
Pose classification of people

using high resolution radar

indoor

Anton Almqvist, Anton Kuusela

Master’s thesis

2022:E29

Faculty of Engineering

Centre for Mathematical Sciences

Mathematics

C
E
N
T
R
U
M

S
C
IE

N
T
IA

R
U
M

M
A
T
H
E
M
A
T
IC

A
R
U
M

Lunds Tekniska Högskola

Master’s Thesis

Pose classification of people using high
resolution radar indoor

Anton Almqvist & Anton Kuusela

June 3, 2022

Supervisors:
Santhosh Nadig
Anders Skoog

Alexandros SopasakisLU

i

Abstract

Video cameras are the primary equipment used for indoor surveillance. There are however
areas where alternatives are needed as the use of cameras is sensitive or forbidden, e.g. in
homes, bathrooms or dressing rooms. A more privacy-preserving method is using a radar.
The interest in radar-based surveillance indoors has increased in recent years with the
development of high resolution radar sensors that are better at handling the challenges of
indoor environments.

This thesis proposes a classification pipeline which aims to find people in a radar point
cloud and classify their pose as either standing, sitting or lying down. Four classification
models are implemented: one Random Forest Classifier, two PointNet-based classifiers
of different sizes and a baseline model for comparison. These models are evaluated on
realistic data from a home-like environment.

All classifiers performed better than the baseline model, with the smaller PointNet-based
classifier achieving the best performance. The results show that it is feasible to use radar
for simple pose classification in real-world environments.

Keywords

indoor radar, FMCW radar, point cloud, classification, Machine learning, Deep learning,
PointNet

ii

iii

Acknowledgements

We would like to thank our industry supervisors Anders Skoog and Santhosh Nadig for
all the support and guidance throughout this thesis.

We also want to thank our supervisor at Lund University, Alexandros Sopasakis for the
support in technical questions and comments on the report.

iv

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Prior Work . 2

1.3.1 Object classification on high resolution radar data 2
1.3.2 Deep learning on point clouds . 2
1.3.3 Point Cloud Classification Datasets 3
1.3.4 Object classification on radar point clouds 3

2 Theory 5
2.1 Radar . 5

2.1.1 FMCW Radar . 5
2.1.2 Range of targets . 7
2.1.3 Velocity of targets . 7
2.1.4 Angle of arrival . 8
2.1.5 Fast Fourier Transform . 8

2.2 Point clouds . 9
2.2.1 Clustering . 10
2.2.2 Density-Based Spatial Clustering of Application with Noise 11

2.3 Random Forest Classifier . 13
2.3.1 Decision trees . 13
2.3.2 Random forest . 14

2.4 Artificial Neural Network . 15
2.4.1 Multi-layered perceptron . 15
2.4.2 Acitvation functions . 16
2.4.3 Optimization . 17
2.4.4 Regularizers . 17
2.4.5 Dropout . 18

2.5 Convolutional Neural Network . 19
2.5.1 Convolutional layer . 20

2.6 Dimensionality reduction . 20
2.6.1 T-distributed stochastic neighbor embedding 21

2.7 Hidden Markov Models . 22
2.8 PointNet . 24

vi

CONTENTS CONTENTS

3 Data 27
3.1 Radar setup . 27
3.2 Recordings . 27

3.2.1 Data sets . 28
3.2.2 Test set . 29

3.3 Description of Point Clouds . 29
3.4 Annotation . 30
3.5 Data augmentation . 31
3.6 Quality of data . 31

4 Methods 33
4.1 Overview of Implementation . 33
4.2 Data processing . 35

4.2.1 Rotation and translation . 35
4.2.2 Filtering points . 36
4.2.3 Frame Squashing . 37

4.3 Clustering . 38
4.4 Tracking . 39
4.5 Classification . 39

4.5.1 Model 1 - Naive Classifier . 39
4.5.2 Model 2 - Random Forest Classifier 40
4.5.3 PointNet Classifier . 41
4.5.4 Model 3 - PointNet with T-Net . 42
4.5.5 Model 4 - PointNet without T-Net 42

4.6 Temporal models . 43
4.6.1 Rolling Average . 43
4.6.2 Hidden Markov Model . 43

4.7 Evaluation . 44
4.7.1 Evaluation metrics . 45

5 Results 47
5.1 Classification per frame . 47

5.1.1 Model 1 - Naive classifier . 47
5.1.2 Model 2 - Random Forest Classifier 47
5.1.3 Model 3 - PointNet . 48
5.1.4 Model 4 - PointNet without T-Net 49

5.2 Temporal models . 51
5.2.1 Rolling Average . 51
5.2.2 Hidden Markov Models . 51

5.3 Visualizing the feature spaces . 52
5.3.1 Model 1 - Naive classifier . 52
5.3.2 Model 2 - Random Forest Classifier 53
5.3.3 Model 3 - PointNet . 53
5.3.4 Model 4 - PointNet without T-Net 54

6 Discussion 57

vii

CONTENTS CONTENTS

6.1 Limitations . 57
6.1.1 Data . 57
6.1.2 Model Robustness . 57
6.1.3 Dependency on clustering . 58

6.2 Computational complexity . 58
6.3 Hidden Markov Model Limitation . 58
6.4 Future Work . 59

6.4.1 Data . 59
6.4.2 Segmentation and clustering . 59
6.4.3 Classifiers . 60

7 Conclusion 61

A 67
A.1 Parameters for Random Forest Classifier-implementation 67
A.2 Tracking . 67

viii

CONTENTS CONTENTS

ix

Chapter 1

Introduction

1.1 Background

For indoor surveillance, video cameras are the standard equipment used to monitor rooms
and areas as they provide an easy way to see what is happening. But there are situations
where cameras cannot be used. Examples of this are bedrooms and bathrooms where
many people don’t want to be recorded by a camera. Since there are legitimate reasons
to monitor these kinds of areas it would be great to have a privacy retaining surveillance
method.

This is where a radar could be an alternative to cameras. A radar can output detections
in the form of point clouds which represent the physical objects moving in the area. These
point clouds contain less privacy-sensitive information about a person, making radar a
better alternative to video in sensitive areas. Using radar for indoor surveillance has its
challenges though.

Radar-based surveillance systems are mostly used outdoors as they perform well in open
spaces and retain their performance in conditions where cameras often struggle. This
includes rain, fog and difficult lighting conditions; radars work just as well in complete
darkness as in daylight. But for the indoor use case there are some difficulties in using
a radar. The biggest issue is that confined spaces usually contain many objects that can
act as reflective surfaces which in turn scatters the signal and gives noisy measurements.
Recently, radars with much higher resolution have been developed which could enable new
ways to use radar indoors. In this thesis we will examine methods to both find and give
information on people moving in an indoor environment.

1.2 Purpose

The purpose of this thesis is to create a data-processing pipeline and classification model
that can follow a person in a room and classify his or her pose over time using point cloud
data from a high resolution radar. The different poses that are examined are: standing,
sitting or lying down. These three classes are chosen because almost all human activity
can be classified into one of these poses.

1

1.3. PRIOR WORK CHAPTER 1. INTRODUCTION

The questions that this thesis seeks to answer is:

• How should point cloud data from a high resolution radar be processed to enable
classification of human poses?

• Can a model using a Random Forest Classifier reliably classify the pose of a human?

• Can a model using PointNet reliably classify the pose of a human?

1.3 Prior Work

1.3.1 Object classification on high resolution radar data

Object classification on high resolution radar data is a task which has seen some activity
recently, especially for automotive radar. A review article [1] lists a total of 23 articles
which have attempted this task, with very different approaches and mixed results. One
large difference between the articles is how the radar data is represented, which includes
occupancy grids, range-doppler-azimuth maps, micro-doppler signatures and point clouds.
Since most articles use their own datasets it is hard to say which representation of data is
best for deep learning purposes [1]. Since this thesis deals with point clouds from a high
resolution radar we will present the current state of deep learning on general point clouds
and point clouds generated from radar data.

1.3.2 Deep learning on point clouds

Utilizing deep learning for object classification on point clouds is an active task with a
lot of recent activity. Point clouds are unordered and irregular which makes it infeasible
to directly apply computer vision techniques on them, leading to a number of different
approaches on how to utilize deep learning on point clouds [2]. Review articles on the state
of deep learning on point clouds [3, 4, 5, 6] categorize the architectures slightly differently.
A general theme for these reviews is to separate models which operate directly on a point
cloud from methods which use a grid based approach where the point cloud is converted
into forms where deep learning methods from computer vision can be used.

The grid based approaches include models which first convert the point cloud into voxels,
”three dimensional pixels”, to then apply 3-dimensional convolutions on the voxels. One
problem with voxelization is the often sparse nature of point clouds - many voxels do not
contain a point [5].

Another grid based approach is the multi-view approach where a point cloud is trans-
formed into several two-dimensional ”images” which can be fed into two-dimensional Con-
volutional Neural Networks (CNN:s). A central problem for the multi-view approach is
how to fuse together the features from each view [5].

There also exists several models which operate on raw point clouds. These include Point-
Net, which is considered to be one of the most influential architectures for deep learning
on point clouds. PointNet differs from other most point cloud networks because it does
not extract features with convolutions but with a combination of multi-layer perceptrons

2

1.3. PRIOR WORK CHAPTER 1. INTRODUCTION

and max pooling layers [6]. Since we use a modified PointNet architecture the PointNet
is explained in more detail in Section 2.8.

1.3.3 Point Cloud Classification Datasets

There exists several datasets that are used for benchmarking. One of the most used dataset
is ModelNet40 which contains CAD models of common objects which can be turned into
point clouds by sampling the surface of the CAD model [4, 7]. This was the dataset used
for training in the original PointNet paper [8]. There exists several other datasets that are
used for the object classification task on point clouds such as ScanObjectNN, ScanNet,
SydneyUrbanObjects and ShapeNet [3]. The point clouds in these data sets are synthetic,
obtained from 3-dimensional scans of the real world using a RGB-D sensor (similar to the
Microsoft Kinect) [9, 10] or obtained with a Lidar [6]. Something to note is that none of
the commonly used datasets for object classification consists of radar data.

1.3.4 Object classification on radar point clouds

The more specific task of object classification on radar point cloud data can be seen in
many ways as a subtask of classification of general point clouds. There are some caveats
though: radar point clouds are generally more sparse than many of the point cloud datasets
used for training classification models [11]. Radar point clouds also only contain points
from the surface that the radar ”sees”, while some other point cloud datasets sample
points from all sides of the object [8]. Additionally, radar point clouds often only contain
the points in the scene that move. Classification with radar point clouds is therefore done
on objects that naturally move, like humans, cars, bikes etc. [1].

Most articles related to classification on radar point clouds mentioned in a review on
deep learning on mmWave radar by Abdu et al. [1] have automotive applications. The
non-automotive articles generally focus on human activity recognition, some examples of
activities that are included are boxing the air and doing squats.

In [12] the authors voxelize each point cloud, apply a 3-dimensional CNN on these voxelized
frames, flatten the output from the CNN and then apply a bidirectional LSTM on this
flattened output. The ”prediction” from the LSTM is then fed into a 5-way softmax which
gives a distribution over the 5 activities. By doing this they obtain a 92 % accuracy on
their activity recognition dataset which consists of five different activities. The subjects
perform the activity at a fixed distance in front of the radar.

In addition there are also some articles which attempt to recognize people based on their
gait (i.e. their way of walking) [13]. In [14] the authors use a quite heavily modified version
of the Pointnet architecture on radar point clouds to do this. The Pointnet architecture
is also successfully used to classify radar point clouds in [11], showing that it is feasible to
use Pointnet on radar data.

