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Abstract

This thesis aims to address the rising energy costs by using [oT technology and reinforcement learning.
We use historical sensor data to fit a deep reinforcement learning model that is capable of optimizing the
control of a heating system in a way that minimizes energy costs, while maintaining a comfortable indoor
temperature. This model-free approach uses neural networks to simulate the thermodynamic behavior of
an existing building, making it more cost-effective than using building simulation software. Using the

final Deep Q-Network model, a cost reduction of up to 25% was achieved.

Keywords: Energy optimization, deep reinforcement learning, sensor data, neural network, indoor
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Abbreviations

DRL - Deep reinforcement learning
DQN - Deep Q-Network

FFNN - Feed-forward neural network
10T - Internet of Things

ML - Machine learning

RL - Reinforcement learning

RNN - Recurrent neural network

SMHI - Swedish Meteorological and Hydrological Institute (weather institute)
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1. Introduction

1.1 Background

As climate change increases in urgency, the need for energy conservation has equally increased. In
Sweden, around 40% of energy consumption by commodities goes to the residential and services sector,
with 80% of that consumption being used primarily for heating (Energimyndigheten, 2021). Although
electricity usage has declined since 2001 (Energimyndigheten, 2021), continuous efforts are needed to
sustain that trend. In addition, despite the decline in electricity usage, as can be seen in Figure 1, energy
prices are hitting new highs regularly, leading to the search for more stringent energy conservation
methods in order to keep costs down for consumers. In Sweden, consumer energy prices change by the
hour, leading to higher costs when demand is high, and vice versa. Due to this, energy costs for
households could be reduced not only by conservation but also by using energy at optimal periods of
time.

Energy prices for households from 1970,
including taxes and VAT, in 2019 price levels, 6re/kWh
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Sources: The Swedish Energy Agency, Statistics Sweden (SCB), Swedish Petroleum and Biofuels
Institute (SPBI). Remark: Prices are presented in 2019 price levels; consumer price index is used for
recalculating of prices.

Figure 1. Changing energy prices from different energy sources in Sweden from 1970-2020.

In this paper, deep reinforcement learning models will be built with the objective of optimizing energy
costs for an existing residential building. The long-term vision is that by optimizing the cost of electricity
in a single household, energy usage can be spread more evenly to reduce the total grid load of the
neighborhood, which can lead to better energy conservation overall. With data made available by Internet
of Things (IoT) sensors placed in a single-dwelling house located in Lund, Sweden, a deep reinforcement
model is applied to understand how the agent can help lower energy costs by turning the heating system
on or off at optimized timepoints while maintaining a comfortable indoor temperature. The agent, which
represents the model, replaces the notion of the person who would otherwise control the heating system.
The use of historical sensor data is more cost-effective compared to the alternative of building a specific
thermodynamic model of individual buildings, thus making the proposed method more scalable and
quicker to implement.



1.2 Formulating the Energy Cost Optimization Problem

Reinforcement learning (RL) is a machine learning technique that differs in aim from traditional
supervised or unsupervised learning. As depicted in Figure 2, RL does not seek to make predictions on
future data, yet rather aims to take optimal actions based on the current state of the environment. When it
comes to a typical RL problem, an agent interacts with the environment by observing environment states
and performs actions that alter the environment with the ultimate objective of maximizing the cumulative
reward (Metelli, 2022). Additionally, instead of needing a predefined dataset for algorithm training, RL
requires continuous flow of feedback from the environment to the agent based on the results of every
action made. In this way, RL uses a Markov decision process that relies only on the resulting current state
of the environment in order to choose the next action (Metelli, 2022). Finally, a reward is given based on
the result of the action taken by the agent, and the model functions to maximize the total reward earned.
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Figure 2. Main differences between supervised, unsupervised, and reinforcement learning.

A major benefit of RL is the fact that no large datasets are required to train the model. This can be quite
advantageous to the real-life setting of energy optimization in existing dwellings since it removes the need
for a long data collection period for each individual building. Instead, ideally, a reinforcement learning
model would be able to read the current temperatures in the building to make a decision about an action,
measure the actual resulting temperature after the action has been taken, make a new decision after that,
and so forth. However, since a real-life testing environment could not be set up within the length of this
study, a prediction of resulting temperatures is made instead.

In the absence of a real-life testing environment, temperature predictions are required for the
reinforcement learning models to be trained in a custom reinforcement learning environment. In this
thesis, the custom environment defines how the indoor temperature of the house changes based on the
decisions made by the RL agent. Specifically, once the model decides whether the heating system should
be on or off, the state within the environment is updated with a new indoor temperature. Therefore, to find
these new temperatures, different neural networks that predict resulting indoor temperatures were built.



However, it is important to note that these neural networks are not inherently a part of reinforcement
learning models, but are only used in this study to substitute for live temperature readings or complex
temperature modeling.

Finally, to increase the optimization of RL models, deep reinforcement learning (DRL) is applied. This
means that the deep learning process is additionally built into the RL model itself and impacts how the
agent decides on the next action. By using a neural network to estimate which action maximizes the
reward, the DRL agent is able to determine optimal actions.

The data that will help guide the predictions in the custom environment was collected by sensor strips
mounted in a residential home in Lund, Sweden. These sensors were produced by Sensative AB, and the
data have been collected and provided by the company as well. The sensor strips are attached to key
points both indoors and outdoors, and communicate using either Long Range Wide Area Network
(LoRaWAN) or Z-wave technology.

1.3 Original Dataset

The data used in this study are largely gathered by sensors in a single dwelling home. The original dataset
was provided by Sensative AB, in which hourly observations were taken between October 20, 2020, to
April 30, 2022, for a total of 13,392 observations (a total of 558 days) over the period of 19 months. The
variables from the original dataset are listed in Table 1 below.

Variabl D L
Date & Time Date and time of each hourly observation
Outdoor temperature measured by sensor The hourly outdoor temperature in °C, measured by the

outdoor sensor

Outdoor temperature from the weather service The hourly outdoor temperature in °C, provided by the
Swedish weather service (SMHI)

Heating switch status Proportion of hour that the heating system was turned
on

Bathroom, Amy’s room, kitchen, Line’s room, guest The hourly indoor temperature per room in the house in

room, living room, entrance temperatures °C

Electricity price The hourly price of electricity in Euro/MWh

Cumulative electricity consumption The value taken from the consumption meter at that

hour, measured in kWh

Table 1. Variables of the original dataset from Sensative AB.

The data have been cleaned and transformed for further analysis. The heating switch status has been
changed to the binary variable format from the original decimal value. In addition, the average of all
seven indoor temperature sensor values has been calculated to have one overall indoor temperature value



for the building. This condensed form of the dataset was used for training neural networks that were
responsible for updating the resulting temperature in the custom environment.

1.4 Research Design and Model Structure

The aim of this study is to explore whether a deep reinforcement model can be built to optimize energy
costs while maintaining a comfortable indoor temperature. Thus, the main research question is the
following:

RQ: Can a deep reinforcement model lower the energy cost of a household?

