
MASTER’S THESIS 2022

How to Improve Feedback and
Traceability for Performance in
Software Development
Hanna Höjbert, Elias Vernersson

ISSN 1650-2884
LU-CS-EX: 2022-22

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-22

How to Improve Feedback and Traceability
for Performance in Software Development

Hanna Höjbert, Elias Vernersson

How to Improve Feedback and Traceability
for Performance in Software Development

Hanna Höjbert
ha0223ho-s@student.lu.se

Elias Vernersson
el2121ve-s@student.lu.se

May 26, 2022

Master’s thesis work carried out at Telavox AB.

Supervisors: Lars Bendix, lars.bendix@cs.lth.se
Anton Nilsson, anton.nilsson@telavox.se

Examiner: Emelie Engström, emelie.engstrom@cs.lth.se

mailto:ha0223ho-s@student.lu.se
mailto:el2121ve-s@student.lu.se
mailto:lars.bendix@cs.lth.se
mailto:anton.nilsson@telavox.se
mailto:emelie.engstrom@cs.lth.se

Abstract

Identifying and managing performance issues is a challenging task that often
needs a defined practice in the development process. Without a practice, there is
a chance that performance issues are pushed into production and thus affect the
end user. Making sure an application is performing well is, however, not trivial
and often involves relaying feedback to developers either from testing or produc-
tion monitoring. Providing developers with adequate, accurate and timely feed-
back about the performance of an application is a considerable challenge. Today
there are two approaches, monitoring the production environment and solve the
issues as they are identified or testing for performance by writing performance
testing suites. However, monitoring the production environment provides slow
feedback and writing extensive test suites is expensive.

We therefore formulated a requirements specification with the help of devel-
opers for an automated tool. We then investigated and implemented a prototype
based on the requirements that aims at providing developers with additional in-
formation about the application performance by monitoring an already existing
unit testing suite.

The conclusions of the research is that the prototype could improve perfor-
mance issue identification for developers before releasing into production and
thereby improve the feedback loop.

Keywords: Feedback Loop, Increasing Traceability, Requirements Specification, Con-
tinuous Integration, Continuous Delivery, Performance Monitoring, Performance Issue
Identification, DevOps, Closure

2

Acknowledgements

First of all, we would like to thank Lars Bendix for the support and knowledge he has shared
with us during the master’s thesis process. Throughout the work we have grown to cherish
both the early mornings as well as the late Sundays evenings spent on discussing everything
from how to write a better thesis to how to make the best pizza possible.

We would also like to thank our supervisor, Anton, at the case company for the warm
welcome and guidance for getting in touch with the right people. We would also like to
thank all developers who have been involved in various interviews and evaluations.

3

4

Contents

1 Introduction 9

2 Background 13
2.1 Problem Understanding . 13

2.1.1 Telavox . 13
2.1.2 Pre-analysis . 14
2.1.3 Research Questions . 15

2.2 Theoretical Framework . 17
2.2.1 Traceability . 17
2.2.2 Feedback . 17
2.2.3 Automation . 18
2.2.4 DevOps . 18
2.2.5 Continuous Integration and Delivery 18
2.2.6 Test Driven Development . 19
2.2.7 Performance Testing . 19
2.2.8 Closure . 20

2.3 Methodology . 20
2.3.1 Pre-analysis Phase . 21
2.3.2 Problem Analysis Phase . 22
2.3.3 Design Phase . 25
2.3.4 Prototype Phase . 26

3 Problem Analysis 29
3.1 Literature Study . 29

3.1.1 Performance Testing . 30
3.1.2 Test Case Selection . 30
3.1.3 Feedback Loop and Bug Reporting 31

3.2 Setting a Baseline . 32
3.3 Interviews . 33
3.4 Requirements Specification . 36

5

CONTENTS

4 Design 39
4.1 Design Proposals and Discussions . 39

4.1.1 Design Option 1 . 40
4.1.2 Design Option 2 . 41
4.1.3 Design Option 3 . 43
4.1.4 Design Option 4 . 44
4.1.5 Design Option 5 . 46

4.2 Requirements Gained from Design . 48
4.3 Design Choice . 49

5 Prototype 51
5.1 Prototype Implementation 1 . 51
5.2 Prototype Implementation 2 . 52
5.3 Prototype Evaluation . 55

5.3.1 Bug Fixing . 55
5.3.2 Issue Detection . 55
5.3.3 Feedback and Information . 56
5.3.4 Traceability . 56
5.3.5 Closure . 56
5.3.6 Disadvantages . 57
5.3.7 General Discussions . 57

5.4 Requirements Gained from Prototypes . 58

6 Results 61
6.1 Results to Research Questions . 62

6.1.1 Requirement Specification . 62
6.1.2 Development Process . 62
6.1.3 Bug Fixing . 63
6.1.4 Closure . 63

6.2 Specifying Core Requirements . 64

7 Discussion & Related Work 65
7.1 Reflections on Methodology . 65

7.1.1 Qualitative and Quantitative Results 65
7.1.2 Biased Scoping . 66
7.1.3 Literature Search . 66
7.1.4 Neutral Answers in Questionnaire 66
7.1.5 Hard to Answer Questions . 67
7.1.6 More Questions About Closure and Traceability 67
7.1.7 Pre-analysis . 67
7.1.8 Fewer Design Proposals . 67
7.1.9 Requirements Specification . 68

7.2 Validation . 68
7.2.1 Sample Size . 68
7.2.2 Biased Interviewee Selection . 68
7.2.3 Untested Requirements . 68
7.2.4 Testing the Prototype . 69

6

CONTENTS

7.3 Generalizability . 69
7.4 Related Work . 70

7.4.1 Closing the Feedback Loop in DevOps Through Autonomous Mon-
itors in Operations . 70

7.4.2 Shortening Feedback Time in Continuous Integration Environment
in Large-Scale Embedded Software Development with Test Selection 71

7.4.3 Unit Testing Performance in Java Projects: Are We There Yet? . . . 73
7.4.4 On Agile Performance Requirements Specification and Testing . . 74

7.5 Future Work . 76

8 Conclusions 77

References 79

Appendix A Pre-analysis Interviews 83

Appendix B Problem Analysis Interviews 85

Appendix C Initial Requirements Specification 87
C.1 Shared Requirements . 87
C.2 Testing (Locally and in Jenkins) . 88
C.3 Monitoring . 89
C.4 Feedback . 89

Appendix D Requirements Specification for Design 91

Appendix E Requirements Specification for Prototype 95

Appendix F Core Requirements 99
F.1 Core Requirements . 99
F.2 Most Valuable Requirements . 99
F.3 Nice to Have Requirements . 101

7

CONTENTS

8

Chapter 1

Introduction

Without a defined practice in the development process for how performance issues can be
identified, there is a good chance that they will be pushed into production and to the end
users. For this thesis, the case company, Telavox, ran the risk of this particular problem of
performance issues being released into production as they had no proper feedback system
implemented, in terms of finding and solving performance issues in the code - a problem
that, in the long run, could lead to degraded user experience. User experience is a central part
of what makes a service successful with one of the deciding qualities being responsiveness.
Performance issues that did occur were at best caught during the production stage, after
which data about performance was manually retrieved and analyzed by developers. This
took between a few hours and about a week depending on how severe the issue was, with a
lot of time spent on identifying where in the code the problem was and who had introduced
it. The lack of traceability was the main culprit, once a problem had occurred it was hard for
the developers to identify what part of the code had caused the issue and in which version of
the code it was introduced.

There are several reasons why this is an important problem. The main reason why is the
costly and time-consuming resources that the company needs to put into identifying perfor-
mance issues that instead could be put into developing and improving the product. Another
reason is that performance issues create a frustrating user experience in which the user has
to wait for slow requests to the system. Keeping the performance of a system sufficient is
important in order for a company to retain its customers while also minimizing the risk of
deterring new potential customer, which could have an impact on the company’s revenue.

To solve the problem above this thesis aims to improve feedback and traceability in the
software development process. This thesis contributes to current research within three fields;
feedback, traceability and closure. This was achieved by diverging from current standard
methods, namely performance testing, and instead rely on already existing unit tests as a basis
for testing performance. The first contribution is the method of increasing traceability in the
system. unit tests are combined with performance monitoring in order to create rudimentary
performance tests in the build stage, with little time and effort needed to write extensive

9

1. Introduction

test suites. Furthermore, the research has contributed by investigating what requirements
a developer has on a tool for detecting and resolving performance issues found in the code.
Lastly, it was investigated how the sense of closure was affected by extending the testing stage
with additional, albeit experimental, performance testing. These conclusions were ultimately
found by first asking the four research questions below.

RQ1 What effect could an automated tool for performance have on the feedback loop and
development process?

RQ2 What is useful information for the developer, what requirements does the developers
have on the automated tool for performance?

RQ3 How would the time required for bug fixing be affected with the use of an automated
tool for performance?

RQ4 How could a shorter and rigorous feedback loop give developers faster closure?

Several steps were performed to investigate the research questions. An overview of the
methodology can be seen in figure 1.1. Two rounds of interviews were conducted during
the project, one in the first step of project, which had the purpose to explore the problem
domain and get an insight into the development process. In the next step a second round of
interviews were conducted in order to elicit requirements that a developer would have on a
tool. The first step in which two different interviews were conducted with developers at the
case company to get an understanding of the problem, get an insight in the work process and
derive a requirements specification for the tool. Furthermore, a questionnaire was sent out
to receive answers to set a baseline for the current situation. The next step was to dive into
literature to lay an academic foundation and find similar experiments to this thesis. Then,
several prototypes were designed and explored where one was chosen to be implemented. In
the last step, the prototype was tested and evaluated by developers in a testing session with
a following interview.

Start

Pre-analysis

Initial interview

Observations

Formulate RQ1,

RQ2, RQ3, RQ4

Problem Analysis

Literature Study

Interviews

Setting a Baseline

Requirements
Specification

Design

Design Proposals

Design Decision

Requirements
from design

Prototype

Prototype
implementation

Prototype
evaluation

Requirements
from prototype

End

Figure 1.1: The figure shows the methodology used in the project.

10

The report is composed of a background chapter which starts with a pre-analysis of the
problem domain, followed by a theoretical framework on which the thesis is based upon and a
motivation of the methodology for the thesis. Moving on, the problem analysis chapter which
will explore similar approaches from articles, motivate the questionnaires and interviews,
while also relating preliminary data to form an initial requirement specification. The design
chapter will then motivate how a prototype was chosen, implemented and evaluated, along
with motivating additional requirements that were elicited during the design phase. In the
results chapter the results from the questionnaire, interviews, the requirements specification
itself and the prototype will be discussed along with deriving core requirements, followed by
a chapter in which the research along with related and future work will be discussed. The
research will then be summarized in the conclusion of the report.

11

1. Introduction

12

Chapter 2

Background

In this chapter we will relate and analyze the case company to the context of the thesis in
order to formulate research questions from the initiating problem, discuss related theory that
is relevant to the initiating problem and motivate the methodology as an extension of the
research questions. This is important in order for the reader to understand how the context
has influenced decisions and approaches used in the thesis, but will also help the reader get
familiar with the case company. It also helps the reader understand the initiating problem
on a more granular level by relating the initiating problem and context to relevant theory,
while also serving the reader as a source of information that can be consulted when reading
the report if needed. First the context at the company will be analyzed in order to develop
relevant research questions, that act as a proxy to solving the initiating problem. The context
of the thesis will then be related to relevant theory. Lastly, a methodology will be established
from analyzing the research questions and investigating possible approaches.

2.1 Problem Understanding
The purpose of this section is to explore and expand the initiating problem as well as inves-
tigate research questions that encapsulate the essence of the initiating problem. This will be
done by first investigating the case company, then conducting a pre-analysis to find a basis
that will lastly be used to develop research questions for the thesis.

2.1.1 Telavox
Telavox, which will be addressed as the case company in this thesis, the provides a cloud based
uCaaS, unified communication as a service, to make it easier for businesses to manage their
communications. They provide telephony, PBX, messaging, meetings and contact center all
in one platform. The guiding star for development of the product is simplicity and the com-
pany owns their platform from top to bottom which means that they can steer the product

13

2. Background

in the direction they want and be adaptable to what customers want. With the product, it is
easy for businesses to scale their workers up or down as the admin can self-administer the set
up of the product in the admin portal. Today, the company has 300 000+ users across 60 000
customers and are located in 9 countries around the world. Their headquarters are located in
Malmö where the main development of the product takes place with around 90 developers
working there. There are many departments at the company where one of them is DevOps
which is where this thesis will be conducted.

2.1.2 Pre-analysis
In order to develop relevant research questions for the initiating problem there was a need
to investigate the current situation at the case company. This was done by conducting inter-
views with two developers that had experience with performance issues at the case company.
Furthermore, observations made by us will be explored. First off, the interviews and its find-
ings will be investigated, then the observations will be explored.

Initial Interviews
From the interviews it could be derived that developers consider the main problem, in terms
of performance issues, being that requests to the database take too long. This locks the
database for other users which in turn results in a degraded user experience. This origi-
nates in that developers might not have a complete understanding of how their code affects
the database performance.

There seemed to be no single way for developers of testing the performance of the service,
but instead every developer had their own method for making sure their code is good enough
in terms of performance. Some developers tested their code manually by clicking around in
the application to see if something was noticeably slow. Other developers used a profiling
tool that allowed them to see what parts of the code took time when performing manual
testing. A third method was to ask the peer reviewer of the code to also check if the code
was good enough in terms of performance. A shared commonality between the methods was
that it was up to an individual to decide whether or not the code is good enough.

It was also mentioned that developers might be surprised to know their code is slow since
there were no prior warnings and therefore they assumed it was good enough. But it could
also be surprising due to the fact that the system might not behave as the developer had
thought it would. This thought of always having to make sure the code is fast enough might
cause the developer to be overly cautious in committing changes and might also be seen as
an extra burden to the developer.

The interviewees described that there is a specially appointed group of developers that,
in addition to their regular work, are tasked with monitoring and solving performance is-
sues that are identified in production. The slowest performance issues that had occurred in
the production environment were then logged. Once a week the group then chose issues to
resolve, based on their importance and in some occasions fixed issues within a few hours if
it was an urgent issue that affected large parts of the system. The issues were either resolved
by the group or dispatched to the developer responsible for introducing the issue. Figuring
out what part of the code caused the performance issue was not always easy as the logged
query was generated dynamically and therefore was hard to read, which resulted in it being

14

2.1 Problem Understanding

time consuming to find the responsible developer. In case the the developer responsible for
the issue could not be found, the issue would be manually added into JIRA, the project man-
agement system at the case company, or dispatched to another suitable developer or team.
The interviewees pointed out that it thus normally takes about a week to get feedback if their
code had caused any performance issues. Furthermore, they describe that this will cause a gap
in time between coding and handling any performance issues, which means that developers
lose context and workflow.

On the question if the case company uses continuous delivery or continuous deployment
both interviewees answered that the company uses Continuous Delivery.

To summarize, the method testing of performance differ from developer to developer,
with some testing manually by clicking around in the application and other by using profiling
tools. Furthermore, there exists a feedback loop from production, regarding the performance
of the system, that often takes at least a week from which developers will be notified in
different ways.

Observations
After having conducted interviews there was still a need to identify current used practices at
the case company, that might have been glanced over in the interviews, such that this con-
text could be taken into account when developing the research questions. The development
process was therefore observed and the observations will be lined out from the beginning of
the development process to the end.

In the development stage, the case company encourage developers to adopt test driven
development (TDD). To test performance of requests to the database, developers used a sepa-
rate program to try a query out against a test database and decided themselves if performance
was good enough.

As mentioned in interviews and from further investigation, we found that the case com-
pany implements continuous integration (CI) and continuous delivery (CD). In the CI stage,
the case company applies git as their version control software and the shared code base is
stored on GitHub. A new git branch is made every time a developer wants to implement
changes in the code base. When changes are made, the developer creates a pull request to the
main branch. This triggers the build server to build the code and perform more thorough
testing but we observed that performance testing is still missing in the test suite.

In the CD stage, a new build is deployed manually to production by developers a few times
a day and each build contains several commits with new changes from several developers. In
production, the case company monitors all requests coming to the system to make various
analyzes.

2.1.3 Research Questions
In the project there is a need for guidelines in order to make sure the research does not diverge
from the initiating problem. Therefore a number of research questions have been formulated
and by answering the research questions, the initiating problem can also be solved. This
subsection will thus reflect on the previous subsections in order to identify needs that are
determining factors to solve the initiating problem. The research questions are prioritized

15

2. Background

in order of significance to the initiating problem. We then discuss the formulation of the
research questions in this order.

From the interviews and observations, several problem areas were identified. The first
of which was that the feedback loop took at least one week as well as it being performed
manually. The second problem was that the traceability between a performance issue in
production and the code was poor.

RQ1 was formulated with the intention that it would be interesting to investigate whether
or not an automated tool for performance measurements could possibly solve these issues and
how it would affect the feedback loop as well as the development process as a whole. The rea-
son why this is interesting is because it has the possibility of reducing the amount of work
needed to identify and relay feedback about performance issues. It is also interesting as an
automated tool would fit into the current workflow since the case company use DevOps
practices.

Since this thesis investigates whether or not an automated tool would have any effect on
the development process, it is also of interest to investigate what requirements developers
would have on such a tool. In order to make sure a tool contributes with the highest amount
of satisfaction to the developers, it is necessary to investigate what requirements they have
on such a tool. A requirement specification could then act as a good basis for future research
or development as it would give an indication of where to start a similar project. In order to
investigate this RQ2 was formulated.

As mentioned earlier it was interesting to know what effect an automated tool could have
on the problem areas stated earlier. During the interviews it was found that identifying the
location in the code that caused a performance issue was both difficult and time consuming.
It was therefore interesting to see if an automated tool could have any impact on the amount
of time required to fix bugs. This is interesting because an automated tool could improve
the traceability and thereby make bug fixing easier. RQ3 was therefore formulated with the
intention of investigating this.

Lastly, it was mentioned that there is a gap between the time a developer writes code and
the time she or he receives feedback. It was also said that not knowing whether or not you
have tested your code enough was perceived as an extra burden to the developer, which could
be a result of a lacking testing stage. This could contribute to developers not feeling closure
early in the development process. It was therefore interesting to investigate if developers
could experience faster closure by receiving faster feedback from an automated tool. RQ4
was formulated in order to investigate this further.

RQ1 What effect could an automated tool have on the feedback loop and development pro-
cess?

RQ2 What is useful information for the developer, what requirements does the developers
have on the tool?

RQ3 How would the time required for bug fixing be affected with the use of an automated
tool?

RQ4 How could a shorter and rigorous feedback loop give developers faster closure?

16

2.2 Theoretical Framework

2.2 Theoretical Framework
This section will use the research questions developed in the previous section, and relate it
to theory. This is essential in order for the reader to have an adequate understanding of the
theory as it will function as a basis for the rest of the report, as well as a source of information.
First we will explore some theory that is related to the research questions and then investigate
some theory that is brought up later in the report.

2.2.1 Traceability
This section will focus on the theory behind traceability, where traceability can be found in
the software development process and the value it adds to the process. Also, the theory will
be related to the research questions.

Good traceability allows for a configuration item to be traced throughout the entire soft-
ware development life cycle. Anything that is used or created throughout the software de-
velopment life cycle, referred to as an artifact, can be turned into a configuration item [3].
Traceability reveal itself not only as a timeline of changes made to a single configuration item,
such as code commits, but also as a relationship between a feature and the requirement that
generated the feature as well as the tests cases for the feature. These relationships is what al-
lows for a configuration item to be followed throughout the software development life cycle.
Testing code exemplifies traceability well. Good traceability for example allows the devel-
oper to see what tests passed and what tests failed and are given the information about the
version of the tested system. The developer can thereby observe the version of the system
that was tested and see what changes has been made since the last time the tests passed. This
information could then be used in order to deduct what has caused the tests to fail. Without
traceability, it would be hard to know what version was tested and what changes had been
made since the last time the tests all passed. This relates to the research questions as it is the
lack of traceability between logged performance issues and the code itself that makes it diffi-
cult to deduct what part of the code caused the performance issue. An increased traceability
between this artifact and the code could make it easier for the developer to find the code that
caused the performance issue.

2.2.2 Feedback
In order to fully understand the research questions it is necessary to investigate the theory
behind feedback and its importance in the software development process. As part of feed-
back, Test Driven Development will be highlighted and explored to motivate the advantages
of implementing it.

