross validation of hyperparameters were explored, with mean absolute percentage
error producing the best result on a holdout segment of data, 10% of training data. Cross
validation returned a learning rate of .3, a max tree depth of 6 splits, to not apply lasso
regularization, to use all variables for each weak learner, and to set no minimum loss
reduction for splitting. The inputs for the XGBoost regressor were the same as the linear
regression, with daytype being one-hot encoded and average daily weight for each daytype
as the daily clock.

Section 5: Results of Renewable
Focused Machine Learning Model

Machine Learning Algorithm Selection

The results of all the models are seen below in table 5.1. The best performing model
was the XGBoost model, which outperformed the different neural network models created,
along with the lasso, and the linear regression model. Here we will use R-squared to provide
the accuracy representation of the regression model. The XGBoost vastly outperformed all
other models examined. When fitting the gradient boosted model with hyperparameters
selected through cross validation on the test set, provided an R-squared of 0.873. Essentially
this means the model accorded for 87.3% of the variation examined in the test set when
choosing parameters with cross validation.

Due to the Neural Network’s inconsistencies when running the data, the final selected
model was run 5 times and averaged for the resulting Test R-squared value of 0.731. Overall
the resulting Neural Network was marginally better than the Linear baseline or the lasso
model with polynomials and interactions. Although, the results of the Gradient boosted tree
provided superior results on all metrics. With the highest R-squared, and lowest MAE and
MSE values.



Modeling Hourly Profiles with Variable Renewable Energy 27

Table 5.1: Renewable energy-focused models resulting metrics

Renewable
Focused
Models

Training
R-squared

Test R-squared Mean Absolute
Error
(MAE)

Mean Squared
Error
(MSE)

Linear 0.6741 0.682 0.1643 0.0594

Lasso 0.7188 0.721 0.1557 0.0521

Neural
Network

0.725 0.731 0.1395 0.0504

XGBoost 0.927 0.873 0.1083 0.0236

Results suggest that the XGBoost is the best suited model and will be used as the
final model for the rest of the paper. The model then was plotted by feature importance as
seen in figure 5.1. The feature metric seen in the plot known as F-score simply sums up how
many times each feature is split on. The model included 5069 total splits. The results show oil
prices as the most split-on variable, the renewable ratio as the second most split-on variable,
with holidays and Monday-Thursday daytype as the least split-on variable. It should be noted
that the sum of the feature importance of all day types is 396, and therefore would be the
second least split upon variable after COVID.

Figure 5.1: Feature importances of input variables for XGBoost
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Discussion of Top Performing XGBoost Model

Generally the results of model selection were somewhat surprising given previous
research notably by Green (2014). Although the superior results of utilizing XGBoost align with
other similar papers, such as Wang et al. (2017) where electricity consumption prediction was
best estimated using XGBoost in combination with discrete wavelet transform, when
comparing alternative models. It should be noted that due to the time limitation within the
dataset, may hold in part the reasoning behind the neural network’s shortcoming.

Overall the gradient boosted tree model provided the strongest result. As seen in
Ballester, and Furió (2014) and Beolet, de Jong, & Enev (2014), renewable energy sources
were observed to be important features. Wind onshore, wind offshore, photovoltaic energy
and the renewable ratio all appeared to be significant variables according to the feature
importance figure 5.1.

Equation 5.1 calculates the splits calculated from renewable energy based variables
and will be referred to as the Percentage of Renewable Splits ( ) , with symbolizing the𝑃𝑅𝑆

𝑠
𝑠

number of splits. The variable renewable generation variables themselves (wind onshore, wind
offshore, and photovoltaics) represented a total of 1,847 splits. This equation also includes
the renewable ratio(RR) where renewable split decisions sum to 2648. 2648 out of 5069 total
splits are based on renewable energy based variables using this model. This makes up 52.2%
of all split decisions.
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It is understood that the total number of splits is not a true statistic for percentage
influence that the variable has on the model's outcome. Given that limitation, it is one of the
best measures to use for calculating variable importance in a gradient boosted tree model.
This statistic produced in equation 5.1 also assumes that each split decision accounts for an
equal significance for the estimated daily shape, which again is a known bias. The percentage
of renewable splits resulted in a value of 52.2%, which can be applied as an estimate to claim
52.2% of the model arises from renewable energy to explain the hourly profiles in the
day-ahead market. This is a significant result which gives merit for renewable’s focus in this
paper.

