
MASTER’S THESIS 2022

Improving Address Sequence
Tagger Using Geographical
Context
Ludvig Eriksson, Mikael Olsson

ISSN 1650-2884
LU-CS-EX: 2022-24

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-24

Improving Address Sequence Tagger Using
Geographical Context

Förbättra en modell för sekvenstaggning av
adresser med hjälp av geografisk kontext

Ludvig Eriksson, Mikael Olsson

Improving Address Sequence Tagger Using
Geographical Context

Ludvig Eriksson
dat13ler@student.lu.se

Mikael Olsson
dic15mol@student.lu.se

May 11, 2022

Master’s thesis work carried out at AFRY Digital Solutions.

Supervisors: Marcus Klang, marcus.klang@cs.lth.se
Frank Camara, frank.camara@afry.com

Examiner: Martin Höst, martin.host@cs.lth.se

mailto:dat13ler@student.lu.se
mailto:dic15mol@student.lu.se
mailto:marcus.klang@cs.lth.se
mailto:frank.camara@afry.com
mailto:martin.host@cs.lth.se

Abstract

For humans, parsing an address into its components such as street and city
is easy but time-consuming. Computers can have a harder time with such tasks.
There are existing tools that use machine learning which has proven to be ef-
fective but still leaves room for improvement in some aspects. In this thesis,
we investigate how deep learning models perform compared to an existing tool
that uses a statistical model. On top of this, we explore how using geographical
context can improve the accuracy of a machine learning model. After deciding
on using Danish address data and having analyzed the data, we started by set-
ting up baselines using existing tools and frameworks such as Libpostal, FLAIR,
and Transformers by Hugging Face. Analyzing the data and baseline results led
to setting up certain tests, such as trying different embeddings and oversam-
pling underrepresented data fields. Using coordinates of an address, a nearby
address was pulled from a spatial database and added as geographical context
into a BERT transformer model to see how this would affect the accuracy. Our
results showed that adding geographical context did improve the accuracy of a
number of fields, though some fields likely suffered from the tokenization used
for the transformer models. Compared to Libpostal, even the models without
context performed better on most individual labels. Adding context to a BERT
model did seem to offer an increase in accuracy, showing that geographical con-
text is a viable method to improve parse accuracy.

Keywords: machine-learning, NLP, maps, address, parsing, geocoding

2

Acknowledgements

We would like to thank the following people for their help during our thesis:
Mikael Nelson for giving us an early introduction to machine learning.
Hampus Londögård and Marcus Klang for continuously answering all our questions regard-
ing machine learning and thesis writing in general.
Dick Max-Hansen and Frank Camara for giving us the opportunity to write our thesis at
AFRY and supporting us during our time at AFRY.
Daniel Palmqvist and Muhammad Ehsan ul Haque for our weekly meetings.

3

4

Contents

1 Introduction 9
1.1 Problem Formulation . 9

1.1.1 Scope . 10
1.2 Research Questions . 10
1.3 Contribution . 10
1.4 Work Distribution . 11
1.5 Outline . 11

2 Technical background 13
2.1 Related Work . 13
2.2 Machine learning . 14

2.2.1 Supervised learning . 15
2.2.2 Unsupervised learning . 15
2.2.3 Self-supervised learning . 15

2.3 Deep Learning . 16
2.3.1 Artificial neural networks . 16
2.3.2 Transformer . 20

2.4 Natural Language Processing . 21
2.4.1 Named entity recognition . 22
2.4.2 Tagging . 22
2.4.3 Tokenization . 22
2.4.4 Embeddings . 23

2.5 Spatial data . 25
2.5.1 GIS . 25
2.5.2 Spatial databases . 26

2.6 Models . 26
2.6.1 BERT . 26
2.6.2 Danish-Bert . 27
2.6.3 Libpostal . 27

2.7 Libraries . 27

5

CONTENTS

2.7.1 PyTorch . 27
2.7.2 FLAIR . 28
2.7.3 Transformers . 28

2.8 Evaluation Metrics . 28

3 Data 33
3.1 Data set . 33
3.2 Danish addresses . 34

3.2.1 Level and Unit . 34
3.2.2 Postal district and supplementary city 34
3.2.3 Test set . 35

4 Methodology 37
4.1 Research Approach . 37

4.1.1 Data analysis . 38
4.1.2 Pre-processing . 38
4.1.3 Post-processing . 38

4.2 Evaluation . 39
4.2.1 Full comparison . 39
4.2.2 FLAIR . 39
4.2.3 Transformer . 41
4.2.4 Libpostal . 41

4.3 Validity threats . 41
4.4 Models . 42

4.4.1 Libpostal baseline . 42
4.4.2 BERT model without context . 42
4.4.3 FLAIR model without context . 43
4.4.4 Tests . 43
4.4.5 BERT model with context . 45

4.5 Implementation . 45
4.5.1 Environment . 45
4.5.2 Postgres/PostGis . 46
4.5.3 Overview of data sets used in the tests 47

5 Results 49
5.1 Comparison all models . 49
5.2 Baselines . 49

5.2.1 Libpostal . 49
5.2.2 BERT model without context . 50

5.3 Hyperparameter tests . 50
5.3.1 Embedding comparison . 50
5.3.2 Learning Rate comparison . 51
5.3.3 Effects of incompletion & disarrangement 51
5.3.4 Size of training set . 52
5.3.5 Oversampling . 52