The model proposed to address this research question consists of several components that are illustrated in
Figure 3. The main aspect of the model is the deep reinforcement learning element depicted in blue,
wherein the agent strives to find the optimal actions to take within a given environment to maximize the
reward. The neural network for indoor temperature estimation is a separate element that plays a role of a
“house” simulator in updating the DRL environment, but is not an inherent part of the DRL model.

Neural Network for Indoor Temperature Estimation

Historical data — e
Action a

Deep Reinforcement Learning Model

i Reward r :
Agent l

| oS8k <7 | Predicted indoor
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State | || Take actiona Environment pe

Observe state s

Figure 3. A visualization of how each component in the entire model interacts with each other. Notice that
the neural network for temperature estimation exists outside of the reinforcement model, and is not
inherently a part of the RL method.



1.5 Aim and Contribution to Knowledge

Many studies that focus on energy cost optimization use software-based building simulators to determine
methods for energy reduction. However, apart from being costly, these methods require the knowledge of
a multitude of parameters in order to create a proper thermodynamic model. In addition, such models
often focus on how the building was originally planned to operate and may not reflect real-life usage.
Therefore, this study will contribute to the body of knowledge by proposing the use of historical sensor
data and neural networks for the simulation of the thermodynamics behavior of the building. The use of
sensor data will allow for cost reduction since the data can be collected much easier and will enable a
faster setup that would provide the required scalability.

Furthermore, this study will adopt the model-free approach to energy optimization by using deep
reinforcement learning algorithms, which typically require no historical data for the agents to be trained.
The main contribution in this aspect is the proposed hybrid method where the agent is trained in the
custom reinforcement learning environment that is indirectly provided with historical sensor data. Such a
hybrid approach helps to overcome the obstacle of not having access to the real-life building or simulation
where the changes in the conditions can be observed in real-time.

1.6 Results

For the house studied in this thesis, the heating system is known to consume 12kWh per hour when the
system is on. Under this assumption, throughout the length of the studied heating period, which was
October 2021 to April 2022, the total cost of electricity was €4,530. Using the final DRL models, the
average total cost of electricity was reduced to €3,367. This indicates that the model was able to produce
an overall cost saving of approximately 25%.

1.7 Section Outline

The subsequent sections will include the following: Section 2 explores existing literature that is relevant
to the theoretical and methodological aspects of this study, Section 3 details the empirical setting and
overall research design, Section 4 explains the results from the DRL model, Section 5 discusses these
results with the reference to the aforementioned literature, Section 6 provides a summary and conclusion
of the thesis, as well as some limitations of this study.



2. Literature Review and Theoretical Framework

Energy usage modeling has been a well-studied field, whether with the intention of reducing costs or
consumption. The methodologies have evolved with the technological capabilities of the field, reaching
new possibilities with the current state-of-the-art. The research design proposed in this paper is based on
historical sensor data, neural networks for temperature predictions, and deep reinforcement learning
algorithms - all different technological aspects that have developed to their current form over the years.

2.1 Data-gathering Methods

Historically, the calculation of energy optimization has been conducted using formulas for heating and
cooling, usage curves, and cost functions (Lof & Tybout, 1974) with data less granular than what is
available today. The lack of ubiquity of sensors meant that data had to be collected more manually.
Additionally, processes such as recording hourly indoor and outdoor temperatures would take a lot more
man-hours and could potentially contain human errors and irregularities. This meant that many studies
were based on simulated data, produced using building specifications.

The usage of simulated data was rife with imperfections, due to input variables being less tailored for
real-world usage patterns, and more for engineering, architectural needs, or regulatory certification. Many
papers sought to improve the process of creating simulated energy usage models (Eisenhower et al.,
2012), including what kind of variables would be necessary to create a more realistic simulation. Today, a
large number of studies use EnergyPlus, a software specifically built for whole-building energy modeling
(BEM), which uses hundreds of inputs to provide simulated data, and models energy consumption based
on physics-based equations.

Though many studies still use simulated data, they are often based on data gathered by sensors in the first
place (Lissa et al., 2021). As the cost of sensors decreased, their proliferation became more widespread,
and it has become easier to gather realistic data. Research has shown that even changing the placement of
sensors could lead to better energy optimization and that automated control of building elements based on
human behavior is successful in lowering energy consumption (Sembroiz et al., 2019). Similarly, this
thesis uses historical sensor data instead of purely simulated data to model the thermodynamics behavior
of the building without complex physical characteristics.

2.2 Model-based vs. Model-free Approaches

The cost of [oT devices has been decreasing, making them more affordable and available for household
use, making a regular home "smart". Thus, greater usage of such devices allowed for more accurate and
timely data collection of different data points in the household, which in turn, encouraged more research
groups to utilize the collected data to address different optimization problems. Better data collection
routines alongside the growing domain of knowledge in different machine learning techniques has
resulted in increased interest in applying advanced machine learning techniques for energy management,
which allowed for better results in terms of energy savings compared to manually controlled methods
(Sembroiz et al., 2019).
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Overall, the existing studies on energy cost and energy consumption optimization typically fall into one of
the two categories: ones that follow a model-based approach and the others that take a model-free
approach. As Yu et al. (2020) explain, the model-based approach is created using the information about
the thermal dynamics of the building environment, which requires creating a model of the building's
thermal dynamics. On the other hand, a model-free approach can be pursued without the complex data
required for building a thermodynamic model. Compared to the model-based approach, the model-free
approach overcomes the challenge of developing a complex and costly thermal dynamics model of the
building since the machine learning algorithm can be constructed without this information (Yu et al.,
2020). Thus, with recent advancements in machine learning techniques, further widespread use of
model-free approaches can be expected.

Various model-based modeling methods have been implemented with the intention of minimizing cost or
energy consumption. Eisenhower et al. (2012) found that using a Support Vector Machine with a Gaussian
kernel, a 45% annual energy reduction could be achieved. Another study used Random Forests to save
24.9% in cooling energy used (Biinning et al., 2020). The particle swarm optimization method is also
widely used in this domain, with one study achieving 54% in HVAC energy savings (Barber & Krarti,
2022). Suffice to say, there are many advanced model-based techniques that show significant results, but
they require the collection of hundreds of data variables in order to accurately model the building
behavior.

One example of a model-free approach is reinforcement learning. It can be considered a “trial-and-error”
machine learning method since the reinforcement learning agent “learns” the optimal action strategy by
trying various actions and then receiving feedback on the results (Zhang & Lam, 2018). As Lissa et al.
(2021) further elaborate, reinforcement learning requires no prior knowledge of the environment since the
algorithm can learn the optimal policy by interacting with the environment itself and then choosing
actions based on past experiences. Markov decision process and its properties are used to create a model
of the environment (Mason & Grijalva, 2019). Once the agent learns how to decide on the best action to
take for a given state based on the reward function, the optimal policy is constructed. Lissa et al. (2021)
further link reinforcement learning and energy management by suggesting that the rewards structure could
be based on performing certain actions when the conditions of the environment are favorable, such as
when the cost of energy is low. This approach could help reduce costs as much as possible within the set
boundary of the comfortable indoor temperatures.