One note of interest is that the F score for the day of the week categorical variable
(representing the intra-weekly clock) accounted for 396 splits, which is low. Overall the time of
day (intra-daily clock variable) accounted for 690 splits and is nearly twice as prevalent.
Overall Sunday and saturday proved to be the most split on days, as they have the most
unique average average shapes as seen in figure 3.8 in the Data section.

One of the most noteworthy results is from the significance of the feature engineered
renewable ratio variable represented as (PV + W/ Residual load) in figure 5.1. This variable has
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the second most splits in the renewable focused gradient boosted model, with 801 splits. It is
surprisingly split upon more often than the intra-daily clock variable, and all other renewable
energy generation sources, including wind onshore.

Wind offshore surprisingly had a larger influence on the number of splits than
photovoltaic generation. This is surprising due to the larger installed net power generation
capacity that photovoltaic energy accounts for in Germany (Appunn, Haas & Wettengel,
2021), as well lower actual generation in the data. Perhaps offshore wind is a more variable
energy source than solar energy and requires more splits to account for the all day
generation, along with increased volatility fluctuation.

The most significant variable according to the feature selection plot are oil prices.
When comparing oil prices to the H2M ratio along with the COVID lockdowns, you can view
the correlation in figure 5.2. The connection with standardized oil prices and the standardized
H2M ratio when the oil price collapsed between March 2020 to May 2020 depicts a notable
relationship between oil prices and the H2M ratio. This is clear as the H2M ratio and oil prices
experienced their lowest values. It can be reasonable to assume oil prices incorporate the
account for COVID-19 lockdowns as lockdowns were worldwide during this time. Although in
figure 5.2, the second national lockdown in Germany did not appear to have a significant
effect on the H2M ratio. When closely examining oil prices above the standardized price of 1,
the standardized H2M ratio registers nearly no negative standardized prices. This proposes a
strong connection between higher oil prices (at least of values close to 1.0) and the stability of
H2M-ratio, and in turn day-ahead spot prices. This plot helps to signify why oil prices had the
largest feature importance F-score, and likely helped the renewable focused gradient boosted
tree model account for the presence of outliers within the model.

Figure 5.2: Spot price H2M (Standardized), Oil Price (Standardized), and COVID Lockdown

The oil price dip in 2020 into negative prices depicted the crisis related to the COVID
pandemic, as displayed in figure 5.2. Additionally, the recent increase in oil prices from
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mid-2021 represents the end of lockdowns, and the return to normality in the world’s
economy.

The COVID-19 variable did not appear to be overly relevant for modeling, while oil
prices had a more significant role when predicting spot price. It could be the case that oil
prices already partially represent the latent covid variable, while also containing other
significant macroeconomic variables as discussed by Jones & Leiby (1996).

Analysis of Three Characteristic Periods

The following plots will incorporate 2 different model predictions, along with the real
values of the day-ahead spot prices expressed by the H2M ratio target vector. The first model
will represent the final renewable focused XGBoost model that was described in the
Methodology section and was the best model created for this research. The second model is
a linear regression model which includes all generation and consumption variables found on
SMARD.de.

The second model will be a completely new model, which only serves the purpose as
a reference for the renewable focused gradient boosted model produced in this paper. This
model will serve as an example of a standard model, which incorporates all energy generation
and consumption statistics from SMARD.de. This includes conventional sources of electricity
and shall be referred to as the ‘conventional linear model’. This model will also be given
advantages to improve its performance, and therefore present as a reasonable model that
could be used in the industry today. Firstly, this linear model was also given the advantage of
being overfit, by not being subjected to a training and test set, and trained on all data which
provides it with more accurate predicted values on this set. Secondly, this model includes oil
prices, and has been given polynomial transformations for all variables and includes variable
interactions, similar to the lasso model as described in the Methodology section.

This conventional model contains 125 variables, compared to just 15 variables in the
renewable focused gradient boosted model. This conventional model primarily focuses on
conventional generation, while still containing renewable generation. This linear model does
not include the renewable ratio, or the covid variable as inputs. It can therefore be viewed as
a standard model, without the focus on renewable generation, and without incorporating the
COVID-19 lockdown shock periods. This linear model was made with unrealistic assumptions
in terms of ex ante information and performed well on the data, resulting with a training
R-squared value of 0.781, an MAE of 0.139, and an MSE of 0.042. This model’s metrics are
better than the linear, lasso and neural network’s resulting metrics.