3

1.3. PRIOR WORK CHAPTER 1. INTRODUCTION

4

Chapter 2

Theory

2.1 Radar

Radar is an acronymn for Radio Detection And Ranging and is a type of sensoring device
that uses radio waves to find the range, velocity and angle of targets. Radars were tra-
ditionally used for military tracking of aircrafts and vehicles. But modern radar systems
have a wide range of applications, such as 2D- and 3D mapping, collision avoidance and
earth resources monitoring[15, p. 3].

A radar works by sending out radio waves using transmitting antennas. The radio waves
are then reflected and scattered by objects in its surroundings which is then received
with a receiving antennas. In this thesis, a Frequency-Modulated Continuous-Wave radar
(FMCW radar) is used.

2.1.1 FMCW Radar

The FMWC radar is a type of radar which works by sending out signal-packets called
chirps. Each chirp consist of a sinusoidal signal that increases in frequency linearly over
time. The rate of this increase is called the slope S and the range of frequencies spanned
by the chirp is called the bandwidth B. We can see an example of a chirp in Figure 2.1.
The reflected signal gets received and mixed with the transmitted signal which creates an
intermediate frequency signal (IF-signal) as a sinusoidal signal.

A frame consist of this signal from multiple chirps and multiple antennas. The IF-signal
from a frame with N chirps and K antennas can be written as[16],

xIF (ts, n, k) = A · sin(2π(frts + fvn+ fαk) + ϕIF), (2.1)

where A is an amplitude scalar, ts is the sample time within a chirp, 1 < n < N is the
chirp number in the frame, 0 < k < K − 1 is the antenna number, ϕIF is the phase of the
signal and fr, fv, fα are different frequencies from the targets location and velocity.

5

2.1. RADAR CHAPTER 2. THEORY

Figure 2.1: A chirp from the FMWC radar in time domain (left) and frequency domain
(right). The bandwidth B is the range of frequencies the chirp sends out and the transmit-
ting time (ramp time) is Tramp. The slope S is how fast the signal increases in frequency
and is given as the bandwidth divided by the ramp time.

Figure 2.2: Two transmitted and received chirps from an FMCW radar with one target
present in its range. The received signal is a time-delayed version of the transmitted signal
and the frequency-difference will be close to constant throughout the chirp for a target.

From the IF-signal (2.1) we can calculate the following measurements for each target:

• range, r

• radial velocity, vr

• azimuth angle, θ

• elevation angle. ϕ

6

2.1. RADAR CHAPTER 2. THEORY

2.1.2 Range of targets

If we have a target at the radial distance (range) r from the radar, it will take the signal
a time ∆t to travel to the target and back. This time difference is given by,

∆t = 2
r

c
, (2.2)

where c is the speed of light[15, p.27]. This time difference is found as a frequency fr in
(2.1),

fr = S ·∆t = S · 2r
c
, (2.3)

where S how fast the signal increases in frequency. This is illustrated in Figure 2.2. The
range is then found as,

r =
cfr
2S

. (2.4)

The smallest distance between two targets where we can resolve both targets (the resolu-
tion) is,

rres =
c

2B
, (2.5)

where B is the bandwidth of the signal. With a larger bandwidth we get a smaller and
better resolution.

2.1.3 Velocity of targets

To detect motion we need to send multiple chirps separated in time by a constant time
Tc. The target will have moved a small distance, leading to a small frequency difference
fv between two chirps in (2.1) due to the Doppler effect[15, p. 23]. For a velocity of vr
this is calculated as,

fv =
2vrTc

λ
, (2.6)

where λ is the wavelength of the signal in the center frequency. The velocity is then found
in the signal as,

vr =
∆fvλ

2Tc
. (2.7)

Since objects that doesn’t move will have the same phase along all chirps we can re-
move all non-static objects, e.g. the background, from the signal by simply removing the
mean[15].

7

2.1. RADAR CHAPTER 2. THEORY

2.1.4 Angle of arrival

To find the angle of an object compared to the direction of the radar we need at least
two antennas separated by a distance d. By assuming the target to be far away we can
approximate the signal to have a flat wave front as seen in Figure 2.3. If the signal arrives at
an angle of α, it will have to travel different distances to reach the two antennas. This extra
distance can be found as ∆d = d · sin(α), and will result in another frequency difference
fα between two antennas in (2.1). This frequency difference is calculated as,

fα =
d sin(α)

λ
. (2.8)

When this frequency is found we get the angle of a target as,

α = arcsin

(
λfα
d

)
. (2.9)

By using multiple antennas in both vertical and horizontal directions we can get both the
azimuth angle and the elevation angle of targets.

Figure 2.3: With two antennas, the angle of a target (α) will affect how far the signal
has to travel to reach each antenna. This results in a frequency difference in the IF-signal
between two antennas.

2.1.5 Fast Fourier Transform

Since all the information is present as different frequencies in (2.1), the data processing for
the incoming radar signal needs split the signal into it’s different frequency components.
The Fast Fourier Transform (FFT) is a fast algorithm find the Discrete Fourier Transform
(DFT) of a discrete-time signal.

8

2.2. POINT CLOUDS CHAPTER 2. THEORY

For each chirp, the signal is sampled and stored into an array. The entire frame is then
all of the chirps from the different antennas concatenated into a cube. An example of this
cube is seen in Figure 2.4. The different directions in the cube corresponds to the different
variables in (2.1) and will contain the different frequencies to find the information about
the targets. To find the range of targets, an FFT is calculated in the IF-signal in sample
time. The velocity of the targets can then be found by performing another FFT between
chirps. Lastly, the azimuth and elevation angle can be found by an FFT between the
signals of different combinations of the antennas.

Figure 2.4: The data cube that represents a frame measured by the radar. The FFT can
be used in different directions of the cube to find the targets in the area. In the sample
time-direction the FFT will produce the frequencies fr that maps to the range of a target.
In the chirp-direction the velocity of target can be found with fv. The different angles can
be found in the antenna-direction by combining the signal of different antennas depending
on their location in space compared to each other.

2.2 Point clouds

Point clouds are an unordered set of points in a coordinate system. They are often used
as a representation of a three-dimensional object where each element in the point cloud
is taken from the surface of the object, meaning that in Cartesian coordinates each point
will have three values: (x, y, z) [17]. Each point can also have additional features such as
color or velocity, resulting in a higher dimensional point cloud.

9

2.2. POINT CLOUDS CHAPTER 2. THEORY

Figure 2.5: An example of a point cloud captured by a FMCW radar, depicting a person
who is walking. The point cloud contains 200 points. Points further away from the point
of are more transparent than closer points.

The properties of a point cloud is highly dependent on how it was captured. For example,
ScanObjectNN, a dataset of point clouds captured with a depth camera has more than
1024 points per point cloud [10]. The point clouds which are used in this thesis have
significantly fewer points, which can be seen in Figure 2.5.

2.2.1 Clustering

As is normal with the type of radar used in this thesis, there exists some noise in the
measurements. This means that some of the points received from the radar need to be
removed in order classify the point cloud well.

10

2.2. POINT CLOUDS CHAPTER 2. THEORY

Points corrensponding to noise are usually less dense than the points originating from a
target, so using the density of points is generally a good way to tell what is a target or not.
A popular and robust method to find clusters this way is DBSCAN, which is described in
Section 2.2.2 below.

2.2.2 Density-Based Spatial Clustering of Application with Noise

Density-Based Spatial Clustering of Application with Noise (DBSCAN) is an unsupervised
density-based clustering algorithm[18]. The algorithm has two parameters which defines
its behavior. The first parameter is MinPoints and describes the minimum number of
samples needed in the neighborhood of a point for that point to be considered a core
point. The second parameter is ϵ and describes the distance around a point which is
considered to be its neighborhood. Any distance function can be used but most often
the euclidean norm is utilized. One strength of DBSCAN is that it does not require the
number of clusters to be specified before running.

Tuning the parameters for a specific task can be difficult as small changes in the parameters
can change the outcome drastically. This task also becomes harder when the data varies
in density in different areas. The algorithm performs better on data where clusters have
similar density.

The algorithm works by looping through all points and finding core points that have at
least MinPoints points in its neighborhood. When a core point is found, a new cluster
expands from it. The points which are reached by a cluster but that are not core points
are called border points. All other points are labeled as noise. We provide the pseudocode
for DBSCAN in Algorithm 1. The getNeighborPoints function finds all the neighbors of
a given point. With this algorithm we get a label for each point in a point cloud. An
example of the result of the algorithm can be seen in Figure 2.6.

11

2.2. POINT CLOUDS CHAPTER 2. THEORY

Algorithm 1 DBSCAN [18]

1: function DBSCAN(Points,MinPoints, Eps)
2: C = nextId(noise)
3: for point in Points do
4: if point.label == unclassified then
5: if ExpandCluster(Points, point, C,MinPoints, Eps) then
6: C = nextId(C)
7: end if
8: end if
9: end for

10: end function
11:

12: function ExpandCluster(Points, point, C,MinPoints, Eps) : boolean
13: reachedPoints = getNeighborPoints(p)
14: if reachedPoints.size < MinPoints then

15: point.label = noise
16: return False
17: else
18: SetId(reachedPoints, C)
19: reachedPoints.delete(p)
20: while reachedPoints is not Empty do
21: currentPoint = getNext(reachedPoints)
22: neighbors = getNeighborPoints(currentPoint)
23: for newPoint in neighbors do
24: if newPoint.label in [unclassified, noise] then
25: if newPoint.label == unclassified then
26: reachedPoints.append(newPoint)
27: end if
28: newPoint.label = C
29: end if
30: end for
31: reachedPoints.delete(currentPoint)
32: end while
33: return True
34: end if
35: end function

12

2.3. RANDOM FOREST CLASSIFIER CHAPTER 2. THEORY

Figure 2.6: An image showing the result of a DBSCAN in 2D using the parameters
minPoints = 4, ϵ = 3. In the left plot we see which points are labeled as cluster and
which cluster id they get. In the right plot we can see examples of core points (yellow),
border points (green) and noise points (black) with a circle showing the distance ϵ around
one point of each type.

2.3 Random Forest Classifier

A random forest classifier is a classifying structure/algorithm that takes an input vector
x, with N variables, and output a label y with m possible outcomes. This is done using
a collection of decision trees.

2.3.1 Decision trees

A decision tree is a tree that divides the input space by splitting at a value in one of the
input variables. A simple example of this can be found in Figure 2.7. When training a
decision tree for a set of training samples, one starts with a root and no divisions. Then
the input space is split into two subspaces so that the maximum amount of information is
gained. This is done by looking at the possible information gain by splitting a subspace
in each input variable. The information gain is calculated with either entropy or Gini
impurity. Normally the Gini impurity is used and it is calculated as,

G(x) = 1−
m∑
i=1

pi(x)
2, (2.10)

where pi(x) is the probability to pick a sample with label i from the leaf node. The
total information score is then a weighted sum of the Gini impurity for each split sub-
space. For a split to gain information, the total Gini impurity should decrease as much as
possible.

13

2.3. RANDOM FOREST CLASSIFIER CHAPTER 2. THEORY

The decision tree keeps splitting each subspace into smaller subspaces until each training
sample is separated into a subspace that only has samples with the same label. This would
leave the Gini impurity at 0 for each subspace.

Figure 2.7: A simple example of a decision tree fitted to the data in this thesis with some
constraints. The maximum depth was set to 3 and the maximum leaf nodes was set to
5. This forced the decision tree to stop splitting even if the Gini impurity is not 0 in the
leaf-node. In each branch node, we see the name of the feature that the data is split by.
The value-vector is telling how many samples of each class has ended up in the node.

2.3.2 Random forest

A random forest is a collection of decision trees that each classifies an input. The final
prediction of the model is given by a majority vote from the individual decision trees.
When training a random forest, each decision tree is trained on a new dataset created
by bootstrapping from the original dataset. This is done by randomly picking K samples
from the original set with replacement. The parameter K can be chosen to any number
but usually it is picked as the size of the original dataset.