5.4 BERT model with context . 53

6

CONTENTS

6 Discussion 55
6.1 Comparison with baselines . 55

6.1.1 Libpostal . 55
6.1.2 BERT model without context . 55

6.2 Embedding comparison . 56
6.3 Learning rate . 56
6.4 Incompletion disarrangement . 56
6.5 Size of training set . 56
6.6 Oversampling . 56
6.7 Postal district vs supplementary city . 57
6.8 Level and Unit . 57
6.9 No context vs context . 57

7 Conclusions 59
7.1 Future work . 59

7.1.1 Ensemble learning . 59
7.1.2 Tokenization . 60
7.1.3 Class distribution . 60
7.1.4 Different data set . 60
7.1.5 More data . 60

References 61

7

CONTENTS

8

Chapter 1

Introduction

There are several different map tools such as Apple Maps, Google Maps and the open-source
variant OpenStreetMap. For them to correctly interpret user input they need to correctly
parse the address provided into its parts, for example, street name, street number, city and
postcode. This in an important pre-processing step for record linkage.

Record linkage refers to the process of joining records that refer to the same entity in
different data collections. This process is trivial when the records share a common, unique
key or identifier (Li et al., 2014) although in the case of addresses there is often no unique
key. Instead, we rely on element-wise comparison between pairs of records and this is why it
is so important to split the address correctly into its elements so that you can match it to the
correct record. This can be done with two different solutions: rule-based and probabilistic
techniques. In this thesis, we will use machine learning based on probabilistic modelling that
uses the codes of statistics for data examination.

Currently, there are tools such as Libpostal, which is based on a statistical model, and a
rather large one at that. Libpostal claims a high accuracy, however, that is on a withheld data
set which means that we are unable to confirm the results.

This masters’ thesis project was done for a client of AFRY. The client handles an immense
amount of address parsing and is constantly looking for new and improved methods. As in
every other industry, the potential for machine learning grows and while the interest grows
so does the knowledge and applications. One application that the client is interested in is
the idea of using geographical context to get even better performance.

1.1 Problem Formulation
We aim to use geographical context to improve the predictions. Using the coordinates for an
address should allow us to find the closest addresses and feed them into the machine learning

9

https://github.com/openvenues/Libpostal

1. Introduction

models to increase the accuracy of the predictions. The objective is to identify the labels
available and then correctly label the input given. Using the input Danskevej 23B, 11 4, 2300
Odense should yield the result in Figure 1.1.

Figure 1.1: The expected result from parsing the address.

1.1.1 Scope
We decided to use Danish addresses for this project. The reason behind this is that they
were readily available as the Danish authorities keep all addresses documented and available
through an open API. We considered Swedish and French addresses but Swedish addresses
were not available in larger quantities nor in good quality and French addresses were much
more complex than the Danish ones.

An approach that was considered was to modify Libpostal, presented in Section 2.1, how-
ever, it was established early on to be out of scope for this thesis.

1.2 Research Questions
In this thesis, we aim to improve the accuracy in address parsing using geographical context
in the form of nearby addresses. Using other tokens in an address as context while parsing
addresses is nothing new and is used in Libpostal. Our goal is instead to use other addresses
as context to improve accuracy, as nearby addresses are likely to share common traits which
we hope will help improve predictions. In this thesis, we will aim to answer the following
questions:

• RQ1: How well do different deep learning models perform on the address parsing task?

• RQ2: How do deep learning models compare with a statistical model such as Libpostal?

• RQ3: Can geographical context improve the accuracy of address parsing?

1.3 Contribution
Though context, in general, has already been widely used in natural language processing tasks,
the use of geographical context remains relatively unexplored. With this thesis, we hope to
give insight into the benefits of using geographical context in address parsing.

10

1.4 Work Distribution

1.4 Work Distribution
Large parts of the thesis work was done in collaboration between the authors. Even parts that
were divided, such as some of the programming, was often done with help and input from
each other. Writing of the thesis was split between the authors, with Mikael writing large
parts of the Technical Background and Ludvig writing much of the Results and Methodology.
The Discussion and Conclusions were written together.

1.5 Outline
To begin, in Section 2, we will go through technical information and terms mentioned in
the thesis and related work that we consider important to understand our thesis. We will
introduce you to the basics of machine learning, natural language processing and we will give
a short introduction to spatial databases.

Following this, we will introduce you to the data we have used in Section 3, where we got
it and how we formatted it. We will also introduce our test, train and validation data sets.
in Section 4.1 we will introduce how we approached this thesis, starting with planning and
ending with the tests we performed. In Section 5 we will present the results of all our tests
with an easy overview showing the main point of our thesis, after which we will go into detail
for all the tests mentioned in Section 4.1. Next, in Section 6, we will discuss the different
results and if they were as expected. Finally, in Section 7, we will present our conclusions and
how we believe the work can be improved in the future through future work.

11

1. Introduction

12

Chapter 2

Technical background

In this section, we introduce the theory that is necessary to know to understand our work.
This includes previous related work, an introduction to machine learning, models used and
spatial databases.