There will be three plots generated to show how the renewable focused gradient
boosted model performs in different scenarios. First plot will be a standard period where the
renewable ratio is below 1, the time before COVID lockdowns in 2018, and when oil prices
were steady. The second plot will represent a period of volatility during the first COVID
lockdown, when oil prices and spot prices are below zero. The last plot represents a day
when the renewable ratio is exceptionally high and should be a good representation of how
the model will adjust to future generation of renewable energy.
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The first example is displayed in figure 5.3, and was chosen as it was in a period
where the renewable ratio was below 1, before the COVID lockdowns, and while oil prices
were at a standard level. In this plot below you can see that the daily shape curve represented
from both models provides decent predicted shapes, but still both have inaccuracies. It
should be noted that the renewable focused gradient boosted model and conventional model
both overestimate and underestimate prices with a similar margin of error, with the gradient
boosted model predicting higher than average prices. This could be the effect as prices in late
2021and 2022 were much higher while under similar conditions.

Figure 5.3: Model performances vs observed H2M prices on a normal day

The second example period is shown below in figure 5.4. This day was chosen as it is
in the middle of the first COVID-19 lockdown. The resulting period was also chosen as it had
close to the lowest day-ahead spot prices in Germany, where the H2M ratio was below -4.0
for 6 hours, and was during the period when oil price were very low at 9.87 US dollars a barrel
within the EU compared to the mean during the 4 year period being 62.37. Additionally the
renewable ratio was above 1.0 all day, and spiked mid-day from high Photovoltaic energy
production. From 10:00 to 19:00 the renewable focused gradient boosted model had near
perfect predictions, while the conventional linear model provided very poor estimated prices,
missing values by a value of around 3.0 for 6 hours straight, which is a substantial error.
Additionally, it should be noted that even with the huge midday dip, the renewable focused
XGBoost model also provided more accurate predictions throughout the entire day. It can be
suggested that the incorporation of the covid variable, alongside the renewable ratio provided
a much more accurate prediction by the XGBoost model, which provided extremely accurate
results.
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Figure 5.4: Model performances vs observed H2M prices during COVID-19 lockdown

Figure 5.5 displays the high renewable ratio effect on the models’ day-ahead shape
curve. January 30 2022 was selected because it contained the most hours with the renewable
ratio over a value of 3.0. These are hours where renewable energy generation was three times
greater than conventional generation, this was primarily due to the high amount of onshore
wind generation in the morning of the day. The differing results of the renewable focused
gradient boosted model again creates a better prediction of spot prices comparative to the
conventional model.

Figure 5.5: Model performances vs observed H2M prices during high renewable production

Figure 5.6 includes the renewable ratio combined with the high renewable ratio
example. From 00:00 until 15:00 the renewable ratio registered values between 3.6-7.8, which
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are very large outliers in the dataset. The ratio rapidly decreased to less than 1.0 after 18:00.
You can see in the results that the renewable focused gradient boosted tree models were very
accurate during the hours containing a high renewable ratio, while the conventional linear
model underestimated the price. Only as the renewable ratio dipped below 1.0 at 18:00 is
when the conventional model converged back to accurately predicting the H2M ratio. This
plot demonstrates that the renewable focused gradient boosted model does well to adapt to
an extreme influx of VRE generation. The model accurately estimates the shape of the
day-ahead spot prices curve during these unusual conditions.

Figure 5.6: Model performances vs observed H2M prices during high renewable production
with renewable production included

The resulting estimates by the renewable focused extreme gradient boosted tree
model showed substantial differences than the conventional model. The focus on selecting
renewables appeared to not take away too much information during average days, as seen in
the first example. There is also evidence that it has superior performance in estimation during
periods of COVID lockdown, and when VRE generation is substantial. Additionally, it should
be noted that the importance of VRE in the feature importance figures suggests Day-Ahead
energy traders in the German market should pay special attention to the variables and their
interactions. A shifting market should also suggest a change toward limited conventional
generation inclusion, focusing more on renewables and the proportion of renewable energy
generation, inclusion of exterior variables to the market such as European oil prices, and a
lockdown variable to account for external influences to the market, while still including
seasonality, intra-weekly and intra-daily patterns.
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Section 6: Limitations and Future
Research

Limitations

A significant limitation in this research is that actual historical measurements of
electricity generation from VRE were used inplace of forecasted generation. This was done to
insulate the hourly profiles from the possible bias included in the unknown models used to
predict VRE electricity generation. Implementation of the hourly profiles from this research to
predict future spot prices after being calibrated would require forecasted data on renewable
production, which could result in different results and effectiveness than are reported here.
While models constructed for this research were agnostic to VRE forecasting techniques,
practical implementation would not have this luxury.