Training a random forest is a stochastic process since the trees will be different from each
other. Because each tree is fitted well for the data it has seen, it will have low bias but high
variance. By taking the majority vote of all trees, the variance should be reduced. This
increases the bias by some amount, but generally boosts the performance of the model
compared one single tree [19].

14

2.4. ARTIFICIAL NEURAL NETWORK CHAPTER 2. THEORY

2.4 Artificial Neural Network

An artificial neural network (ANN) is a system consisting of interconnected units which
are inspired by the neuron, a type of nerve cell in our brains. Each unit has a number
of inputs and combines these to transmit one output signal, this system corresponds to
synapses and the axon in biological neurons. Several units can then be connected to form
a network and by adapting the strength of connections between units the network can be
trained to perform tasks like handwriting recognition. This adaptation is done by training
the network with a number of training patterns [20].

2.4.1 Multi-layered perceptron

One of the most common form of ANN is the multi-layered perception (MLP). It is a
network consisting of multiple layers of nodes where each node is connected to all nodes
in the neighboring layers. A computation using the network is done by cascading compu-
tations between then layers. The first layer is the input layer which consists of a vector of
values that is given by the user to the network. The layers after the input layer and before
the last layer are called hidden layers. These are the layers which output is not shown in
any way during a computation. The last layer is called the output layer and is what the
network will output. An example of this can be seen in Figure 2.8.

Figure 2.8: A simple neural network with 2 hidden layers. The total number of parameters
in this network would be

Each node in the layer has a simple formula for calculating its output. For a node with
M connecting nodes from the previous layer we get a formula for its output as,

15

2.4. ARTIFICIAL NEURAL NETWORK CHAPTER 2. THEORY

ak = f

(M∑
i=1

wia
k−1
i + b

)
= f

(
wTak−1 + b

)
, (2.11)

where wi is the edge weight connected to each input ak−1
i and b is the bias weight. The

function f is a non-linear activation function. Activation functions and can be chosen in
a number of ways. This is described more in Section 2.4.2.

The output of an entire layer becomes a vector. Since each node has a linear model before
the activation function the entire layer can be described by a matrix equation,

ak = g(ak−1) = f

(
Wak−1 + b

)
, (2.12)

where now W is an N ×M matrix containing all the edge-weights, b is the bias vector.
The function f is now a vectorized version of the activation function.

As each output ak is the input to the next layer, the entire network can be written as a
single mapping with a composition of the function for all the layers,

F (x,θ) = fL

(
WLfL−1

(
WL−1

(
. . . f1(W1x+ b1) . . .

)
+ bL−1

)
+ bL

)
, (2.13)

expanding out to the L number of layers in the model. The variable θ here represents all
the edge weights and biases in the network that can be fitted to the data.

2.4.2 Acitvation functions

Activation functions are used in the layers of an Neural Network to add non-linearity to the
model that is otherwise just linear. Since the networks are often used to imitate non-linear
mappings, the addition of activation functions are important for good performance.

In this thesis, the ReLU-function is used for all layers except the output layer. The formula
for the ReLU-function is,

ReLu(x) = max(x, 0), (2.14)

which only activates the node if it has a positive value. This is the default activation
function recommended to use with most feedforward neural networks as it creates a non-
linear function while still retaining the properties of linear models that make them easy
to optimize [21, p. 170].

For the output layer, the softmax-function is used. This function transforms the values
in the output-layer to a normalized version of itself. This normalized version represent
the probability distribution over the different classes [21, p.180-181]. The formula for the
softmax-function is given by,

Softmax(x)k =
exk∑
i e

xi
. (2.15)

16

2.4. ARTIFICIAL NEURAL NETWORK CHAPTER 2. THEORY

2.4.3 Optimization

When training or fitting the neural network to the problem, one normally uses a loss func-
tion for optimization of weights connected with the different inputs xi and their outputs
yi. We describe the loss function as a mapping,

L : X×Y × θ → R, (2.16)

such that when we minimize the loss function, we also make the network output closer to
the desired output. By doing this, we can see this entire task of fitting the network to the
training data as an unconstrained optimization problem. The loss function used in this
thesis is the categorical cross-entropy-function,

L(X,Y,θ) = −
N∑
j=1

K∑
i=1

Yj
i log(F (Xj ,θ)i), (2.17)

where we have K classes, N training samples and F (Xj ,θ) is the neural network described
as (2.13).

When training the network, you start with the partial derivative of the loss function L with
respect to the output of the network and then use backpropagation [22, p. 241] to find the
gradient with respect to all parameters in θ. A gradient based opt imization algorithm
can then be used to find the parameters that solves (2.16). Some regular algorithms used
for this are Stochastic gradient descent (with and without momentum) [21, p.290], and
the Adam method[23].

2.4.4 Regularizers

A common problem for large networks is that they optimize too well to the data that is
used for training which does not create a good model for the general problem.

This is a case of overfitting and a model is prone to this when the number of parameters
in the model are large. But finding the right amount of parameters in different parts of
the model would be a hard task to do manually. But the complexity of the model can
instead be controlled by the addition of a regularization term [22, p. 256].

The regularization term is a penalizing term that gets added to the loss function. The
penalizing term is there to limit how large the different weights in the model can be, as
large weights indicates that model relies a lot on single parameters in the model. In this
thesis, the L2-norm is used as a regularization term. By adding this, the loss-function
(2.16) becomes,

L(X,Y,θ) + λ∥θ∥22. (2.18)

17

2.4. ARTIFICIAL NEURAL NETWORK CHAPTER 2. THEORY

Figure 2.9: Fitting a 10th degree polynomial to a sinusoidal curve with noise using different
regularization scalars λ. We can see in the case where we have λ = 0 (upper left plot)
the polynomial fits perfectly to the measured points and the polynomial does not capture
the underlying model. If instead a more suitable λ = 0.5 is used (upper right plot) we see
that the polynomial follows the underlying pattern well in the interval where the measured
points are. A too large λ = 5 (lower plot) will instead limit the weights so much that the
polynomial can not follow the measurements.

where λ is a scalar chosen for a good balance between keeping the weights small and
matching the output to the labeled data. It is important to choose λ well, as a small
penalizing term will not affect the model enough and a too large penalizing term will limit
the model. We see an example of this in Figure 2.9.

This way, the adjustment of the weights isn’t hard limited but instead it becomes a part
of the optimization function so that the same optimization algorithms can be used with
the desired result.

2.4.5 Dropout

Dropout is another way to regularize a network and stop the network from overfitting.
The idea of dropout is to pick a ”thinned out” version of the network when training on
different samples to not let parts of the network co-adapt. This should help create a model

18

2.5. CONVOLUTIONAL NEURAL NETWORK CHAPTER 2. THEORY

that generalizes better[24].

Figure 2.10: An example of a network before (left) and after (right) applying dropout.
Image from [24].

During training on a mini-batch, a separate dropout will be done for each training sample.
An example of this is seen in Figure 2.10. The layers will randomly drop nodes with prob-
ability p. The dropped nodes will not have an effect when inferring nor when calculating
the gradients in the backpropagation. To get the weights-updates, the gradient for the
nodes are averaged by number of times they got used to create the update for the batch
[24].

2.5 Convolutional Neural Network

A Convolutional Neural Network (CNN) is another type of neural network which provides
great performance in practical applications such as computer vision. This type of network
needs order between all inputs to function, meaning that this type of network would not
work directly on the unordered point cloud. We will here give a quick overview on how it
is used on images.

When talking about CNN:s the term ”convolution” is often used to also denote the oper-
ation cross-correlation, which is in practice very similar to the convolution-operation. We
will here use the terms interchangeably. Here, K is the kernel (also called a filter) of the
convolution and I is an image on which it is applied on. In practice, the dimensions of K
is small than those of I. Since I and K are finite and discrete the convolution operation
can be written as,

S(i, j) = (K ∗ I)(i, j) =
∑
n

∑
m

I(i+ n, j +m)K(m,n), (2.19)

for two dimensions. Graphically this can be seen as ”sliding” the kernel across the image
I and performing elementwise multiplication of the values which are in the intersection
of I and K and adding these values together. The result of this operation will be a new
image S with dimensions ((i1 − k1 + 1) × (i2 − k2 + 1)) (so called ”valid” convolution).
This can also extend further into more dimensions.

19

2.6. DIMENSIONALITY REDUCTION CHAPTER 2. THEORY

Figure 2.11: Visualization of a 3× 3 kernel sliding over a 10× 10 image.

In classical computer vision the kernel can be hand-crafted to perform operations like
edge detection but in the domain of deep learning the kernel weights are instead learned
to perform a specific task.

2.5.1 Convolutional layer

A convolutional layer is a layer that takes an image and performs convolutions on it with
multiple kernels of a set size. Each output pixel is then run through a non-linear activation
function (see Section 2.4.1) and then an optional pooling layer which downsamples the
image by combining pixels which are close to eachother with the help of a pooling function
(such as the maximum function). The output of the convolutional layer will therefore be
a lower resolution image for each kernel in the layer.

CNN:s generally consists of several convolutional layers stacked on top of each other. The
original inspiration for this design comes from models of the visual cortex. In those models
the receptive field of a neuron is the size of the visual input that affects whether the neuron
activates or not. This is analogous to the size of the kernel as it slides over the image [25,
p. 1397-1401].

One of the main advantages of convolutional layers over fully-connected layers is that the
number of weights in a convolutional layer is much lower. If a picture has size 1000×1000
a fully connected layer would have 1000 × 1000 = 106 weights (excluding biases) while a
convolutional layer with a 10 kernels of size 10 would just have (10 × 10) × 10 = 1000
weights.

2.6 Dimensionality reduction

When analyzing a model or network, the different layers can become quite large in num-
ber of parameters and dimensions. The classification part of a model usually takes some
feature vector as input to perform the classification. This feature vector could be com-
puted manually or be the result of a previous part of a network. To estimate how well

20

2.6. DIMENSIONALITY REDUCTION CHAPTER 2. THEORY

classifications can be done, the data from the different classes should be separated in this
feature space for the model to be able to predict with high precision.

To get an intuitive understanding of the feature space, we want to visualize it in 2 or
3 dimensions. To do this we need to reduce the number of dimensions from the feature
space in some way. There are many methods to achieve this. A widely used method
to reduce dimensions is the Principal Component Analysis (PCA). But this method can
overlook a lot of information when the dimensions grow large. This is why this thesis uses
t-distributed stochastic neighbor embedding instead for a non-linear way of conserving as
much of that information as possible.

2.6.1 T-distributed stochastic neighbor embedding

T-distributed stochastic neighbor embedding (t-SNE) is a non-linear dimensionality re-
duction used to present high-dimensional data in lower dimensions while preserving as
much of the original structure as possible. This is achieved by transforming similarity in
distance to a probability. In this way, the points that are similar in high dimensions will
be mapped close to each other in the reduced space in a way linear methods can not. This
differs from linear methods, e.g. principal component analysis (PCA). PCA instead find
the subspace spanned by the directions of most variance in the data and then projects the
points onto that subspace. One problem with PCA is that it could lose a lot of information
since there are many dimensions that are simply ignored.

To start creating the t-SNE mapping, the distances between high-dimensional points (xi,
xj) are transformed into probabilities,

pi|j =
e−∥xi−xj∥2/2σ2

i∑
k ̸=i e

−∥xi−xk∥2/2σ2
i

, (2.20)

where σi is the variance of the Gaussian centered around xi. Each of the high-dimensional
points xi gets mapped to a corresponding low-dimensional point yi. The low-dimensional
points also get a similar probability distribution,

qi|j =
e−∥yi−yj∥2∑
k ̸=i e

−∥yi−yk∥2
. (2.21)

If the distribution P is similar to Q, then these probabilities should be the same. A
measure of similarity in distributions is the Kullback-Leiber divergence. A good mapping
from P to Q is found by minimizing this KL-divergence over all samples as [26].