Krancher et al. refers to feedback as ”information about actions returned to the source of
the actions”, which is a definition that suites this thesis. Furthermore, Krancher et al. men-
tions that feedback is received, for example, when a person testing the code informs the devel-
oper about results but also when compiling, testing or reviewing code [11]. Feedback allows
developers to see the results of their actions and act accordingly. M. Poppendieck and T. Pop-
pendieck mentions ”In most cases, increasing feedback, not decreasing it, is the single most
effective way to deal with troubled software development projects and environments” [14].

17

2. Background

M. Poppendieck and T. Poppendieck furthermore describes that, generally, dynamic envi-
ronments require more feedback as opposed to static environments. It could therefore be
argued that software development generally would benefit from more rapid feedback. Test
driven development is from this standpoint a way of increasing fast feedback by continuously
testing whether an implementation achieves the functionality that it intends to. Rather than
implementing functionality and receiving feedback days later from a test group, the feedback
can be received within a matter of minutes rather than days.

2.2.3 Automation
Automation is the act of making manual processes automated in order to save time and
resources while also saving developers from having to carry out tedious and repetitive tasks.
Automation has the benefit of being consistent, fast and less resource intensive compared
to carrying out tasks manually. Testing is a task that is often subject to automation. M.
Poppendieck and T. Poppendieck mentions ”The most effective way to facilitate change is to
have an automated test suite that tests the mechanisms the developers intend to implement
and the behavior the customers need to have” [14], which is a compelling reason to automate
it. But automation can also be applied to a broader set of practices, rather than just testing.

2.2.4 DevOps
In order to understand the context of the thesis it is important to have a brief knowledge of
DevOps. It is also important as the concept will be referred to throughout the report.

According to Bass et al. ”DevOps is a set of practices intended to reduce the time between
committing a change to a system and the change being placed into normal production, while
ensuring high quality” [1]. What practices actually constitute DevOps is debated, but Zhu
et al. mentions that a DevOps developer is able to place their code into production without
need for coordinating with other development teams and after the deployment the system
should be monitored [17]. DevOps developers are, in that sense, cross-functional. Further-
more Zhu et al. mentions that DevOps heavily rely on tools to perform the processes between
committing a change and deploying into production. Ebert et al. state that ”Quality deliv-
eries with short cycle time need a high degree of automation” [6], which could be the reason
for their heavy reliance on tools.

2.2.5 Continuous Integration and Delivery
This subsection will briefly discuss the theory of continuous integration and delivery. This
is important as the case company implements continuous integration and delivery in their
development and as such the research questions will be investigated with this context.

Continuous integration and delivery is the combination of two different practices: con-
tinuous integration and continuous delivery. Continuous integration is the act of frequently
integrating new code to the main branch and then automatically testing the integrated code.
Continuous delivery, on the other hand, is an extension of continuous integration that also
automatically puts the system in a state that it can be deployed into production by the press

18

2.2 Theoretical Framework

of a button. Chen explores the benefits and challenges of implementing continuous deliv-
ery [5]. Chen mentions six benefits, accelerated time to market, building the right product,
improved productivity and efficiency, reliable releases, improved quality, and improved cus-
tomer satisfactory.

2.2.6 Test Driven Development

This subsection aims at exploring relevant theory behind the concept test driven develop-
ment. This is relevant to the research questions with the reason being that test driven devel-
opment is practiced at the case company and that it is important to take this into consider-
ation.

Beck describes the test driven development as a process were the developer first writes a
test that does not work, then makes the test work quickly, and lastly refactors the code [2].
The reason for refactoring the code is, according to Beck, to eliminate all of the duplicate and
bad code that was introduced when just trying to make the test work. Beck also explains that
an advantage with test driven development is how it shortens the feedback loop on design
decisions. Likewise, M. Poppendieck and T. Poppendieck describes that tests allow develop-
ers to get immediate feedback on whether or not their implications and code works [14]. M.
Poppendieck and T. Poppendieck also mentions that tests make it safe for developers to try
things that otherwise would be too dangerous, since they have the tests as a safeguard.

2.2.7 Performance Testing

Monitoring the performance of a system is a reactive way of identifying performance issues.
Testing for performance is, however, a proactive approach to identifying performance issues.
Performance testing does not relate to the research questions directly, but will rather be in-
vestigated as a method of answering the research questions. As such a brief understanding of
the concept is needed. Performance is an integral part of any service as it dictates how well
a user is able to use the service in question. Or as Ian Molyneaux puts it, "A well-performing
application is one that lets the end user carry out a given task without undue perceived delay
or irritation. Performance is really in the eye of the beholder" [13]. It expresses the idea that
performance is not necessarily about objective measurements, but rather the subjective expe-
rience of the individual user. One could argue that a benefit of performance testing is that it
can be done prior to deployment, which reduces the risk of a user being exposed to a perfor-
mance issue. In addition, performance testing can be automated and as such integrated into
the continuous delivery process. Not only could this save time, but it would also allow each
commit to be tested independently from one another, which would increase the traceability
from performance to the system version. A difficulty with testing performance, however,
is that the testing environment needs to be very similar to the production environment in
order to produce reliable results and it is not always easy to to. This is because a production
environment has live users which the testing environment somehow needs to account for.

19

2. Background

2.2.8 Closure

Closure is an illusive concept that is referenced multiple times in the research questions. In
order to be able to understand the concept and reduce the risk for ambiguity in the thesis,
the concept will be defined.

Kruglanski and Webster defined the need for closure as a desire for an, or any, answer to
a given topic [16]. It could therefore be argued that closure itself, is the sensation of having
come to an answer on a given topic. In the context of software development and this thesis,
closure will be defined as the sensation of feeling done with a feature and being able to move
on to another task. This is relevant to the context of the thesis because shortening the feed-
back loop might have an effect on the sense of closure, since it allows the developer to know
more about the current state of the system when having finished a task.

2.3 Methodology

This section will focus on discussing the use of methodology in the project, why the method-
ology was suitable and how it ultimately served as an extension to answering the research
questions formulated earlier in this chapter. This is of interest as it reflects and motivates
to the reader why the specific methodology was used and other potential approaches where
abandoned, but also since it allows the reader to reflect on the methodology and recreate the
research to verify our results. The section will start off by discussing the pre-analysis phase,
followed by problem analysis phase, design phase and, lastly, prototype phase. An overview
of the methodology of the methodology can be seen in figure 2.1.

Start

Pre-analysis

Initial interview

Observations

Formulate RQ1,

RQ2, RQ3, RQ4

Problem Analysis

Literature Study

Interviews

Setting a Baseline

Requirements
Specification

Design

Design Proposals

Design Decision

Requirements
from design

Prototype

Prototype
implementation

Prototype
evaluation

Requirements
from prototype

End

Figure 2.1: The figure shows the methodology used in the project.

20

2.3 Methodology

2.3.1 Pre-analysis Phase
In the beginning of the research, it was essential to establish research questions that would
serve as guidelines for the project and help us solve the initiating problem. This section
therefore aims at motivating the approach of how the research questions were formulated
through interviews with developers at the case company and observations by us of current
work practices.

Initial Interview

Interviews were held with developers to get a deeper insight into the problem domain, the
current development process and how the initiating problem affects the current development
process. From interviews, partly, research areas were derived and research questions could be
formulated.

With the help of interviews, discussions are encouraged, which means that participants
discuss and sort out the ambiguities that may arise and thus create a deeper understanding
of the initiating problem. It also means that new information can appear that otherwise
could have been missed in e.g. a questionnaire because no further questions can be asked to
the participants about what they really meant with the answer. Furthermore, the questions
and answers in a questionnaire are always up for interpretation both by the respondents and
conductors of the questionnaire. Therefore, new information can be thoroughly investigated
by being able to ask further questions and discuss the problems.

Interviews were conducted individually so that the picture of the problem would be as
nuanced as possible and developers would not influence each others answers. Two developers,
who worked extensively with the problem, were asked for an interview. Both belong to the
group that was started to handle and resolve performance issues in production and they have
been part of the group for about 1 year.

The interview questions could be divided into four categories: what’s the problem do-
main, how the current development process looks like regarding feedback, traceability and
automation, how the problem domain affects the development process and what possible so-
lution developers could see to the problem domain. All interview questions can be found in
Appendix A. After the interviews were conducted, we realized that the area about possible
solutions to the problem domain did not belong to this stage of the process. Therefore, ques-
tions regarding this area was left out in the analysis and formulations of research questions.

Observations

To complement the interviews and to create our own perception of the problem domain, we
made our own observations of the development process. We explored the various parts and
tools of the system and development process with the initiating problem in focus. Areas of
interest for further research were found and written down for analysis together with inter-
views. This included searching through the repositories looking for testing frameworks and
continuous integration and delivery setups.

21

2. Background

2.3.2 Problem Analysis Phase
This subsection discuss the execution of the problem analysis phase and its constituents;
questionnaire, literature study, interviews and requirements specification. Each area will be
well motivated based on why the authors chose to perform each step in regards to be able to
answer research questions.

Questionnaire
Choosing a method for gathering data is not always obvious and is often a balance between
several different factors. In the case of this thesis it was a balance between the number of
respondents, time required and accuracy. Using a questionnaire more responses could be
gathered and analyzed, in comparison to conducting interviews. This is directly connected
to the amount of work required to designing and sending out a questionnaire, which is con-
siderably less compared to conducting an equal amount of interviews. Regarding the accuracy
of the information gathering, it is harder to get accurate results since it is not possible to ex-
plain question or ask follow up questions like in an interview. The questions did however, at
the time, seem easy enough to answer. As a counter measure against inaccurate answers, it
was also tested on a developer to make sure that the questions were evident.

The reason for conducting a questionnaire was to gain a baseline of four things for the
current workflow: when developers start feeling a sense of closure, the time required to iden-
tify a performance issue, the time it takes to receive feedback about performance issues and
lastly to evaluate the traceability. The questionnaire included four types of questions. First,
a Likert-scale which presented a statement to which the respondent could answer “strongly
disagre”, “disagree”, “neutral”, “agree”, “strongly agree” or “other”. The option “other” was
added in case a respondent felt none of the answers were applicable and would like to an-
swer with a short free text. Secondly, a free text answer in which the respondents were able
to write their own answers. These were used either in case the respondent would like to add
anything to the previous questions, or in cases were the questions needed a more nuanced
answer. Thirdly, a time estimation where the respondents were expected to answer in num-
ber of minutes, hours, days or weeks. For instance, “4 minutes” or “2 weeks”. This was used
in cases when it was expected that respondents would be able to estimate.

In order to evaluate whether or not a shorter and more rigorous feedback loop has any
impact on the sense of closure developers feel it is needed to have an initial baseline of mea-
surements that the future measurements can be compared against. It was therefore of interest
to measure when in the software development life cycle developers started feeling a sense of
closure. Since the concept of closure is not necessarily known to all developers, it was needed
to first explain the concept. The developers were then asked to estimate their sense of closure
in each step of the software development life cycle, namely;

• “immediately after having written my code”,

• “when I have manually tested the code (clicking around in the application) on my local
machine”,

• “when local test suits pass”,

• “when a pull request has been made”,

22

2.3 Methodology

• “when my code has been built and tested on Jenkins”,

• “when my code has been peer reviewed by two other developers”,

• “when my code has been merged to main branch”,

• “when my Jira issue has been resolved”,

• “when my code has been deployed to production”,

• “when my code has been in production for a week”.

The question were answered with a Likert-scale that included five answers: “strongly
agree”, “agree”, “neutral”, “disagree” and “strongly disagree”. The questionnaire aims to mea-
sure the sense of closure in every step of the software development life cycle. The answers
could then give an indication to when developers on average start to feel a sense of closure.
The answers were then converted to a percentage by mapping each answer to a numeri-
cal value from zero to four, in which zero represents “strongly disagree” and four represents
“strongly agree”. The lowest score is thus zero and the maximum possible score is four times
the number of respondents. The average score of each question was therefore divided its max-
imum score. This has the effect that 0% means that developers on average strongly disagree
with the statement, 100% means that developers on average strongly agree with the statement
and 50% means that the developers on average is neutral in regards to the statement.

Literature Study
The reason behind literature study was to explore all the research questions from an academic
point of view. Through the literature study, inspiration was gained from independent articles
and lay a good foundation for arriving at answers for research questions.

First keywords related to the problem domain was defined and listed. Next, we indepen-
dently used the set of keyword to search for articles on Google Scholar and LUBsearch. These
search engines were chosen to access articles of good quality and trustworthiness. We both
put the first ten articles we found for each keyword search in our respective lists. The next
step was to jointly go through the lists and put the articles that appeared in both lists in
a new joint list. The new list was then filtered by title and abstract to bring out the most
relevant articles related to the context of research questions. After the list was reduced, we
produced the final articles by reading through the introduction and summary of each article.
By iteratively filtering out articles, we got time to think through an article properly as we got
more and more information about it before we excluded it.

Interviews
The reason for conducting interviews was mainly to explore and gathering data for RQ2.
Together with literature study and questionnaire, interviews served as a foundation in order
to elicit requirements that the design would later build upon.

Interviews were chosen for the same reason as for background analysis as it benefits dis-
cussions and to explore the subject more deeply. Based on the literature study and question-
naire together with our own observations, questions were formulated for interviews about

23

2. Background

what kind of feedback the developers wanted, what functions would be included, where in
the development process the developer would like feedback. In addition, questions were for-
mulated about what the development process around performance testing looked like. Fur-
thermore, interview questions consisted of introductory questions regarding date of birth,
prior education, how long the interviewees had been at the case company and what they
worked with. The aim of these questions were, partly, to ease into the interview by asking
the interviewees questions they could easily answer and to gather some background infor-
mation for analysis as well. In hindsight some of these questions were found to be irrelevant
for the research, such as their age and prior education and the interview could be eased into
with some small talk prior to actually doing the interview. Still, the time an employee has
worked at the case company and what their work consisted of was relevant, since it possibly
could give reason to their answers. The interview questions can be found in Appendix B.

We chose to interview four developers from different teams and with different amounts
of insight into the problem. We did this to get such a broad spectrum as possible because
the tool was intended to be used by developers in the case company’s Continuous Integra-
tion/Continuous Delivery(CI/CD) pipeline which makes developers’ input on the tool mo-
mentous. Each interview was recorded on a mobile device for two reasons. The first reason
was that both of us could be involved in discussions in the interviews without missing to
write down anything important. The second reason was that we could go back and listen to
the interviews so that we did not miss any important information.

Each interview was then transcribed into text as this would make it possible to analyze it
more easily. After transcribing the interviews, they were read through multiple times and the
answers were formulated as requirements. At this point all requirements were treated with
equal prioritization regardless of how common the answer was since it could be the case that
a developer just had not thought of that specific solution or considered it as a viable option.
Instead, the requirements will be validated further in chapter 4 and 5.

The result of the interviews were the requirements specification which can be found in
appendix C and the developers’ thoughts on how the prototype best could be implemented.
After the interviews, we realized that we received very different answers to our interview
questions, which made us realize what a complex problem it really is. When a problem is
complex, it follows that there are a large amount of solutions to the problem and depending
on where in the CI/CD pipeline developers mainly works, answers can be influenced by what
they consider to be important properties for the tool. Furthermore, it may be because differ-
ent developers use different tools and do not have a good grasp of all the tools that are in the
entire CI/CD pipeline. In section 3.3 we will therefore take a closer look at some prominent
opinions expressed during the interviews.

Group interviews and brainstorming sessions were also considered as a viable alternative
to gather ideas and requirements, but with each developer having an individually and tightly
packed schedule it was hard to coordinate, let alone have time to plan for it. However, during
lunch breaks and coffee time there was an opportunity to ask questions to a larger group
of people, although in a casual non-interview setting. Nevertheless, we often found these
discussions useful and enlightening.

24

2.3 Methodology

Requirements Specification
From literature study, questionnaire and interviews, a requirements specification could be
produced as an initial answer to RQ2. The requirements specification was developed to form
the basis for the prototype that was intended to be designed and implemented in this thesis.
In line with how Lauesen [12] suggests that requirements should be categorized, they were
assigned different types and levels. We chose to follow Lauesen because he is very descrip-
tive of the whole process of developing a requirements specification. After the requirements
had been categorized, they were parted into different groups depending on if a requirement
applied to the testing stage, production stage or both in the development process. The re-
quirements were divided into different groups in order to facilitate which requirements to
include in different designs.

2.3.3 Design Phase
The purpose of this subsection is to motivate the design phase, why multiple designs where
proposed and chosen, what purpose the main design served and lastly motivate why require-
ments were added during this phase.

Design
The purpose of the designs were twice fold, both to explore designs that could be used when
implementing a prototype but also as a way of eliciting new requirements. The design was as
such a step in investigating all of the research questions.

There were two main reasons to why several possible designs were proposed. First, by
proposing multiple design we were able to suggest several different features and evaluate the
developers opinions about them. If we instead had chosen to only make one or two designs
we would not be able to evaluate such a breadth of features. Making more than five different
designs would require more time, but simultaneously allow us to evaluate more features. Five
different designs were therefore made as a trade-off between time spent on designing and the
amount of features that could be evaluated.

Secondly, discussing and making the different designs gave rise to new discussions among
us about how to best implement the design. The evaluation of the designs also allowed us
to get an idea of what would be good or bad to implement in the actual design. These two
discussions therefore served as a source of requirements from which further requirements
could be elicited.

The designs were discussed with two developers, one of which was our supervisor at the
case company and one who is knowledgeable about the topic. The designs and the proposed
workflows were then explained to them which gave rise to a lot of discussions about negatives
and positives around the prototype.

Main Design
The reason for ultimately formulating a main design was that it could act as a basis for im-
plementing a prototype. The main design was formulated based on the initial requirements
specification but also on the new requirements gained from the discussions with the develop-
ers. The main design did not have the intention of implementing all of the requirements but

25

2. Background

rather a subset of them that we either saw as significantly interesting or were requested by
the developers. The main design could have attempted to fulfill all of the requirements spec-
ified, but that would require more time, cause the design to be very extensive and difficult
and time consuming to implement.

Requirements Gained from Design
Since the requirement specification contained scattered answers of where in the develop-
ment process developers would prefer the tool to be incorporated and to keep an open mind
to how the final tool would be, it was decided to design several workflows for the tool. After
discussions with our supervisor at the company and another developer, we came to the con-
clusions about what was the main design. The main design served as a basis for the prototype
and to derive further requirements.

2.3.4 Prototype Phase
The aim of this subsection is to discuss how the prototype phase could be best carried out.
The prototype phase had the intention of providing information needed in formulating an
answer to all of the research questions. Evaluating the prototype by letting developers test it
would help us answer what effect an automated tool would have on the feedback loop and the
development process, giving an answer to RQ1. When developers are testing the prototype
it might be easier for them to identify what information they would like to receive on what
worked well, less well and what was missing in the prototype. This would help us answer
research question RQ2, “What is useful information for the developer, what requirements
does the developer have on the tool”. By discussing how the prototype would affect the time
required for fixing bugs, we will also get and indication to research question RQ3. Lastly,
it would serve as an indication of how the prototype impacted the sense of closure for the
developers, which would help in answering RQ4.

Prototype Implementation
The prototype was implemented iteratively, such that an implementation could be evaluated
and then improved on in the next iteration. Implementing iteratively would also mean that
the implementation would be functional, albeit not fully implemented after each iteration.
This allowed us to be agile in our implementation of the prototype. If for some reason we
would have to end in the middle of an iteration we would still have the previous iteration to
fall back on. Furthermore, reflecting and discussing the previous iteration would also allow
us to get feedback throughout the implementation and as such allow us to make corrections
to the direction of the implementation.

At last, two iterations were done during the five weeks of prototype implementation.
The first iteration was quick, only taking about a week to implement. When it was finished,
we reflected on the implementation and discussed what had worked well, less well and what
should be done differently.

The second iteration took considerably more time, about 4 weeks. The aim was to ac-
knowledge the advantages and disadvantages of the previous iteration and implement a pro-
totype that would solve these issues.