Model-free approaches offer great flexibility when the entire model of the environment is not available,
however, reinforcement learning-based methods at times can be unstable (Yu et al., 2020). This issue has
been handled by combining reinforcement learning algorithms with deep neural networks, which resulted
in greater efficacy of RL methods to an extent that they are now used in tasks involving computer vision
and self-driving cars (Mason & Grijalva, 2019). Such a combination of reinforcement learning algorithms
with deep neural networks is called deep reinforcement learning (DRL). In DRL, a deep learning model
acts as a function approximator for the reinforcement learning agent (Zhang & Lam, 2018). Interestingly,
deep reinforcement learning algorithms became more widespread after Mnih et al. (2013) successfully
presented their ability to play the Atari video games at the human level (Zhang & Lam, 2018). In addition,
due to its flexibility and efficiency over traditional model-based approaches, more research is going to be
focused on reinforcement learning and its applications, as is in the case with autonomous building energy
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management, where deep reinforcement learning algorithms are expected to keep growing (Mason &
Grijalva, 2019). Thus, it can be concluded that deep reinforcement learning algorithms have a lot of
potential when it comes to solving energy optimization problems of different kinds.

Furthermore, specific to this thesis's pursuits, the use of historical data was motivated by the research
conducted by Natale et al. (2022), where the neural networks were used to create a simulation
environment, in which deep reinforcement learning agents were trained to control the temperature of a
building zone. The researchers' method depended exclusively on past historical data, which was used to
fit physically consistent neural networks that then updated the reinforcement learning model’s
environment. This allowed them to avoid the complex design stage of physics-based methods while
remaining physically consistent with respect to the control inputs (Natale et al., 2022). Similarly, this
thesis uses neural networks to simulate the thermodynamics behavior of the dwelling, which is then used
in a custom reinforcement learning environment.

2.3 Performance Studies Based on Deep Reinforcement Learning

In the context of autonomous building energy management, Q-learning has become one of the most
widespread reinforcement learning algorithms because of its convenient properties of being off-policy and
model-free (Mason & Grijalva, 2019). This allows Q-learning algorithms to find the best course of action
given the current state independently of the agent's actions since this is an off-policy learning process. As
Lissa et al. (2021) remark, in the real-world scenarios with scarce information about the environment, the
Q-learning method can be useful because of its capability of making predictions incrementally. In
Q-learning, the values of each state-action pair are expressed in a table called a Q-table, yet there is a
scalability issue with this approach when the number of states and actions increases (Mason & Grijalva,
2019). In order to address such limitations, a common solution is to replace the Q-table with a function
approximator, such as a neural network, as was described in the DRL method. The input to the neural
network in this case is the state of the environment and the output is the Q-value for each action. Thus, the
use of neural networks allows for scalability and efficiency when handling particularly large state spaces
(Mason & Grijalva, 2019).

As various research papers suggest, one of the areas of building energy management, in which
reinforcement learning has been successfully used is heating, ventilation, and air conditioning (HVAC)
control. In their overview of recent literature on energy management focused on HVAC, Mason &
Grijalva (2019) outline that the typical environment states for the reinforcement learning algorithms
include factors like time of day, outdoor temperature, indoor temperature, weather forecast, and
occupancy, and typical reinforcement learning actions include temperature set points, airflow control, and
heating or cooling control. In addition, the rewards are typically computed based on energy cost, thermal
comfort, or their combination (Mason & Grijalva, 2019).

One example of how Q-learning can be applied to the optimization of HVAC systems can be found in the
study conducted by Chen et al. (2018), where a model-free Q-learning approach was utilized to make
optimal control decisions for HVAC and window systems in order to minimize both energy consumption
and thermal discomfort. After conducting the relevant case studies in Miami and Los Angeles, the authors
noted a superior performance of reinforcement learning control. Their model achieved 13% and 23%
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lower HVAC system energy consumption, and 62% and 80% lower discomfort degree hours compared to
heuristic control, which required knowing the specifications of individual buildings. To further illustrate
the implementation of deep reinforcement learning, it is necessary to highlight the 2017 study conducted
by Wei et al., in which the authors utilized an artificial neural network to approximate the Q-value that
estimates the control actions. Thus, the deep reinforcement learning algorithm applied to the data-driven
HVAC control resulted in more effective cost reduction than the conventional Q-learning method.

In addition to HVAC control optimization problems, reinforcement learning can be applied to water heater
optimization problems as well since they consume a significant amount of energy as well. As Mason &
Grijalva (2019) point out, when it comes to the objective of reducing energy costs by controlling the
water heater's usage, the typical state variables include the time of day, current water temperature, and
forecasted usage. The action that the reinforcement learning agent makes is normally to turn the heater on
or off, and the reward given to the agent is the electricity consumption (Mason & Grijalva, 2019).

In contrast to the previous model-free approaches examined, it is important to discuss the 2018 study done
by Kazmi et al., in which a model-based reinforcement learning algorithm was used to optimize the
energy efficiency of hot water production. Interestingly, in this particular scenario, a model-based
approach was utilized since the model-free controllers would need more data to achieve the same
performance level. Overall, the authors concluded that a model-based controller was able to reduce the
energy consumption by almost 20% for a set of 32 Dutch houses with no loss of occupant comfort, which,
if extrapolated to a year, has the potential to reduce household energy consumption by up to 200 kWh
(Kazmi et al., 2018).

In addition to dealing with standalone problems of HVAC or water heater controls, reinforcement learning
methods can be used to solve a complex set of problems related to the controls of the home energy
management systems. Such systems often include multiple appliances, lighting, photovoltaics (PV), and
batteries (Mason & Grijalva, 2019). Of course, this is a much more complex reinforcement learning
problem, in which multiple elements need to be considered in order to reduce the overall energy
consumption. The states for the reinforcement learning algorithm in this case generally consist of the time
of day, temperature information, electricity prices, grid load, and the current usage state of the various
appliances meanwhile the actions available are similar to previously discussed problems, which is turning
a device or an appliance in the system on or off (Mason & Grijalva, 2019).