An additional limitation is how renewable energy is impacted by unforeseen events in
erratic ways. Market shocks can be studied ex-post, but each shock can be expected to
impact the market in different ways and no one “shock variable” can be expected to account
for all current events. For example, a “shock” scenario like COVID was implemented into our
data which showed a decrease in price, but that variable could not be used to account for the
Russian invasion of Ukraine. The Russian invasion has increased energy prices significantly,
but could not be accounted for at the time of this research. It could be expected that,
concerning the invasion of Ukraine, political leaders will make further decisions with
substantial impact on energy markets that would be all but unknowable ex ante. Similar
shocks will always impact the reliability of prediction and serve as a limitation for the
methodology included in this research.

Another main limitation of this research, and for other similar papers involving the
electricity market, is the time window definition. As stated in the literary review, technological
learning rates alongside the increasing impact that renewables have on the market creates a
tradeoff with long windows of data being less representative of future conditions, but shorter
windows being too limited for models to gain sufficient training. This can be explored by
evaluating the number of different temporal combinations, the day of week, month, and hour
combinations. Each combination is expected to act with distinct characteristics given market
conditions. 35084 observations over 7 days a week over 24 hours a day leaves 209 unique
sets of weekly data and having only 209 sets could present a data limitation issue.

Future Research

It should be noted that the next step for application of the model would be
configuration of the shape vector of the renewable focused gradient boosted tree model with
respect to spot prices. As per Green (2014) and Burger, Graeber, and Schindlmayr (2008), the
same process could be made to use a linear scaling method, and after this would be
completed could it be applied. Although the purpose of the thesis was generating the hourly
price forward curve vector, therefore this excludes the calibration and application of the
model. So application of the model should be the next step in future research.
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Research on the causal link between oil price and electricity price in the current
market would contribute to the understanding of why oil price was identified as so significant
in the gradient boosted tree model. As stated in the limitations, oil prices have increased to
historically high levels. As stated in the Kost et al.(2021), the renewable LCOE has rapidly
decreased. Research could be conducted to see how oil prices affect electricity prices long
term as high oil prices push people to renewable sources of energy. The resulting impact of
this push could be positively correlated to price as it increases demand for electricity, or the
impact of the push towards renewables could be negatively correlated to energy price, as the
decreasing cost of renewables by means of increased economies of scale, alongside
increasing the technological learning rates of renewables can cause energy to be cheaper in
the long-run. Research on the relationship between oil price and renewable production could
be important to understanding the day-ahead energy markets in the future.

A potentially substantial finding from the research conducted for this paper was how
the second national lockdown in Germany had no significant effect on the hour to monthly
average ratio of spot price. Future research should be conducted on whether this result is
confounded by the incorporation of COVID lockdown behaviors into other model variables. A
variable outside of the COVID categorical variable accounting for lockdown behaviors would
be unlikely as year was not provided in the modeling process, making it impossible for
models to differentiate a month during a COVID lockdown from that month without COVID
lockdown in the absence of the COVID categorical. However, it could also be that the COVID
dates collected were poor indications of observed lockdown behavior, with local lockdowns
and non-observance of restrictions confounding the results in this paper. More
comprehensive research of this topic is needed to make statements about this relationship.

A compelling suggestion for future research would be to construct a Convolutional
Neural Network (CNN). This could be accomplished by using the hour/sum to unity variable
for the dependent variable which was previously described in the data section. To implement
this, each day would be changed into panels. The resulting panels would have 24 hours on
the y-axis, with the independent variables on the x-axis. This represents a similarity to an
image, which convolutional neural networks are the most commonly implemented for. By
using CNNs, it would output 1461 daily shapes as the target vectors which represent the days
used in the dataset of this paper. This was a recommendation by Rikard Green for the paper,
although it was not implemented due to time constraints. If subsequent research is to be
conducted, utilizing a CNN for modeling is among the first recommendations.