26

2.3 Methodology

Prototype Evaluation
In order to make sure the evaluation would work as intended, it was first evaluated with one
developer whom gave us input on how to improve the evaluation process. The prototype was
then shown and discussed with three different developers in order to evaluate the prototype.
As the process of showing the prototype and discussing it with several developers is rather
time consuming it will only be done with the final prototype. The prior iterations will be
evaluated through our own discussions and reflections as well as by consulting our supervisor
at the case company. We could conduct interviews for each iteration, but this would require
us to reallocate time and resources from implementing the second prototype. As the time
for implementation already was rather limited, it was decided that the first iteration would
be evaluated quickly in order to be able to spend more time and resources on the second
iteration. There were two reasons to why the prototype was evaluated. First, it would help to
validate what requirements were important and if any requirements needed to be reformu-
lated or described more thoroughly. Secondly, evaluating the prototype by letting developers
use the prototype makes it easier for the developers to notice what works well, less well and
what is missing in terms of requirements.

Additional Requirements
As mentioned in the previous section, allowing developers to use the prototype allows them
to notice what works, what does not work and what is missing. The thoughts and opinions
of the developers are an indication of what requirements the developers have on the tool.
For this reason, these thoughts and opinions are very valuable as a source of requirements for
the final requirements specification and should therefore be considered as such. By adding
requirements identified during the prototyping phase, we are able to produce a more accurate
requirements specification.

27

2. Background

28

Chapter 3

Problem Analysis

This chapter aims to fill our needs of initial requirements that will serve as the basis for the
future design as well as to gather a baseline for the research questions. In order to obtain
requirements and a baseline, the analysis was carried out in four steps: investigating rele-
vant literature, conducting a questionnaire, holding interviews and a discussion of our own
observations. The literature study had the purpose of eliciting requirements and to give us
inspiration for possible designs. The purpose of the questionnaire was to both elicit require-
ments and obtain a baseline for several parameters: feedback, traceability and closure. The
interviews aimed at deriving further requirements by interviewing developers which took
inspiration from the questionnaire and literature study. These methods were then combined
with our own discussions and observations to form an initial requirement specification. This
is important in order for the reader to understand how the requirements were elicited and
motivate why they were included in the requirement specification. It is also important as
the baseline will be used to discuss the results of the research. It could also be interesting
to the reader as the requirements specification could act as a starting point would one want
to extend or develop the requirements specification further. The chapter will start off with
the literature study, followed by the questionnaire analysis, interview analysis, and lastly a
discussion of our observations combined with the finding from the previous sections.

3.1 Literature Study
This section aims at exploring relevant literature in order to extract requirements and to
get inspiration for the design, based on the experience of others. This is important as it
highlighted how similar problems have been approached in other research, which allowed
for an indication of where to focus our further investigations. Similar research did also serve
as a source for eliciting requirements for the initial requirements specification. The section
will first discuss literature relevant to the thesis and then conclude what requirements can
be elicited from it. This section will discuss and conclude requirements from relevant fields,

29

3. Problem Analysis

in the following order: performance testing, tests case selection, and feedback loop and bug
reporting.

3.1.1 Performance Testing
This section will investigate two articles that researched performance testing, that could give
us ideas for how to design a solution as well as to elicit requirements. This is important as it
both gave inspiration on how the research questions should be approached, but also acted as
a source for requirement elicitation. The articles were found by searching for a combination
of the keyword; performance, testing, software, and development, on Google Scholar. First
off, we will discuss an article about agile performance requirements specification and testing,
and then an article on performance testing and machine learning.

Ho et al. [8] investigated and proposed a framework for specifying performance require-
ments. Ho et al. mentions that research has shown that performance issues are more difficult
and expensive to resolve later in the development process. Furthermore, Ho et al. state that
JUnit provides a timeout parameter that can be used to test performance, but also says that
complex tests might require probability distribution and that JUnit might be insufficient in
those cases. Ho et al. also argues that human testing is undesirable and that successful agile
testing relies in test automation. Using JUnit could be a good way of testing performance
of simpler methods, especially if the practice of writing JUnit tests is already used during
development. But it is also interesting as it would allow for the tests to be configured in code
and thereby also be put under configuration management. As mentioned by Ho et al. it is
also beneficial to automate the testing, which one could argue is especially important in a
DevOps context. From this we concluded that the requirements specification should specify
that the tool should be able to be configured in code and be automated. This is specified with
requirement QuDo12 and QuDo41.

Hewson et al. [7] investigated performance testing using statistical test oracles. In more
detail, they created a framework around JUnit called Buto, which was able to account for
differences in the testing environment, such that performance on one machine could be cor-
related to the performance on another machine. They achieved this by monitoring program
resources during run time and used it to generate test oracles. Hewson et al. claims that
the model can be used to detect changes in performance and flag future tests that fail. Fur-
thermore, they mention that the way it is implemented causes a very low overhead, but that
it could introduce a bias in the test results. This is an interesting possibility that could be
used to test performance locally in order to get an indication of how well the system would
perform in the production environment. The low overhead could constitute a requirement
in a solution, since it would allow for the developer to get a better understanding of how
the code would perform in production. This could be a very useful feature. Unfortunately,
this requirement was deemed to advanced for the scope of the thesis as well as being outside
our area of knowledge. The requirement will therefore not be included in the requirement
specification.

3.1.2 Test Case Selection
In this section, an article about test case selection will be investigated.

30

3.1 Literature Study

Test case selection is a test strategy and means that a subgroup of a test suite is selected
and executed. Test case selection can reduce the time and money spent testing a system or
product. Koivuniemi [10] investigates a test case selection method where test cases are se-
lected based on the files in which code changes have been made. Two areas that were selected
to be investigated were feedback time improvement and fault finding capability. The study
was performed on two test suites, one with 30 cases and one with 800 cases. The results
showed that feedback time improved by 29.3% for the small suite and 55.7% for the large one.
For fault finding capability, only the small test suite was examined and the results showed
that 97.8% of the failing test cases were captured with a reduced test suite. The article pro-
vided inspiration for how the tool could be designed in the form of tests being selected based on code
changes. The method Koivuniemi suggested could be used in our tool to filter out a developer’s
changes to remove unnecessary noise from the remaining code base. Since fault finding ca-
pability is 97.8% with a reduced test suite, there is a great possibility to still capture all failed
tests.

3.1.3 Feedback Loop and Bug Reporting
This section will investigate two articles, one regarding the feedback loop and the other one
regarding bug reporting.

Hrusto et al. [9] investigated how feedback between operations and developers could
be improved in a DevOps environment. They identified three problem areas that caused
problems at a company that had problem with managing and responding to alerts. The first
problem was alerts that were not targeting a specific developer, but rather a chat group,
which had caused problems with delegating the tasks between the team members. The second
problem was described as a low signal to noise ratio, causing important alerts to become
lost or normalized and therefore not acted upon. The third and last problem was that a
small problem in an external service could cause serious deviations in their service and the
feedback from the service provider was lacking. They therefore developed a smart filter,
using machine learning, to optimize the alerts that proved to work. What could be of use
is the fact that there should be requirements that take these problem into account. The
tool should have a way of solving how to target a specific developer as to avoid the first
problem. It could also be of interest to have some measure for making sure alerts that are
sent from the tool do not disappear in a large amount of other alerts. This resulted in several
requirements: FuPr42 which states that the tool should be able to generate a Jira issue to
the specific developer, QuPr23 which states that the tool should not display entire pages of
unmanageable information and lastly QuPr50 which states that the tool should be able to
filter out unnecessary noise from other queries.

Borg et al. [4] researched the adoption of an automated bug assignment, referred to as
Trouble Report Routing, at Ericsson. While the case study is not completed as of now, there
are valuable insights to be drawn from the report. Borg et al. mentions that there are two
types ways of assigning tasks: push and pull, which could be described as assigning tasks to
developers in regards to pull, and letting developers choose tasks from a set of tasks in regards
to pull. They further mention that push-based assignment often involves manual work, which
they argue is shown to be error-prone, labor-intensive, prone to bug tossing, and potentially
results in slow resolution. The concept of trouble routing is relevant to our project as it
is important the right developer receives the alerts about performance issues. But also that

31

3. Problem Analysis

push and pull assignment have their own benefits and drawbacks that should be accounted for.
This resulted in a overarching discussion about requirements and how the feedback should
be relayed. If the tool was implemented such that a Jira would be created it should assign
the correct developer, which would make the feedback push-based. If the feedback was to be
relayed from testing in Github, it would also be considered push-based as the information is
relayed to the specific developer. This is related to multiple requirements: QuPr24, FuPr37
and FuPr42.

3.2 Setting a Baseline
In this section a questionnaire was used in gathering information with the intention to set
baseline measurements and elicit requirements by discussing and analyzing the results from
the questionnaire. The initial baselines measurements consist of closure, feedback, issue iden-
tification and traceability. This is important because it allows for future measurements to be
compared to the initial baseline which can give an indication on the efficiency of the so-
lution proposed in this research. The questionnaire was also important as it allowed us to
conclude further requirements based on the current situation at the case company. The ques-
tionnaire will be analyzed and discussed, first to set baseline measurements, then to derive
requirements.

The baseline from the questionnaire, regarding closure, was that the sense of closure gen-
erally increased from the time of starting to implement a feature to the time it has been in
production for a week. More interesting was the result that developers in general started
feeling, albeit a small, a sense of closure after having had two other developers reviewing the
code, which can bee seen in figure 3.1 and table 3.1.

Strongly
disagree

Disagree Neutral Agree Strongly
agree

After coding 82% 9% 9% 0% 0%
Manual testing, local 27% 37% 27% 9% 0%
Local test suites pass 9% 64% 18% 9% 0%
After PR is created 27% 46% 27% 0% 0%
Built and tested on Jenkins 9% 36% 36% 19% 0%
Reviewed 9% 9% 37% 18% 27%
Merged to main branch 9% 0% 27% 46% 18%
Jira resolved 0% 0% 36% 28% 36%
Deployed to production 0% 0% 18% 55% 27%
Production for a week 0% 0% 9% 9% 82%

Table 3.1: The table shows the respondents’ answers regarding clo-
sure.

The baselines regarding feedback and issue identification was that developers predomi-
nately discover bugs during testing and that the median developer has to fix their code that
has been in production, once a month. Although, it is more seldom than once a year that the
developer get notified that their code in production is slow. Getting assigned to fix someone
else’s slow code from production happens every half year for the median developer.

32

3.3 Interviews

0.00%

25.00%

50.00%

75.00%

100.00%

Afte
r c

od
ing

Man
ua

l te
sti

ng
, lo

ca
l

Lo
ca

l te
sts

 su
ite

s p
as

s

Afte
r P

R do
ne

Buil
t &

 te
ste

d o
n

Pee
r r

ev
iew

ed

Merg
ed

 to
 m

ain
 br

an
ch

Jir
a r

es
olv

ed

Dep
loy

ed
 to

 pr
od

uc
tio

n

Prod
uc

tio
n f

or
a w

ee
k

Figure 3.1: The figure shows the developer’s sense of closure. The
percentage in the table represents the sense of closure, where 0% is
Strongly agree, 50% is Neutral and 100% is Strongly agree.

When it comes to the baseline of traceability, the developers opinion about whether the
case company has good traceability throughout the development life cycle the most common
answer was "agree". The average answer to the statement was, however, closer to neutral. The
most common and average answer to the statement of whether it was easy to link an issue
in production to a specific code change was "agree". The most common answer to whether
it was easy to link a specific code change to a person was "strongly agree", while the average
answer was closer to "agree". The responses can be seen in table 3.2.

The conclusions from the questionnaire are thus that developers start feeling a sense of
closure after having had their code peer reviewed, that developer sometimes fix their own
problems in production but not as often if it is related to performance and that the developers
agree that it is easy to trace an issue in production to the person who made the change.

It is logical that developers feel an increased sense of closure the further in the software
development life cycle they progress including the longer time it has been in production,
since it indicates that the code probably has no severe errors.

3.3 Interviews
This section will focus on analyzing the interviews held with experienced developers and
highlight the most prominent areas, with the purpose of eliciting requirements on a possible

33

3. Problem Analysis

Strongly
disagree

Disagree Neutral Agree Strongly
agree

Telavox has good traceabil-
ity throughout the software
development life cycle

0.0% 20.0% 30.0% 50.0% 0.0%

It is easy to link an issue
in production to a specific
code change

0.0% 0.0% 11.1% 77.8% 11.1%

It is easy to link a specific
code change to a developer

0.0% 0.0% 12.5% 25.0% 62.5%

Table 3.2: The table shows the respondents’ answers regarding trace-
ability.

solution. The interviews serve the purpose of investigating the opinion on how to best solve
the initiating problem with focus on relating it to the specific context of the case company.
The interviews serve the purpose of investigating what requirements a developer has on the
design of the tool. Since the developers will be the ones using the tool, it is important that
the design of the tool takes their requirements into consideration. The interview questions
will be analyzed and discussed per topic in order to elicit requirements. In Appendix B, the
interview questions can be found.

At first glance at the interview results, we were able to show that the developers had
different opinions about where in the development process they want the tool to detect per-
formance issues. Two developers preferred to get feedback from production as they wanted
more reliable feedback on the performance issue even though it took longer to get informa-
tion. The other two developers preferred to get feedback from the Continuous Integration
stage as they wanted to get feedback before their modifications went into production even
though that feedback was not as reliable. The fact that the answers are different can be in-
terpreted as the developers having different experience of handling performance issues and
therefore based on where the tool best suits their needs. Therefore, a requirement could be
that the tool should be able to be used in different parts of the continuous integration/continuous
delivery pipeline.

There were some differing thoughts about how feedback would be best implemented.
Two interviewees thought that feedback would be best received in a pull request on Github,
which also aligns well with their opinion that it would be best to receive feedback from
testing rather than production, as it would be faster. One of the interviewees believed that
faster feedback would be preferred in general but added that it could be hard to get good
data from testing and that it would therefore be better to monitor for performance issues
in production. The same interviewee also mentioned that code with poor performance that
is only executed twice a year are not as important to test or monitor as they do not effect
the user experience that much. The opinion of another interviewee was that monitoring
for performance issues is good for fine tuning and that such feedback should be relayed in
the form of a Jira issue, while testing was seen as a good way of checking the performance
quickly. It was also expressed that the tool should be automated, since it otherwise probably
would be forgotten and never used. Furthermore, one interviewee expressed the opinion the
tool should be able to output to the console if run locally.

34

3.3 Interviews

During the interviews, the interviewees also mentioned several features they would like
to have in a tool. One interviewee expressed that there should be a way of setting a threshold
for what should be considered poor performance. It was not specified whether or not it was per
database query or a general threshold, but one could argue that setting custom thresholds
manually for queries quite fast could become unmanageable. Another interviewee also men-
tioned the need to handle both queries that are slow and queries that are not necessarily have
poor performance, but are executed often enough to cause issues. One interviewee expressed
the opinions that the tool should be configurable to exclude certain queries, such that they would be
ignored. Similarly, another interviewee mentioned that it should be possible to specify certain
parts of the database that should not allowed to be seized by a slow query. One interviewee also
mentioned that the tool should be able to distinguish the developers changes and be able to exclude
tests that are not affected by the change.

Several interviewees expressed the need for certain information to be available by the
tool. It was mentioned that it should be able to see the query that was slow, as well as the place in
the code it originated from. Furthermore, there was a need to be able to receive standard deviation,
min and max time for the queries as well as being able what part of the database is usually
afflicted by poor performance. One opinion they all agreed on was the information that one
would get from the tool. The tool should provide information about how long a call to the system
had taken, the trace of the call and how long a method call took.

During the interviews it was also apparent that there were different opinions on how
much time the interviewees could imagine spending on testing. One interviewee expressed
that a lot of time could be spent on it, while several other interviewees could only imagine
spending little time and for it to be easy.

The interviewees opinion on how long they could imagine waiting for feedback differed
a bit. One interviewee expressed they could wait about the same amount of time they do
today, when waiting on the tests to pass on their build server. Two other interviewees men-
tioned that they could imagine waiting 15 and 5 minutes respectively. One interviewee could
imagine waiting one minute extra for the performance tests to run, but also expressed that
too frequent tests or reports would eventually become normalized and ignored. It was also
mentioned that it is not easy to assign feedback to a specific person, would it be necessary,
since it is not apparent who holds the responsibility for a part of the system. One could argue
that this is a problem caused by shared code ownership, which is generally considered a pos-
itive trait in development. The interviewee, however, expressed that the shared ownership
could cause no one to pick up the issue.

Several interviewees said they use the tool referred to as Query Profiler, but to different
degrees. One used it very seldom, while another used it frequently. This could give an insight
into how easy it would be for the development process to include the usage of a manual
process to measure performance.

In regards to writing tests, some developers seem to write tests often, while other seem
to write tests less frequently. If developers generally had adopted TDD, it could be beneficial
to include performance testing that is similar to writing the current tests, as it would not be a very
large change in the development process. This corresponds well to the fact that three out of
four interviewees expressed that they would rather test performance by writing tests rather than
measuring it using a GUI. One developer mentioned that neither was preferred and that the
tool should instead be automated.

35

3. Problem Analysis

3.4 Requirements Specification
This section will analyze and discuss results from previous sections together with our own
observations to elicit requirements. Similar requirements were identified in several previous
sections and should therefore be discussed in terms of how they relate to one another. The
discussions were then analyzed in order to derive further requirements. This is useful as it
will serve as the starting point for the upcoming design in the report, but could also act as a
starting point or inspiration for making your own requirements specification. This section
will start off by analyzing the requirements found in the previous sections and then combine
them to form a requirement specification. The section will group similar requirements to-
gether based on the literature study and discuss them one after another. All requirements
can be found in the Appendix C.

In the interviews, 3 out of 4 developers preferred to test performance issues in code in-
stead of GUI. Then, as Ho et al. [8] writes, JUnit tests with time-out could be a requirement
for the tool. With a time-out, developers can set the desired length for how long a method
call may take. However, JUnit seems to be a bit limiting because developers also wanted
the tool to show the entire stack trace of a method call, something that JUnit does not. Re-
gardless, JUint could be a requirement and must therefore be included in the requirements
specification.

In Hewson et al. [7], they present a framework that senses and adapts the performance
testing to the hardware. Although, this approach could be a possible requirement for the
tool, eventually we considered that it was out of context for this research.

From analyzing the interviews, it could be concluded that two developers preferred to
test only their own changes or relevant parts of the system for performance issues. The just
mentioned requirements that the developers place on the tool go well with the method that
Koivuniemi [10] uses in his research. Koivuniemi also claims that the fault finding capability
is very high even if a smaller test suite has been used and then one could expect the method
to find the performance issues that a specific code change provokes. A developer also set
the requirement that it should be possible to both exclude and include certain tests, which
could be possible with test case selection. Therefore, we chose to add test case selection as a
requirement.

In the interviews, one developer said that when there are many developers working in
the same layer in the stack, it is difficult to know who is responsible for a performance issue.
Then you instead send a performance issue to the responsible team and the members can
investigate who is responsible. Hrusto et al. [9] claims that it can be a problem when dele-
gating responsibility within a team and the issue can fall between the cracks. It could have
the effect that performance issues remain in production longer than necessary and affect the
customer. Therefore, we believe that a requirement for automated traceability should be that
the tool provides feedback to the developer responsible for the performance issue.

Furthermore, the same developer said that if you get constant feedback on performance
issues that are not relevant to the developer, it can be perceived as noice and over time,
developers may ignore the feedback. This was also known to Hrusto et al. establish where
they also considered that frequent problems were normalized and thus took no action. From
this analysis, requirements where the tool would not provide repetitive information about the
same performance issues could be deduced.

Developers also emphasized in interviews that they wanted feedback in pull requests re-

36

3.4 Requirements Specification

garding performance issues. Getting feedback on performance issues in a pull request makes
it easier for the right developer to get information about issues through push assignments.
As Borg et al. [4] mentions, it is otherwise easy for issues to be sent around and a solution
to issues is delayed. Two other developers mentioned that they preferred to get feedback in
the form of a Jira issue where the responsible developer is assigned automatically. Through
this analysis, it contributes to the requirement that feedback should go directly to the responsible
developer.

Some requirements in the requirements specification were not a results of the previous
literature study, questionnaire or interview alone but rather our own discussions and ideas.
New requirements were formulated and added to the initial requirements specification. It
can be found in Appendix C.