The use of deep reinforcement learning can be further illustrated by the study conducted by Lissa et al.
(2021), in which a DRL algorithm was used for indoor and domestic hot water temperature control with
the aim of reducing energy consumption by optimizing the usage of PV energy production. The results of
the study demonstrated that the proposed deep reinforcement learning algorithm combined with the
dynamic setpoint achieved on average 8% of energy savings compared to a rule-based algorithm, reaching
up to 16% of savings over the summer period, without compromising the comfort temperatures (Lissa et
al., 2021). Moreover, the authors of the study pointed out that the renewable energy consumption was
9.5% higher for the deep reinforcement learning model compared to the rule-based, which suggested that
less energy was consumed from the grid.
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To conclude, there are additional research studies that examine how the application of reinforcement
learning within the individual dwelling can be beneficial for energy optimization and the load of the entire
grid. Therefore, Mason & Grijalva (2019) suggest that based on the current studies, there is a high
potential for utilizing reinforcement learning methods to significantly reduce the electricity costs for the
grid.
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3. DRL Research Design and Methodology

3.1 Application of DRL on Energy Cost Optimization

The overarching goal of this thesis is to explore how a deep reinforcement learning model can be
implemented in order to control a heating system in a way that would optimize energy costs while
maintaining comfortable indoor temperatures. Deviating from the more traditional and costly engineering
techniques, which required a physical modeling of the building's thermodynamics, this study takes an
approach that utilizes sensor-based data instead to supplement the reinforcement learning setup. The aim
behind this methodology is to create a model that can be flexible enough to be scaled to other buildings
without extensive data requirements and that is less costly to implement. Ideally, a model could be easily
fit to existing buildings with simple sensors being the only requirement, compared to simulation-based
methods that require the physical aspects of the building to be modeled.

To conclude, the research question for this study is as follows:

RQ: Can a deep reinforcement model lower the energy cost of a single household?

3.2 Research Methodology

3.2.1 Overview

In order to find a solution for the energy cost optimization problem specified and answer the research
question, several components were required to build a custom deep reinforcement learning algorithm.
First, a neural network was built based on the historical sensor data from the dwelling for the purpose of
predicting the resulting indoor temperature based on indoor and outdoor temperatures and the current
status of the heating system. Both feedforward and recurrent neural network types were used to build two
separate DRL models.

Next, a custom reinforcement learning environment was built using the OpenAl Gym package. Within the
custom environment, the states, actions, and rewards of the model were specified. Once the custom
environment was built, the reinforcement learning model was ready to be trained.

Lastly, a Deep Q-Network algorithm was employed by combining the resulting Q-Learning reinforcement

learning algorithm with a deep neural network, so that the optimal actions could be found. The steps
involved in the custom deep reinforcement learning process are depicted by Algorithm 1.

15



‘| Algorithm 1 Deep Reinforcement Learning with Indoor Temperature Simulation. ‘|

Build a neural network for indoor temperature prediction
Create a custom RL environment
Initialize the custom RL environment
Repeat (for each episode)
Initialize state s
Initialize counter ¢
repeat
Choose action « from s using Boltzmann policy
Take action @
Predict indoor temperature using action & state s, historic outside temperature[c]
Update state (s")
Calculate reward (7°)
until ¢ is terminal
end

3.2.2 Data Collection and Selection

The dataset consisted of hourly observations taken between 00:00 of October 20, 2020, to 23:00 of April
30, 2022, for a total of 13,392 observations (558 days) over the period of 19 months. The dataset was
provided by Sensative AB, a company located in Lund, Sweden. Sensative AB primarily produces sensor
strips for consumer and commercial use, and also offers a Digitalization Infrastructure Management
System (DiMS) that supports the organization of smart home devices. The sensors were placed in several
locations around a specific residential home located in Lund. Since these sensors have been in place for
several years, the authors of this study were not involved in the collection of the data. Similarly, the date
range of the sensor data was limited to the amount of time the sensors had physically been attached to the
building. However, the selection of variables provided was agreed upon at the commencement of the
thesis.

To prepare the dataset to be used, several data wrangling tasks were made and some variables were
removed. Table 2 details the final variables within the dataset.

Variable Description
Date & Time Date and time of each hourly observation
Outdoor temperature from the weather service The hourly outdoor temperature in °C from the house

area provided by the SMHI

Heating switch status Binary variable indicating whether the switch was on
or off for the majority of the hour (>=0.5 is on)

Average indoor temperature The hourly average of all indoor temperatures in °C

Electricity price The hourly price of electricity in Euro/MWh

Table 2. Variables within the final version of the dataset used.
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For the indoor temperatures, sensors were placed in seven locations throughout the home, and have thus
gathered various temperatures. Figure 4 shows boxplots of the temperatures in the different rooms. For
this study, the average indoor temperature was taken across all rooms each hour to produce a single
indoor temperature reading.

Indoor Temperature Distribution by Room

1y
T T

15

The average temperature inside
the house is 19.66 °C

Indoor Temperature in °C

10

Amy’s Room Bathroom Guest Room Line’s Room Living Room Entrance Kitchen

Figure 4. Boxplots of the temperature readings in each location as gathered by sensors.

The outdoor temperatures were gathered by a single sensor placed outside of the dwelling. As can be seen
in Figure 5, compared to the outdoor temperatures provided by the SMHI for the same time frames, the
sensor data values were, on average, lower by 0.17°C, meaning that the reading is very accurate.
However, due to the limited availability of the outdoor sensor data, which started in October 2021 instead
of October 2020, the outdoor weather data from the SMHI was used instead and the outdoor sensor data
was removed.

Outdoor Temperature Difference between Sensor and Weather Service

0.4
0.3

0.2 The average temperature difference between the

outdoor sensor and the weather service is-0.17 °C
0.1031
0.1

0.0

Average

-0.2186

Average Outdoor Temperature Difference in °C %

0.4

-0.3970
November 2021 December 2021 January 2022 February 2022 March 2022 April 2022

Date

Figure 5. Sensor vs Weather Service Measurements of Outdoor Temperature.

17



To further understand the outdoor temperature fluctuations, Figure 6 below shows the average
temperature per month from October 2020 to April 2022.

Outdoor Temperatures by Month
Outdoor Temperature ..

20
-0.09 20.12

15

11.31

8.03
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Average Outdoor Temperature in °C
[
)
4.50
4.29
2.02
3.72
4.00
3.68

0.84

D
o
3
October 2020 February 2021 June 2021 October 2021 February 2022
Date

Figure 6. Average outdoor temperature each month from October 2020 to April 2022.

In addition, the electricity prices were gathered in order to be able to compare the actual cost incurred by
the heating system throughout the chosen date range with the proposed cost given by the output from the
models. As seen in Figure 7, the electricity price has continued its upward trend from Figure 1.

Electricity Price Trend: October 2020 to April 2022
180
160
140
120
100
80

60
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Figure 7. Average price of electricity (in Euro per MWh) per month.
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The manual switch controls of the house originally indicated the proportion of the hour wherein the
heating system was turned on. To simplify the input from decimal to binary, the values have been
transformed to 1 if the heat was on for half an hour or more, and 0 if less than half an hour. The mean
action would then indicate the average proportion of time that the heating system is on during a given
timeframe. For example, if the mean action at 08:00 is 0.7, it would indicate that the heating system was
turned on 70% of the hour, or alternatively that out of all the 08:00 values 70% of them showed the
heating system being on. In Figure 8 the mean action across all hours of the day is shown in conjunction
with the average electricity price throughout the day. It is clear that the electricity prices are highest when
usage is also high, shown by the mean action being over 70% at around 08:00 and 17:00.