2.1 Related Work
Li et al. (2014) present a probabilistic address parsing system based on a Hidden Markov
Model. They also introduce several other new approaches to create models yielding high ac-
curacy. Just as in our thesis they define a set of semantic fields that they parse addresses into.
They also highlight the importance of disarrangement, i.e. to reorder the address field. This
is done to simulate how a person would actually input an address in a browser or message.
Their result shows that disarrangement1, in combination with denormalization2 and incomple-
tion3, yields a higher result compared to unprocessed data. They used 100 million synthetic
training instances and it yielded them a high F1-score of 95.6%. The paper shares many com-
mon variables with our thesis such as using a probabilistic system and investigating hyper-
parameters such as disarrangement.

Sharma et al. (2018) introduce a machine learning approach to address parsing using a
neural network. Their approach to the issue at hand is interesting and differs from Li et
al. by instead of introducing randomness into their data they instead correct the data and
put it in the right order before feeding it into the model. They used a Stochastic Gradient
Descent (SGD) model with backpropagation and trained on 1.1 million addresses achieving
an accuracy of 97% on a test set of 10 000 addresses. The paper, just as our thesis, uses machine

1Rearranging the order of the words in the input.
2Replacing the input with an alternative form, such as replacing "California" with "CA" or "Cal.", and "NE"

for "north east".
3Removing some of the words in the input.

13

2. Technical background

learning to parse addresses but as it differs from Li et al by correcting data it also differs from
our thesis.

Craig et al. (2019) investigate how active learning can be used to improve address parsing
models. Active learning means that the learner is trained on strategically chosen examples
so that it learns the most from them. It holds a big advantage in that it requires only a small
set but the downside is that this set needs to be highly informative and labeled by a human
most of the time. Craig et al. show that just adding a small amount of human-annotated real
queries results in visible improvements compared to just using synthetic data. This was done
on multiple models, including Libpostal, and showed that just adding 2000 human-annotated
real queries improved the synthetic models by over 10%. While we do not use synthetic data
in our thesis it is interesting to see how synthetic data could be used in conjunction with
human-annotated data.

In Barrentine (2016) the address parser Libpostal is introduced, an open-source address
parser written in C. It is a custom statistical Conditional Random Field (CRF) model trained
on large, global data sets. It claims an accuracy of 99.45% on full parses, i.e it labels all the
labels in an entry correct. Libpostal will be used as a baseline in our thesis.

2.2 Machine learning

The field of machine learning is generally considered to be a subset of artificial intelligence.
The creation of the term machine learning is widely attributed to Arthur Samuel in 1959,
from his work researching machine learning using the game of checkers (Samuel, 1959).

Machine learning is a method for a program to “learn”, meaning to improve the perfor-
mance of a task, by being fed data instead of being explicitly told how to do it (Goodfellow
et al., 2016). In other words, the idea is that the program will perform better with experience.
A more formal definition of machine learning was provided by Mitchell (1997):

“A computer program is said to learn from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as measured by P, improves with experience E.”

In Figure 2.1 we can see a simplified representation of a machine learning algorithm. The
input to the model needs to be a tensor, which is a numerical representation of the data. The
goal of the model is to find the parameters θ that give the best estimation of the function
that outputs Y. The output is also a tensor, which can represent a probability distribution for
the output.

14

2.2 Machine learning

Figure 2.1:

1. Numerical input X (tensor) goes into the model along with
starting values for parameters θ.

2. Model, y = f (x; θ)

3. Numerical output Y (tensor) comes out of the model

Machine learning is comprised of a few different types of learning, some of the main ones
being supervised learning and unsupervised learning. There are also some types of machine
learning that are not considered among the main ones, but instead can be found somewhere
in between, such as self-supervised learning.

2.2.1 Supervised learning
In supervised learning, the model will be trained on labeled data, meaning that an input will
result in a specified output. Using the labeled data, the model tries to find the parameters
for a function that minimizes the error between the output and the desired output.

2.2.2 Unsupervised learning
Unsupervised learning means that the data is unlabeled. Without labels, the model will try to
find patterns in the input data and group similar data in clusters. Since there are no labels, it
becomes slightly more complicated to evaluate the performance of the model compared with
supervised learning (Cord & Cunningham, 2008).

2.2.3 Self-supervised learning
Somewhere in between supervised and unsupervised learning, there is a newer type of learn-
ing called self-supervised learning. Just like in supervised learning, self-supervised learning
has the goal to learn a function that maps an input to an output. Unlike supervised learning,
self-supervised learning does not use labels in the same way but instead tries to find some

15

2. Technical background

structure or correlation in the data (which is why it is also similar to unsupervised learning).
This is then used as a sort of label (LeCun et al., 2015).

2.3 Deep Learning

Just like machine learning can be thought of as a subset of AI, deep learning can be seen as
a subset of machine learning. While deep learning took off in the last decade, its origins go
back to the 1960s when work was done with neural network models (Schmidhuber, 2015).
The idea with deep learning was to give a program the capability to work like the human
brain and imitate brain patterns. (At least this was part of the original inspiration, though
modern deep learning does not resemble the human brain in the same way) (Chollet, 2021).
This is done using artificial neural networks.

2.3.1 Artificial neural networks

Haykins (Haykin, 2004) defines a neural network as:

“A neural network is a massively parallel distributed processor made up of simple pro-
cessing units, which has a natural propensity for storing experiential knowledge and making
it available for use."