37

3. Problem Analysis

38

Chapter 4

Design

This chapter will focus on investigating possible design solutions, discussing the designs,
elicit additional requirements and lastly motivate the design choice. As different possible
solutions are explored, this will help the reader understand benefits and disadvantages of
the design solutions, how the initial requirements specification from the previous chapter
was improved, and lastly how the design choice was made. The design choice is especially
significant, as the design will serve as a basis for the prototype in chapter 5. This chapter
could also be interesting to the reader as a starting point if one would want to implement
a similar solution. First, the design proposals will be explored together with a discussion
of advantages and disadvantages of each design solution. In the second section, additional
requirements will be derived and discussed. Lastly, we will motivate the design choice based
on the initial requirements from chapter 3 and the additional requirements identified in this
chapter.

4.1 Design Proposals and Discussions

This section will explore different design possibilities based on the initial requirement spec-
ification, elicited in chapter 3. With each design proposal follows a discussion about advan-
tages and disadvantages of the design together with opinions from developers as well as our
own. From the discussions additional requirements will be derived. This will give the reader
an overview of the considered solutions and their strengths and weaknesses, which will be
important in order to understand the rest of this chapter. The designs will be explored one by
one where we will discuss the advantages and disadvantages of each design proposal as well
as opinions from developers and us and finally develop new requirements for each design
proposal.

39

4. Design

4.1.1 Design Option 1
The first design option, as seen in figure 4.1, is based around monitoring the production
environment and automatically relay Jira issues to the original developer. The developer thus
pushes new code to Github which then will be built and tested in Jenkins and then released
into production by a developer. The solution will then monitor the production environment
in order to find slow queries. The solution will measure and find were in the stack trace
the software spends the most time. From the stack trace the location in the code would be
derived. In order to find the person responsible for the code, the solution would look who
last changes it and create a Jira issue assigned with the developer. This design is based on
section C.1 and C.3 in Appendix C.

Figure 4.1: Design option 1

This design has several benefits, but also several drawbacks that might outweigh the ben-
efits. As the design is based on monitoring the production environment it will result in more
accurate results. Compared to performance testing where you have to make sure the environ-
ment is as similar to the production environment as possible in order to get accurate results,
the solution relies on the production environment itself. This also makes it easier to imple-
ment as you do not need an additional server identical to the production server, which might
be very costly. Also, implementing the tool should be relatively simple as the steps required
are not too complex to implement. The simplicity of the design and functionality might,
however, be one of its weaknesses.

There are several issues with the simplicity of this design. First of all, since the changes
have to be deployed into production, the feedback takes several hours or days to receive. Also,
assuming that the longest call in the stack trace is the cause of the performance issue might not
be true as it could also be caused by a substantial amount of fast calls. It is also not necessarily
true that the latest change actually caused the performance issue. For example, if the code has
been changed multiple times, it is not easy to derive what change actually caused the issue,

40

4.1 Design Proposals and Discussions

let alone automatically. Creating a Jira issue every time a performance issue is detected could
also cause trouble as it would create duplicates and would flood Jira with unnecessary issues.
It should therefore have some measurements on whether the same issue has been added into
Jira before. Also, assigning the Jira to the right developer is a very complex problem that is
not trivial to implement.

The requirement specification should therefore include a requirement that the tool should
only create one Jira issue per performance issue. It was also evident from our discussions that the
tool should be able to integrate with Jira, such that Jira issues can be created automatically. The
initial requirements specification had not specifically specified that the tool should be able to
monitor the production environment, which is an important requirement for solutions requiring
the production environment to be monitored. From the discussions with developers, it was
also brought into light that finding the right developer for the Jira issue is not easy and that
this design therefore can be difficult to implement.

4.1.2 Design Option 2

This design is similar to the previous design, with an added layer and can be seen in figure 4.2.
The code would be pushed to Github by the developer, built and tested in Jenkins and then
a release would be built. The build would then be deployed from the master branch as a beta
version of the software, which is only accessible to customers in the beta testing group. The
time of the deployment will be recorded in a database, along with version of the beta release.
The developers will be notified in the chat that the beta has been released successfully. As
with the previous design option, the beta version would be monitored to find slow queries by
monitoring how much time the software spends in each part of the stack trace. The location
in the code can be derived from the longest stack trace and the developer that last changed
the code can be found using Git. If one or several slow queries have been detected during
the beta testing, Jira issues will be created and assigned to the correct developer. If no slow
queries are found, the beta version will be released as an actual release. This design was not
strictly based on the initial requirements specification, but rather as a discussion of how to
solve the initiating problem.

41

4. Design

Figure 4.2: Design option 2

This design is similar to the previous design, with the difference being that it is extended
to first test the code in a beta testing stage. It therefore has many of the same benefits and
drawbacks discussed in the previous design.

As mentioned earlier in this section, this design was not strictly based on the initial re-
quirements specification, since it did not mention a beta testing stage. Rather it was discov-
ered as a possible solution by us discussing the initiating problem, that the user experience
could be improved by making sure less performance issues reach the users. There are several
reasons to why beta testing is not supported by any requirements gathered earlier. It could
be that some requirements were overlooked in the problem analysis phase, but it could also
be the case that it is not actually a requirement. The initiating problem was to investigate
how to provide better feedback to developers on finding and solving performance issues and
thereby improve user experience. A goal requirement that would both support the beta test-
ing phase and support the initiating problem could therefore be that the tool should reduce
the amount of performance issues being released into production and the time they are in production.
We found it interesting to know whether or not it would be beneficial to have a beta testing
phase and it was therefore added as an extension of the previous design.

However, the added advantage of testing the code in a beta stage before releasing the
code into production is that the end users are more protected from performance issues.

The added benefit, however, comes with its own drawbacks. First of all, since the code
first has to pass through a beta stage, the feedback from production is much slower than
previously. The feedback from the beta stage could, however, replace the need for feedback
from production. But, the size of the beta stage might impact the amount of feedback devel-
opers are able to receive from it. Adding a beta stage also makes the design more complex to
implement into the development process as well as delaying any changes or features added
since they first have to pass through the beta testing phase.

From our discussions it could be beneficial to add requirements that specify that the tool
should incorporate beta testing, as well as it being able to send notifications to the internal

42

4.1 Design Proposals and Discussions

chat service at the case company. When discussing the design with developers, however, it
was revealed by the developers that incorporating a beta stage would be very complicated
and not add much to the solution. It was also brought to light that the tool should not send
messages through the internal chat service at the case company, since the developers believed
it would be enough to receive feedback in either Jira or Github and that also sending the same
feedback in the internal chat service would be redundant or even confusing. The developers
also acknowledged that it should be possible to find who changed a part of the code most
recently, but that would not necessarily be the right developer to assign an issue to.

4.1.3 Design Option 3
In this design, as can be seen in figure 4.3, unit tests with time-out was introduced in the
Continuous Integration stage. Unit tests with timeouts are regular unit tests with a time out
value, which will cause the test to fail if exceeded. Developers would implement new tests
and code to then run tests on their local machine to make sure that the tests pass. If any tests
fail or takes longer than the threshold time, the time out, developers get an indication about
where in the code there is a performance issue and go back to implementing new changes. If
tests pass, developers can commit and push their changes to Github. In Github, developers
make a pull request to the main branch. A pull request triggers Jenkins to build and test the
code changes. If the tests fail, developers get information about what test that fail and in that
way an indication of about where in the code base the issue can be. If the tests succeed, code
changes can be merged into the main branch. From the main branch, developers can build
and deploy the new changes. The design is based on requirements from section C.1 and C.2
in Appendix C.

Figure 4.3: Design option 3

This design is different from the two previous designs as it relies on testing the system
rather than monitoring the production. While the case company already relies on testing to

43

4. Design

make sure their system works as intended, they do not measure the performance of it prior
to deploying it to production. The benefits with this design is that it uses the unit testing
framework that the case company already has implemented to implement performance test-
ing by setting a time out to the already existing unit tests. As the software can be tested for
performance issues on the local machine or on the Jenkins server, the feedback is faster com-
pared to monitoring production. An added benefit of it being able to be run on a Jenkins
server is that it is relatively easy to implement this testing as a check in a Github pull request.
There is also an advantage in terms of speed. Unit tests are generally short running and as this
design is based on writing and running unit tests with time outs, this sort of testing should
be of similar speed to regular unit testing.

The disadvantage with this approach is that the option relies on testing rather than mon-
itoring, which has the implication that the testing environment has to be very similar to the
actual production environment in order to be able to produce accurate results. Since neither
the local machine or the testing environment on Jenkins is setup to be similar to the actual
production environment it could be argued that the reliability of the results is low. How-
ever, even though the reliability might be low, it might give the developer an indication of
whether or not the code performs well. Since unit testing is not specifically designed for test-
ing performance, it can be insufficient for testing more complex features. The information
from the tool is also limited as it only specifies whether or not the test passed or not based
on a threshold time, which might make the culprit hard to discover. It could also be the case
that failing tests become normalized due to various reasons: tests that fail regularly will be
ignored, test that are not relevant to the developer at the moment could be ignored and a lot
of failing tests might be difficult to act on for a developer. Running all performance tests all
the time might also be too slow to provide fast feedback to the developer, but it depends on
the amount of tests and the tests themselves.

From this design option we could identify a few requirements that would be beneficial
for the final design and implementation of a prototype. Tests should be able to be made by
adding a time out to a unit test. The tool should be able to give information of what caused the test
to take too long time. The tests should be able to be written using a widely used testing framework,
such as JUnit or TestNG.

From interviews, however, it was mentioned that the developers have to learn how to
write a new type of tests and that getting developers to adopt the practice of writing perfor-
mance tests is difficult. It was also mentioned that the feedback from the tool should contain
information of how long each call in the stack trace took to execute, as it would make it easier
to debug.

Concluding our own and developer’s thoughts on the design, it was apparent some ad-
ditional requirements were needed. The performance tests should be written using a standard
testing framework such as JUnit or TestNG, combined with their time out functionality. The infor-
mation should include how long each call in the stack trace took to execute.

4.1.4 Design Option 4
This design option is based around unit testing for testing performance combined with test
case selection and can be seen in figure 4.4. The developer would start by implementing a
feature or function in code and then write tests for it. The tests would then be assigned
to a relevant test category, which can be used in order to specify what tests should be run.

44

4.1 Design Proposals and Discussions

The developer would then run the test category locally and thereby be informed of what test
pass and fail. If the tests pass, the developer would create a pull request that would trigger
Jenkins to pull the new changes and test the performance on the Jenkins server. If the tests
pass, the new changes will be merged into master and then released into production. In this
option, the design has been based on C.1 and C.2 in Appendix C. More specifically, this is
a way of filtering unnecessary noise from the feedback, requirement QuPr50. But also that
the developer should be able to filter out performance tests that are unnecessary to test,
requirement FuPr45.

Figure 4.4: Design option 4

This design is similar to the design in 4.1.3 but instead of a time out for each unit test, per-
formance tests are implemented and test case selection is introduced for performance testing
in the form of dividing all tests into categories. By categorizing performance tests, developers
can run the categorizes relevant to their changes and thereby only testing for performance is-
sues for their own changes. This design offers other advantages and disadvantages compared
to the design in 4.1.3 which leads to new requirements being derived. An advantage is that
developers can put their performance tests in a test category based on what they want to test
and then only run performance tests in that category. Running fewer performance tests take
less time and as such it gives faster feedback to the developer about possible performance
issues. Another advantage of this design is that categories can be run both locally and on the
Jenkins server, since the tool is compatible and able to be incorporated in several stages of
the development process. This means that the code can be checked several times in different
environments and thus ensure that performance is satisfactory in different conditions.

In addition to advantages, several disadvantages could be identified for this design. The
first disadvantage was that test case selection may not capture all failed tests because the
method only runs subsets of all performance tests. This can lead to developers introducing a
performance issue in the code base that they are not aware of and the changes are then pushed
to the common repository. Then it can affect other developers and it becomes difficult to

45

4. Design

track it back to the responsible developer. Another disadvantage is when performance is
tested in the Continuous Integration stage, there is a risk that it does not correspond to
how the code would actually behave in production. This can result in performance issues
not being detected before they end up in production. However, it is always an advantage to
test in continuous integration to get an indication of how the performance of the system is.
Another disadvantage may be that the tests that a developer wants to run are not in the same
test category and thus several categories will be run. This could mean that, eventually, the
entire test suite would be run and test case selection has no function. A final disadvantage
could be that the different test categories become difficult to manage, as it can be difficult
for developers to keep track of what categories there are and what tests they include. A result
of unmanageable tests categories is that it can make it difficult for developers to know which
categories they should run to cover the code changes they have made.

The additional requirements we could establish from this design were that the tool could
run single or multiple categories, be able to add categories and add tests to the categories, a test should
be able to be added in several categories and the workflow should be fast enough for Test Driven
Development.

After showing this design to developers, they expressed their opinions about it. One
opinion was that they wanted stack trace with time to be included in the design as they
thought it was important to know what in stack trace that took a long time. They also
mentioned that categories would be difficult to keep track of as they would often have to
go into the different categories to see what tests were available and it would provide a lot of
extra work. Finally, they mentioned that categories will contain tests for code that a developer
has not changed, which would give irrelevant feedback and be perceived as noise.

From analyzing the interviews, it could be concluded that an additional requirement
would be that the tool should provide a visualization of the timed stack trace.

4.1.5 Design Option 5

The general idea of this design was to configure what tests should be run with the use of a
configuration file, but more significantly the design would measure the stack trace for each
of the tests using a script file. The design option is shown in figure 4.5 The developer would
therefore first write a unit test, that fails, and then write the code. The configuration file
would then be edited such that the relevant tests would be tested and measured. If a tests
takes longer than a specified threshold time, the test will fail and the time the test spent in
each part of the stack trace will be printed. The code and the configuration file are then
pushed to Github where a pull request is made. The pull request will trigger Jenkins to pull
the code and run the same test on the Jenkins server. If all the tests pass, the code is merged
into the main branch and then deployed. This design option is based on requirements from
section C.1 and C.2 in Appendix C.

46

4.1 Design Proposals and Discussions

Figure 4.5: Design option 5

This design option is similar to 4.1.4, with the difference that the test selection is config-
ured using a configuration file and then executed using a test script which will also measure
the time the software spends in each part of the call stack. As the other designs 4.1.3 and
4.1.4 do not offer the whole call stack so our idea was that through the script, each perfor-
mance test case could be executed while the call stack with time measurements was saved.
The advantage of this design is that the developers themselves can specify what tests should
be run. This gives them more control over the testing and can also make the testing faster
as a result of less tests being executed. As with the two previous design options, the testing
can be carried out both locally and on a Jenkins server. Since the design would measure the
time the software spends in each part of the call stack, the developer can more easily see what
parts of the system is causing it to be slow.

The downside with being able to specify exactly what tests you want to run is that you
have no choice but to decide what tests to run. This creates an extra manual step that com-
plicates the workflow and introduces room for mistakes. As there did not exist any form
of feedback about performance in Continuous Integration stage, it was considered that the
time that the extra manual step was worth it to receive quicker feedback. Measuring the time
for each part of the function call might introduce its own bias and skew the results, making
them less accurate.

The tool should therefore be able to, automatically, identify what tests to run based on the
changes the developer has made. However, the developer has to be able to configure specifically
what tests to run if needed.

During the discussions with developers it was also mentioned that it would be beneficial
in terms of bug finding to be able to see the stack trace with each call measured. Using a file to
configure what tests are executed was seen as a odd way to configure the tests since the file
would be changing constantly. The tool should therefore be able to measure each call in the
stack trace.

47

4. Design

4.2 Requirements Gained from Design
This section will reflect on the work carried out during the design phase and discuss the
requirements elicited from the previous section. By discussing the designs with the developers
and between us we were able to narrow down the requirements specification, based on what
was needed at the case company and what would be interesting to experiment with in the
prototype. In this stage, it was also possible to gather requirements that specified the backend
or hardware part of the tool. First, this section will reflect on the useful requirements gained
from the previous section and then discuss the reason they were added.

One area that became clear during the interviews that was important for the developers
was that the tool should be automated and a number of new requirements emerged. One
requirement that emerged was that the tool should be integrable with Jira so that it could au-
tomatically generate Jira issues when a performance issue was detected. This requirement mainly
apply if the tool is based on monitoring the production environment. Another requirement
that emerged was that the tool would automatically identify which tests would be run based on
the code changes that had been made and this requirement mainly applied to the different test
environments that the developers have access to. We chose to add these requirements as the
developers mentioned it repeatedly during the interviews when we presented the different
designs. It should be noted that this requirement is similar to FuPr43, but different in the
sense that it does not specify that it should be an automated process. The reason for not
identifying this need earlier could be due to the reason that it was not obvious that this pro-
cess should be automated. After discussions between us, we considered that if these areas
were not automated, it would create extra work for the developers that can feel tedious and
be time consuming. When it comes to feedback, the developers wanted a Jira issue per perfor-
mance issue to be created. After discussions, we considered it obvious to add it as a requirement.
If developers are constantly flooded with new Jira issues, it can be perceived as noise, which
leads to developers ignoring them and the tool thus loses its purpose. It would also fill the
backlog with duplicates of tickets that would create extra work by having them removed and
other tickets disappearing into a sea of automatically generated issues.

The developers emphasized that one of the most important parts of the tool was to in-
crease the traceability in performance issues by showing the stack trace together with the
time for each method call for each performance issue. The developers can then see where in
the stack trace it is slow and examine it more closely if it concerns their code changes. If it
is not their code changes, they can put a ticket in Jira. Since the developers placed great em-
phasis on increasing the traceability of the stack trace, we chose to add it as a requirement. It also
emerged from our own discussions that if you want to know where in the code a performance
issue arises, it is important to be able to measure the time for the various method calls.

Further requirements that emerged from discussions with the developers were that tests
should be written with a standard test framework so that developers do not have to familiarize
themselves with a new framework. The actual test phase should be fast enough to be used in
Test Driven Development (TDD) and developers should be able to specify which tests to run if
needed. Adding a new test framework they thought would make the test phase unnecessarily
complicated and could also affect TDD by taking more time than necessary. By being able
to specify which tests are run, the feedback time for TDD could be shortened. As these
requirements advocate that the tool be kept as simple as possible, we considered that they
should be added to the requirements specification.

48

4.3 Design Choice

The new requirements were added to the requirements specification and the updated
version can be found in Appendix D.

4.3 Design Choice
This section will motivate the choice of design and aims at scoping what parts of the re-
quirements should be investigated further in the prototyping chapter 5. Since the design will
form the foundation on which the prototype will be implemented, it dictates what require-
ments the prototype will implement. The reason for scoping the requirement specification
is that it currently does not specify a single tool, but rather specifies a range of requirements
that caters to different tools and methods of solving the initiating problem. As such, the re-
quirements specification will go from a set of general requirements regarding the issue, to an
unified specification for the specific design. We will first explore the chosen design, shortly
motivate how it relates to the design options and then motivate the choice.

The chosen design will be based on performance testing, but with the difference that it
will rely on already existing unit testing rather than relying on developers writing new tests.
The unit testing will run while being monitored, such that the call stack can be measured
and given to the developer as feedback. The design should be able to run both locally and
on a Jenkins server. This design is similar to design option 5 in 4.1.5, in that the tool will
automatically measure the test suite. The difference is that design option 5 relies on the
developer writing new tests specifically for testing performance that will be measured. The
chosen design use the already existing unit tests instead.

The reason for choosing this design is that it does not require any extra work to be done
other than to set up the monitoring such that the existing tests are monitored. Since the unit
tests are not specifically designed for testing performance, the coverage and reliability of the
results can be argued. However, it might be able to indicate whether or not there is a perfor-
mance issue in the code. During the discussions with the developers it was mentioned that a
solution that would not require much additional work is preferred. Since the design does not
require the developer to write new tests, it is very cheap and easy to implement given that
unit testing already exists. The trade-off between cost and benefit was therefore one driving
factor in making the design decision. The reasons for choosing a design that relied on testing
rather than monitoring the system in production was that the feedback loop becomes much
shorter, possibly even making it compliant with TDD practices, but also as it makes the pro-
cess of routing an issue to a developer much easier. Using this approach, the developers would
make sure the performance is good enough themselves which alleviates the need for routing
issues to developers. Another reason for monitoring tests rather than writing new tests is also
that the monitoring would allow information like call stack execution time to be gathered
and presented to the developer, which could aid in resolving performance issues. It should,
however, be added that this design does not in any way hinder from also monitoring the
production environment. These two methods of identifying performance issues are in many
ways compatible with one another. However, in order to limit the scope of the remaining
thesis, we will focus on testing performance solely. The reason for implementing a proto-
type is two folded. The implementation itself will validate the requirements in the context
of the chosen design and elicit new requirements based on our experiences of implementing
it. Also, by allowing developers to use the prototype, they may be able to recognize require-

49

4. Design

ments that they would not otherwise be able to recognize from only discussing the designs.
Furthermore, using the prototype shows the implementation of the requirements which can
help validate them, since their presence or absence might be more noticeable. The chosen
design will be implemented in the following chapter, in order to validate the requirements
as well as to elicit new requirements.