Hourly Electricity Price and Mean Action - Manual Control
Hour of the Day Electricty Price Range

¥
47.34 112.38
0.7

0.6
0.5
0.4
0.3
0.2
0.1
0.0

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

100

[es]
o
Mean Action - Manual Control

N
s}

Average Electricty Price (Euro per MWh)
(2]
o

n
o

o

Figure 8. Electricity price and mean action per hour.

From the exploration of the available dataset, it can be concluded that considering a strong trend in the
increase of electricity prices and the fact that the bid prices are the highest during the peak hours, there is
a need for a method that would help reduce the cost of electricity in the household.

3.2.3 Neural Networks for Indoor Temperature Estimation

In this thesis, the ideas for the use of historical sensor data were greatly inspired by the study done by
Natale et al. (2022) since it used historical data to train physically consistent neural networks used in
simulation environments in order to assess the performance of DRL agents for zone temperature control.
Thus, the feed-forward and recurrent neural networks in this study are also trained on the historical data
collected using sensors. By learning from patterns in the sensor data, the network simulates the indoor
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temperature behavior of the dwelling during different seasons, thus avoiding the manual modeling of the
physical properties of the building. This approach was taken to circumvent the need for live
implementation of the reinforcement learning model directly in the dwelling in question. Had live
temperature readings been available to the RL model, then this neural network component for temperature
estimation would not have been necessary.

After the neural network is trained on historical data and has “learned” the typical behavior of the house’s
temperature changes, it is used in the reinforcement learning environment for the purpose of making a
prediction of the indoor temperature based on the environment state (indoor temperature and outdoor
temperature metrics) and the action taken by the agent. Thus, the neural network helps to simulate a
real-time behavioral reaction of the dwelling based on the environment conditions and the action, which
the agent decided to take.

For this study, both a feed-forward network and a recurrent neural network were used for the temperature
prediction within the custom RL environment. Specifically, two different RL models were built: one RL
model was built with a feed-forward neural network, and the other RL model was built using a recurrent
neural network. These two RL models and two neural networks use the same dataset, but their results are
independent of each other.

The feed-forward neural network was trained on four inputs: switch status, outdoor temperature, indoor
temperature from the past 1 hour, and the indicator variable for the month (e.g. September is 9). The
structure of the network was relatively simple as it contains an input layer, one hidden layer, and an output
layer. For the hidden layer, the Rectified Linear Unit (ReLU) was chosen as the activation function,
followed by the output layer with one output: estimated indoor temperature. The summary of the structure
of the network built using TensorFlow and Keras packages and its parameters can be found in the Figure
9 below:

Model: "sequential"

Layer (type) Output Param #

dense (Dense)

dense_1 (Dense)
dense_2 (Dense)
Total params: 161

Trainable params: 161
Non-trainable params: 0

Figure 9. Summary of the feed-forward neural network used for indoor temperature estimation.
To account for the heating season and achieve a better physical consistency in predictions, the model was

trained on the subset of data covering September 2021 to April 2022 with a total of 5,808 observations.
After 200 epochs, the test mean absolute error achieved was 0.16 (measured in °C).
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Since the nature of the dataset is sequential, a recurrent neural network was also built to model a more
accurate thermodynamics behavior of the building. Since temperature changes often trend in a steady
direction as the days warm the spaces and the nights cool, this aspect needs to be considered for
predicting the indoor temperature required for the custom environment. The network consisted of six
layers presented in Figure 10 below. The model uses Long Short-Term Memory Network (LSTM), which
is a variation of a recurrent neural network useful in predicting the long sequences of data.

Model: "sequential"

Layer (type) Param #

lstm (LSTM) 120, 120)
dropout (Dropout) 120, 120)
lstm_1 (LSTM) 120)
dropout_1 (Dropout) 120)
dense (Dense)
dense_1 (Dense)
Total params: 176,177

Trainable params: 176,177
Non-trainable params: @

Figure 10. Summary of the recurrent neural network used for indoor temperature estimation.

Since the LSTM was used, the model was trained on the full dataset covering October 20, 2020 to April
30, 2022 with a total of 13,392 observations. The network had a 5-day lookback period (120
observations). After 50 epochs, the test mean absolute error achieved was 0.17 (measured in °C).

Therefore, in order to avoid complex and costly physics-based modeling, such as creating a
thermodynamic model of the building, this study will use both feed-forward and recurrent neural
networks to estimate the indoor temperature based on historical sensor data collected. Such an approach
will not only aid in extending the model to other types of dwellings and buildings, but also will speed up
the implementation process if the data collection sensors have been previously installed.

3.2.4 Custom Reinforcement Learning Environments

Environment and Agent

Reinforcement learning setup requires an environment and an agent which interact with one another. The
agent, for whom the environment is its "home world", is able to interact with the environment by
completing some actions, however, its actions cannot influence the rules or dynamics governing the
environment (Metelli, 2022). The agent receives information about the current state of the environment
and performs an action. This action makes the environment transition to a new state. In addition, the
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environment also sends a reward signal to the agent, which serves as feedback whether the action taken
was beneficial or not (Metelli, 2022).

To further exemplify, a widely used environment for developing Al agents for Atari 2600 games such as
Pong (see Figure 11), Breakout, Spacelnvaders, Seaquest, and Beam Rider is the Arcade Learning
Environment known as ALE (Mnih et al., 2013). For instance, this environment was used by Mnih et al.
back in 2013 when they presented the first deep learning model to successfully learn control policies
directly from high-dimensional sensory input using reinforcement learning.

With an increased popularity of reinforcement learning methods,
there was a need for a toolkit for creating and comparing
reinforcement learning algorithms. OpenAl Gym can be considered
such a toolkit with its open-source interface for reinforcement
learning tasks (OpenAl, 2022). OpenAl Gym not only offers an
already predefined suite of environments, like Atari, which has been
integrated with the Arcade Learning Environment, but also allows
for customization of the environments. This flexibility within an
interface is helpful with benchmarking and standardization, and
makes it easier for researchers and developers to reproduce results
(OpenAl, 2022).

Since there is no predefined suite of environments available for
addressing the problem of this thesis, a custom reinforcement
learning environment was built using the OpenAl Gym package in
Python. In addition, Stable Baselines, a set of improved
implementations of Reinforcement Learning algorithms based on
OpenAl Baselines, were used to take advantage of common code
style and to simplify the code. An agent in this case is single and
artificial, representing the model which is being designed and, thus,
replacing the concept of the person who would manually control the

state of the heating system by turning it on or off. Figure 11. Example of the
interface for the Pong game.
States and Actions

Every scenario an agent faces in the environment is a state. For instance, in the research study conducted
by Lissa et al. (2021) on deep reinforcement learning for home energy management system control, the
state-space s consisted of outdoor and indoor temperature (°C), domestic hot water tank temperature (°C),
photovoltaic production (kW), and hour of the day. However, in this thesis the state s setup is similar to
the one described in the research conducted by Natale et al. (2022), where the state s observed by the
agents at each time step was composed of the input features of the physically consistent neural networks,
such as zone temperatures (of the controlled and neighboring room), ambient conditions (temperature and
solar irradiation), and time information. Thus, in this environment, the state s observed by the agent is
comprised of the input features of the neural networks discussed in Section 3.2.3.
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Next, it is necessary to specify the actions that can be taken by the agent. These actions are the agent’s
methods, which allow it to interact and alter the environment, and, therefore, transfer between the states.
The decision of which action to take is made by the policy z, which can be viewed as a prescription or a
strategy indicating which action a to take in every state s (Metelli, 2022). In this study, the action space is
discrete, meaning the agent can either turn on or turn off the heating system.