At the core of deep learning, we have artificial neural networks (ANNs) that are modeled
after biological neural networks that are present in the human brain. While at its inception
it was inspired by the human brain, some researchers have pushed to move from this compar-
ison, as it has developed since then and does not necessarily resemble the human biological
neural network as much anymore.

A neural network consists of many so-called neurons, sometimes also referred to as units.
The units are arranged in layers, where each layer typically does something different to the
input. (The amount of layers used in the network is the depth, hence the name deep learn-
ing). The input units get activated from the environment, and then feed into the rest of the
network, where other units get fed weights from previous units. Learning happens through
finding weights that make the network perform the desired behaviour.

For the model to know if its modifications of the weights make it perform better or
worse, some type of evaluation needs to happen. A loss function is a way for the model to
find how far away from the desired outcome its prediction is, by calculating the difference.
The difference is used to readjust the weights again, in whatever direction is needed to get a
lower difference. An optimizer is responsible for this adjustment. This process is depicted
in Figure 2.2.

16

2.3 Deep Learning

Figure 2.2: Learning process

Optimizers
A model learns by minimizing the loss function. The job of the optimizer is to update the
parameters in the model to achieve a lower loss. The ideal is to find the global minima in the
loss function curve. The most common way to optimize neural networks is to use gradient
descent.

For each iteration in the training of a model, the loss is calculated. The gradient is cal-
culated to move a step in the direction where the gradient is steepest, to move further down
in the function, towards a minima, where the loss is smaller. The idea is to move more in the
direction of smaller loss values until hopefully a minimum loss is found. Gradient descent
is illustrated in Figure 2.3. There are a number of different techniques for doing gradient
descent.

Batch gradient descent calculates the gradient over the entire training set at each itera-
tion, which makes it quite slow for larger data. Stochastic gradient descent (SGD) picks a
random selection of samples from the training data at each iteration and calculates the gradi-

17

2. Technical background

ent using this, instead of the entire data set, making it significantly faster than batch gradient
descent. This comes at a cost, as SGD can have a hard time converging to the minima. So we
get a solution quickly, but it will not necessarily be optimal. Batch gradient descent will take
longer to converge but can result in a more optimal solution. Mini-batch gradient descent
calculates the gradient for a smaller subset of the data set, making it quicker than regular
batch gradient descent.

Figure 2.3: Gradient descent (Ghosh et al., 2020)

Momentum is a technique that can be used to avoid getting stuck in local minima, as it
is the global minima that we want to find. It speeds up the time it takes to converge and
the parameter update will depend on the current gradient as well as the previous parameter
update. This results in a straighter path towards the minima, as seen in Figure 2.4

Figure 2.4: Stochastic gradient descent with and without momen-
tum. Instead of oscillating across the slope, using momentum, a
straighter path will be taken towards the minima (Du, 2019).

Adam (adaptive moment estimation) is an optimization algorithm, that uses adaptive
learning rates to find individual learning rates for the model’s parameters. Similarly to SGD
with momentum, it also uses momentum. AdamW was developed to combat issues Adam
had with generalization by decoupling the weight decay from the gradient update, meaning
that changing the weight decay or changing the learning rate, does not affect the other.

18

2.3 Deep Learning

Parameters
Before initializing the training of a model, several parameters have to be set. The learning
rate decides how big the optimizing steps should be. If the learning rate is very high, the
adjustment of weights might not be enough to properly influence the system. On the other
hand, if the learning rate is too low, the system will learn much more slowly. An epoch decides
how many times the training data should pass through the model. This is essentially the same
as how many times the weights will be updated before the training is stopped unless it is
stopped early. The batch size decides how many training samples are used in each iteration.

Overfitting and Underfitting
A common problem in learning is the issue of overfitting and underfitting. Overfitting is when
the learning algorithm fits the training data too well by finding overly complex patterns that
works well with the training data. The patterns will be too specific and won’t work well with
other data (Jabbar & Khan, 2014).

The opposite of overfitting is underfitting. This happens when the model is unable to fit
the variability of the data and overgeneralizes. The result will be a model that is “too simple”
for what it is trying to describe (Jabbar & Khan, 2014).

Early stopping
There are different techniques to avoid over- and under-fitting, a common one being early
stopping (Jabbar & Khan, 2014). Early stopping means that the training of the model will be
stopped once the error score of the validation data starts to increase, as seen in Figure 2.5.

Figure 2.5: The dashed arrow shows at what time of training early
stopping should occur, i.e. when the validation error starts to in-
crease. (Jabbar & Khan, 2014)

Data
The data is split into three sets. These three are the training set, the validation set and the
test set. A common split of these will be 60% of the data for the training set, and then the

19

2. Technical background

remaining split evenly between the validation set and the test set.

The different data sets are used for different things. The training data is used to train
the network. The validation data is used to tune the parameters of the models during the
training, and the test set is used to evaluate the model after training has finished.

Architecture
There are two major groups in neural network architecture. The first one is a feed-forward
network, which has no closed loops, and sends values forward in the network through differ-
ent layers until it reaches the output layers. The second one is a feed-back network, also called
a recurrent neural network (RNN).The RNN is often used as a sequence model since it can take
into account word order and understand context (Chollet, 2021). One of the main objectives
of RNNs is to be able to keep a memory of sorts. This is done using recurrent cells, as seen in
Figure 2.6. A recurrent cell stores its previous value, though over time the information from
previous iterations is lost.