50

Chapter 5

Prototype

This chapter will validate a part of the requirements specification and elicit additional re-
quirements by implementing and evaluating a prototype. By evaluating the prototype we will
also gain insight on the developers thoughts and opinions regarding an automated tool. This
is important as it will validate that the requirements elicited throughout the project reflects
the actual needs of the developers. Furthermore, eliciting new requirements from the imple-
mentation and evaluation allows the requirements specification to be improved in terms of
completeness. The reason is that trying a prototype out facilitates the developers’ ability to
notice what works well, less well and what is missing. The chapter will start off with explor-
ing the implementation in two iterations and the experiences gained from implementing the
prototype. The prototype will then be evaluated by interviewing developers, followed by a
discussion about the requirements gained from the prototype.

5.1 Prototype Implementation 1
This section will discuss how the first prototype was implemented, motivate the implementa-
tion choices and discuss requirements identified during this iteration of the prototype. This
is important as it motivates the decision to make the second prototype as well as the direction
of the second prototype. First, an overview of how the prototype was implemented will be ex-
plored, the implementation choices will then be discussed on a more granular level and then
lastly, the requirements identified during the prototype implementation will be discussed.

The purpose of this prototype was to implement a solution for measuring how long the
java code spent executing different method calls. The idea was to modify every method call
in a java program, such that the start time and stack trace could be logged before the actual
method was called and then once more log the time once the method was finished. This would
theoretically allow every method call in a java program to be logged, in order to produce a
timed stack trace. Java, fortunately enough, has an API that allows a java agent to be attached
when running a java program. A java agent is able to define a method that will be run prior to

51

5. Prototype

the java program starting, called the premain function. But, more interesting is that the agent
is able to transform all the methods during run time, with the function transform. Using a java
library called ByteBuddy we developed a java agent that could intercept all the methods calls
and alter them during run time, with the method called intercept. The method calls where
changed such that a timer was started at the beginning and then stopped at the end of the
method in order to time the method. The execution time and stack trace was dispatched to
another thread, in order to not influence the execution time of the original thread too much.
The result was that each time a java program was run with the agent, a json log file was
produced which showed how long each method call took and the stack trace at that point.
The prototype was then further developed such that it would load the current git repository
and only intercept the methods that were in one of those files. The result was an agent that
could be attached to any java program, that would produce a log for each java class file that
was run and had changed. This could then be run in combination with the unit testing such
that tests would be measured during runtime. The generated log could then be measured in
order to find whether any performance issues had occurred.

There were however some downsides with the prototype. There were no way of visualiz-
ing the log and it was hard to read as it was. We would either have to use an already existing
framework for visualizing data or make it ourselves, if we were to pursue this idea further.
Furthermore, the behavior of the agent was unpredictable when running the more complex
programs or multi threaded code.

When we were done implementing this prototype we argued that we could not have been
the first in trying to accomplish this. Our thoughts were validated rather quickly. Many of
the monitoring software used for java use the instrumentation API by implementing a java
agent that sends data to a database. This is for example the case with the monitoring software
Elasticsearch and Kibana. The idea of using a java agent in order to extract information
during run time made us realize that off the shelf monitoring should be able to monitor
tests, also.

5.2 Prototype Implementation 2
This section will discuss how the second iteration of prototype was implemented, motivate
implementation decisions and discuss the requirements gained during this iteration. This is
important as it will help the reader get an understanding of both how the implementation
was implemented and furthermore the reasoning behind the choices made throughout the
implementation. Similar to the previous section, the overview will first be explored followed
by a discussion of the prototype on a more granular level. At last, requirements identified
from this iteration will be discussed.

The first step in implementing this prototype was to find a suitable monitoring tool. It
was mentioned in interviews that the case company used the ELK stack tools from Elastic
for monitoring in production. Since developers already had some experience with the ELK
stack tools, we considered that those would be suitable for the prototype as developers might
get an easier grip on the prototype. The tools from the ELK stack that was chosen for the
prototype were Apm server, Elasticsearch and Kibana. In addition, a Java agent was hooked
on to the Java system.

In order to provide the same set up of the Apm server, Elasticsearch and Kibana to all

52

5.2 Prototype Implementation 2

developers, it was decided to use Docker. The Apm server, Elasticsearch and Kibana run in
separate Docker containers and together they formed a Docker network where the containers
can communicate with each other. By using Docker, we could save some time that would go
to installing and setting up the different tools locally. Furthermore, if changes to the set up
needs to be done, new images for Docker can be created and deployed to developers and
everyone will easily be updated with the latest changes. We also chose to add Jenkins as a
container to the Docker network to save time for setting one up and to clarify to developers
what the course of event looks like.

To facilitate the implementation of the prototype, we decided to use a smaller application
than the one at the case company. Since a larger application makes it more difficult to trou-
bleshoot what has caused errors as it contains more components, we chose to implement the
prototype around the smaller application. The smaller application was based on the same
programming language and build tool as the case company’s where it was programmed in
Java and used Maven to build the application. One difference was that it used a different test
framework, but we considered that there was no decisive difference for the prototype as the
Java agent was not dependent on a particular framework. To be able to monitor the tests, the
agent was hooked on the Java application by being added to the repository and to the Maven
build file. When the application was built the agent is included and records what methods
in the application are being called during run-time and testing and gather data about them.
This data is then sent to the Apm server.

Figure 5.1: Architecture of prototype for local testing

The prototype was implemented for two scenarios. The first scenario, which can be seen
in figure 5.1, is for when a developer wants to test for performance issues on their own ma-
chine. First, they start by launching the Docker containers and network. Once that is done,
they can implement tests for the changes in the code base that they want to make. Then they
implement the changes in the code base and can run the test locally. When the test is run,
the agent captures the method calls along with how long time each call takes and forwards it

53

5. Prototype

to the Apm server. Further, the Apm server forwards the data to Elasticsearch. Elasticsearch
works as a database where all data is saved and it is possible to connect several Apm servers
to it. Kibana then retrieves data from Elasticsearch to visualize data to users. After all tests
have been run through, the developer can go to Kibana to get feedback on whether there are
any performance issues in his/her changes. If performance issues are detected, the developer
can display the call stack and trace where the performance issue is located and then improve
the code to exclude the performance issue.

Figure 5.2: Architecture of prototype when running on build server

In the second scenario, which can be seen in figure 5.2, developers can test for perfor-
mance issues during more extensive testing on the build server. The developer pushes up
his/hers code changes and tests together with the Java agent to Github on a separate branch
in the shared repository. From there, the developer creates a pull request to the main branch.
By creating a pull request, a webhook is triggered for Jenkins to download the new changes,
build the application and test it. When tests are run on Jenkins, the Java agent will capture
the method calls and send data to the Apm server, which in turn forwards it to Elasticsearch.
When all tests have been run, Jenkins makes a query to Elasticsearch to investigate if there
are any performance issues. If performance issues exist, Jenkins gives a red cross in Github
and Github provides feedback to the developer that there are performance issues in the code.
The developer can access information about performance issues by visiting Kibana and can
search for a specific commit id to get information for a certain code change. When the code
change has been found, the developer can trace where in the call stack performance issues
have arisen. Based on the information, the developer can optimize the code to be able to
exclude performance issues from the code base.

During the development of the prototype, we encountered a few difficulties. Most of the
difficulties depended on the lack of experience from our side, hence a large amount of time
was spent learning how things worked. One example is setting up Docker as it was a bit com-
plicated to set up the Docker network and get the different containers to communicate with

54

5.3 Prototype Evaluation

each other. It also affected the communication between agent, Apm server, ElasticSearch and
Kibana because they were dependent on Docker. After these parts worked, the next struggle
was to get the java agent to send data to the Apm server. From having debugged a lot, we
could conclude that the application was started on a different thread than the agent mon-
itored and thus could not intercept the data. Another problem we encountered was when
retrieving data from ElasticSearch. Our experience in combination with a deficient manual
meant that we spent a lot of time trying to retrieve data from ElasticSearch. In addition to
the problems mentioned above, the implementation went well. For example, Jenkins went
smoother than we thought to set up, thanks in large part to detailed guides available online.

5.3 Prototype Evaluation
This section will investigate and discuss the results from the evaluation of the prototype,
which were gained by evaluating the prototype with developers. Discussing the results from
the evaluation will help the reader understand the conclusions drawn from the evaluation of
the prototype. It will also validate the requirements that were incorporated in the design and
prototype as well as to elicit additional requirements. First off, reoccurring topics from eval-
uation will be discussed and then followed by conclusions from the discussions and identified
requirements.

5.3.1 Bug Fixing
From the evaluation it was evident that everyone believed that the tool would make it easier
to understand what had caused the performance issue and thereby to make it easier and
faster to resolve it. But they also mentioned that it was dependent on the complexity of the
problem, what type of performance bug it is and what information is accessible. Regardless,
it was repeatedly mentioned that the information at least would help by indicating were to
look for a performance issue and give an overview of the problem. One interesting idea was
that it would be useful as a way of learning what parts of the system is prone to performance
issues and what parts are sensitive to it.

5.3.2 Issue Detection
All of the developers thought that the tool would help in detecting performance issues, but
one developer also mentioned that the tests that the tool rely on do not have total coverage.
This means that some functionality would not be measured by using the unit tests. At the
same time another developer mentioned that unit tests could produce better results than
performance testing, since unit testing test more realistic cases compared to performance
testing which tests how far the system can be pushed. One developer also made a distinction
between identifying an issue and noticing the issue. The developer argued that the identi-
fication process of measuring the execution time of unit tests could potentially produce a
lot of false positives and that the developer might not notice an issue. The developer added
that an issue might go unnoticed for several reasons: it is not trivial to distinguish what is
normal behavior in the system and that a lot of tests can make it hard to get an overview of
the test results. One developer mentioned that the tool might help to detect performance

55

5. Prototype

issues in cases, such as making quick patches, were the developer does not expect there to be
any change in performance. Overall, the developers all agreed that the tool would make it
easier and faster to identify a performance issues, but that it also was dependent on the type
of information that was given by the tool.

5.3.3 Feedback and Information
From the evaluations it could be concluded that the tool would improve the feedback for
performance issues, since it currently is slow and sometimes left out altogether. But it was
also mentioned that the speed of the feedback would be improved as a result of less handovers
between different developers. One developer mentioned that feedback about performance
issues also would be sped up since only senior developers are experienced enough, today, to
know what causes performance issues.

Regarding the information accessible through the tool, it was repeatedly mentioned that
the measured stack trace in the tool was very valuable, as it allowed one to easily see what
part of the system took the most time to execute. Also, one developer argued that comparable
information to what the tool provided could already be gathered, but that it was much more
work to do so.

However, noise was a problem that was mentioned several times by multiple developers.
One developer argued that the testing should be limited to a part of the system rather than
all of it, in order to reduce the amount of unnecessary information. Another developer said
that there are tests that run every time a developer pushes code which would work well, but
then added that there also were some slow tests that would consistently fail if used.

Tests that consistently fail does not only contribute to making the feedback noisy, but
it also increases the risk that failing tests are normalized. It was mentioned by a developer
that if a test or check would fail consistently and repeatedly, all the developers would start
ignoring it. This was also brought up by another developer who stated that the tool could be
useful but there currently are projects with warnings that are ignored.

5.3.4 Traceability
The developers all agreed that the tool would increase the traceability to some degree. One
developer specifically mentioned that the tool would make it easier to see who had introduced
a performance issue, but added that it would be useful to be able to trace it in both directions.
Another developer stated that the traceability would be increased since it would be easier to
link a performance issue to a developer.

5.3.5 Closure
The answers regarding closure were all consistent between the different developers with a
difference in when they feel closure. Two developers stated that they generally feel a sense
of closure when merging their code to the main branch, although one of the developers also
mentioned that they feel 99% done after their code as been pushed and reviewed. One de-
veloper argued that it depends on their knowledge and that a sense of closure would be felt

56

5.3 Prototype Evaluation

earlier if she or he had adequate knowledge about that specific part of the system. The remain-
ing developer said that it depends on how extensive the implementation is and that closure
would be sensed earlier when implementing a small patch, compared to a larger feature that
might be followed up and improved on for some time. But, the developer also mentioned
that a check might give a false sense of safety. However, all of the developers agreed that the
tool would probably not lead to an earlier sense of closure, but rather an increased sense of
closure.

5.3.6 Disadvantages
Even though the developers were generally positive to the prototype the developers identified
some potential disadvantages and problems with the tool. One problem that was repeatedly
mentioned was that the tool could have an impact on how long it takes to run the tests on
Jenkins and that an significant increase could cause a disruption of the current workflow.
The developers did not mention a specific threshold time for when it would be too long, but
one developer said that it would be fine as long as it did not cause it to be five times as long
as it currently takes. However, as discussed in the previous interviews in 3.3, the interviewees
could tolerate waiting up to 15 minutes. This is a subjective matter and the actual time might
differ a fair bit between different developers.

Furthermore, it was mentioned that having a set threshold time for when something
is considered too slow could introduce false alarms when there actually are no problems.
The developer also suggested a potential solution by allowing different threshold times to
be set for different parts of the system. Similarly, another developer mentioned the reversed
problem, that the developers could get a false sense of security from the check. The same
developer also said it could be problematic to run several builds simultaneously as they could
affect one another and thereby produce unreliable results.

Another interesting problem that was mentioned as a part of the increased learning that
the tool could help to augment was that the tool might become superfluous once the devel-
oper has learned enough about the system.

5.3.7 General Discussions
The reaction to using the tool was overall positive, but in addition to the topics that already
had been discussed, there were some other thoughts and opinions that the developers brought
up. One developer expressed that it would be helpful if the tool could provide additional
information about the database queries in the tool, such as if the query was lazy, the query
select statement and to see if the query was slow due it not being indexed. The same developer
also mentioned that it would beneficial to be able to have a link to the specific pull request
from the tool.

Another developer brought up that the tool could be useful for optimizing code. For
instance by AB-testing two different ways of completing a task, such that one can see which
is faster. The developer also mentioned that this could help in cases where one has to decide
between readability and optimization, the example that was brought up was that if both
versions of the code were equally fast, the most readable one should be used.

57

5. Prototype

5.4 Requirements Gained from Prototypes

This section will reflect on the previous sections in order to distinguish the additional re-
quirements that are relevant for the requirements specification. This is important as it will
help in making the requirements specification more complete.

From the two prototype implementations and prototype evaluation new requirements
emerged. The first requirement that could be derived was that the tool should be able to run
on developers machines, which run MacOS. This requirement is important because if the tool is
not compatible with the operating system, developers would not be able to use it and thereby
it would be useless. In addition, another requirement that could be derived was that the tool
should be able to run on the build server operating system, which runs on Linux. As with the
previous requirement, it is important that the tool is compatible with the operating system
otherwise it would be useless.

Another requirement that could be derived was that the tool should be able to handle Java
execution. As the system at the case company runs Java, it is crucial that the tool can handle
Java. This requirement has the same purpose as the previous requirements where the tool
would be useless if it can not handle Java. From the prototype, it was also possible to derive
the requirement that the tool needs to be incorporated in the Maven build file. Since both the
prototype and the system at the case company is built with Maven, we believe that the tool
incorporated into Maven should be a requirement.

In the prototype, Docker was used to create a set up that behaved the same for every ma-
chine. Because the tool builds on the Docker set up, we chose to add Docker as a requirement
for the tool. Github was used as the collaborative version control tool in the prototype as well
as at the case company and we therefore considered that Github integration should be added
as a requirement. Without this requirement, the tool would be too different from how the
work process at the case company looks today and could be perceived as cumbersome. The
last requirement that could be derived from the prototype was that the tool should be able
to run on a Jenkins build server. We chose to add this requirement as Jenkins is used at the case
company to run more comprehensive tests before it goes into production. As the prototype
is meant to monitoring tests, we considered that the tool should be able to monitor tests on
Jenkins as well.

58

5.4 Requirements Gained from Prototypes

…

Java …

0 ms 583 ms

250 ms

311 ms

542 ms330 ms

250 ms

311 ms

542 ms

Java method 1

SQL query 1

SQL query 2

Figure 5.3: The figure shows an example sample of how the timed
stack trace should be visualized.

As mentioned during the discussion in the evaluation of the prototype, the visualization
of the stack trace was a useful part of the tool. The tool should therefore be able to visualize
the timed stack trace of the system as the figure 5.3. The stack trace visualization should visualize
all the technology layers, for example Java calls and SQL queries as shown in the image.

During our implementation of the prototype we also noticed that it was not entirely easy
to configure the monitoring to work with the testing. The tool should therefore be able to be
configured and integrated with TestNG, which is the testing framework used at the case company.

During the evaluation it was also brought up that the tool should have provided more
information about the queries, such as if the query was lazy, to be able to see the query select
statement and whether or not it was slow due to it not being indexed. It was also mentioned
that the tool should also provide a link back to the pull request, which would also increase
the traceability.

The extended requirements specification can be seen in Appendix E.

59

5. Prototype

60

Chapter 6

Results

As the results have been scattered over previous chapters, the purpose of this chapter is to
summarize all the results from these chapters. The results and the final requirements spec-
ification will be discussed in order to provide answers to the research questions. This is
important as research questions help us answer the initiating problem. In addition to the
results on the research questions, four other results emerged: a proof of concept, a validation
of the problem, technical experience and a core requirements specification.

The proof of concept emerged as a part of investigating what requirements developers
have on the tool, discussed throughout the project. The proof of concept has shown that
there is a viable way of handling the problem, even though the solution implemented in the
project might not be the ideal solution to the problem.

The validation of the problem has continuously been taking place throughout the project
along with the activities carried out, such as during the interviews. It is evident that taking
performance into account when developing software is a real issue that has an impact on both
the development process itself and the quality of the product.

Also, much experience has been gained from implementing the prototype that would be
of use in case an actual product were to be implemented. For example, our experiences from
the first prototype lead us to choosing of the shelf components for our solution that shifted
the focus from creating a new tool from scratch to integrating several tools with each other
such that they would act as a single system.

But, one of the most important results from the projects is the requirements specification,
which has been in development during the entire project. The requirements specification
concludes our finding about what developers need in a tool to solve the initiating problem
but could also acts as a starting point for further research.

The rest of this chapter will address the research questions and then specify the core
requirements in the requirements specification. We will begin by discussing the results of
the research questions by analyzing the results from the baseline from the questionnaire and
the evaluation of the prototype as well as compiling the final requirements specification.
This is followed by a requirements specification containing the core requirements that we

61

6. Results

considered to be most important.

6.1 Results to Research Questions
In this section, the results for the research questions will be compiled and discussed by sum-
marizing results from previous chapters. This is important as compiling results will help us
understand if we were able to solve the initiating problem. This section will begin by dis-
cussing RQ2 as it has played the largest part during the course of the research, followed by
RQ1, RQ3 and finally RQ4.

6.1.1 Requirement Specification
In this section, the final requirements specification will be discussed in order to compile an
answer to RQ2, What is useful information for the developer, what requirements does the developers
have on the tool?.

The final requirement specification could be derived after the evaluation of the prototype
and further observations from us. Then both the initial requirement and additional require-
ments from the design and prototype stage had been included together with our observations
during the experiment. In Appendix E, the final requirement specification can be found.

6.1.2 Development Process
This section aims at compiling an answer to RQ1, What effect could an automated tool have on the
feedback loop and development process?, by analyzing answers from questionnaire and evaluation
of the prototype. By analyzing the answers, it is possible to come to a conclusion on whether
developers experience faster feedback about performance issues.

From section 3.2, we could set the baseline for developers being notified about an issue
in their code to once a month, whereas developers being notified about performance issues
happens more seldom than once a year.

Measurement parameters Baseline After prototype evaluation
Notified about performance issue in code More seldom than a year From testing locally or every pull request

Fix someone else’s issue Once every six months Does not happen since you get feedback in CI
Good traceability within the development process Agree to neutral Improved with traceability within stack trace

Easy to link issue in production to code change Agree Improved and moved to CI
Easy to link code change to developer Strongly agree Unchanged but moved to CI

Table 6.1: Comparison of measurement parameters for the develop-
ment process between baseline and prototype

After evaluations of the prototype in section 5.3, developers expressed that the prototype
would improve the development process and above all improve the aspects of feedback and
traceability for performance issues. A comparison between baseline and evaluation of the
prototype can be seen in table 6.1.