Episodes and Rewards

An episode comprises all states between the first and the last state of the environment, and the agent’s
goal is to maximize the total reward it obtains during an episode. Furthermore, each episode can be
considered as a separate “round of the game” for the agent “to play”. The selected episode duration in
various research studies depends on the simulation setup and the heating system. For example, in the
research study conducted by Lissa et al. (2021), the episode duration is 8 months (from May to
December), after which the episode is finished and the environment is restarted (2020). However, in their
research setup of the radiant heating system, Zhang & Lam (2018) made the duration of one training
episode three months (from January to March) in order to account for the heating season. Thus, based on
the availability of historical data and to account for the heating season, in this study the selected episode
length is from October 1st, 2021 to April 30th, 2022.

The final step in configuring this custom environment is to create an appropriate reward function. A
reward is a numerical value received by the agent from the environment as a direct response to the agent’s
actions. As was mentioned earlier, the maximization of the total reward is the ultimate goal of the agent
during the episode. The rewards can be designed to suit different purposes. For example, a reward can be
positive if the agent's action has been helpful in achieving the goal, negative when a certain situation
needs to be deterred, or zero, possibly indicating a status-quo (Fuchida, Aung & Sakuragi, 2010). The
reward function for this study has been inspired by research conducted by Natale et al. (2022) and Wei et
al. (2017), since both took into account the total penalty of temperature violations. In addition, the reward
function designed by Wei et al. (2017) considers the energy cost of the control action. Both studies use
negative rewards since the deep reinforcement learning algorithm will try to maximize the total reward.

Therefore, as shown in the reward equation below, the deep reinforcement learning algorithm in this study
will attempt to obtain as high of a reward as possible (closest to 0), thus balancing the objective of
minimizing energy cost with the goal of maintaining the temperature within the desired comfort range
(18°C to 22°C). Since the electricity price is given in Euro/MWh and the hourly usage is measured in
kWh, the price is scaled down by 1000.

Reward = — 0.001(electricity cost) — max{TL - T, 0} — max{T — Tu’ 0}
TL = Lower temperature bound
TU = Upper temperature bound
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3.2.5 Deep Reinforcement Learning Setup

The final aspect of this custom deep reinforcement learning model is to “upgrade” from the ordinary
reinforcement learning process to deep reinforcement learning process. As was previously mentioned, it
was Mnih et al. from DeepMind Technologies who first introduced the use of deep neural networks in
Q-learning back in 2013.

Q-learning is a model-free and an off-policy reinforcement learning method, which creates a matrix called
Q-table with Q-values, which are an estimation of how beneficial it is to take a particular action at a
particular state (Mason & Grijalva, 2019). An agent can “refer to” this Q-table (see Figure 12) to
maximize its reward in the long run. This approach is only practical for smaller environments with action
and states spaces both being discrete, and can easily become infeasible as the number of states and actions
increases (Lissa et al., 2021).

Action

0 0 -1 0

0 0 100 -1
State

-1 0 -1 100

0 100 -1 0

Figure 12. Sample Q-table containing Q-values, in which the maximum expected future reward for each
action at each state is displayed.

Combining reinforcement learning with an artificial neural network to replace the Q-table is known as
Deep Reinforcement Learning or Deep Q Network (DQN) (Mason & Grijalva, 2019). Since artificial
neural networks are universal function approximators, one of the possible solutions to the dimensionality
curse is to replace the Q-table by using an artificial neural network to estimate the Q-values (Lissa et al.,
2021). As can be seen in Figure 13, this approach can manage larger state-action spaces, thus bringing
more possibilities when working with a larger number of variables and observations.
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Figure 13. Deep Q-Learning Approach

In this study, the action space used is discrete and consists of only two actions (on or off), however, the
state space is continuous. Thus, these conditions require the use of the Deep Q Network (DQN) approach.

The two deep reinforcement learning models - one using feed-forward neural network and the other using
recurrent neural network for indoor temperature estimation - are created using Keras RL package.
However, in order to be able to compare both methods, the structure of the neural network used in the
DQN is the same and is displayed in Figure 14 below. The activation function is Rectified Linear Unit
(ReLU), and the output layer contains two outputs representing all possible actions.

Model: "sequential_ 1"

flatten (Flatten) (None, 1)
dense_3 (Dense) (None, 8)
dense_4 (Dense) (None, 16)

dense_5 (Dense) (None, 2)

Total params: 194
Trainable params: 194
Non-trainable params: @

Figure 14. Deep Q Network Used.

Next, using Keras RL package guidelines, a DQN agent was created. Instead of using a e-greedy policy as
was suggested by Lissa et al. (2021) to address the exploration and exploitation dilemma, the Boltzmann
policy was used. Reinforcement learning process is plagued by the exploration and exploitation dilemma
because the agent needs to balance between exploring the environment further in order to find new ways
to gain rewards and exploiting previous knowledge by adhering to paths that have historically led to
rewards (Beyer et al., 2019). Compared to the popular e-greedy approach, which combines a greedy
method with occasional random decisions with probability ¢, the Boltzmann policy was used because it
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involves selecting an action with weighted probabilities based on expected rewards (Masadeh, Wang &
Kamal, 2018).

In addition, the sequential memory, which is used by the DQN agent to store information about the
environment's states, actions, and rewards, has been specified to store the agent's experiences for the
length of 3 episodes. Both DRL models are trained on the subset of the data representing the heating
season, which is October 1st, 2021 to April 30th, 2022. Overall, each model was trained for 6 episodes.

3.3 Source Critical Consideration

The data collected for this study was provided by Sensative AB, a private limited company located in
Sweden. Specifically, the indoor temperatures and heating switch actions were measured by sensors built
by Sensative, the outdoor temperatures were collected from the Swedish Meteorological and Hydrological
Institute (SMHI), and the electricity prices were gathered from Nord Pool AS. The latter sources can be
considered highly trustworthy and accurate. As the sensor data were not recorded with academic
stringency in mind, there may be erroneous values in recording, reporting, or collating. Lastly, the authors
declare that the results of this study have not been influenced by the collaboration with Sensative AB.
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4. Empirical Results from DRL Models

The aim of this study was to address to main research question:
RQ: Can a deep reinforcement model lower the energy cost of a single household?

In order to investigate this, two separate DRL models were built with the aim of reducing energy costs.
The first model used a feed-forward neural network (FFNN) to make the temperature predictions used in
the custom environment, and the second RL model used a recurrent neural network (RNN) to make the
same prediction. In order to specifically isolate the ability of the RL agent to affect indoor temperatures
through heating (i.e. not through cooling, since the system in the house is not capable of that), the DRL
models were run on an episode only from September 2021 to April 2022. Overall, each model was trained
for 6 episodes.