C =
∑
i

KL(Pi∥Qi) =
∑
i

∑
j

pi|j log(
qi|j

pi|j
). (2.22)

One thing to note about t-SNE is that the problem of fitting the distribution Q is non-
convex, so different mapping of the same data could potentially look different. This is

21

2.7. HIDDEN MARKOV MODELS CHAPTER 2. THEORY

not the case for PCA, as the directions of most variance is always the same in the data-
set.

2.7 Hidden Markov Models

A Hidden Markov Model is a type of discrete-time Markov Chain, so we begin by defining
what that is.

Discrete-time Markov Chains

A stochastic process is a sequence of random variables X0, X1, X2, ... where Xn denotes
the state of the process at time n and X0 is the initial state. Since n ∈ N the process is
discrete in time. The collection of all state values is called the state space and is denoted
by S [27].

We will assume that the random variables which make up the stochastic process take on
values in a finite subset of Z. The stochastic process will therefore be discrete in both
time and state.

A discrete-time Markov Chain is a stochastic process which is discrete in time with the
Markov property,

P (Xn+1 = j | Xn = in, ..., X0 = i0) = P (Xn+1 = j | Xn = in), (2.23)

where j, in, in−1, ..., i0 are states. The Markov property (2.23) can be described in words
as ”the next state is independent of all previous states given the current state” [27].

In this report we will assume that a Markov chain’s state space is finite (and discrete).
The term ”Markov Chain” will from here on refer to a discrete time stochastic process
with a finite state space. If we further assume that the probability of transitioning from
state i to state j is independent of the time n we can describe a Markov Chain using a
|S| × |S| transition matrix T where Tij denotes the probability of going from state i to
j.

With a Markov Chain one can model the pose of a person moving. We introduce three
states: standing, sitting and lying down. We assume that Markov property is true for
this process, i.e. that the next pose is independent of the previous poses given the current
pose. We also assume that the probability of transitioning between two poses is some
constant a, which means that the probability of staying in the same pose is 1 − 2a. The
process can then be visualized with Figure 2.12 below.

22

2.7. HIDDEN MARKOV MODELS CHAPTER 2. THEORY

Figure 2.12: Example of a Markov Chain

The transition matrix will be,

1− 2a a a
a 1− 2a a
a a 1− 2a

 .

Hidden Markov Models

A Hidden Markov Model (HMM) extends the idea of a Markov Chain to a setting where
observations of a Markov Chain are made with a noisy sensor. By combining information
about the sensor and the underlying Markov Chain it is possible to create predictions
which are more accurate compared to only relying on the sensor. This task is called
filtering and can be expressed computing the distribution P(Xt|e1:t) with e1:t being the
sensor readings from the beginning of the measurement to time t. This whole sequence
will be known at time t.

The first component of a HMM is the transition model which refers to the transition
matrix T of the Markov Chain. The next component is the sensor model which describes
the properties of the sensor. It consists of P (et|Xt = i) for each state i. The sensor
reading et can be a real-valued multidimensional reading in the context of HMMs but in
this thesis it will just take on the same values as Xt (the state of the Markov Model) which
is what we want to observe. With the transition model and sensor model we can define
the forward equation,

P(Xt|e1:t) = αP(et|Xt)
∑
xt

P(Xt|Xt−1 = s)P (Xt−1 = s|e1:t−1). (2.24)

23

2.8. POINTNET CHAPTER 2. THEORY

Here, P(et|Xt) is given by the sensor model and is a vector with the same number of
elements as the number of states. P(Xt|Xt−1 = s) corresponds to a row in the transition
matrix. The last expression, P (Xt−1|e1:t−1), is called the forward message and can be
calculated through recursion as it is the left hand side of (2.24) at time t − 1. The term
α is used for making the probabilities of the forward message sum up to one. By setting
f1:t = P(Xt|e1:t) we can write,

f1:t = Forward(f1:t−1, et),

where Forward updates the forward message as described in (2.24).

When we know the observation et at time t we take the sensor model values and place
them into a diagonal observation matrix Ot. The ith diagonal is set to P (et|Xt = i) and
the matrix will be of dimension |S|× |S|. We can then rewrite the forward equation (2.24)
as

f1:t = αOtT
⊤f1:t−1 (2.25)

where T is the transition matrix. With this updating rule it is possible to efficiently
update the forward message P(Xt|e1:t) as new evidence et arrives [25].

2.8 PointNet

PointNet is a type of Artificial Neural Network that can do classification and segmentation
on unordered point clouds. When the PointNet article was published it differed drastically
from previous methods approaches of deep learning on point clouds [3]. Some other meth-
ods include quantifying the world into voxels and using a 3D-CNN network or projecting
the point cloud down into different images and combining the result of different CNNs [6].
One advantage of PointNet compared to these other methods is that little pre-processing
is needed as the network processes raw point clouds.

The underlying idea of PointNet is to distill a point cloud into a set of informative points
together with an encoding on why these points are important. The classification of a point
cloud is then only based on these informative points. One important thing to note is that
PointNet bases the classification on global features, it does not take local structures into
consideration, as is the case with CNN:s.

24

2.8. POINTNET CHAPTER 2. THEORY

Figure 2.13: The architecture of the PointNet-network with number of parameters in each
layer following the original article. Only the blue part labeled Classification Network is
of interest in this thesis as we use PointNet for classifying targets. Image taken from the
original paper[8].

One defining feature of Pointnet is the fact that the order of the input does not matter,
i.e. two point clouds which contain the same points but in a different order will return
the same results. This is achieved using a combination of global max pooling and shared
MLP:s. We will now explain the general structure of Pointnet and how a point cloud
results in a classification.

A point cloud is at first represented by a n×3 matrix, where n is the number of points in the
cloud and where 3 represents the spatial dimensions (x, y, z). Each point is then expanded
into a 1024 dimensional feature vector through a number of MLP:s. This sequence of
MLP:s which map a 3-dimensional point into R1024 has the same weights for each point,
i.e. each point is fed into the same function. This is where the term shared-MLP comes
from, each point shares the same MLP:s.

This results in a n×1024 matrix on which a column-wise max-pooling is done, resulting in
the 1024-dimensional feature vector which encodes the point cloud. Since the max-pooling
is done over the points, only informative points contribute to the global feature vector.
This global feature vector is then run through three fully connected layer to produce the
final classification predictions.

T-Net

A part of PointNet which we have not explained yet are the so called T-nets. The T-Net
is a sub-network which is added to the PointNet architecture to transform the point cloud
to a ”canonical” alignment. This is motivated by saying that a point cloud should give the
same classification before and after it undergoes a rotation or mirroring (or a combination
of these) [8]. The layer creates a specific transformation matrix A that is suited to the
input sample and then multiplies this matrix with the input. Since this matrix should
represent a rotation or mirroring, a regularization term aiming to make A orthogonal is
introduced (all rotations and mirrorings are represented by orthogonal matrices). This is
done by adding,

25

2.8. POINTNET CHAPTER 2. THEORY

Lr = ∥I −ATA∥2F , (2.26)

to the loss function, where ∥ · ∥F is the Frobenius-norm.

Although the idea of Pointnet is input-size invariant, implementations often work on a
fixed number of points, i.e. n is fixed. This leads to a problem since the point clouds that
are obtained from a radar vary in size. There has been some discussion on how to train
and run inference on point clouds of varying sizes but in this thesis we use the fixed version
of Pointnet. Another important point is that Pointnet is not limited to representing each
point by spatial coordinates, it can be expanded to work with an arbitrary number of
point-wise features.

26

Chapter 3

Data

3.1 Radar setup

The data is collected using an FMCW radar mounted on a stand on a height of 2.4
meters with a downward angle of 30◦. Next to the radar we also have a camera which
provides video recording of what happens in the scene. The video clips are then used
when annotating the radar data. The specifications of the radar can be found in Table
3.1 below.

Parameter name Value

Frame rate 10 FPS
Range resolution 0.058 m
Maximum range 18.085 m

Velocity resolution 0.0343 m/s
Maximum velocity 7.853 m/s

Azimuth angle accuracy 1◦

Elevation angle accuracy 2◦

Table 3.1: The specifications and settings of the radar used to collect data.

The output from the radar is a point cloud with a number of features per point such as
x, y, z positions (relative to the radar), radial velocity ṙ and signal-to-noise ratio. These
features are then used to filter out points.

3.2 Recordings

In total 31 recordings are done with a single subject in each scene. The subjects are
instructed to walk around the room and to sit or lay down occasionally but without any
set recording schedule. The average recording is around a minute in length. A number of
different recording environments are used, some of them are shown in Figure 3.1.

27

3.2. RECORDINGS CHAPTER 3. DATA

(a) (b)

(c) (d)

Figure 3.1: Four different recording environments, images taken from the point of view of
the radar.

3.2.1 Data sets

To properly train and evaluate the models the recorded data is split into two sets, a
training set and a test set. This is done to ensure that the models are both trained and
evaluated in a fair way.

Training set

The first set is the training set. This set contains data from 26 of the recordings from
location (b), (c) and (d) in Figure 3.1 and contains a total of 11476 samples. This set was
be used to train and validate the classification models. The set was then further split into
training data (8695) and validation data (3038) as seen in Table 3.2.

Training —

Standing 3508
Sitting 2450

Lying down 2737

Total 8695

Validation —

Standing 1129
Sitting 961

Lying down 948

Total 3038

Table 3.2: A table with the division of samples in the Training set. The set itself is
split into training and validation parts where the model is fitted to the training part and
hyperparameters are determined using the validation part.

28

3.3. DESCRIPTION OF POINT CLOUDS CHAPTER 3. DATA

3.2.2 Test set

The remaining 5 recordings are used to evaluate the performance of the models. To make
the evaluation robust, the location and people are different from those in the training set.
The test set was recorded in location (a) in Figure 3.1.

The set itself contains 3500 samples and the division of classes is found in Table 3.3
below.

Test —

Standing 1626
Sitting 1124

Lying down 750

Total 3500

Table 3.3: A table with the division of samples in the Test set.

3.3 Description of Point Clouds

The number of points vary quite a lot during a recording. This is due to factors such as
distance between the person and the radar and how much the person moves. To describe
the data we randomly pick a recording and show some statistics for it. The recording is of
a person walking around and standing still in a lounge area, pictured in Figure 3.1d, for
69 seconds leading to 690 unique point clouds. In Figure 3.2 is a histogram of the number
of points in the point cloud from this recording before any filtering is done.

29

3.4. ANNOTATION CHAPTER 3. DATA

Figure 3.2: Histogram over the number of points in unfiltered point clouds over one
recording. The recording consists of 690 frames, i.e. the histogram represents 690 point
clouds.

As shown in Figure 3.2 there are some frames with very few points. This corresponds to
frames with the subject in the recording not moving. The frames with many points have
the subject walking away from the radar while still being close to it. Our hypothesis is
that their back becomes an excellent surface for the radar signal to reflect off of. To make
the point clouds more similar in size before classifying them a lot of data processing is
done, see Section 4.2.

3.4 Annotation

To use supervised learning models annotated data is required. In the ideal case, we would
like to train our whole pipeline to the task of finding the points in a point cloud which
correspond to a human and classify his/her pose. Training a model for this task requires
good data where every point should have an instance associated with it. Performing this
kind of annotation on three dimensional point clouds is very time consuming, so this
approach was deemed infeasible for the given time.

Instead we use our data processing-pipeline to produce a cluster from each raw point cloud.
This clustered point cloud is then labeled as either standing, sitting or lying down. Since
we only record data with a single subject in the scene we get one label per frame. Given
that a person’s pose usually stays the same over several seconds, multiple frames can be
labeled together.