To prevent this issue, long short-term memory (LSTM) was introduced in the 90s (Hochre-
iter & Schmidhuber, 1997). The LSTM acts as a type of memory for the RNN so that it retains
information that might be useful in the future (LeCun et al., 2015). In Figure 2.6 we see that
the LSTM has a memory cell. This cell has the same properties as RNN’s recurrent cell, but
also stores the current and last values of the cells state. The cell also contains three gates;
input, output and forget. The gates control the flow of the information, how much of the
input is let in, how much of the output is sent to the next cell and what should be forgotten
(Leijnen & Veen, 2020).

Figure 2.6: RNN and LSTM neural networks (Leijnen & Veen, 2020)

2.3.2 Transformer
The transformer architecture was introduced by a team at Google in 2017 (Vaswani et al.,
2017) and has since then revolutionized the machine learning field. Up until now the use

20

2.4 Natural Language Processing

of attention mechanisms have been, in all of but a few cases, only used together with a re-
current neural network. The transformer architecture on the other hand completely avoids
recurrence and instead relies entirely on an attention mechanism that draws the global de-
pendencies between the input and the output.

The transformer is divided into two main components, the encoder and the decoder. This
is no different from other competitive neural sequence transduction models. The difference
is that the encoder maps an input sequence of symbol representations to a sequence of con-
tinuous representations. It then generates an output sequence of symbols, one element at a
time. The model is also auto-regressive which means that it consumes the previously gener-
ated symbols and uses them as additional input when generating the next. This is all done
entirely using self-attention. Both the encoder and decoder uses fully connected and stacked
self-attention layers.

One of the major benefits of the transformer is its multi-headed attention. Instead of
performing a single attention function with its keys, values and queries it calculates it mul-
tiple times with different sets of keys, values and queries and then takes the average of the
output. This allows it to run parallel computations which results in it requiring less time for
training (compared to other models using attention).

Attention
Vaswani et al. (2017) describes the attention mechanism as mapping a query and a set of
key-value pairs to an output where the query, keys, values, and output are all vectors. The
output is then computed as a weighted sum of the values. What this means is that it weighs
the relevance of the input elements and then takes them into consideration in the model’s
predictions. An example of this would be the sentence “The chicken crossed the road because
it felt it wanted to get to the other side”. A model would have some issues determining
whether “it” referred to the chicken or the road. This is where the attention mechanism
stands out by putting larger weights on the word “chicken” than the word “road”, helping in
the prediction process. The type of attention used in the transformer architecture is called
Scaled Dot-Product Attention and is calculated using the function below:

Attention(Q,K,V) = so f tmax(QKT
√

(dk))V

2.4 Natural Language Processing
In the domain of computer science, human languages are often referred to as natural lan-
guages. Natural languages are different from computer languages in several ways, the most
distinct being that computer languages were created rule-first while human, natural lan-
guages were created usage-first (Chollet, 2021).

The field of natural language processing, commonly shortened to NLP, has grown at a
rapid pace the last couple of decades together with the rise of the internet and access to in-
formation. A big usage area is information retrieval and information extraction (Nugues,

21

2. Technical background

2014).

Increasingly, machine learning has been used in NLP tasks, starting with decision trees in
the 1980s, going through statistical models, and around the mid 2010s, deep learning models
started being used, especially RNNs such as LSTM. Since then, Transformers have started to
replace RNNs (Chollet, 2021).

2.4.1 Named entity recognition
A type of task in NLP is named entity recognition. The idea is that given a sentence, we
want to locate and identify entities within the sentence and classify them into predefined
categories. For instance, if we have the sentence “Mikael is travelling to Rio de Janeiro”,
”Mikael” is labeled as “PERSON” and “Rio de Janeiro” is labeled “LOCATION”.

2.4.2 Tagging
Named entity recognition uses something called tagging. Tagging also requires that sentences
are chunked. This means that sentences are split into chunks of related words. If we use the
address “10. Juli Vej 12, 6070 Christiansfeld, Danmark” as an example, we get the following
chunks:

{10. Juli Ve j}, {12}, {6070}, {Christians f eld}, {Denmark}

The chunks are then tagged to extract some meaning. There are different tagging schemes,
including BIO and BIOES. The letters mean the following:

• B - beginning of a chunk

• I - inside of a chunk

• O - outside of all chunks, i.e. irrelevant in the context

• E - ending of a chunk

• S - single part of a chunk

If we apply the BIOES scheme to the chunks above we get:

{10. B − STREET, Juli I − STREET, Ve j E − STREET }, {12 S − NUMBER},
{6070 S − POSTCODE}, {Christians f eld S −CITY }, {Denmark S −COUNTRY }

2.4.3 Tokenization
Before any meaningful work can be done with the text, it needs to be tokenized. A tokenizer
essentially prepares the input for a model. Tokenization breaks down a text into smaller
elements called tokens. There are different methods for tokenizing, common methods be-
ing splitting on whitespace or splitting on whitespace and punctuation. Using the string
“Mælkevejen 69D, 1440 København, Danmark” as an example to demonstrate tokenizing

22

2.4 Natural Language Processing

methods. If we were to split only on whitespace we would get 5 tokens but if we were to use
whitespace and punctuation to tokenize the same sentence, we end up with 7 tokens. The
difference can be seen in Figure 2.7. These two methods are fairly straightforward. There are
other ways to tokenize text that are slightly more complicated, but more beneficial.