From our own observations, we were able to compile that the following improvements
could be made to the development process. The first improvement was that the prototype
provided faster feedback on performance issues by already integrating it in the Continuous

62

6.1 Results to Research Questions

Integration phase. The time a developer has to wait for feedback is the maximum time it
takes to build and run tests on a build server. This means that the feedback loop is improved
from a week/month to about 1 hour. The second improvement was for traceability and there
it has been improved for several aspects. The prototype improved traceability for several
aspects. One aspect is that traceability in the development process was improved by going
from looking among the majority of developers to a developer to find out who has introduced
the performance issue. Furthermore, the prototype has improved traceability in the call stack
itself, where the prototype measures the time for all method calls. A third improvement is
issue identification where the method calls are measured in time to identify issues and make
it easier for the developer to search the code base.

It was also mentioned by the developers that tested prototype in chapter 5 that the tool
could change the development process by allowing developers to AB-test different ways of
solving a problem, similar to test driven development. One developer also mentioned that
the prototype could be introduced as a tool for increasing learning in development process, as
new developers without much previous knowledge about the system can get an understanding
of what parts are performing well and less well.

6.1.3 Bug Fixing

This section will compile an answer to RQ3, How would the time required for bug fixing be affected
with the use of an automated tool?, by comparing the result from baseline with the result from
prototype evaluation.

In section 3.2, the baseline for bug fixing is set to developers discovering bugs during
testing and developers had to find the bug without any clear indication where in the code
base i exists.

From section 5.3, we could compile that bug fixing could be improved in the sense that
the prototype made it easier for developers to understand what had caused the performance
issue. Bug fixing could be improved by indicating where in the call stack that the performance
issue occurred and thereby shorten the time for bug fixing.

6.1.4 Closure

This section aims at comparing the result from baseline with the result from prototype evalu-
ation to compile an answer to RQ4, How could a shorter and rigorous feedback loop give developers
faster closure?.

From section 3.2, the baseline for closure could be set to when a developer has had his
code changes peer reviewed by two other developers and can merge the code changes with
the main branch in Github.

After the prototype had been evaluated in section 5.3, we were able to compile that the re-
sult for closure was that developers felt closure as quickly as before they tested the prototype,
but that the feeling of closure was stronger with the help of the prototype.

63

6. Results

6.2 Specifying Core Requirements
This section aims at compiling the core requirements from this research. Core requirements
were derived from the different stages of the research and from our own observations. This
is important because the core requirements have been validated in the various phases of the
research and proved to have a prominent role in interviews, design and prototype. Further-
more, this is important because the core requirements could apply to other context and be a
starting point for other’s implementation of a tool.

After the requirements specification had been iterated in the various phases of the re-
search, certain requirements appeared to be fundamental for the tool to exist and we con-
sidered that these were the core requirements in our research. The core requirements were
recurring in each phase of the research and can be seen as a starting point for others who
intend to implement their own tool.

In addition to the core requirements, some requirements appeared to be more valuable
than others. These requirements could be validated in the different phases of the research
by developers repeatedly stating that the tool should contain these requirements and based
on our own observations of what was important. During the iterations, it became clear that
the most important areas of information were information given to the developer, the tool
is part of Continuous Integration and that the tool should be automated. Therefore, the
requirements that fit into these areas have been filtered out to form a subgroup in the final
requirements specification.

In Appendix F, the final requirements specification can be found with the subgroups core
requirements and most valuable.

64

Chapter 7

Discussion & Related Work

This chapter will reflect on our work performed in this thesis, threats to validity, how gen-
eralizable the results are, related work as well as future work. This chapter is important as
it discusses the efficiency of the research itself which allows the reader to both understand
and learn from the complications experienced during the research. It also investigates how
well the results would apply in a general situation such as at another company or workplace.
Furthermore, the chapter will discuss related work and how it connects to the results of the
thesis. It will also discuss ideas for future work such as how the research could be extended
in case the reader is interested. The chapter will start off with a section discussing our reflec-
tions on the methodology. The following section will continue the chapter with a discussion
of the threats to validity present in the research. The next section will then discuss how gen-
eralizable the work is to another context. This will be followed by a section discussing related
work and lastly a section about future work.

7.1 Reflections on Methodology
This section will discuss and reflect on the execution of the thesis, what worked well, what
could have been done better and what we would like to do differently. This is important for
the reader to understand the limitations of the research while also giving an insight into how
to conduct similar research.

7.1.1 Qualitative and Quantitative Results
Comparing qualitative and quantitative results is relatively difficult as qualitative results are
descriptive compared to quantitative results that are countable and measured in numerically.
In the beginning of the project we decided to send out a questionnaire to the DevOps de-
partment at the case company in order to set a baseline for how long it took developers to

65

7. Discussion & Related Work

resolve bugs, when they feel a sense of closure, how fast and frequent feedback about per-
formance is today and the current state of traceability. This baseline was quantitative in the
sense that the developers would estimate the answers either in time or by choosing from a
5-point Likert scale. Later in the project, however, we did not measure these topics quan-
titatively but rather qualitatively with the reason being that the developers had difficulties
estimating them. This had the effect that quantitative measurements had to be analyzed and
compared to qualitative measurements. The results therefore gave an indication to whether
these aspects had been improved or not, without specifying the quantitative difference. If
this would be redone, we would settle for either a qualitative or quantitative approach as the
measurements would be easier to compare. Also, it is probable that this specific investigation
would be better researched qualitatively since the developers thought it difficult to estimate
the topics.

7.1.2 Biased Scoping
There is a possibility that the research has been subjected to biased scoping as we intended
to do the research in the field of configuration management. That intention may have con-
tributed to us not being open to other solutions that are not within the configuration man-
agement area. When we reflected on the problem domain afterwards, we realized that it was
more related to testing than we initially thought. The fact that the problem domain is in
another area can therefore be seen as a threat to the validity because it can be perceived that
we have misunderstood the problem domain from the beginning. We want to argue that the
problem domain is still in the field of configuration management, but that testing is included
more than we initially thought.

7.1.3 Literature Search
When we searched for literature, we had decided to use academic search sites to find credible
sources. However, it was difficult to find research similar ours as we intended to solve the
problem in a slightly different way than others, due to . In addition, a more focused scoping
would have helped to know more clearly what we were looking for, so we only found a few
sources that were relevant. With that, a lot of time was spent searching for literature that
could instead be spent researching the problem domain more deeply. It also contributes to
the fact that the sources we found do not relate so much to the problem and we had to search
for more sources at the end of the research. By finding additional sources at the end of the
research we could improve the literature.

7.1.4 Neutral Answers in Questionnaire
Furthermore, the questionnaire had been designed with the use of a 5-point Likert scale
as previously mentioned, with the middle answer being neutral. This had the impact that it
allowed the developers to not take a stand i the questions and effectively reducing the amount
of data available for analysis. If the questionnaire had been redesigned, we would consider
using a 4-point or a 6-point Likert scale as it would force the developers to take a stand on
the topic, even though their opinion might not be strong.

66

7.1 Reflections on Methodology

7.1.5 Hard to Answer Questions
It also came to our attention that the questionnaire was sometimes thought hard to answer
by some developers as they felt they did not understand the questions. This occurred even
though we had tested the questionnaire on an experienced developer before sending it out. It
could be the case that the questions were easily understood by the experienced developer, but
not by less experienced developers. This could probably have been remedied by also testing
it with a less experienced developer such that we could make sure that it would be easily
understood.

7.1.6 More Questions About Closure and Traceability
When we formulated questions for interviews in chapter 3, the main focus was on feedback
in the development process, which meant that most of the questions were about feedback
in various aspects. Since the focus was on feedback, it meant that traceability and closure
ended up a bit glossed over and few questions were formulated about these topics. This may
have contributed to traceability and closure not being properly explored and thus require-
ments may have been ignored. If questions were to be reformulated, we would formulate
more questions about traceability and closure to make sure that we have explored those areas
properly.

7.1.7 Pre-analysis
The pre-analysis was carried out with the purpose of formulating research question for the
initiating problem. The issue that we were investigating seemed fairly simple and focused
when we started out the project. Looking back at this phase we now realize that the problem
was much wider and complex than we thought, which could evidently be seen in the range of
different discussions we had during this phase. The project would have benefited by a more
focused scoping earlier in the research process in order to be able to focus our resources on
a small part of the complex problem. Furthermore, a more focused scoping could have saved
some time that instead could be put on implementing a prototype or explore further designs
within the focused area. On the other hand, if we had not had a broad focus area, we would
not have been able to explore so broadly and thus have been able to miss potential solutions.

7.1.8 Fewer Design Proposals
There were five design proposals in the design phase of this project. While not being too
many to justify, their focus could have been altered a bit. The two first designs were roughly
the same, with a few alterations and the last three were also similar with a few alterations.
The designs could have been reduced to two more general designs, and allowed us to possibly
propose designs that we did not have time to investigate. The granular alterations of the
designs could then have been investigated as a separate step to the design process. In the end,
the various proposals did not provide enough value to be worth putting so much effort into
them.

67

7. Discussion & Related Work

7.1.9 Requirements Specification
The requirements specification consist of requirements that were identified during the project.
However, few resources were put into specifying and detailing the requirements more thor-
oughly. If more time had been available it would have been beneficial to specify the require-
ments as use cases that the tool should support. Not only would this allow for a more detailed
requirements specification that is easier to understand, but it would also allow multiple re-
quirements to be combined and specified once.

7.2 Validation
This section will reflect on the work and discuss the threats to validity present in the thesis.
This is important as it allows the reader to assess the claims and results based on the threats
that we have identified during the project.

7.2.1 Sample Size
This section discuss the validity of the sample size from the questionnaire and interviews and
what threats there exist against it.

The sample size of both the questionnaire and interviews were limited and only included
developers at the case company. This could have an impact on the validity of the results
since the developers at the case company might have differing opinions to those working
at other companies and since the specific developers that contributed in the interview or
questionnaire might have an opinion that does not reflect the general opinion at the case
company. While it may not be enough to definitively deliver conclusive results, it is enough
to give an indication.

7.2.2 Biased Interviewee Selection
This section discuss how the selection of interviewees could have been biased and how it can
be a threat to validity.

Interviewees were interviewed partly based on experience with performance issues at the
case company. They were chosen because we considered that we would get the most knowl-
edgeable answers about the problem domain and requirements for tools. There are advan-
tages and disadvantages to choosing these interviewees where an advantage is that clearer
requirements for the tool emerge because they have good insight into the problem. One dis-
advantage is that a broader opinion is missed, a developer with less experience may make
other demands on the tool. By having more diversity in terms of experience of the problem
domain among the interviewees, other requirements could arise but we consider that we have
been able to cover a broad enough range to have covered most parts among developers.

7.2.3 Untested Requirements
This subsection will discuss the lack of tested conclusions. Some of the subconclusions and
conclusions are not tested and as such their validity could be argued.

68

7.3 Generalizability

The requirements that emerged from interviews included a wide range of the develop-
ment process, which made it difficult to validate all the requirements that arose. Through the
design and prototype phases, we only had the opportunity to validate parts of all the require-
ments. Our opinion is that the requirements that have not been validated are still relevant
to solve the problem, but that these requirements would benefit from being validated once
more in case they are to be used as a basis for further research or implementation.

7.2.4 Testing the Prototype
This subsection will discuss the threat to validity in regards to the tool never being evaluated
or tested as a part of the actual software development process.

The tool was evaluated by developers by exposing them to a scenario in which they had to
uitilize the tool in order to find an error in the code. While this setup can give an indication
of the experience of using such a tool in a development process, it is not enough to find con-
clusive results. It is possible that, would the tool be tested in an actual software development
process some requirements would have been redundant or undesirable and others needed. It
could also have another impact on the software development process than what the develop-
ers thought it would have. It is also possible that the tool was perceived as overly effective as
a results of it being evaluated in a scenario in which we had a high degree of control over the
variables that could effect the tools efficiency.

7.3 Generalizability
This section will discuss and reflect on the results of this research and how it adopts to other
companies. This is important as it shows that this problem can arise in other development
environments and the degree to which the solution in this research can be adopted by other
companies.

Performance is an important part of a product or system and many companies place great
emphasis on performance when developing their products. Therefore, the problem domain
in this thesis can be found in many other development environments where agile methods
and a Continuous Integration/Continuous Delivery process are implemented. No company
wants performance issues to be released to the customer and therefore it is advantageous to
be able to test the product/system before. One possible difference from other companies is
that the case company delivers a service where the user experience is important, which in
extension means that satisfactory performance is important. There might be some contexts
or companies in which the performance of the service is not as important and were it might
not be an issue. But in general, the results of the project is generalizable in this aspect.

In software development processes, feedback is an important component for develop-
ers to know if they have achieved the desired behavior. The feedback area can relate to other
companies and organizations when you want as much feedback as possible to be able to make
good decisions, where performance is part of the feedback. The case company uses an agile
software development process which emphasizes the focus on feedback during the devel-
opment process. This is in contrast to more waterfall-like projects or companies were less
emphasis is put on feedback. Therefore, the results for feedback in this project are mostly
generalizable, depending on the software development process used.

69

7. Discussion & Related Work

Another component that is relevant to other companies is traceability. By being able to
more easily troubleshoot where a performance issue has arisen, traceability increases. Both
in terms of the development process itself but also in the code base itself. As the saying goes,
time is money. And what company does not want to be able to save money by streamlining
the development process. It is however important to note that the need and use cases for
traceability might differ between different contexts. For instance, the case company delivers
software as a service in which bugs and issues can be fixed retroactively relatively easily. In a
context where a system is delivered preinstalled on a chip, traceability might play a different
role. In that very context it might be very useful to be able to trace bugs and issues in code to
a certain batch of chips, such that these chips can be sent back and be reprogrammed. While
traceability might in general be beneficial its uses might differ between different contexts
and therefore the results for traceability in this project is generalizable to most contexts that
delivers software as a service.

Therefore, we think that the requirements specification developed in this research can be
seen as a starting point for other companies that want to develop their own tool for testing
and detecting performance issues. The requirements that have been validated can be consid-
ered as a good basis for the tool, while those that have not been validated should be adopted
with caution.

The prototype developed in the research could also be relevant to implement for other
development environments similar to the case company. That is, you connect an agent on
the code base and then run tests, either locally or on a build server.

7.4 Related Work
This section will reflect on related work to this thesis. The related work will be discussed on
different approaches to solve a similar problem and why it could or could not work for this
thesis.

7.4.1 Closing the Feedback Loop in DevOps Through
Autonomous Monitors in Operations

Hrusto et al. [9] investigates the problem of relaying feedback autonomously in a DevOps
environemt. This article is interesting as it investigates problems that were also discussed
in this thesis, such as how to make sure the feedback is not buried by noise, how to direct
feedback to the correct developer as well as knowing what feedback to actually send. This
article thus gives insight into problems about how feedback processed and sent, which is
important when designing a feedback loop.

Summary
Monitoring a system in production is an important activity to be able to ensure the system
is working as intended and often times developers and operators set up alerts to notify them
whenever anything goes awry. The article investigates how to improve the feedback from op-
erations in a Swedish company responsible for managing tickets and conceptualize the prob-
lem as three separate problems: not notifying the corrects person or team, sending so many

70

7.4 Related Work

notifications that they flood the channel and bury important notifications and lastly that the
system might send notifications as a result of errors in external systems. Their contribution
is three fold, they provide a problem conceptualization, a solution design and a prototype.
In order to obtain their results they first conducted six interviews with senior employees
with different responsibilities from where they formulated the conceptualized problems and
thereby the solution design that laid the foundation for the prototype implementation. The
result of their study was conceptualizing the problem with operations feedback, designing a
solution for how the conceptualized problems could be remedied and lastly the implemen-
tation of their design solution using machine learning to create a smart filter for automatic
error detection. In a series of tests and real usage their solution performed well, even notify-
ing an error 30 minutes before it was reported by an user.

Discussion
In the article there is an interesting discussion about ”alert flooding” and noise in regards to
frequently sent notifications. The authors refer to this noise as notifications sent mostly due
to internal or external temporary glitches and then proceeds to propose a solution that aim
to filter these out. This is also relevant to the context of this thesis, since the feedback that
is being relayed to the developer is also subject to alert flooding. It is therefore important
to make sure that the feedback that is delivered to the developers is concise and does not
include information that dilutes the feedback and makes it less actionable. Furthermore,
alerts or feedback can become unmanageable when they are not directed to a single person,
as discovered in the article. This is also a problem that is relevant to the context of the
thesis. The approach ultimately used in this project is that the developer who is committing
code is responsible for making sure that the code is working as intended and therefore are any
issues connected with the commit directed to the developer. However would the performance
testing be introduced as a discrete quality check before releasing the code into production
or monitoring the code in production it would not be as easy. Then it would be needed to
analyze the code to be able to direct the feedback more accurately to a developer. In the
article machine learning is used in order to create a smart filter that can learn what alerts to
send and which to suppress, which could possibly also be used in the context of this thesis.

7.4.2 Shortening Feedback Time in Continuous Inte-
gration Environment in Large-Scale Embedded
Software Development with Test Selection

Koivuniemi [10] explored how much testing time could be reduced while maintaining fault
finding capability using test case selection. We found it relevant to our research as Koivuniemi
chose test cases through which files were modified by the developer and in our research we
intended to test only one developer’s changes but to be able to eliminate noice.

Summary
In continuous integration, one of the main principles is to integrate often into the mainline.
As the code base grows so does the test suite, which means that integration takes longer

71

7. Discussion & Related Work

time. Integration time taking to long, might make developers reluctant to integrate often and
thereby feedback time gets slow. Therefore, it is necessary to investigate the possibilities to
find a subset, test case selection, of the test suite through automation to shorten the feedback
time of testing in Continuous Integration and still being able to have a stable product.

This master’s thesis provides a designed artifact to enable automated test case selection
in large scale software systems, such as embedded systems, to cut feedback time and thereby
enable continuous integration. Furthermore, the paper contributes with as extended knowl-
edge base to practice continuous integration in large enterprises as well as offering a solution
on how to scale continuous integration in embedded software development.

The methodology of this thesis is based on Design-Science Research which contains seven
guidelines of which some were selected for the thesis. The first step takes on the design
of an artifact and in this thesis it is the design of a test case selection algorithm. In the
next step research of system takes place and to look at the gap between the goal state and
the current state of the system, to decide the problem relevance. Then, an evaluation of
the artifact is performed through well-executed evaluation methods, where the main area of
evaluation is feedback and the difference between the test selection tool and current system.
Furthermore, it was evaluated if the test selection tool catch the same faults as the re-test
all technique. Following evaluation is the presentation of contributions through the design
artifact and extension of the knowledge base within the practice of continuous integration
in large enterprises. During the next step, the design is improved by iterative cycles with
input from developers at the case company. At last, the results were presented together with
implications for the whole product.

The paper came to the conclusion that it is possible to safely shorten the feedback time
by 55.7 % in 404 commits. It was found that six faults slipped through the tool in 278 commits
and as these faults were caused by changes to the test code it was well-acknowledged that they
would slip through. Hence, the tool could be accepted as relatively safe. In addition, it was
stated that continuous integration is one of the most important things affecting successful
adaptation of agile software development at scale.

Discussion
To begin with, we deem that it is a well-conducted research where Koivuniemi has chosen
to validate his thesis by testing two different test suites on different teams. Therefore, we
believe that the research can be assessed as valid. However, the methodology for this research
is difficult to follow as it is not clearly described in which order the various phases have been
performed, but we believe that it does not affect the results too much.

From this research, we got inspiration for how the tool can filter out the changes that
developers have made to the code base. For our purpose, it was to distinguish between a
developer’s changes to the codebase and the rest of the codebase to know which tests to
monitor. While the purpose of the article was to filter out a smaller test suite to be able
to reduce the time to run tests. Since the method for test case selection in the article has
high results for fault finding capability, we considered that the method would fit well in this
research even if our focus is a little different. Another contributing factor to why we drew
inspiration from this article was that both the article and our case company are in the same
area, embedded systems. Due to lack of time, we did not have time to integrate this method
for test case selection in our prototype and this is something that could be seen as future

72

7.4 Related Work

work.
One part that differs between the article and our research is the problem analysis. In

the article, it is poorly described how the problem analysis has been performed, which as
a reader makes it difficult to understand how the article has analyzed the problem. As we
interpret it, the problem analysis has been based on observations, just as in this thesis, but
could have benefited from, for example, interviews also being held. By using several different
ways to analyze the problem, you get a more nuanced picture. It may be that the article used
interviews but nothing that we perceived when we read it and something that we would like
to discuss with the author.