There are some potential flaws with this approach of annotation. Some frames might

30

3.5. DATA AUGMENTATION CHAPTER 3. DATA

be clustered badly which would then add bad samples to the data sets. But since these
bad clusters could show up in real data it might be beneficial to also include them in the
training data.

3.5 Data augmentation

Since the data sets are rather small compared to data sets normally used for deep learning,
data augmentation can be used to synthetically create more variance in the training set.
There are several ways to augment point clouds, but in this thesis they were jittered.

Jittering is defined as adding noise to each point. In our case each point is mapped
as (x, y, z, vr) → (x + ϵx, y + ϵy, z + ϵz, vr + ϵv) where the different ϵ are noise drawn
from a uniform distribution. The size of the uniform distributions for these noise terms
were set to double the resolution in range for the spatial coordinates and double the
resolution in velocity for vr. We therefore get ϵx, ϵy, ϵz ∼ Uniform(−0.1, 0.1) and ϵv ∼
Uniform(−0.06, 0.06). The values for the resolutions can be found in Table 3.1.

3.6 Quality of data

For the majority of the data captured, the point cloud seems to match what is seen in
the video reference. But there were some frames and parts of the recordings where the
point cloud of the person did not appear as expected. This could either be due to the
data processing or limitations of the radar.

One kind of problematic sample was to occlusion of body parts. This seem to happen
mainly for two reasons. Either that part of the person didn’t move enough to be captured
or it was covered by an object in the scene. Common examples of this was when a person
did not move their feet while standing or lying still but was actively doing something with
their arms. Another example of occlusion can be seen in Figure 3.3 where the lower body
of the person is blocked by a table.

Another problem was when the point cloud from a person was split into two different
clusters. We see an example of this in Figure 3.4. Since we only record with one person in
the scene a simple solution would be to just concatenate all nearby clusters. This was not
possible due to noise and reflections in the room. Instead the largest cluster found was
deemed as the target, which meant that only part of the body was saved as the sample.
This can be found in both the training and test data, which hopefully meant that the
model could learn to classify these samples correctly anyways.

31

3.6. QUALITY OF DATA CHAPTER 3. DATA

Figure 3.3: An example where part of a person becomes occluded by an object in the
room. The legs of the person are covered by the table and the radar only captures the
upper body as seen in the point cloud to the right. This type of occlusion of body parts
can also happen if a person only moves part of their body.

Figure 3.4: An example from the test set where the points from a person become clustered
into two separate sets as a part of the body was not moving enough. The result of this is
that only the largest of the two clusters gets saved in the sample which could lead to the
model learning on incorrect point clouds.

32

Chapter 4

Methods

We will now discuss the methods used to answer the questions posed in this thesis,
namely

• How should point cloud data from a high resolution radar be processed to enable
classification of human poses?

• Can a model using a Random Forest Classifier reliably classify the pose of a human?

• Can a model using PointNet reliably classify the pose of a human?

In the first part of the methods section we present how we have implemented the data
processing and models mentioned in these questions. After this, in Section 4.7, we de-
scribe how the implementations were evaluated, i.e. how the research questions were
answered.

4.1 Overview of Implementation

In Figure 4.1 a simplified example of how the classification pipeline proposed in this thesis
is shown. The scene shown in the picture is captured into a point cloud which is then
filtered, clustered and classified.

33

4.1. OVERVIEW OF IMPLEMENTATION CHAPTER 4. METHODS

Figure 4.1: Simplified example of how the processing pipeline functions. The radar cap-
tures a point cloud of the scene shown in the picture. The point cloud is then filtered and
clustered and finally run through a classifier which in this case classifies the point cloud
as ”standing”.

A more detailed visualization of the pipeline can be seen in Figure 4.2. In addition to
showing a more granular view of the pipeline this diagram shows what happens in the
case that two clusters are detected in the point cloud. After the clustering step two tracks
called ”Track 1” and ”Track 2” are created from the clusters. The name ”Track” stems
from the fact that the position and pose of the clusters are tracked over time. Each of
these tracks are then classified separately.

34

4.2. DATA PROCESSING CHAPTER 4. METHODS

Figure 4.2: Diagram showing the processing pipeline in the case that the tracker finds two
tracks. Each of the blocks are further explained in the methods section.

We will now explain these different modules and the methods used in them.

4.2 Data processing

First we will look at the data processing part of the pipeline, i.e. the blocks labeled as
”Filter and rotate” and ”Frame squash” in Figure 4.2.

4.2.1 Rotation and translation

The raw point cloud which the radar outputs has a coordinate system which is centered
around the radar sensor. To make it easier for humans to understand the point clouds
each raw point cloud is first rotated down by 30◦ around the x′ axis and translated so that
the floor is at z = 0. This way every point is transformed from (x′, y′, z′) coordinates to
(x, y, z) see Figure 4.3.

35

4.2. DATA PROCESSING CHAPTER 4. METHODS

Figure 4.3: Illustration of the two coordinate systems. Each point is transitioned from
(x′, y′, z′) coordinates to (x, y, z)

4.2.2 Filtering points

Before clustering we want to remove as many non-target points as possible. We assume
that targets of interest will produce a high energy signal compared to the background
noise. Therefore, we remove all points with a signal-to-noise-ratio of less than 17.5 − r
dB, where r is the radial distance to the radar. This filtration method is chosen to remove
noise while still retaining points that are further away from the radar. This was chosen to
keep the number of points per target similar independent of distance from the radar.

Some other physical boundaries were assumed for further filtering of noise. All targets
within 0.1m from the radar were assumed to be noise and removed. The targets were
also assumed to be above the floor and below 2.2m. Points outside of this range were
removed.

Mapping walls in the room

One common problem with radars is the multipath phenomenon. When performing track-
ing and classification with a radar it is assumed that the radar signal travels from the
radar to the tracked object and back, without hitting anything else on its way. This does
not always hold true as the radar signal can be reflected by something else both before

36

4.2. DATA PROCESSING CHAPTER 4. METHODS

and after hitting the object. In Figure 4.4 we can see what happens when a radar signal
first hits a target and then a wall, leading to a track inside the wall.

Figure 4.4: The radar signal takes two paths back to the radar after reflecting on the
target which makes the system track a person inside the wall. Known as the multipath
phenomenon. This could also happen near other reflective things such as the floor or a
table.

To reduce detections from the multipath problem we create a map of every room that we
record in and then filter out all points which are outside the walls. The map is created
by walking around the perimeters of the room, recording two (x, y) points for each wall
and defining the wall as a line in the xy-plane. We then filter out all points which are in
a wall.

One thing to note is that this method does not necessarily fix the multipath problem in
the case that the radar signal travels from the wall to the person and back, but we did
not find this to be a significant problem.

4.2.3 Frame Squashing

As the radar which was used detects moving targets, there are times when people do not
move enough to produce a sufficient amount of detections. Examples of this can be when a
person is sitting still or lying down. If the number of detections is too low no classification
can be performed since the classifiers require a certain number of points to function. To
resolve this we perform so called frame squashing, which means that several raw frames
are squashed into one frame before it is clustered and classified. The squashing is done
adaptively. This means that if a frame contains lots of points, few frames are squashed
and if a frame contains few points, more frames are squashed together.

We set the threshold at 300 points, so if a frame has fewer than 300 points more frames
will be squashed together. This frame squashing will continue until one ”squashed” frame
contains more than 300 points or if more than 10 frames have been combined without

37

4.3. CLUSTERING CHAPTER 4. METHODS

reaching the threshold. In the case that the threshold was not reached within 10 frames it
is deemed that no classification can be done at that point in time. One potential problem
with this is that the classification could become harder as a person walking across the scene
would produce a ”smudged out” point cloud. When testing we see that frame squashing
mostly happens if a person does not move in the scene, in which case ”smudging” would
not be a problem.

We split this adaptive frame squashing strategy into two different flavors: frame binning
and frame windowing. The difference is that frame binning places the raw frames into
separate bins while frame windowing works like a windowing function, producing output
with some overlapping points, see Figure 4.5.

Figure 4.5: The two frame squashing techniques, binning and windowing, visualized. The
middle row represents the ordinary point cloud, windowing is visualized in the upper part
and binning in the lower part. In this example, three frames are squashed together each
time, but in practice this number will depend on the number of points that the squashing
system gets as input.

4.3 Clustering

The next part in the processing pipeline is clustering. This is done with DBSCAN. For the
implementation of the DBSCAN we used the DBSCAN-module from the popular open-
source Python module Scikit-learn [28] which only needs the parameters MinPoint and
Eps. This implementation tries to find the distance between points using a tree-based
search algorithm when possible to speed up calculations.

38

4.4. TRACKING CHAPTER 4. METHODS

For the choice of the parameters, we set Eps to be 0.55 m and MinPoint to 15. The choice
of these parameters was informed by looking at different point clouds and the resulting
cluster.

Besides choosing the parameters, it is also possible to select which distance function is
used as a metric when running the algorithm. A few different options were tested but the
euclidean norm yielded the best results.

4.4 Tracking

Tracking of clusters is done to follow the positions of people in a scene over time. Since
the data used for both training and evaluation was only recorded with one person in the
room tracking was not needed to evaluate the models. A simple tracker was however imple-
mented to show that the classification pipeline is able to track multiple people in the scene.
The implementation of the tracker can be found in Section A.2 in the Appendix.

4.5 Classification

The classification models were trained on a set of data containing 11476 samples. This
set was then divided into a training set consisting of 75% of the samples and a validation
set with 25% of the samples. Each sample consisted of a point cloud with at least 128
points. The samples were obtained by using the frame windowing method described in
Section 4.2.3, meaning that there was some overlap between samples. To avoid overlap
between the training and validation sets the data is first split into chunks in such a way
that there was no overlap in the data between chunks. These chunks are then placed into
the validation and training sets, creating two sets with no overlap. For more details on
the data sets, see Section 3.2.1.

4.5.1 Model 1 - Naive Classifier

The Naive classifier is meant to be a straightforward approach which the machine learning
models are compared against. It looks at the general direction of the point cloud in space
and determines how vertical the shape is. We assume that the point cloud is vertical when
the subject is standing and more horizontal when he/she is lying down. If it is somewhere
in between, the person is deemed to be sitting.

To find how vertical the cloud is, the largest principal component of the point cloud is
found by performing singular value decomposition. The magnitude of the z-coordinate,
ẑ ∈ [0, 1], of the largest principal component determines how vertical the cloud is. This is
illustrated in Figure 4.6.

39

4.5. CLASSIFICATION CHAPTER 4. METHODS

Figure 4.6: An example of the PC1-vector (red) for a point cloud that shows the direction
of most variance in 3D-space. The magnitude of the PC1 in the z-direction (orange)
determines how vertical the cloud is. This is the only feature used in the Naive Classifier
and it is also used as one of the features in the Random Forest Classifier.

The limits for the different classes was determined by looking at the box plot of the training
data in Figure 5.3 and was determined as,

• 0.9 < ẑ → Standing;

• 0.41 < ẑ ≤ 0.9 → Sitting;

• ẑ ≤ 0.41 → lying down.

4.5.2 Model 2 - Random Forest Classifier

When implementing the Random Forest Classifier we used the pre-built model from Scikit-
learn [28]. This model has the necessary functions to train and use a Random Forest
Classifier to do predictions. Outside of this it has many parameters that can be selected
to affect the training of the trees.

Feature selection

Since the Random Forest Classifier makes classifications based on a feature vector, the
selection of features is of utmost importance. Firstly, a number of features which we
thought could be used to classify the point cloud were implemented. Then the features
were dropped one at a time and if the accuracy on the validation set did not decrease that
particular feature was removed.