WordPiece tokenization is a technique initially developed to deal with Japanese and Ko-
rean voice recognition issues at Google (Schuster & Nakajima, 2012), which is now used in
BERT models. The first step is simple whitespace and punctuation tokenization, after which
WordPiece does subword tokenization. Subword tokenization can be thought of as a combi-
nation of word- and character-level tokenization, where rare words can be split into smaller
subwords. This way, the root of a word can be kept which can help understanding other
words using the same root. It is similar to Byte-Pair Encoding which is explained in Section
2.4.4. An example of WordPiece tokenization can be seen in Figure 2.7.

Figure 2.7: Different tokenization methods.

2.4.4 Embeddings
Splitting your input into separate tokens is just one step towards feeding the input into the
model but since the computer only understands numbers the generated tokens need to be
translated into numeric vectors that in turn can be fed into the model.

23

2. Technical background

One Hot Encoding

One hot encoding is the most basic way of encoding the tokens. An integer, i, is assigned to
each token. The token is then represented by a vector of size N where N equals the size of
the vocabulary with a 1 on the i:th position and zeroes on the rest. This makes them sparse,
hard-coded and high-dimensional which takes up a lot of space.

Word Embedding

To reduce the high-dimensionality of one hot encoding word embeddings were made. Word
embedding is a classic embedding type that is static and distinct word gets one pre-computed
embedding (vector). Most embeddings are of this type and include popular types such as
GloVe, Word2Vec and FastText. The attempt to encode the meaning of the words, to cap-
ture the semantic meaning of the word which in turn means that words with similar semantic
meanings will have similar vector representations. The vectors often have tens or hundreds
of dimensions which can be compared to the thousands or millions of dimensions that are
required for sparse word representations such as one-hot encoding.

Word embedding uses two different ways to learn the embedding representation: CBOW
and skip-gram. CBOW stands for continuous bag-of-words and uses a certain window size to
predict a word using its surrounding words. Skip-gram on the other hand works the entire
other way and tries to guess the context given a word.

A fascinating feature of word embeddings is that the semantic relationship between dif-
ferent words can be represented as a geometric relationship between the numeric vectors.
This means that you can do simple vector operations, such as addition and subtraction on
them.

King - man + woman = Queen

It is therefore possible to find vectors representing these operations. For example, the vector
that is used to go from "Paris" to "France" should be able to be used to go from "Stockholm"
to "Sweden".

Flairembeddings (Contextual String Embeddings)

Contextual String Embeddings passes sentences as sequences of characters into a character-
level language model. They are trained without any explicit notion of words and as a result
of that model words as sequences of characters. They are also contextualized by their sur-
rounding text which means that the same word will end up having different embeddings
depending on its context (Akbik et al., 2018). All this is done by utilising the hidden states
of a forward-backward recurrent neural network (RNN). This makes the model not only able
to understand word semantics like an ordinary word embedding but the actual contextual
semantics too. In FLAIR, these embeddings go under the category ’FlairEmbeddings’.

24

2.5 Spatial data

Byte-Pair Embedding
Byte Pair Encoding (BPE) is a variable-length encoding that views text as a sequence of sym-
bols and iteratively merges the most frequent symbol pair into a new symbol. E.g., encoding
an English text might consist of first merging the most frequent symbol pair {t, h} into a new
symbol {th}, then merging the pair {th, e} into the in the next iteration, and so on (Heinzer-
ling & Strube, 2018). BPE was applied to all Wikipedia articles that were large enough and
embeddings were pre-trained for the resulting BPE symbols using GloVe. What this means is
that the word embeddings are precomputed on the subword level and that they can embed
any word by splitting the words into subwords and then looking up their embeddings.

Heinzerling and Strube (Heinzerling & Strube, 2018) also found that while offering
nearly the same accuracy as word embeddings they only take up a fraction of the model size
which makes them great for small models.

Transformer Embedding
Transformer Embeddings is a type of embedding used in the FLAIR framework to use the
embedding layer of popular transformers-based models such as BERT, RoBERTa and XLM-
R. It allows you to pair the powerful transformer model embedding layer with a traditional
LSTM model. The transformer is a model type created by Google 2017 that is based solely
on attention mechanisms. Experiments on two machine translation tasks show these models
to be superior in quality while being more parallelizable and requiring significantly less time
to train (Vaswani et al., 2017) compared to current state-of-the-art models at that time.

2.5 Spatial data
Spatial data, or geospatial data, is a type of data that represents some geographical area or
location. Coordinates, for example, are a type of spatial data, and they can be represented in
different ways. Regular coordinates, latitude and longitude, are geographics. These are called
spherical coordinates. Working with spatial data, you can work with the geometry type or
geography type. Geometric data is a data type that is mapped on a two-dimensional flat
surface, while geographic data is mapped around a sphere. The geography data type supports
spatial features for so-called geodetic coordinates, meaning latitude/longitude. Depending
on your use case, you want to pick one of these. The geography type is recommended when
working with coordinates that cover larger areas (Hsu & Obe, 2021).