Additionally, to account for the recurrent neural network needing a designated period of time to be
trained, leading to actions starting mid-month, the final actions and energy cost outputs considered were
taken from October 2021 to April 2022 across all three scenarios: the historical information about manual
control of the heating, DRL using feed-forward neural network for indoor temperature predictions, and
DRL using recurrent neural network for indoor temperature predictions.

The results will be evaluated using the following four aspects:
1. Total cumulative reward achieved during each episode
2. Mean action of the DRL agent during each episode
3. Indoor temperature control
4. Opverall energy cost-savings

Overall, it was shown that the DRL agent was able to lower not only energy costs but also energy
consumption, while maintaining the appropriate indoor temperatures.

4.1 Reward Analysis

Since the agent has an objective to maximize the total reward accumulated per episode, considering the
specified reward function which accounts for both electricity price and comfort temperature violations, it
would be preferred to have a total episode reward as close to 0 as possible. The closer the reward is to 0,
the lower would be the overall energy cost of the episode.

Reward = — 0.001(electricity cost) — max{TL - T, 0} — max{T — T, 0}
TL = Lower temperature bound
TU = Upper temperature bound

As can be seen in the Table 3 below, each FNN- and RNN-based DRL model had 6 training episodes with
5,807 and 5,688 steps respectively to account for the heating season. It can be seen that both algorithms
managed to achieve a quite similar reward. However, the DRL algorithm which used RNN performed
relatively better by achieving an average reward of -619.39.
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Episode Summary Table

Network Type
Epsiode Steps Episode Reward Mean Action
Episode FFNN RNN FFENN RNN FFNN RNN
1 5,807 5,688 -635.61 -619.36 38.40% 37.60%
2 5,807 5,688 -632.16 -619.55 50.00% 51.40%
3 5,807 5,688 -634.80 -619.36 51.50% 52.20%
4 5,807 5,688 -632.16 -619.36 50.40% 51.20%
5 5,807 5,688 -632.16 -619.36 49.60% 50.80%
6 5,807 5,688 -632.26 -619.36 51.00% 51.70%
Average 5,807 5,688 -633.19 -619.39 48.48% 49.15%

Table 3. Summary of steps, rewards, and mean action for every episode for both DRL models with FFNN
and RNN temperature prediction models.

In addition, the DRL algorithm which used FFNN had a larger variability of cumulative rewards per
episode. Its standard deviation over 6 episodes was 1.58 whereas the standard deviation of the reward
when RNN was used was 0.08, indicating that the DRL models using RNN were able to find an optimal
combination of actions faster and more reliably.

4.2 Action Analysis

The action space in the current problem setting is discrete, with 0 indicating that the heating should be
turned off and 1 indicating that the heating is turned on. Looking at the sum of all actions gives the total
hours that the heating system is on over the given episode, and in this way indicates what the total energy
consumption would be. Table 4 shows the total hours of heat consumption for both models across all
episodes. On average, the DRL agents were able to decrease the total energy consumption by 19.43%.

Total Hours of Heating Per Episode

Percentage Decrease from

Model Type Episode Total Hours of Heating Manual Control

Manual Manual Control 3,225

FFNN FFNN Episode 1 2,230 30.85%
FFNN Episode 2 2,524 21.73%
FFNN Episode 3 2,650 17.83%
FFNN Episode 4 2,594 19.56%
FFNN Episode 5 2,513 22.08%
FFNN Episode 6 2,593 19.59%

RNN RNN Episode 1 2,139 33.67%
RNN Episode 2 2,607 19.16%
RNN Episode 3 2,677 16.99%
RNN Episode 4 2,612 19.01%
RNN Episode 5 2,581 19.97%
RNN Episode 6 2,632 18.39%

Table 4. Total hours of heating used across each episode and the percent decrease from the manually
controlled hours.

28



By taking an average of the actions during an entire episode, the amount of time the heating was on
during an episode can be seen, which shows the proportion of energy used. For instance, if the mean
action of an episode was 0.5, it would indicate that the heating was on for exactly half the time across the
entire episode. Although the reward function for the DRL was not tuned for optimizing the mean action
(i.e. reducing usage as much as possible), it is still interesting to see that the models were able to reduce
energy consumption overall compared to the manual control.

For readability, the values have been transformed to percentage values indicating the percentage of time
that the heating system was on. A summary of the mean action for the last episode and an overall average
are presented in Table 5. Overall, it can be observed that the DRL model using RNN had a higher overall
mean action compared to the model using FFNN. Both algorithms start with a relatively small value of
mean action (around 38%) and then reach the value of around 51% in the last training episode. Since both
algorithms have similar settings that balance exploration and exploitation, the changes in mean actions are
quite similar.

In order to study the research question from different aspects, it is interesting to look at the difference
between actions taken by a person versus the DRL algorithms. For the purpose of comparison, only the
actions of the last training episode are taken.

Mean Action Monthly Comparison

Month of Date &

Time Mean Action - Manual Mean Action - FFNN - Episode 6 Mean Action - RNN - Episode 6
October 2021 58.71% 53.09% 52.02%
November 2021 55.67% 50.83% 53.89%
December 2021 73.47% 51.61% 50.27%
January 2022 70.85% 49.73% 51.61%
February 2022 58.97% 52.08% 51.34%
March 2022 62.53% 48.92% 52.28%
April 2022 62.78% 50.56% 50.69%
Average 63.38% 50.96% 51.73%

Table 5. Mean action per month for episode 6.

As can be seen in Table 5, when it comes to the DRL algorithm using FFNN, the percentage of time per
month that the heating system was on was an average of 50.96% instead of 63.38% when it was
controlled manually. Similarly, the DRL method using RNN had an average of 51.73%. In a simulated
environment of the dwelling across all heating months both DRL methods were able to keep the switch
time relatively stable around the same value compared to the human action.

4.3 Indoor Temperature Analysis

Keeping the indoor temperature within a band of 18°C to 22°C was one of the main goals of the DRL
agent. The results show that the final DRL model was able to remain in this temperature range throughout
every episode. Across the six episodes, the average indoor temperature for the DRL models with FFNN
was 19.98°C, and the average temperature for the DRL models with RNN was 19.61°C. Figure 15 shows
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a box plot of indoor temperatures resulting from the manual control and the different DRL agents for one
of the episodes. It is apparent that the range of temperatures is much smaller for the DRL models.

Indoor Temperature Distribution
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Figure 15. Box plot showing the indoor temperature distribution of the manual control, FFNN DRL
model, and RNN DRL model.