40

4.5. CLASSIFICATION CHAPTER 4. METHODS

This feature selection process resulted in the following four features:

• magnitude of z-value in PC1 (The same feature as the Naive Classifier).

• z-spread: the difference between the largest and smallest z-value.

• r-spread: the largest distance that a point has from the center of mass in the xy-
plane.

• ṙ: the largest radial velocity in the point cloud.

4.5.3 PointNet Classifier

PointNet was implemented using the open source package TensorFlow [29]. A number of
different configurations were tested with and without the T-net module. The number of
parameters in the layers was scaled down until the validation accuracy dropped to make
the network smaller while still retaining its performance.

Feature selection

Since PointNet is designed to work on point clouds with an arbritrary number of point-
wise features we need to choose which features to include. The features that were found to
help the model was the location in space (x, y, z) and the radial velocity vr. Other features
like signal-to-noise ratio did not improve the accuracy on the validation set.

Another parameter which must be chosen is the input size of PointNet, i.e. the number of
points which is fed into the network. We would like this number to be as high as possible to
give the network more information while still being able to classify most clusters (which
could be too small for classification). Input size was set to 128 as it was deemed to
balance these two factors. Another thing to note is that increasing the number of points
also increases the computational complexity.

Pre-processing

With some pre-processing it is possible to increase the performance of the PointNet clas-
sifier. Before classifying a point cloud it is centralized around the origin. This is done
to remove any spatial dependence: a point cloud should have the same classification no
matter where in the room it is located. Additionally, all features of the point cloud are
normalized to [−1, 1]. This is done to both ensure that all features have the same scale but
also to make the model invariant to changes in height: we would like the model to work
on people of all heights. One thing to note is that the x, y and z features are normalized
with the same normalization constant, taken as the maximum magnitude of all x, y and
z coordinates in the point cloud. This makes the point cloud retain its shape even after
normalization.

Down-sampling is needed if the point cloud contains more points than the input-size of the
network. To ensure that the down-sampled point cloud is representative of the original we
utilize the internal order that the data from the radar has. It is sorted in increasing range
meaning that choosing points evenly from this point-list creates a down-sampled point
cloud which will be evenly sampled in range, although randomly sampled in azimuth and

41

4.5. CLASSIFICATION CHAPTER 4. METHODS

elevation. This differs from the original paper where the authors use the Farthest Point
Sampling-algorithm [8], which is computationally expensive.

Training

The training was done with the Adam optimizer [23] with parameters α = 0.00006, β1 =
0.9, β2 = 0.999 and ϵ = 10−7. During training the model is evaluated on the validation
data and saved if it performs better then the current best model. Batch normalization
[30] is used for every layer.

4.5.4 Model 3 - PointNet with T-Net

This model uses PointNet with the same number of layers as the model from the original
paper. The sizes of the layers are scaled down by different factors to reduce model com-
plexity as we have fewer classes and less data. The shared MLP-layers are scaled down by
a factor of 2 while the other parts are scaled down by a factor of 8. This is done to reduce
the number of parameters in the network while still retaining a large global feature vector
which was shown to increase classification performance in the original paper [8].

Figure 4.7: The PointNet architecture used for model 3 which is a scaled down version of
the original PointNet. The Shared MLP layers are scaled down by a factor of 2 and the
final MLP is scaled down by a factor of 8. The total number of parameters in this model
is 137,667.

4.5.5 Model 4 - PointNet without T-Net

This model is a modified version of the PointNet architecture which does not include the
T-Net parts. In the original paper T-Nets were included to make the classification of a
point cloud independent of its orientation in space [8]. In the setting of our model, the
orientation of a point cloud matters; rotating a point cloud of a person who is standing
can create a point cloud which is lying down.

In addition to removing the T-Nets, the number of layers in the Shared MLPs is also

42

4.6. TEMPORAL MODELS CHAPTER 4. METHODS

reduced. This was done to reduce the size of network as much as possible without losing
accuracy.

Figure 4.8: The architecture used for model 4 that uses part of the PointNet structure.
The T-Net parts are removed and the Shared MLP is reduced to 3 layers. The layers are
scaled down in the same way as in model 3. The total number of parameters in this model
is 73,379.

4.6 Temporal models

Since the radar outputs 10 frames per second there are some pose patterns that can
immediately be discarded. One example is the sequence (standing, lying down, standing)
which would correspond to the subject being upright, lying down for 100 ms to then be
standing again (which is not physically possible). In an effort to capture these types of
temporal effects we introduce models which operate on sequences of classifications.

4.6.1 Rolling Average

The most basic temporal model just sums up the k latest prediction probabilities and
takes the largest of these as its prediction. This should make the classification more stable
with smoother transitions that are less affected by noise. The parameter k was chosen to
be 5 as this represents the last 0.5s of data. This is enough to smooth out flickering while
not delaying the actual transitions too much.

4.6.2 Hidden Markov Model

A Hidden Markov Model is implemented with three states and three possible sensor read-
ings corresponding to the three poses: standing, sitting and lying down. The sensor model,
which consists of probabilities,

P (et = j|Xt = i) =
P (et = j,Xt = i)

P (Xt = i)
,

for each combination of sensor reading et and actual state Xi will then have 9 elements
which must be determined. To find these we utilize a confusion matrix C obtained from
predicting on the validation set. Each element Cij contains the number of samples which
true pose was i and the classification model predicted as j. By normalizing C over each
row the elements Cij will then correspond to the sought after probability P (et = j|Xt =
i).

43

4.7. EVALUATION CHAPTER 4. METHODS

Since the optimal values in the transition matrix are highly dependent on the setting in
which the model is deployed in we simply set these with the following assumptions:

• A person changes pose every 20 seconds.

• The probability of switching from pose i to j is the same as switching from pose j
to i.

• Switching from sitting to standing is 4 times less likely compared to going from
standing or lying down to sitting.

These assumptions gives us the following transition matrix,

T =

 0.9995 0.0004 0.0001
0.00025 0.9995 0.00025
0.0001 0.0004 0.9995

 . (4.1)

4.7 Evaluation

This section describes what experiments were done in order to answer the questions in
Section 1.2.

The first question is:

“How should point cloud data from a high resolution radar be processed to enable classi-
fication of human poses?”

This is quite difficult to answer. Since the pipeline clusters point clouds before feeding
them into a classifier one way to evaluate the data processing part would be to evaluate
the clusters that it produces. The ideal way of doing this would be to annotate each point
in the training point clouds as either noise or originating from a human and then quantify
the quality of the clusters. Doing this sort of annotation process on a three-dimensional
point cloud is very labor intensive which is why it is not done in this thesis.

Instead, the data processing chain is evaluated qualitatively by visualizing the feature space
to see how separated the different classes are. In addition to this one can argue that the
classification results also reflect the data processing quality. If the data processing works
poorly the classification results will not be good. This is especially true for the naive
classifier since it cannot learn and compensate for any faults in the data processing.

The two other questions,

“Can a model using a Random Forest Classifier reliably classify the pose of a human?”

and

“Can a model using PointNet reliably classify the pose of a human?”

are easier to evaluate by comparing the predicted poses with the actual poses. This is
done for all samples in the test set which was recorded in a different location and with
different people. To give a simple scalar score which describes how the models perform a
number of different metrics are used.

44

4.7. EVALUATION CHAPTER 4. METHODS

4.7.1 Evaluation metrics

To measure the performance of the classification models precision, recall and F1-score are
used. These metrics can be applied for each class to see how the each model performs on
certain classes but can also be averaged over all classes to get an evaluation for how well
the model performs in total on the task. In addition accuracy is calculated which is just
the number of predictions which are correct divided by the total number of samples.

Precision measures how many predictions of a class are actually of that class and is given
as,

precision =
true positives

true positives + false positives
. (4.2)

Recall measures how many samples of a given class the model is able to classify correctly.
The formula for recall is,

recall =
true positives

true positives + false negatives
. (4.3)

The F1-score combines precision and recall into one score which is nice for overall compar-
ison. This metric is given as the harmonic mean of precision and recall and is calculated
as ,

F1-score = 2 · precision · recall
precision + recall

. (4.4)

Some tasks require higher scores for recall or precision specifically, but in this thesis the
more general metrics F1-score and accuracy are used to compare models.

45

4.7. EVALUATION CHAPTER 4. METHODS

46

Chapter 5

Results

5.1 Classification per frame

This section contains the results from the frame-wise classification results. Each model is
evaluated on the test set described in Section 4.5.

5.1.1 Model 1 - Naive classifier

The classification results for model 1 can be seen in Table 5.1. Since this naive classifier
only looks at how vertical the shape is, there is bound to be some errors due to overlap
between the classes. This overlap is visualized in Figure 5.3.

Class Precision Recall F1 Support

Standing 0.872 0.899 0.885 1626
Sitting 0.684 0.512 0.586 1124

Lying down 0.650 0.851 0.737 750

Weighted average 0.764 0.765 0.757 3500

Accuracy 76.5% 3500

Table 5.1: The results of classification on the test set using the naive classifier from Section
4.5.1. It performs better on the standing and lying down classes as they are centered more
towards each end of the feature interval. Overall this is a rather good score for such an
easy model.

5.1.2 Model 2 - Random Forest Classifier

To decide on what the best parameters would be for training the Random Forest Classifier,
a grid search was done for the parameters n estimators, max depth, max leaf nodes and
max samples. For each combination of parameters, the model was trained on the training
set described in Section 4.5 and then tested on the validation set. The optimal values
found by this grid search are found in Table 5.2 below. All the parameter values that were
used in training can be found in Table A.1 in the Appendix.

47

5.1. CLASSIFICATION PER FRAME CHAPTER 5. RESULTS

Parameter name Value

n estimators 150
max depth 7

max leaf nodes 60
max samples 0.8

Table 5.2: The parameter values obtained from grid search on the Random Forest Classi-
fier.

The frame-wise classification results for the Random Forest Classifier are shown in Table
5.3. Compared to the naive classifier, this model performs better overall. The biggest
increase is found in the sitting class where the Random Forest Classifier has a considerably
better F1-score.

Class Precision Recall F1 Support

Standing 0.949 0.935 0.942 1626
Sitting 0.795 0.668 0.726 1124

Lying down 0.683 0.867 0.764 750

Weighted average 0.842 0.835 0.834 3500

Accuracy 83.5% 3500

Table 5.3: The results of classification on the test set using the Random Forest Classifier.
The scores improved significantly compared to the naive classifier.

5.1.3 Model 3 - PointNet

The model was trained with the following parameters:

• Optimizer: Adam;

• Learning rate (α): 0.0006;

• β1: 0.9;

• β2: 0.999;

• ϵ: 10−7;

• batch size: 64;

• epochs: 60.

To train a more generalized model, a jittered version of each point cloud was added to
the training set. The learning curve with the loss and categorical accuracy for both the
training and validation set can be seen in Figure 5.1.

The results of the frame-wise classification on the test set can be found in Table 5.4. The
scores are similar to those on model 2. Both models perform better on the standing class
and a little worse on the sitting and lying down classes. The added complexity of this

48

5.1. CLASSIFICATION PER FRAME CHAPTER 5. RESULTS

model did not increase the performance compared to the less complex Random Forest
Classifier.

Figure 5.1: The loss and categorical accuracy when training model 3. The validation loss
indicates that the model is in its most general form after around 5-7 epochs.

Class Precision Recall F1 Support

Standing 0.915 0.938 0.927 1626
Sitting 0.759 0.716 0.737 1124

Lying down 0.757 0.779 0.768 750

Weighted average 0.831 0.833 0.832 3500

Accuracy 83.3% 3500

Table 5.4: The results of classification on the test set with model 3 that is a scaled down
version of the original PointNet-structure described in Section 4.5.4. This model performs
about as well as the simpler Random Forest Classifier.