7.4.3 Unit Testing Performance in Java Projects: Are
We There Yet?

Stefan et al. [15] investigated the usage of unit performance testing and its usage in open
source projects on GitHub. We found this article interesting as it researches how much unit
testing is used for performance testing, what kinds of projects that use it, how long it takes
and if it can detect changes in performance but also investigate how much performance mea-
surements change in existing projects. This could give us insight into whether or not using
unit testing for performance testing is a efficient approach to testing performance.

Summary
There are two reasons to why the research is important: Performance testing is an acknowl-
edged method of quality testing, that is often deemed the culprit of many failed projects. It
is also recognized that early testing is cheaper than testing late. The research analyzes 99019
different open source projects that uses performance testing. They conducted a survey with
111 developers that had contributed projects using the performance testing framework JMH.
They identify what projects are suitable for unit performance testing. They explain what
changes they make to their performance testing framework, SPL, that they presented previ-
ously in another article. They analyzed the 99019 different open source projects by searching
for known code patterns that indicates the usage of a specific performance testing frame-
work, followed by them trying to execute the identified tests. They then ran these tests at
different times in the repository’s history in order to investigate the performance change over
time. They then categorized the repositories that measured performance in order to catego-
rize what projects are more likely to measure performance. Then they measured how long
it took to execute the performance tests in order to investigate how long the tests take to
run. They also investigated whether or not unit testing of performance actually reveal any
changes in performance by running the performance unit testing before and after a change.
Lastly, they sent out a survey to developers that had participated in projects that used the
performance testing framework JMH.

Their conclusions were that only 0.37% of all the projects actually use a performance test-
ing framework and only 62% of them produced a result within 4 hours. It was also concluded
that, projects using JMH, performance tests are usually introduced later in the lifetime com-
pared to functional unit testing. From the surveys they concluded that automation of perfor-
mance testing is an issue with 77% responding they carry out performance testing manually,

73

7. Discussion & Related Work

61% automated evaluation and 50% build integration. It was also concluded from the inter-
views that 47% preferring performance testing at commit and that 37% preferring running it
before release. From the survey they also concluded that 23% of developers acted on perfor-
mance regression or improvements and 57% that used it when making design decisions.

Discussion
Even though performance testing is considered an important part of quality assurance and it
often being the cause of a failed project it is interesting that the majority of performance test-
ing relies on manual testing rather than automated performance testing. Testing performance
with unit testing could potentially yield the same benefits that functional unit testing does,
such as fast, consistent and automated testing that could be used as a part of development
rather than a separate following step. The consistency with which the testing is carried out
could allow performance regression to be detected before the code is released into production
and thereby reducing the risk of the system performance to regress over time. Furthermore,
it could also have an impact on the development process itself, by emphasizing the focus on
performance during development. This could have the effect of developers considering ade-
quate performance equally to correct functionality. As also mentioned during the evaluation
of the prototype in 5.3.7, this could help with comparing solution to one another and make
better design decisions. It is also interesting as the article investigates the use of unit testing
in order to test performance, which is relevant to the context of this thesis since it is also
based on unit testing. It also indicates that it is possible to extend the regular functional unit
testing by also using it to test the performance of a system.

7.4.4 On Agile Performance Requirements Specifica-
tion and Testing

Ho et al. [8] proposes a model for how to produce a performance requirements specification
in agile development environments. We found that this article could be relevant to our re-
search as the case company implements an agile development process where the model could
be used to develop performance requirements that can then be implemented in the tool.

Summary
In agile software development, the authors have identified a lack of practices to specify per-
formance requirements and how to collect a requirements specification regarding perfor-
mance which can cause performance issues in a software system. Due to agile processes, it
is difficult to make a preliminary analysis of performance requirements and something that
is not desirable. Since performance is not specified in the beginning, it will be easy to for-
get it during the development. Therefore, the authors considered it necessary to develop
a model for developing and specifying performance requirements that can be used in agile
development environments.

The paper proposes the Performance Requirements Evolution Model (PREM) which
serves as a guideline for performance requirements and validation. PREM divides perfor-
mance requirements into four levels where the first level represents a qualitative, casual de-
scription. In the second level, the requirements are specified more by adding quantitative

74

7.4 Related Work

measurement values to the description. In the third level, the requirements are specified as
quantitative performance objectives with system execution characteristics of the system. In
the last level, the performance requirement from the actual use of the system is specified.
Based on the model, developers can then write performance tests and as they get into the de-
velopment of the system or feature, they can specify the performance test more. The model
was then validated in a software project that had a high focus on performance where the re-
sults showed that performance had an upward trend and that it fits well into agile methods.

PREM is based on agile principles such as stories and test automation in Extreme Pro-
gramming but also on principles for performance testing. The authors begin by providing the
reader with an overview of PREM and how PREM fits into agile methods. To validate their
theory and model, the model is implemented in a software team that develops performance-
critical software for hardware components. The team started by specifying resolved require-
ments with the help of customers, in accordance with the first level of PREM. Subsequently,
a domain expert specified performance measurement values for the software in accordance
with level two of PREM. In accordance with level three in PREM, the software was tested on
several hardware components simultaneously for quantitative performance objectives with
system execution characteristics.

The conclusions that can be drawn from this paper are that it contributes with PREM,
performance requirements evolution model. It can be used as a guideline to gradually identify
and specify performance requirements in an agile development environment. Furthermore,
developers were able to write appropriate tests using the model.

Discussion

With the help of the model proposed in the article, agile work processes can be improved
with respect to performance. By testing the model in a software team and evaluating it with
the help of the team, we believe that the statements are valid. With the help of unbiased
people, the fair evaluation could be done. Since the model has been tested in a software team
where performance is a high priority, it makes us wonder how the model had performed in
a software team where performance has a lower priority. The article mentions that teams
can be tempted to start at a higher level of performance requirements, which could lead
to hasty decisions for performance. This could be the case with the case company where
performance is a lower priority compared to functionality and that one therefore speeds up
the specification process of performance requirements. Since you do not have time to give the
performance requirements the reflection that is needed, it can lead to you producing poorer
performance requirements and therefore need to go back to re-evaluate and rewrite tests.

The article relates to this thesis in that the performance requirements evolution model
(PREM) can be seen as a prior step to our tool. With the help of PREM, the developers at the
case company can develop clear requirements for the performance of their systems. Because
all developers know what performance requirements are placed on the software, they have
clearer goals to strive for when they develop and test their code, which hopefully results in
fewer performance issues in the code base.

75

7. Discussion & Related Work

7.5 Future Work
In this section, the authors will suggest future work based on this thesis that has emerged
during the performance of the thesis. This could give readers ideas to further investigate and
explore the area for research.

One interesting discussion we had around testing performance was the reliability of the
results. Each time a method is monitored and logged by the monitoring software it gathers a
sample of how long time the method takes to execute and more samples generally provide a
better and more reliable result. But as mentioned this requires methods to run multiple times.
It would therefore be interesting to investigate whether the unit tests can be run multiple
times such that a certain degree of statistical significance is achieved.

Unit tests were in this project used as a method for generating a load on the system such
that the execution time could be measured. It would however be interesting to investigate
how this load could be generated differently, possibly by capturing user interactions and
replaying them as a way to generate a load. It could also be achieved by writing tests that are
specifically designed for testing performance. This could possibly have the effect of making
the test results more reliable. This also opens up new ways of validating the performance,
such as writing tests that are also validated similarly to unit tests, for example by setting
execution time limits or timeouts.

While this thesis foremost investigate the ways in which performance issues can be identi-
fied during testing, it is only one method of identifying performance issues. It is also possible
to, in conjunction with performance testing, monitor the production environment and au-
tomatically generate new task issues that are automatically routed to the correct developer.
There are most likely many different solutions to such a problem, but automatically routing
issues could possibly be done using machine learning similar to the article by Hrusto et al.
[9] mentioned previously in the report.

It would also be interesting to investigate how the performance of a system is depen-
dent on the hardware configuration. It could for example be in order to run the same testing
on hardware that is very similar to the production environment such that the results might
would reflect the actual effect on the production system. This could also be combined with
machine learning that could forecast how the system would perform in production given the
performance on another computer, for instance the developer computer. This could possibly
allow the developers to get an understanding of how well their code would work in produc-
tion without having to actually release it into production.

76

Chapter 8

Conclusions

The goal of this thesis was to improve the feedback loop and traceability in the development
process to reduce the occurrence of performance issues in production. This was done by
investigating how to efficiently provide feedback about performance issues to the developers,
by deriving a requirements specification based on literature, interviews and observations.
The requirements specification then served as the basis for designing and implementing a
prototype, which was evaluated by developers.

The initiating problem was the lack of a defined practice in the development process to
identify performance issues. This led to performance issues being pushed into production. If
performance issues are not detected, they can in the long run also affect the user experience of
the service. The problem could be characterized as a lack of traceability between performance
issues and the code, which results in feedback that was hard to take action upon. Furthermore,
the process of discovering performance issues was not automated, which caused the feedback
loop to become unnecessarily slow. Lastly, this could affect the developers’ sense of closure
since it is difficult to know if the code is adequate.

As a result, a requirements specification was elicited which outlines how the tool would
be implemented in a general software development environment. With help of the proto-
type, traceability was increased between performance issues and the code base. This gave
developers more feedback into what had caused the performance degradation. Furthermore,
the implementation of a new automatic process in the testing stage allowed the developer
to receive more timely feedback. The conclusion could also be drawn that earlier and more
actionable feedback did not make developers feel a sense of closure earlier, but rather give
them an increased sense of confidence that their code is working as intended.

The requirements specification outlines a tool that can help identify performance issues
by increasing the traceability while providing more timely feedback to the developers. There-
fore our solution allows for performance issues to be discovered and resolved before they have
been released into production. This provides the developers with an extra assurance that their
code maintains adequate quality and thereby contributes to a better user experience that is
less likely to have performance issues.

77

8. Conclusions

78

References

[1] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A software architect’s perspective. Addison-
Wesley Professional, 2015.

[2] Kent Beck. Test-driven development: by example. Addison-Wesley Professional, 2003.

[3] Lars Bendix. A short introduction to software configuration management, lecture note
in software configuration management, version 0.80, 2019.

[4] Markus Borg, Leif Jonsson, Emelie Engström, Béla Bartalos, and Attila Szabo. Adopting
automated bug assignment in practice–a registered report of an industrial case study.
arXiv preprint arXiv:2109.13635, 2021.

[5] Lianping Chen. Continuous delivery: Huge benefits, but challenges too. IEEE software,
32(2):50–54, 2015.

[6] Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. Devops. Ieee
Software, 33(3):94–100, 2016.

[7] Fergus Hewson, Jens Dietrich, and Stephen Marsland. Performance regression testing
on the java virtual machine using statistical test oracles. In 2015 24th Australasian Software
Engineering Conference, pages 18–27. IEEE, 2015.

[8] Chih-Wei Ho, Michael J Johnson, Laurie Williams, and E Michael Maximilien. On agile
performance requirements specification and testing. In AGILE 2006 (AGILE’06), pages
6–pp. IEEE, 2006.

[9] Adha Hrusto, Per Runeson, and Emelie Engström. Closing the feedback loop in devops
through autonomous monitors in operations. SN Computer Science, 2(6):1–14, 2021.

[10] Jarmo Koivuniemi. Shortening feedback time in continuous integration environment
in large-scale embedded software development with test selection. University of Oulu
repository, pages 16–18, 2017.

79

REFERENCES

[11] Oliver Krancher, Pascal Luther, and Marc Jost. Key affordances of platform-as-a-service:
self-organization and continuous feedback. Journal of Management Information Systems,
35(3):776–812, 2018.

[12] Soren Lauesen. Software requirements: styles and techniques. Pearson Education, 2002.

[13] Ian Molyneaux. The art of application performance testing: from strategy to tools. " O’Reilly
Media, Inc.", 2014.

[14] Mary Poppendieck and Tom Poppendieck. Lean software development :. Addison-Wesley„
Boston :, cop. 2003.

[15] Petr Stefan, Vojtech Horky, Lubomir Bulej, and Petr Tuma. Unit testing performance
in java projects: Are we there yet? In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering, pages 401–412, 2017.

[16] Donna M Webster and Arie W Kruglanski. Individual differences in need for cognitive
closure. Journal of personality and social psychology, 67(6):1049, 1994.

[17] Liming Zhu, Len Bass, and George Champlin-Scharff. Devops and its practices. IEEE
Software, 33(3):32–34, 2016.

80

Appendices

81

Appendix A

Pre-analysis Interviews

Inledning

• Vad heter du?

• Hur gammal är du?

• Har du någon tidigare utbildning?

• Vad är dina arbetsuppgifter på Telavox?

• Har du jobbat med slow queries tidigare? Slow query taskforce? For context, slow query
taskforce is a group of developers that have volunteered to solving slow queries, at the company.

Huvudfrågor

• Vad är problemet med slow queries?

• Hur ser arbetsprocessen och systemet nuvarande ut för problem? Manuellt? Automa-
tiskt?

• Använder Telavox continuous delivery eller continuous deployment?

• Hur påverkar det arbetet?

• Vad hade underlättat arbetsflödet?

• Vad ser du som en potentiell lösning?

• Hur får du feedback? Får du feedback? Hur lång tid tar det?

• Hur återkopplar ni den här informationen till utvecklaren? Gör ni det?

• Hur vet du om det du pushar upp är tillräckligt bra?

83

A. Pre-analysis Interviews

• Hur ser datan ut från produktionsdatabasen?

• Vad tror du är användbar information i datan?

• Hade man kunnat testa slow queries innan produktion?

• Tror du det är möjligt att få ut liknande data innan ändringen är i produktion?

• Är det något mer du vill tillägga?

84

Appendix B

Problem Analysis Interviews

Inledning

• När är du född?

• Har du någon tidigare utbildning?

• Hur länge har du jobbat på Telavox?

• Vad är dina arbetsuppgifter på Telavox?

Huvudfrågor

• Skulle du vilja ha ett verktyg som ger snabb feedback men inte helt säkert att det fångar
en slow query, t.ex. i testningsstadiet, eller ett verktyg som tar lite längre tid men med
större säkerhet fångar slow queries, t.ex. från produktion?

• Vilka funktioner skulle du vilja ha i ett sådant verktyg?

• Vilken information skulle du vilja få från ett sådant verktyg?

• Var i CI/CD pipeline hade du velat få feedback på om din query är långsam?

• Var i CI/CD pipeline skulle du vilja att verktyget fanns?

• Hur mycket tid är du villig att lägga på att testa queries i din kod?

• Hur lång tid kan du tänka dig att vänta på feedback om att din query är långsam?

• Hur ofta använder du QueryProfiler? Om de vet vad verktyget är.

• Hur ofta skriver du test för dina implementeringar?

• Hade du föredragit att testa för slow queries i ett GUI eller i kod, t.ex. jUnit?

• Hur och var hade du föredragit att få feedback om att en query är långsam?

85

B. Problem Analysis Interviews

86

Appendix C

Initial Requirements Specification

C.1 Shared Requirements
QuGo1 Verktyget skall minska felsökningstiden med ___%

FuDo4 Man skall kunna specificera vad en slow query är

FuDo8 Verktyget skall kunna visa vilken del av databasen en slow query påverkar

QuDo12 Verktyget skall vara automatiserat

FuPr16 Verktyget skall skicka en notis ifall en query är problematisk

FuPr18 Man skall kunna definera tabeller i en databas som inte får låsas

FuPr19 Verktyget skall kunna identifiera vilket steg i tech-stacken som är långsamt

FuPr20 Verktyget skall kunna ge information om vilka tabeller och fält som orsakar en slow
query

FuPr21 Verktyget skall kunna notifiera om en specifik plats i koden som är långsam

FuPr22 Verktyget skall kunna identifiera lösningar till långsamma queries

QuPr23 Verktyget skall inte visa hela sidor med information

QuGo27 Verktyget får inte belasta systemet ytterligare

FuPr28 Man skall kunna ställa in gränser för vad som räknas som en slow query

FuPr30 Verktyget skall kunna skilja mellan långsamma queries och många jämlöpande queries

FuPr32 Verktyget skall kunna summera totala tiden för återkommande queries

87

C. Initial Requirements Specification

FuPr33 Verktyget skall kunna ge standardavvikelse för tiden en query tar

FuPr34 Verktyget skall kunna ge den snabbaste tiden en query tar

FuPr35 Verktyget skall kunna ge den långsammaste tiden en query tar

QuDo38 Verktyget skall kunna köras både i test-stadiet och i produktion

QuPr39 Verktyget skall ta ca.1 minut att använda

QuDo41 Verktyget skall kunna konfigureras i kod

FuPr45 Användaren skall kunna filtrera bort för stunden orelevanta queries

FuPr46 Man ska kunna välja bort de versioner som är testade och inte innehåller långsamma
queries

FuPr47 Verktyget skall ha möjlighet att ignorera en viss version av query genom opt-out

QuPr50 Verktyget skall filtrera bort onödigt brus från icke aktuella queries

C.2 Testing (Locally and in Jenkins)
QuDo6 Verktyget skall kunna ge feedback från testning inom 30 minuter om det körs på

Jenkins

FuPr9 Vertyget skall kunna ge information om en slow query i GitHub

FuPr11 Vertyget skall kunna ge information om en slow query i Jenkins

QuDo13 Verktyget skall vara ett byggsteg i Jenkins

FuDo14 Verktyget skall kunna identifiera långsamma queries i testning

FuDo15 Verktyget skall kunna varna om långsamma queries i testning

QuGo17 Verktyget skall kunna ge feedback från integrationstester på Jenkins inom ___ min-
uter

QuPr24 Verktyget skall kunna användas för enskilda commits

QuPr25 Verktyget skall kunna köras lokalt

FuDo26 Verktyget skall kunna integreras som en check i GitHub

FuPr29 Verktyget skall kunna stresstesta koden

FuPr31 Verktyget skall kunna load-testa

QuPr40 Verktyget skall kunna ge feedback inom ca.1 minut om det körs lokalt

FuPr43 Verktyget skall kunna testa endast de ändringar som har gjorts i kodbasen i Jenkins

FuPr44 Verktyget skall kunna testa endast de ändringar som har gjorts i kodbasen lokalt

QuPr48 Verktyget ska inte förlänga testtiden med mer än 10% när det körs lokalt

88

C.3 Monitoring

C.3 Monitoring
QuGo2 Verktyget skall minska tiden det tar att åtgärda problem i produktion med ___%.

FuDo3 Man skall kunna välja vilka slow queries som skall monitoreras

QuDo5 Verktyget skall kunna ge feedback från monitorering inom 24 timmar

FuDo7 Man skall kunna välja vilka tabeller som skall monitoreras

FuPr36 Verktyget skall kunna ge queries/minute under en viss tidsperiod

FuPr37 Verktyget skall kunna generera Jira issues automatiskt om en slow query upptäcks

FuPr42 Automatiskt genererade Jiror skall tilldelas personen som orsakade slow queryn

FuPr49 Verktyget skall kunna skilja användaqueries mot interna queries

C.4 Feedback
FuPr10 Vertyget skall kunna ge information om en slow query i Jira om det upptäcks i mon-

itorering

89

C. Initial Requirements Specification

90

Appendix D

Requirements Specification for Design

QuGo1 Verktyget skall minska felsökningstiden med ___%.

QuGo2 Verktyget skall minska tiden det tar att åtgärda problem i produktion med ___%.