2.5.1 GIS
Geographic Information Systems, shortened as GIS, does not have a definite definition.
Chang (2008) defines it as "a computer system for capturing, storing, querying, analyzing,
and displaying geospatial data.". GIS can make working with data from different sources
and locations much easier. Using GIS, geographic features can easily be stored in a type of

25

2. Technical background

database, specially created for this type of data, which allows for spatial functions to be used
on the data.

2.5.2 Spatial databases
A spatial database gives you the possibility to do spatial analysis on top of a regular relational
database. Just like regular database systems, indexing can be used to speed up operations, in
this case, spatial indexing. Spatial indexes speed up the use of a spatial database, by organizing
the data into an efficiently traversable structure instead of being required to do a sequential
scan of the database every time a query is done.

Some general requirements for a spatial database system are that it is a database system,
it offers the use of spatial data types and it offers the use of spatial indexing (Güting, 1994).
A spatial database system is essentially a regular database system with added-on capabili-
ties for spatial types, spatial functions and spatial indexes. This can be done either as some
standalone solution or as an extension of existing database systems, such as PostGIS for Post-
gresql, Spatialite for SQLite.

Another important attribute of spatial databases is the support for spatial functions or
spatial queries. These are queries that examine the relationship between spatial data, for
example, the distance between two points.

2.6 Models
In this section we will present background of some of the models used in this thesis.

2.6.1 BERT
BERT (Bidirectional Encoder Representations from Transformers) is a language representation
model developed by Devlin et al. (2019) in 2018 and based on the original Transformer im-
plementation by Vaswani et al. It is designed to pre-train deep bidirectional representations
from unlabeled text and does this by using joint conditions on both the left and the right
context in all layers as opposed to previous models that could only look from left-to-right or
vice-versa. It uses two different unsupervised pre-training methods. The first one is known
as Masked Language Modelling, often referred to as the Cloze-task (Taylor, 1953) where you
take a percentage of the input words at random and mask them with a special token. You
then try to predict the word using only the surrounding words in the input. In the original
paper, they masked 15% of the data.

The second pre-training method is known as Next Sentence Prediction (NSP) and is used
to give the model some understanding of sentence relationships. It takes two sentences, A
and B to try to decide whether the sentence following A is B or if its a random sentence from
the corpus. BERT uses the BooksCorpus and the English Wikipedia containing 800 and 2500
million words respectively for its pre-training.

26

2.7 Libraries

2.6.2 Danish-Bert
The Danish BERT model is basically the normal BERT-model pre-trained on a Danish corpus
consisting of data from the Danish Wikipedia, Common Crawl, debate forums and the Dan-
ish OpenSubtitles giving it close to 93 million sentences. It uses the original BERT model to
create an ecosystem around standardized models instead of newer models (such as AlBERT
and RoBERTa) that could have given minor performance improvements.

2.6.3 Libpostal
Libpostal is a C library for parsing and normalizing street addresses around the world using
statistical NLP and open data. It is an open-source project implemented using Conditional
Random Field, commonly known as CRF. The CRF model is trained using an averaged per-
ceptron. The big difference to other publicly available models at the time of creation was
its ability to train without storing the entire training set in memory which was common for
CRF models in 2017 and put a hard limit on the amount of data that could be used. It claims
an accuracy of 99.45% but since the evaluation data is not publicly available the claim cannot
be verified.

As Libpostal uses its own normalization process it currently supports up to 60 languages
and can parse addresses in more than 100 countries.

2.7 Libraries
In this section we present the libraries and frameworks used for the models used in the thesis.

2.7.1 PyTorch
With the increased interest in machine learning, there has been an explosion of different new
machine learning tools. Many of them, such as TensorFlow, construct a static dataflow graph
to represent the computation and which you then can apply to batches of data. This provides
visibility into the computation ahead of time albeit comes at the cost of ease of use and de-
bugging. Prior work has also seen the value in dynamic eager execution but has implemented
it either at the cost of performance or its applicability.

PyTorch is a tool introduced in 2019 by a team at Facebook AI Research lab (FAIR).
Its success stems from utilising old ideas to create a design that balances speed and ease of
use (Paszke et al., 2019). It strives to make writing and using models and data loaders as
easy as possible and to let the complexity of machine learning be handled internally by the
tool while keeping it accessible through intuitive APIs. It provides tools that allow its users
to manually control the execution of their code and thus allowing them to improve their
performance themselves.

27

https://huggingface.co/Maltehb/danish-bert-botxo

2. Technical background

2.7.2 FLAIR
FLAIR is a powerful NLP framework developed by Zalando Research (Akbik et al., 2019).
It is built on PyTorch and allows you to apply state-of-the-art NLP models such as named
entity recognition (NER) and part-of-speech tagging (PoS). The core idea of the framework
is to present a simple and unified interface for very different embeddings and thus hide all
embedding-specific engineering complexity. This allows users to mix and match various em-
beddings with little effort. A recommended setup is to stack WordEmbeddings with FlairEm-
beddings (a contextualized embedding) for state-of-the-art performance. Another thing with
FLAIR is how it addresses the learning rate. For each epoch, it evaluates the model and if it
does not see an increase for four consecutive epochs it halves the learning rate. It then stops
when it considers the learning rate to be too low.

2.7.3 Transformers
With the success of the transformer (Vaswani et al., 2017) structure and model pre-training
such as the BERT model came some practical challenges that needed to be addressed in order
for these models to be widely utilized. A system that allowed you to train, analyze, scale and
augment models easily was required.