5.1.4 Model 4 - PointNet without T-Net

The model was trained with the following parameters:

• Optimizer: Adam;

• Learning rate (α): 0.0006;

• β1: 0.9;

• β2: 0.999;

49

5.1. CLASSIFICATION PER FRAME CHAPTER 5. RESULTS

• ϵ: 10−7;

• batch size: 64;

• epochs: 60.

To train a more generalized model a jittered version of each point cloud was added to
the training set. The learning curve with the loss and categorical accuracy for both the
training and validation set can be seen in Figure 5.2.

Figure 5.2: The loss and categorical accuracy when training model 4. The validation loss
is minimized after around 10-15 epochs. After this the model tends to be overfitted to the
training data and should not perform as well on other datasets.

The classification results on the test set for model 4 can be seen in Table 5.5. There is an
improvement in the F1-score for the sitting class and the lying down classes compared to
the Random Forest-model. The F1-score for standing are about the same. Removing the
T-Net part was effective for this problem. This could either be because there is information
in the rotation that is lost in the T-Net or because the more complex model 3 does not
generalize as well.

50

5.2. TEMPORAL MODELS CHAPTER 5. RESULTS

Class Precision Recall F1 Support

Standing 0.927 0.959 0.943 1626
Sitting 0.809 0.748 0.777 1124

Lying down 0.789 0.817 0.803 750

Weighted average 0.859 0.861 0.860 3500

Accuracy 86.1% 3500

Table 5.5: The results of classification on the test set with model 4. This model used the
scaled down version of PointNet without the T-Net parts and fewer layers in the shared
MLP, as described in Section 4.5.5. This model performs the best out of the proposed
models. It maintains a high score for the standing class while improving on the sitting
and lying down classes.

5.2 Temporal models

The two different temporal models were tested on the classifier with the best accuracy,
Model 4. The test was done using the same test set, but classified in order so that the
temporal models could use the output from the frame-wise classifier.

5.2.1 Rolling Average

With the rolling average on Model 4, the following results in Table 5.6 were obtained:

Class Precision Recall F1 Support

Standing 0.931 0.983 0.956 1626
Sitting 0.862 0.780 0.819 1124

Lying down 0.828 0.845 0.837 750

Weighted average 0.887 0.888 0.887 3500

Accuracy 88.8% 3500

Table 5.6: The results of classification on the test set with a Rolling Average applied on
predictions from Model 4. The window size on which the average was taken was set to
five frames.

5.2.2 Hidden Markov Models

In terms of accuracy, Hidden Markov Models gave a slightly worse result compared to
rolling average, see the following Table 5.7

51

5.3. VISUALIZING THE FEATURE SPACES CHAPTER 5. RESULTS

Class Precision Recall F1 Support

Standing 0.935 0.976 0.955 1626
Sitting 0.839 0.789 0.813 1124

Lying down 0.828 0.822 0.825 750

Weighted average 0.881 0.883 0.882 3500

Accuracy 88.3% 3500

Table 5.7: The results of classification on the test set with a Hidden Markov Model applied
on predictions from Model 4.

Both temporal models improve the accuracy compared to the frame-wise classification of
Model 4 (see Table 5.5). Rolling average gives an improvement of 2.7 percentage points
while Hidden Markov Models raises the accuracy with 2.2 percentage points. One thing
to note is that this increase in accuracy comes largely from increases better performance
on the sitting and lying down classes.

5.3 Visualizing the feature spaces

5.3.1 Model 1 - Naive classifier

For the naive classifier the single feature for a point cloud was how vertical the point cloud
was. As this is a 1-dimensional space it can be represented by a box plot for the different
classes in the data, as can be seen in Figure 5.3.

Figure 5.3: The box plot of vertical score for the samples of different classes in the training
set and test set, as described in Section 4.5.1. This is the variable used in the naive
classifier. There are overlap in the quartiles between the sitting class and the two other
classes leading to the miss-classifications.

52

5.3. VISUALIZING THE FEATURE SPACES CHAPTER 5. RESULTS

Figure 5.4: The t-SNE visualization of the 4D feature space used as input to the Random
Forest Classifier. Blue represents standing samples, orange represents sitting samples and
green represents samples of lying down. All the data was fitted together and then plotted
separately. The left plot shows the training set and the right shows the test set. Overall
the different classes get separated but there are some samples from sitting and lying down
that are scattered all around the plot.

5.3.2 Model 2 - Random Forest Classifier

For model 2 the t-SNE transformation was used to transform the 4D feature space into
a 2D feature space. The results of this can be seen in Figure 5.4. Using PCA would
probably be a good option here instead, but t-SNE was used for a fair comparison to the
other models. The feature space seems rather separated but there are some overlap in
the edges. The test set seems to differ more in the edge between sitting and lying down
compared to the training set.

5.3.3 Model 3 - PointNet

For model 3 the t-SNE transformation was used to map the 512 global feature vector into
a 2D-space. The result of this transform can be seen in Figure 5.6. The model seem to
separate the data in the training set well, but a bigger part of the test set seem to be
mixed with each other. This points towards the model being overfitted to the training
data, limiting its performance on the test set.

53

5.3. VISUALIZING THE FEATURE SPACES CHAPTER 5. RESULTS

Figure 5.5: The t-SNE visualization of the global feature vector from model 3. Blue rep-
resents standing samples, orange represents sitting samples and green represents samples
of lying down. All the data was fitted together and then plotted separately. The left
plot shows the training set and the right shows the test set. The training set seems to be
separated quite well, while the test set looks to be more mixed. This could be caused by
an overfit to the training data or it could be due to actual differences in characteristics of
the data.

5.3.4 Model 4 - PointNet without T-Net

For model 4 the t-SNE transformation was used to map the 512 global feature vector into
a 2D-space. The result of this transform can be seen in Figure 5.6. It does not seem to
separate the classes that well, as the shape of the clusters seem more flat and close to
each other. But the overall shapes seem to match better between the training data and
the test data compared to the other models. This is probably why this model performs
better.

54

5.3. VISUALIZING THE FEATURE SPACES CHAPTER 5. RESULTS

Figure 5.6: The t-SNE visualization of the global feature vector from model 4. Blue rep-
resents standing samples, orange represents sitting samples and green represents samples
of lying down. All the data was fitted together and then plotted separately. The left plot
shows the training set and the right shows the test set. The overall shape shows the three
classes relatively separated but there are many samples that are mixed along the borders,
which is unwanted.

55

5.3. VISUALIZING THE FEATURE SPACES CHAPTER 5. RESULTS

56

Chapter 6

Discussion

6.1 Limitations

6.1.1 Data

The dataset used in this thesis was relatively small, with only 14976 samples, compared
to the usual data sizes for deep learning. As a comparison, the ModelNet40 dataset used
to train the original PointNet has over 137,000 varied samples [7]. The training history
for the PointNet-based models (see Figures 5.1 and 5.2) shows that the validation loss
starts low and then quickly reaches it’s minimum. The validation loss is also quite noisy.
We believe this is caused by the validation dataset being small and not varied enough.
Since we choose the model with the lowest loss on the validation data it is possible that
the selected model is underfitted if the validation data is not representative of the general
problem, which seems to be the case. One solution to this problem would be to obtain
more data.

All the models have trouble with the sitting and lying down classes. This could be due to
the fact that these poses were more prone to occlusion of body parts and splitting of the
cluster caused by the subject not moving enough. One solution to this problem would be
to detect that the target is not moving enough to produce a good classification and just
keep their pose as is. This should work since if a person is not moving, he or she will not
be able to switch poses.

Comparing the training data with the test data in the plotted feature spaces in Section
5.3, some differences between the two sets can be found. One thing that can be seen is that
the test set has more samples from the sitting class that overlap more with the lying down
class. This phenomenon could be explained by the fact that the test and training set are
recorded on different people that have slightly different sitting and lying down positions.
We believe that the models could handle this problem with more varied data.

6.1.2 Model Robustness

The few articles that we have found concerning human activity recognition on radar point
clouds [12, 31] record their subjects on a fixed distance in front of the radar. While our

57

6.2. COMPUTATIONAL COMPLEXITY CHAPTER 6. DISCUSSION

model has both fewer classes and lower accuracy our work shows that human behavior
can be tracked by a radar in realistic scenarios where occlusions, reflections and noise
are large problems. Additionally it must be stressed that the test set that was used to
evaluate our model was recorded on subjects which the model had not seen before in a
new environment with a different furniture. This suggests that the classification could
generalize to even more kinds of spaces and people. To be sure of this, more tests would
have to be done.

6.1.3 Dependency on clustering

The later part of the processing-pipeline depends on the filtering and clustering part of the
data processing. If the point cloud of a target is not fully captured or contains too much
noise, its characteristics could differ very much from a point-wise ground truth. There is
no quantitative way to measure this with the current annotations. The only way would
be to look frame-by-frame at clustered and non-clustered point to compare what seems to
be right.

6.2 Computational complexity

For real-life applications the computational cost should be considered for the different
models along with the classification results for deciding what is a better choice for the
application. With our implementation in Python, a quick test showed that both of the
PointNet-based models was able to make predictions in about half the time it took for the
Random Forest classifier. Between the two PointNet-models, the smaller version decreased
the prediction time by about 20%.

The PointNet model scales with the different number of parameters in the layers as well as
the number of input points. The Shared MLPs before the max-pooling have to be inferred
on every point which causes a lot of computation. Making these layers smaller has a bigger
effect on the computational cost compared to the MLP after the global feature vector. The
number of input points could be decreased to save computation, but this would also mean
less information in total. The original paper on PointNet shows that having more input
points generally give better results [8].

6.3 Hidden Markov Model Limitation

Both the temporal models improved the performance of the frame-wise classification
model. A surprising result was that the very simple rolling average technique beat the
more complex Hidden Markov Model. There are a number of things which could explain
this.

Firstly, the transition matrix is just hard-coded based on some assumptions. Instead, it
could be adapted continuously adapted during predictions with a expectation-maximization
algorithm [25]. Secondly, it can be argued that the Markov Assumption,

P (Xn+1 = j | Xn = in, ..., X0 = i0) = P (Xn+1 = j | Xn = in), (6.1)

58

6.4. FUTURE WORK CHAPTER 6. DISCUSSION

does not hold true for tracking the pose of a person over time. This can be shown by
looking at the transition probabilities,

P (Xn+1 = standing | Xn = lying down, Xn−1 = standing) (6.2)

and,
P (Xn+1 = standing | Xn = lying down, Xn−1 = lying down). (6.3)

According to the Markov Assumption (6.1) these two probabilities should be the same.
By looking at the pose sequences this is obviously not true, though. The pose sequence
(standing, lying down, standing) implies that the person stands, lays down for 100 ms
and then stands again. This is not physically possible so (6.2) should zero. On the other
hand the pose sequence described in (6.3) corresponds to a person lying down and then
standing. This is definitely possible so (6.3) should be non-zero. Therefore the the Markov
Assumption does not hold for describing poses over time, given that the poses are classified
10 times per second.

This is a problem since it shows that the original assumption on which the HMM builds
upon does not hold. There are some quite straight-forward solutions to this though. One
alternative is to expand the state-space of the Markov Chain to include pose pairs (or
pose triplets) instead of single poses. This way the transition matrix could be adapted to
exclude sequences which are not physically possible.

6.4 Future Work

The classification models in this thesis were built upon previous work in point cloud
classification with some modifications for radar data. There was not enough time to test
all the different ideas we had, as well as other models from previous works. Given more
time, we think the model could be considerably improved upon.