Another avenue for an improvement of modeling spot price and volatility would be to
incorporate Urgent Market Messages (UMM), which are planned or unplanned adjustments to
production like a temporary shutdown of a gas factory for maintenance. Although the
generation data already contains much of the UMM information, explicit inclusion of UMMs
could help account for some variability missed. Incorporating localized shutdowns of different
energy sources is an example of where UMMs and an input could produce gains in predictive
accuracy. More localized effects from the day-ahead curves could be done for particular
regions of Germany, by modeling their specific demand, and perhaps could be needed by
regional requirements.

Another important feature of exploration could be to incorporate lagged time series
variables into the model. The overall purpose was for hourly price forward curves to not be
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shaped by a time series regression model as described in the Literature Review.
Implementing lagged time series variables into the model could be a focus for future research.
An hourly lag of the renewable ratio could affect the hourly profiles, while a lagged oil price
variable by a length of a week or month could also be influential.

Technological learning rates have been discussed throughout this paper. Changing
renewable energy proportions within Germany’s electricity supply could require the algorithm
to be switched to account for new patterns or models to be updated with more recent data.
For example, this would be true if large technological innovations are made within renewable
technology or other electrical sources. Substantial innovations being made within electricity
storage technology could result in electricity switching its behavior away from a flow
commodity and would require extensive research to adjust from the contemporary
methodology (Peremans, 2018). If the economic viability of electricity storage increases along
with technology improvements for storage of electricity, the shape curves could be entirely
different from how they appear currently. Therefore microgrid configurations as performed in
Peremans (2018) could provide an avenue for relevant research in the future.

The models developed for this research were constructed with the continued increase
in the share of renewable energies in mind. The proportions of Germany’s electricity market
will continue to shift, and therefore intra-daily, and intra-weekly shapes will adjust. Shifting of
the energy market will require adjustments in the parameters and the introduction of other
variables exogenous to the energy market, if modeling with future data. Another factor over
time, geopolitical events, like the Russian invasion of Ukraine, will have unpredictable
consequences on energy market behavior and require continuous research. Exemplified by
the abandonment of the 11 billion euro investment in the Nord Stream 2 pipeline, Russian
military action has drastically changed Germany’s energy and electricity market, most likely
having an effect on the shape curve when the renewable ratio value is very low (Silverstein,
2022). New research that accounts for developing geopolitical decisions would likely be
critical to understanding the macro shifts unaccounted for in the research for this paper.

If these hourly profiles were to be used for the calibration process, for the specific
purpose to predict day-ahead prices in the upcoming years, it would be suggested that the
model would incorporate future investments of renewable energy. Data on such investments,
along with forecasted investments are available within the Kost et al. (2021) which specifies
market development and forecast renewable energy investment. This also categorizes
investment separately for both wind power and photovoltaic energy generation (Kost et al.
2021). As the model has better been adjusted for future generation, this input inclusion is
recommended to get a better model especially for data years into the future.
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Section 7: Conclusion

Throughout this paper we have examined the effect of four different machine learning
algorithms to be applied to create the shapes of the hourly price forward curves for the
German market. All four algorithms tested only contain VRE generation and renewable
proportion inputs, clock inputs to represent demand, and exogenous inputs. The paper aimed
to make the best machine learning regression model to create a renewable energy-based
shape of the hourly price forward curve.

The paper's core attempted to answer the question of whether VRE-related generation
alone, clock inputs, and further exogenous inputs can significantly capture volatility in the
hourly shape profiles of the German EPEX Spot market to model hourly price forward curves.
The resulting final gradient boosted model only incorporated 15 variables and outperformed
the conventional linear model, which included 125 variables. Our renewable-based model
outperformed the overfit conventional model, resulting in a higher R-squared, and lower MAE
and MSE values. The model also proved to be significantly more reliable in the volatile
situation examples, as seen in two examples in the Analysis of Three Characteristic Periods
subsection. The model also shows significance in the renewable ratio variable. The ratio had a
significant number of splits in the gradient boosting model. It showed a significant difference
in the last period examined in the Analysis of Three Characteristic Periods subsection.

The output metrics and hourly price forward curves of the resulting gradient boosted
trees model captured the H2M ratio well and, by extension, could be used to predict
day-ahead spot prices well. As stated, this model currently needs adaptation to current
situations as the Russian invasion of Ukraine would require another exogenous input into the
gradient boosted tree model. The hourly day-ahead shape could then be calibrated to the
German EPEX SPOT day-ahead market spot prices. This model could be implemented to
predict future hourly profiles when renewable production forecasts are provided. The
calibrated model could then be used as an hourly price forward curve for day-ahead traders
in the German EPEX SPOT day-ahead market.
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