FuDo3 Man skall kunna välja vilka slow queries som skall monitoreras

FuDo4 Man skall kunna specificera vad en slow query är

QuDo5 Verktyget skall kunna ge feedback från monitorering inom 24 timmar

QuDo6 Verktyget skall kunna ge feedback från testning inom 30 minuter om det körs på
Jenkins

FuDo7 Man skall kunna välja vilka tabeller som skall monitoreras

FuDo8 Verktyget skall kunna visa vilken del av databasen en slow query påverkar enligt krav
FuPr19 och FuPr20

FuPr9 Vertyget skall kunna ge information om en slow query i GitHub

FuPr10 Vertyget skall kunna ge information om en slow query i Jira

FuPr11 Vertyget skall kunna ge information om en slow query i Jenkins

QuDo12 Verktyget skall vara automatiserat

QuDo13 Verktyget skall vara ett byggsteg i Jenkins

FuDo14 Verktyget skall kunna identifiera långsamma queries i testning

FuDo15 Verktyget skall kunna varna om långsamma queries i testning

FuPr16 Verktyget skall skicka en notis ifall en query är problematisk

91

D. Requirements Specification for Design

QuGo17 Verktyget skall kunna ge feedback från byggstadiet inom ___ minuter

FuPr18 Man skall kunna definera tabeller i en databas som inte får låsas

FuPr19 Verktyget skall kunna identifiera vilket steg i tech-stacken som är långsamt

FuPr20 Verktyget skall kunna ge information om vilka tabeller och fält som orsakar en slow
query

FuPr21 Verktyget skall kunna notifiera om en specifik plats i koden som är långsam

FuPr22 Verktyget skall kunna identifiera lösningar till långsamma queries

QuPr23 Verktyget skall inte visa hela sidor med information

QuPr24 Verktyget skall kunna användas för enskilda commits

QuPr25 Verktyget skall kunna köras lokalt

FuDo26 Verktyget skall kunna göra och visa en check i GitHub pull request

QuGo27 Verktyget får inte belasta systemet ytterligare

FuPr28 Man skall kunna ställa in gränser för vad som räknas som långsamt

FuPr29 Verktyget skall kunna stresstesta koden

FuPr30 Verktyget skall kunna skilja mellan långsamma queries och många jämlöpande queries

FuPr31 Verktyget skall kunna load-testa

FuPr32 Verktyget skall kunna summera totala tiden för återkommande queries

FuPr33 Verktyget skall kunna ge standardavvikelse för tiden en query tar

FuPr34 Verktyget skall kunna ge den snabbaste tiden en query tar

FuPr35 Verktyget skall kunna ge den långsammaste tiden en query tar

FuPr36 Verktyget skall kunna ge queries/minute under en viss tidsperiod

FuPr37 Verktyget skall kunna generera Jira issues om en slow query automatiskt

QuDo38 Verktyget skall kunna köras både i test-stadiet och i produktion

QuPr39 Verktyget skall ta ca. 1 minut att använda

QuPr40 Verktyget skall kunna ge feedback inom ca.1 minut om det körs lokalt

QuDo41 Verktyget skall kunna konfigureras i kod

FuPr42 Automatiskt genererade Jiror skall tilldelas personen som orsakade slow queryn

FuPr43 Verktyget skall kunna testa endast de ändringar som har gjorts i kodbasen i Jenkins

92

FuPr44 Verktyget skall kunna testa endast de ändringar som har gjorts i kodbasen lokalt

FuPr45 Användaren skall kunna filtrera bort för stunden orelevanta queries

FuPr46 Man ska kunna välja bort de versioner som är testade och inte innehåller på långsamma
queries

FuPr47 Verktyget skall ha möjlighet att ignorera en viss version av query genom opt-out

QuPr48 Verktyget ska inte förlänga testtiden med mer än 10% när det körs lokalt

FuPr49 Verktyget skall kunna skilja användaqueries mot interna queries

QuPr50 Verktyget skall filtrera bort onödigt brus

QuPr51 Verktyget skall endast skapa en Jira per performance issue

QuDo52 Verktyget skall kunna integreras med Jira

FuDo53 Verktyget skall kunna monitorera produktionsmiljön

QuDo54 Performance tester ska kunna skrivas med ett standardramverk, t.ex. TestNG eller
JUnit

FuPr55 Verktyget skall kunna mäta tider i callstacken

FuDo57 Verktyget skall automatiskt kunna identifiera vilka tester som ska köras

QuDo56 Testningen skall vara tillräckligt snabb för att kunna användas i Test Driven De-
velopment

FuDo58 Utvecklare skall kunna specifiera vilka tester som ska köras

93

D. Requirements Specification for Design

94

Appendix E

Requirements Specification for Prototype

QuGo1 Verktyget skall minska felsökningstiden med ___%.

QuGo2 Verktyget skall minska tiden det tar att åtgärda problem i produktion med ___%.

FuDo3 Man skall kunna välja vilka slow queries som skall monitoreras

FuDo4 Man skall kunna specificera vad en slow query är

QuDo5 Verktyget skall kunna ge feedback från monitorering inom 24 timmar

QuDo6 Verktyget skall kunna ge feedback från testning inom 30 minuter om det körs på
Jenkins

FuDo7 Man skall kunna välja vilka tabeller som skall monitoreras

FuDo8 Verktyget skall kunna visa vilken del av databasen en slow query påverkar enligt krav
FuPr19 och FuPr20

FuPr9 Vertyget skall kunna ge information om en slow query i GitHub

FuPr10 Vertyget skall kunna ge information om en slow query i Jira

FuPr11 Vertyget skall kunna ge information om en slow query i Jenkins

QuDo12 Verktyget skall vara automatiserat

QuDo13 Verktyget skall vara ett byggsteg i Jenkins

FuDo14 Verktyget skall kunna identifiera långsamma queries i testning

FuDo15 Verktyget skall kunna varna om långsamma queries i testning

FuPr16 Verktyget skall skicka en notis ifall en query är problematisk

95

E. Requirements Specification for Prototype

QuGo17 Verktyget skall kunna ge feedback från byggstadiet inom ___ minuter

FuPr18 Man skall kunna definera tabeller i en databas som inte får låsas

FuPr19 Verktyget skall kunna identifiera vilket steg i tech-stacken som är långsamt

FuPr20 Verktyget skall kunna ge information om vilka tabeller och fält som orsakar en slow
query

FuPr21 Verktyget skall kunna notifiera om en specifik plats i koden som är långsam

FuPr22 Verktyget skall kunna identifiera lösningar till långsamma queries

QuPr23 Verktyget skall inte visa hela sidor med information

QuPr24 Verktyget skall kunna användas för enskilda commits

QuPr25 Verktyget skall kunna köras lokalt

FuDo26 Verktyget skall kunna göra och visa en check i GitHub pull request

QuGo27 Verktyget får inte belasta systemet ytterligare

FuPr28 Man skall kunna ställa in gränser för vad som räknas som långsamt

FuPr29 Verktyget skall kunna stresstesta koden

FuPr30 Verktyget skall kunna skilja mellan långsamma queries och många jämlöpande queries

FuPr31 Verktyget skall kunna load-testa

FuPr32 Verktyget skall kunna summera totala tiden för återkommande queries

FuPr33 Verktyget skall kunna ge standardavvikelse för tiden en query tar

FuPr34 Verktyget skall kunna ge den snabbaste tiden en query tar

FuPr35 Verktyget skall kunna ge den långsammaste tiden en query tar

FuPr36 Verktyget skall kunna ge queries/minute under en viss tidsperiod

FuPr37 Verktyget skall kunna generera Jira issues om en slow query automatiskt

QuDo38 Verktyget skall kunna köras både i test-stadiet och i produktion

QuPr39 Verktyget skall ta ca. 1 minut att använda

QuPr40 Verktyget skall kunna ge feedback inom ca.1 minut om det körs lokalt

QuDo41 Verktyget skall kunna konfigureras i kod

FuPr42 Automatiskt genererade Jiror skall tilldelas personen som orsakade slow queryn

FuPr43 Verktyget skall kunna testa endast de ändringar som har gjorts i kodbasen i Jenkins

96

FuPr44 Verktyget skall kunna testa endast de ändringar som har gjorts i kodbasen lokalt

FuPr45 Användaren skall kunna filtrera bort för stunden orelevanta queries

FuPr46 Man ska kunna välja bort de versioner som är testade och inte innehåller på långsamma
queries

FuPr47 Verktyget skall ha möjlighet att ignorera en viss version av query genom opt-out

QuPr48 Verktyget ska inte förlänga testtiden med mer än 10% när det körs lokalt

FuPr49 Verktyget skall kunna skilja användaqueries mot interna queries

QuPr50 Verktyget skall filtrera bort onödigt brus

QuPr51 Verktyget skall endast skapa en Jira per performance issue

QuDo52 Verktyget skall kunna integreras med Jira

FuDo53 Verktyget skall kunna monitorera produktionsmiljön

QuDo54 Performance tester ska kunna skrivas med ett standardramverk, t.ex. TestNG eller
JUnit

FuPr55 Verktyget skall kunna mäta tider i callstacken

QuDo56 Testningen skall vara tillräckligt snabb för att kunna användas i Test Driven De-
velopment

FuDo57 Verktyget skall automatiskt kunna identifiera vilka tester som ska köras

FuDo58 Utvecklare skall kunna specifiera vilka tester som ska köras

QuDo59 Verktyget skall kunna köras på MacOS

QuDo60 Verktyget skall kunna köras på Linux

QuDo61 Verktyget skall kunna användas på Javakod

QuDo62 Verktyget skall kunna integreras med Maven

QuDo63 Verktyget skall kunna köras i Docker

QuDo64 Verktyget skall kunna integreras med Github

QuDo65 Verktyget skall kunna köras på Jenkins

QuPr66 Verktyget skall kunna visualizera den uppmätta exekveringstiden enligt bild E.1

QuDo67 Verktyget skall kunna köras på TestNG tester

QuPr68 Verktyget skall kunna visa om en query är lazy

QuPr69 Verktyget skall kunna visa en queries select statement

QuPr70 Verktyget skall kunna visa om en query är långsam på grund av indexering

FuPr71 Verktyget skall länka tillbaka till rätt pull request

97

E. Requirements Specification for Prototype

…

Java …

0 ms 583 ms

250 ms

311 ms

542 ms330 ms

250 ms

311 ms

542 ms

Java method 1

SQL query 1

SQL query 2

Figure E.1: The figure shows a method of visualizing the stack trace.

98

Appendix F

Core Requirements

F.1 Core Requirements
QuGo1 Verktyget skall minska felsökningstiden med ___%.

QuDo12 Verktyget skall vara automatiserat.

FuDo14 Verktyget skall kunna identifiera långsamma queries i testning.

QuGo17 Verktyget skall kunna ge feedback från byggstadiet inom ___ minuter.

QuPr25 Verktyget skall kunna köras lokalt.

QuGo27 Verktyget får inte belasta systemet ytterligare.

F.2 Most Valuable Requirements
FuDo3 Man skall kunna välja vilka slow queries som skall monitoreras.

FuDo4 Man skall kunna specificera vad en slow query är.

QuDo5 Verktyget skall kunna ge feedback från monitorering inom 24 timmar.

QuDo6 Verktyget skall kunna ge feedback från testning inom 30 minuter om det körs på
Jenkins.

FuPr9 Verktyget skall kunna ge information om en slow query i GitHub.

QuDo13 Verktyget skall vara ett byggsteg i Jenkins.

FuDo15 Verktyget skall kunna varna om långsamma queries i testning.

99

F. Core Requirements

FuPr19 Verktyget skall kunna identifiera vilket steg i tech-stacken som är långsamt.

FuPr21 Verktyget skall kunna notifiera om en specifik plats i koden som är långsam.

QuPr24 Verktyget skall kunna användas för enskilda commits.

FuDo26 Verktyget skall kunna göra och visa en check i GitHub pull request.

FuPr28 Man skall kunna ställa in gränser för vad som räknas som långsamt.

FuPr30 Verktyget skall kunna skilja mellan långsamma queries och många jämlöpande queries.

QuDo38 Verktyget skall kunna köras både i test-stadiet och i produktion.

QuDo41 Verktyget skall kunna konfigureras i kod.

FuPr43 Verktyget skall kunna testa endast de ändringar som har gjorts i kodbasen i Jenkins.

FuPr44 Verktyget skall kunna testa endast de ändringar som har gjorts i kodbasen lokalt.

QuPr48 Verktyget ska inte förlänga testtiden med mer än 10% när det körs lokalt.

QuPr50 Verktyget skall filtrera bort onödigt brus.

QuDo54 Performance tester ska kunna skrivas med ett standardramverk, t.ex. TestNG eller
JUnit.

FuPr55 Verktyget skall kunna mäta tider i callstacken.

QuDo59 Verktyget skall kunna köras på MacOS.

QuDo60 Verktyget skall kunna köras på Linux.

QuDo61 Verktyget skall kunna användas på Javakod.

QuDo62 Verktyget skall kunna integreras med Maven.

QuDo64 Verktyget skall kunna integreras med Github.

QuDo65 Verktyget skall kunna köras på Jenkins.

QuPr66 Verktyget skall kunna visualizera den uppmätta exekveringstiden enligt bild F.1.

QuDo67 Verktyget skall kunna köras på TestNG tester.

FuPr71 Verktyget skall länka tillbaka till rätt pull request.

100

F.3 Nice to Have Requirements

…

Java …

0 ms 583 ms

250 ms

311 ms

542 ms330 ms

250 ms

311 ms

542 ms

Java method 1

SQL query 1

SQL query 2

Figure F.1: The figure shows a method of visualizing a stack trace.

F.3 Nice to Have Requirements
QuGo2 Verktyget skall minska tiden det tar att åtgärda problem i produktion med ___%.

FuDo7 Man skall kunna välja vilka tabeller som skall monitoreras.

FuDo8 Verktyget skall kunna visa vilken del av databasen en slow query påverkar enligt krav
xx.

FuPr10 Verktyget skall kunna ge information om en slow query i Jira.

FuPr11 Verktyget skall kunna ge information om en slow query i Jenkins.

FuPr16 Verktyget skall skicka en notis ifall en query är problematisk.

FuPr18 Man skall kunna definera tabeller i en databas som inte får låsas.

FuPr20 Verktyget skall kunna ge information om vilka tabeller och fält(kolumner?) som
orsakar en slow query.

FuPr22 Verktyget skall kunna identifiera lösningar till långsamma queries.

QuPr23 Verktyget skall inte visa hela sidor med information.

FuPr29 Verktyget skall kunna stresstesta koden.

FuPr31 Verktyget skall kunna load-testa.

FuPr32 Verktyget skall kunna summera totala tiden för återkommande queries.

FuPr33 Verktyget skall kunna ge standardavvikelse för tiden en query tar.

101

F. Core Requirements

FuPr34 Verktyget skall kunna ge den snabbaste tiden en query tar.

FuPr35 Verktyget skall kunna ge den långsammaste tiden en query tar.

FuPr36 Verktyget skall kunna ge queries/minute under en viss tidsperiod.

FuPr37 Verktyget skall kunna generera Jira issues om en slow query automatiskt.

QuPr39 Verktyget skall ta ca. 1 minut att använda.

QuPr40 Verktyget skall kunna ge feedback inom ca.1 minut om det körs lokalt.

FuPr42 Automatiskt genererade Jiror skall tilldelas personen som orsakade slow queryn.

FuPr45 Användaren skall kunna filtrera bort för stunden orelevanta queries.

FuPr46 Man ska kunna välja bort de versioner som är testade och inte innehåller på långsamma
queries.

FuPr47 Verktyget skall ha möjlighet att ignorera en viss version av query genom opt-out.

FuPr49 Verktyget skall kunna skilja användaqueries mot interna queries.

QuPr51 Verktyget skall endast skapa en Jira per performance issue.

QuDo52 Verktyget skall kunna integreras med Jira.

FuDo53 Verktyget skall kunna monitorera produktionsmiljön.

QuDo56 Testningen skall vara tillräckligt snabb för att kunna användas i Test Driven De-
velopment.

FuDo57 Verktyget skall automatiskt kunna identifiera vilka tester som ska köras.

FuDo58 Utvecklare skall kunna specifiera vilka tester som ska köras.

QuDo63 Verktyget skall kunna köras i Docker.

QuPr68 Verktyget skall kunna visa om en query är lazy.

QuPr69 Verktyget skall kunna visa en queries select statement.

QuPr70 Verktyget skall kunna visa om en query är långsam på grund av indexering.

102

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-04-12

EXAMENSARBETE Using DevOps to Improve Feedback and Traceability for Performance
in Software Development
STUDENTER Hanna Höjbert, Elias Vernersson
HANDLEDARE Lars Bendix (LTH)
EXAMINATOR Emelie Engström (LTH)

How to find performance issues before
production?

POPULAR SCIENCE PAPER Hanna Höjbert, Elias Vernersson

The change of software performance can sometimes go unnoticed if proper feedback
system are not implemented. This research therefore intends to investigate the means
of using an automated tool to increase feedback of performance issues.

In today’s rapidly changing environment timely
feedback is of the essence, not only for functional-
ity but also for performance. Testing performance
early, before releasing systems to the customer,
could therefore provide great value for companies,
in terms of feedback. But if there is no defined
practice in the development process for how to
test performance, it is easy for performance issues
to end up in production. If performance issues end
up in production, it can ultimately have a negative
impact on the user experience and revenue can be
lost. Then a tool that senses and informs about
performance issues may be appropriate.

In our research, we have examined what require-
ments developers place on a tool and how a proto-
type, based on these requirements, affected the de-
velopment process in terms of feedback and trace-
ability. Our results were a requirements specifica-
tion, a proof of concept and problem validation.
Through the prototype, developers were able to
get faster feedback and issue identification. Fur-
thermore, traceability increased in the develop-
ment process and in the code base.

The requirements were developed through an it-
erative process where the first iteration involved
interviews with developers and inspiration from
literature to produce an initial requirements spec-
ification. The second iteration involved develop-
ing different designs based on the requirements

and eliciting additional requirements with the help
of evaluation with developers. In the last itera-
tion, a prototype was implemented to validate the
requirements and elicit additional requirements.
The prototype was then evaluated by developers
and can be seen in figure 1.

Figure 1: Architecture of prototype when running
on build server

Overall, our research shows that our prototype
could increase the traceability between perfor-
mance issues and the code base and allow for the
developers to receive more timely feedback about
performance issues. This while also providing a
stronger sense of closure, along with a require-
ments specification of the prototype that is able
to be implemented in a general software develop-
ment environment.

	Introduction
	Background
	Problem Understanding
	Telavox
	Pre-analysis
	Research Questions

	Theoretical Framework
	Traceability
	Feedback
	Automation
	DevOps
	Continuous Integration and Delivery
	Test Driven Development
	Performance Testing
	Closure

	Methodology
	Pre-analysis Phase
	Problem Analysis Phase
	Design Phase
	Prototype Phase

	Problem Analysis
	Literature Study
	Performance Testing
	Test Case Selection
	Feedback Loop and Bug Reporting

	Setting a Baseline
	Interviews
	Requirements Specification

	Design
	Design Proposals and Discussions
	Design Option 1
	Design Option 2
	Design Option 3
	Design Option 4
	Design Option 5

	Requirements Gained from Design
	Design Choice

	Prototype
	Prototype Implementation 1
	Prototype Implementation 2
	Prototype Evaluation
	Bug Fixing
	Issue Detection
	Feedback and Information
	Traceability
	Closure
	Disadvantages
	General Discussions

	Requirements Gained from Prototypes

	Results
	Results to Research Questions
	Requirement Specification
	Development Process
	Bug Fixing
	Closure

	Specifying Core Requirements

	Discussion & Related Work
	Reflections on Methodology
	Qualitative and Quantitative Results
	Biased Scoping
	Literature Search
	Neutral Answers in Questionnaire
	Hard to Answer Questions
	More Questions About Closure and Traceability
	Pre-analysis
	Fewer Design Proposals
	Requirements Specification

	Validation
	Sample Size
	Biased Interviewee Selection
	Untested Requirements
	Testing the Prototype

	Generalizability
	Related Work
	Closing the Feedback Loop in DevOps Through Autonomous Monitors in Operations
	Shortening Feedback Time in Continuous Integration Environment in Large-Scale Embedded Software Development with Test Selection
	Unit Testing Performance in Java Projects: Are We There Yet?
	On Agile Performance Requirements Specification and Testing

	Future Work

	Conclusions
	References
	Appendix Pre-analysis Interviews
	Appendix Problem Analysis Interviews
	Appendix Initial Requirements Specification
	Shared Requirements
	Testing (Locally and in Jenkins)
	Monitoring
	Feedback

	Appendix Requirements Specification for Design
	Appendix Requirements Specification for Prototype
	Appendix Core Requirements
	Core Requirements
	Most Valuable Requirements
	Nice to Have Requirements

	Tom sida