6.4.1 Data

As mentioned before, a bigger data set would help the deep learning models find a more
generalized model. The easiest way to do this would be to just record and annotate more
data. Another way to generate more data would be to improve the data augmentation.
Rotating the point cloud could help with the fact that people sit and lay down in different
directions. However, this augmentation would have to be implemented carefully due to
how the radar works. Rotating the cloud too much could result in unrealistic point clouds
compared to an actual recording at that angle. Another type of augmentation that could
help would be some type of mirroring in space.

6.4.2 Segmentation and clustering

Selecting what is a target and what is noise is important for the following part of the model.
In this work there was no ground truth which could be used to evaluate the performance
of this step. The effects of propagating errors could therefore not be estimated.

With a point-wise ground truth there are a couple of options that could be improved. The
first idea would be to use another PointNet-based model to do semantic segmentation. This

59

6.4. FUTURE WORK CHAPTER 6. DISCUSSION

has been done in the original paper [8] and its follow-up PointNet++ [32] which showed
promising results. Of these networks, PointNet++ would probably be the better choice as
it captures both local and global features. For point clouds of the entire rooms, the local
structures would hold much of the information for the segmentation. This segmentation
could either just find target and non-target points to filter more points before clustering
or it could do pointwise classification to merge the different steps.

6.4.3 Classifiers

Other types of classes could be added to find whether the given cluster is human or not.
The model assumes that every cluster is a person, which is not always the case in the
indoor environments. Examples of classes that could be added here are pet animals or a
class which represents everything else. Furthermore, it would be good to see if the pose
classification could be extended to include activities, such as walking, running, etc. This
could be done as a new task or by combining the information of the pose together with
the speed of the track and amount of movement within the cluster.

A PointNet-based approach was used instead of PointNet++ since the point cloud from
the radar is not as accurate as data from CAD-models or some lidars. But the increased
information from local features in PointNet++ could improve the classification. To de-
termine if that is the case, a model using PointNet++ would need to be compared to the
models presented in this thesis.

60

Chapter 7

Conclusion

The proposed classification pipeline was able to both find people in the point cloud data
and classify their poses into three categories: standing, sitting or lying down. The model
was evaluated in an environment and on people which the model had not seen before,
suggesting that the model could generalize into other indoor settings.

The proposed model is able to reliably classify a person as standing but scores a bit lower
for the sitting and lying down classes. This can be attributed to the model confusing sitting
with lying down and vice versa. We believe an underlying reason for this shortcoming is
the data processing where clusters from people sitting or lying down were more prone to
be incomplete. This tends to happen when the person is already sitting/lying down and
not moving as much. As long as the moment when the person assumes the position is
classified correctly, this is a problem that can be overcome.

Given a bigger and more varied dataset together with the proposed improvements, we
believe the classification models using PointNet could become very reliable in keeping
track of a person and its poses over time. With an improved model, this type of set-up
of a radar could prove to be a good alternative in monitoring a person in areas where a
camera should not be used.

61

CHAPTER 7. CONCLUSION

62

Bibliography

[1] Fahad Jibrin Abdu, Yixiong Zhang, Maozhong Fu, Yuhan Li, and Zhenmiao Deng.
Application of deep learning on millimeter-wave radar signals: A review. Sensors, 21
(6), 2021. ISSN 1424-8220. doi: 10.3390/s21061951. URL https://www.mdpi.com/

1424-8220/21/6/1951.

[2] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Rethinking network design
and local geometry in point cloud: A simple residual MLP framework. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.

net/forum?id=3Pbra-_u76D.

[3] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mohammed Ben-
namoun. Deep learning for 3d point clouds: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43(12):4338–4364, 2021. doi: 10.1109/TPAMI.
2020.3005434.

[4] Weiping Liu, Jia Sun, Wanyi Li, Ting Hu, and Peng Wang. Deep learning on point
clouds and its application: A survey. Sensors, 19:4188, 09 2019. doi: 10.3390/
s19194188.

[5] Saifullahi Aminu Bello, Shangshu Yu, Cheng Wang, Jibril Muhmmad Adam, and
Jonathan Li. Review: Deep learning on 3d point clouds. Remote Sensing, 12(11),
2020. ISSN 2072-4292. doi: 10.3390/rs12111729. URL https://www.mdpi.com/

2072-4292/12/11/1729.

[6] David Griffiths and Jan Boehm. A review on deep learning techniques for 3d sensed
data classification. Remote Sensing, 11:1499, 06 2019. doi: 10.3390/rs11121499.

[7] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d ShapeNets: A deep representation for volumetric shapes. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
June 2015. doi: 10.1109/cvpr.2015.7298801. URL https://doi.org/10.1109/cvpr.

2015.7298801.

[8] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation, 2016. URL https://arxiv.org/

abs/1612.00593.

[9] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and

63

https://www.mdpi.com/1424-8220/21/6/1951
https://www.mdpi.com/1424-8220/21/6/1951
https://openreview.net/forum?id=3Pbra-_u76D
https://openreview.net/forum?id=3Pbra-_u76D
https://www.mdpi.com/2072-4292/12/11/1729
https://www.mdpi.com/2072-4292/12/11/1729
https://doi.org/10.1109/cvpr.2015.7298801
https://doi.org/10.1109/cvpr.2015.7298801
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1612.00593

BIBLIOGRAPHY BIBLIOGRAPHY

Matthias Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In
Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, 2017.

[10] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and
Sai-Kit Yeung. Revisiting point cloud classification: A new benchmark dataset and
classification model on real-world data. In International Conference on Computer
Vision (ICCV), 2019.

[11] Jie Bai, Kai Long, Sen Li, Libo Huang, and Lianfei Dong. Multi-objective classi-
fication of three-dimensional imaging radar point clouds: Support vector machine
and pointnet. SAE International Journal of Connected and Automated Vehicles, 4
(12-04-04-0028), 2021.

[12] Akash Deep Singh, Sandeep Singh Sandha, Luis Garcia, and Mani Srivastava. Radhar:
Human activity recognition from point clouds generated through a millimeter-wave
radar. In Proceedings of the 3rd ACM Workshop on Millimeter-Wave Networks and
Sensing Systems, mmNets’19, page 51–56, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450369329. doi: 10.1145/3349624.3356768. URL
https://doi.org/10.1145/3349624.3356768.

[13] Anish Shastri, Neharika Valecha, Enver Bashirov, Harsh Tataria, Michael Lentmaier,
Fredrik Tufvesson, Michele Rossi, and Paolo Casari. A review of indoor millime-
ter wave device-based localization and device-free sensing technologies, 2021. URL
https://arxiv.org/abs/2112.05593.

[14] Jacopo Pegoraro and Michele Rossi. Real-time people tracking and identification
from sparse mm-wave radar point-clouds. IEEE Access, 9:78504–78520, 2021. doi:
10.1109/ACCESS.2021.3083980.

[15] James A. Scheer Mark A. Richards and William A. Holm (Editors). Principles of
Modern Radar : Basic Principles, Volume 1. ProQuest Ebook Central, 2010.

[16] S. Suleymanov. Design and implementation of an fmcw radar signal processing module
for automotive applications, August 2016. URL http://essay.utwente.nl/70986/.

[17] Sofia Catalucci and Nicola Senin. State-of-the-art in point cloud analysis. In Advances
in Optical Form and Coordinate Metrology, 2053-2563, pages 2–1 to 2–48. IOP Pub-
lishing, 2020. ISBN 978-0-7503-2524-0. doi: 10.1088/978-0-7503-2524-0ch2. URL
https://dx.doi.org/10.1088/978-0-7503-2524-0ch2.

[18] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining,
KDD’96, page 226–231. AAAI Press, 1996.

[19] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[20] Kevin Gurney. An Introduction to Neural Networks. Taylor & Francis, Inc., USA,
1997. ISBN 1857286731.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

64

https://doi.org/10.1145/3349624.3356768
https://arxiv.org/abs/2112.05593
http://essay.utwente.nl/70986/
https://dx.doi.org/10.1088/978-0-7503-2524-0ch2
http://www.deeplearningbook.org

BIBLIOGRAPHY BIBLIOGRAPHY

[22] Christopher M. Bishop. Pattern recognition and machine learning. Springer, cop.,
New York, NY, 2006. ISBN 9780387310732.

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2014. URL https://arxiv.org/abs/1412.6980.

[24] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from over-
fitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html.

[25] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 4th edition, 2021. ISBN 978-1-292-40113-3.

[26] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
Machine Learning Research, 9(86):2579–2605, 2008. URL https://www.jmlr.org/

papers/v9/vandermaaten08a.html.

[27] Karl Sigman. Lecture notes on stochastic modeling i, 2009.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[29] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schus-
ter, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. URL https:

//www.tensorflow.org/. Software available from tensorflow.org.

[30] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Francis Bach and David Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 448–456, Lille, France, 07–09 Jul
2015. PMLR. URL https://proceedings.mlr.press/v37/ioffe15.html.

[31] Youngwook Kim, Ibrahim Alnujaim, and Daegun Oh. Human activity classification
based on point clouds measured by millimeter wave mimo radar with deep recurrent
neural networks. IEEE Sensors Journal, 21(12):13522–13529, 2021. doi: 10.1109/
JSEN.2021.3068388.

[32] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. CoRR, abs/1706.02413,
2017. URL http://arxiv.org/abs/1706.02413.

65

https://arxiv.org/abs/1412.6980
http://jmlr.org/papers/v15/srivastava14a.html
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://www.tensorflow.org/
https://www.tensorflow.org/
https://proceedings.mlr.press/v37/ioffe15.html
http://arxiv.org/abs/1706.02413

BIBLIOGRAPHY BIBLIOGRAPHY

66

Appendix A

A.1 Parameters for Random Forest Classifier-implementation

The parameters used for the implementation of the Random Forest Classifier was used
given the implementation from sklearn and can be found below in Table A.1.

Parameter name Value

n estimators 150
criterion ”gini”

max depth 7
min samples split 2
min samples leaf 1
max features ”auto”
max leaf nodes 60

min impurity decrease 0.0
bootstrap True
oob score False
n jobs None

random state None
warm start False
class weight 1 for all classes and inputs
ccp alpha 0.0

max samples 0.8

Table A.1: The different parameters used when training the Random Forest Classifier with
the model from Sci-kit learn. The parameters were chosen by a grid search with creating a
validation set from some samples in the training set and picking the model that performed
the best on that set.

A.2 Tracking

To be able to link different clusters in time to the same target we had to implement a
tracker. Since we did not have many targets in the scene at the same time the tracker
could be simple. Psuedocode for the implemented tracker is found in Algorithm 2.

67

A.2. TRACKING APPENDIX A.

Algorithm 2 Tracker

1: function Track(Clusters, Tracks, dT, gate, tMax)
2: sort(Tracks) based on lowest velocity
3: for track in Tracks do
4: AssignCluster(track, Clusters, dT, gate)
5: end for
6: if Clusters is not empty then
7: for cluster in Cluster do
8: newTrack = trackFromCluster(cluster)
9: Tracks.append(newTrack)

10: end for
11: end if
12: for track in Tracks do
13: if track.missed > tMax then Tracks.delete(track)
14: end if
15: end for
16: end function
17:

18: function AssignCluster(track, Clusters, dT, gate)
19: nearestCluster = Clusters[0]
20: minDist = distance(track.center, Clusters[0].center)
21: for cluster in Clusters do
22: currDist = distance(track.center, cluster.center)
23: if currDist < minDist then
24: nearestCluster = cluster
25: minDist = currDist
26: end if
27: end for
28: if minDist < gate then
29: track.velocity = (track.center - nearestCluster.center) / dT
30: track.update(nearestCluster)
31: Clusters.delete(nearestCluster)
32: track.missedTime = 0
33: track.new = False
34: else
35: track.missedTime = track.missedTime + dT
36: end if
37: end function

68

Master’s Theses in Mathematical Sciences 2022:E29
ISSN 1404-6342

LUTFMA-3478-2022

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