The indoor temperatures of the DRL models’ 6th episode can also be seen compared to the manual
controlled temperatures in Figure 16 and Figure 17. In each graph, the temperature trend can be seen to
decrease slightly until January before it rises again towards May, reflecting the seasonal changes of winter
and spring. Using the DRL agent, the indoor temperature is maintained at a steadier rate compared to the
fluctuations from manually controlling the heating system. This could be interpreted to mean that the
DRL model was more successful in maintaining an even temperature compared to manually turning the
heat on and off. Contrastingly, this could also be due to the neural networks’ predictions of indoor
temperature not being as erratic as the actual temperature measurements. Nonetheless, it is clear that the
DRL model is successful in keeping the temperatures within the desired temperature band.
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Figure 16 and 17. Model temperatures for Episode 6 plotted against the actual temperatures.
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4.4 Cost Analysis

The main aim of this study was to see whether the DRL agent could decrease electricity costs. Across all
episodes, it was found that the agents were able to achieve an average cost savings of 27.58% with the
FFNN DRL model, and 26.60% with the DRL model using RNN compared to the manual actions of the
homeowner. For every month, a reduction in cost was successfully achieved, which means that the DRL
agent was able to maintain the indoor heat while minimizing cost. Table 6 shows the total costs per month
in episode 6, as well as the percent decrease that was achieved between the DRL models and the manual
control. Across the models, the lowest monthly percentage decrease was 2.83% and the highest achieved
monthly decrease was 32.00%. The DLR model using FFNN was able to lower costs more than the RNN
DRL model. This could be due to the differences in how well the NN were able to accurately update
resulting temperatures. Nonetheless, the cost savings were apparent across both models for every episode.

Monthly Cost Comparison

Month of Date & Percent Difference Percent Difference
Time Cost of Manual Control  Cost of DRL with FFNN Cost of DRL with RNN between FFNN and between RNN and

Manual Manual
October 2021 €400.03 €293.63 €292.38 -26.60% -26.91%
November 2021 €306.71 €287.61 €298.04 -6.23% -2.83%
December 2021 €1,174.15 €840.29 £€840.00 -28.43% -28.46%
January 2022 €706.36 €480.32 €492.53 -32.00% -30.27%
February 2022 €439.25 €325.85 €335.46 -25.82% -23.63%
March 2022 €874.09 €636.88 €686.75 -27.14% -21.43%
April 2022 €629.02 €499.04 €481.47 -20.66% -23.46%
Grand Total €4,529.61 €3,363.62 €3,426.63 -25.74% -24.35%

Table 6. The monthly heating costs for each model in episode 6.
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5. Discussion and Critical Reflection

In order to critically assess the results achieved in this thesis, first, it is important to benchmark them
against the other research projects mentioned in the Literature Review section. This thesis was able to
show that deep reinforcement learning, combined with sensor data used for indoor temperature
simulation, is a promising method of achieving energy cost savings through heating system control. The
overall average cost savings of 25% and energy savings of 19% is in line with many previous studies
mentioned, such as Kazmi et al. (2018) with 20% energy savings, Lissa et al. (2021) with a high of 16%
savings, and Chen et al. (2018) with between 13% and 23% savings. Similar to Natale et al. (2022) who
also used historical data paired with a neural network in order to conduct the custom environment, the
shared positive results are a boon to this specific methodology.

Moreover, it is necessary to highlight the consequences of employing feed-forward and recurrent neural
networks for indoor temperature estimation. It is essential to note that compared to Natale et al. (2022)
who used a specifically tuned physically-consistent neural network for their indoor temperature
predictions, the FFNN and RNN used in this study are not as accurate, and could have potentially caused
the results to be more on the optimistic side. Nevertheless, the results from the DRL agent still indicate
that deep reinforcement learning is a viable method for energy cost and consumption optimization.
Additionally, the usage of historical sensor data introduces a new level of flexibility when it comes to the
model-free methodology.

Of course, the study conducted in this thesis could be taken further to the real test environment of the
actual dwelling in Lund, Sweden. The real-world use of a trained DRL agent such as the one in this study
could be altered with minimum modifications to accept a live reading of the resulting temperature at a set
time interval and make a new decision based on that. This approach, in turn, would avoid the necessity of
predicting the resulting temperature and allow the DRL agent to directly interact with the real
environment.

Furthermore, the results of this study need to be considered in conjunction with the reward function that
was constructed. In this particular scenario with a single dwelling, the reward function was designed
specifically to minimize the cost of energy while respecting the desired indoor comfort temperatures.
However, the objective of the reinforcement learning algorithm can be potentially made more complex by
adding other parameters like energy consumption, the penalty for energy use, or additional scaling. The
reward function also adds flexibility in that it would be easy to tweak parameters such as target
temperature to suit the needs of each individual household.

Similarly, the states of the environment in this study were motivated by the availability of variables in the
dataset provided by Sensative AB, and were narrowed down to outdoor temperature, indoor temperature,
and the status of the heating system. However, the model can be enriched by adding supplementary
parameters like heating system readings; forecasted energy usage; other weather parameters, like
precipitation and wind speed; other sensor readings, like open window indicator or dwelling occupancy;
and grid load. Additionally, the control actions that were used in the models described in this thesis were
changed from decimal values to binary to simplify the model structure and ease the computational load,
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which led to the action space being discrete. However, changing the action space to continuous, by
making the control action represent the fraction of the hour that the system has to be on, could potentially
lead to better accuracy of the results and additional cost and energy savings.

Finally, the last item to remark on is the chosen model-free approach. In this thesis, the models were built
using the Deep Q-Network method since the action space was discrete and the state space was continuous.
However, other model-free reinforcement learning algorithms can be considered, such as Deep
Deterministic Policy Gradient (DDPG), Asynchronous Advantage Actor-Critic (A3C), or Proximal Policy
Optimization (PPO). To conclude, as in any machine learning problem, there are multiple model aspects
to be considered and various parameters to be tuned.
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6. Conclusion

Reinforcement learning has historically often been used in gaming and other virtual environments. Here,
we have shown that it can also be used on real-world data, and have successfully answered the question as
to whether a DRL agent can learn to lower energy costs. The departure from regular machine learning in
needing large amounts of data is provided by the flexibility of the custom environment in reinforcement
learning. This provides a rigorous base for the RL model to test out decisions and find the best actions.

On the other hand, the dependence of reinforcement learning models on the custom environment
introduces some challenges. The custom environments built in this study rely on neural networks to
update the current state of the environment. Since this neural network contains only a few variables, there
is a possibility that the environment is not as robust as it could be. In further research, improving the
performance of this neural network could lead to a better RL model. Alternatively, the neural network
could be forgone by allowing the custom environment to be updated directly by live sensor readings. In
this way, the RL model would have immediate access to the results of its actions, making for a more
robust model.

This study has explored the possibilities for reinforcement learning to be used in conjunction with sensor
data in a way that would ideally be more scalable and widely applicable to existing buildings. By
adopting the model, not only would the household energy costs go down, but the overall energy
consumption could also be reduced. If a similar result could be replicated across the board, a cost
reduction of 25% and usage reduction of 19% would make for significant savings on a macro level.
Although lofty, our research shows that the methodology holds promise for energy optimization problems.
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