Transformers is a library created by a team at Hugging Face, an AI community, dedicated to
supporting Transformer-based architectures and facilitating the distribution of pre-trained
models and data sets. It is maintained and updated by a team of engineers and researchers
backed by a strong community. It mimics the standard NLP pipeline, all the way from pro-
cessing data to making predictions. Every model in the library consists of 3 building blocks:
a tokenizer, the transformer and the head that makes the predictions. The library is available
both in PyTorch and TensorFlow. It can be transferred between these frameworks seamlessly.

2.8 Evaluation Metrics
The task in this thesis is a type of classification task. In a classification task, a model is meant
to infer which category an input should belong to. For example, if we have pictures of cats
and dogs, we want to figure out which of two classes, cats or dags, each picture belongs to.

Depending on the type of machine learning model used, certain methods of evaluation
will be preferred. For a classification task, we will generally use performance metrics that are
based on the following four outcomes:

• True positive (TP) means an example is correctly labeled as positive.

• False positive (FP) means an example is incorrectly labeled as positive.

• True negative (TN) means an example is correctly labeled as negative.

• False negative (FN) means an example is incorrectly labeled as negative.

28

2.8 Evaluation Metrics

Using these four classifications we can get a number of metrics.

Figure 2.8: Visual explanation of TP, FP, TN, FN (Walber, 2014)

Accuracy

Accuracy =
TP + TN

TP + TN + FP + FN

Accuracy does not always give a fair view of the performance, as it can be sensitive to
imbalanced data, which is why some other metrics are often used (Goodfellow et al., 2016)
(Tharwat, 2020).

Precision

Precision =
TP

TP + FP

Precision, also known as positive predictive value corresponds to the fraction of correctly
classified positive samples out of all positively classified samples.

Recall

Recall =
TP

TP + FN

29

2. Technical background

Also known as true positive rate, hit rate, sensitivity. This corresponds to the fraction of
correctly classified positive samples out of the total number of positive samples in the set.

F1-score

F1 − score =
2 ∗ TP

2 ∗ TP + FP + FN

F-measure, commonly called F1-score, is the harmonic mean of precision and recall.

Multi-classification
These types of metrics have been explained in the context of binary classification, but they
can easily be extended to multi-classification tasks. In that case, a prediction will be a true
positive if it is classified as the correct class, or a false negative if it is classified as anything
else.

Averages
Evaluating a classifier on all the classes is important and gives a good idea of what classes
the classifier has an easier or harder time with. To get a sense of how the classifier performs
overall, an average can be calculated. There are a few different ways to do this, two of which
will be presented here.

Micro average is an average over all samples, i.e equal weight will be given to each sample.
Doing this can skew the result towards the larger classes (Manning et al., 2010).

An alternative is to use Macro average which is an average over all the classes, i.e equal
weight will be given to each class. Calculating the macro average can give a better sense of
the result when some of the classes are smaller (Manning et al., 2010). When presenting our
results, we will use a macro average of the f1-score, for which the formula is:

Macro avg. F1 − score =
1
N

N∑
i=1

F1 − scorei,

where N is the number of classes.

Confusion matrix
A good way to visualize the predictive performance of a multi-class model is to create a
confusion matrix. The matrix shows the relation between the predicted classes and true
classes, where the ideal is a perfect diagonal score, meaning that every sample was correctly

30

2.8 Evaluation Metrics

classified. This is a useful tool to see what classes often get mixed up, which can indicate
how to make improvements to the model. In Figure 2.9 we see an example of a multi-class
confusion matrix. In this case, six samples of each class were predicted. We can see that of
the six "STREET" samples, five were classified correctly, and one was incorrectly classified as
"CITY". Similarly, of the six "CITY" samples, one was incorrectly classified as "STREET". All
"POSTCODE" samples were correctly classified. When dealing with a big amount of samples,
it can be a good idea to normalize the matrix to make sense of the numbers.

Figure 2.9: Normalized confusion matrix with three classes.

31

2. Technical background

32

Chapter 3

Data

In this chapter, we will introduce the data used in our thesis.

3.1 Data set
As earlier mentioned the data set used in this thesis consists of Danish addresses. As the
client was unable to share their data we had to acquire it elsewhere. It was acquired from
the Danish Data Authority (Dataforsyningen) using their web API. It consists of 3,833,076
entries, covering all Danish addresses. This leaves us with the following fields used in our
thesis:

• Full address

• Street name

• House number

• Floor

• Unit

• Supplementary city name

• Postcode

• Postal district

• Coordinates (Longitude/Latitude)

33

3. Data

3.2 Danish addresses
The Danish address has four required fields (marked in bold above) but can, as seen in the
previous section, include 7 fields. This makes the Danish addresses vary in difficulty ranging
from very easy to parse up to the example further down with equal fields. An example con-
taining all fields can be seen below:

Kronprinsessegade 7 st. th, 1306 København K

3.2.1 Level and Unit
Levels in Danish buildings are written using numbers except the ground floor and basement.
In addition, the unit is often designated by its location and not with a number but can be
done with both or a combination of the two.

Abbreviation Danish English
st. Stuen Ground floor
kl. Kaelder The basement
tv Til venstre To the left
th Til hoejre To the right
mf Midtfor In the center of the floor

3.2.2 Postal district and supplementary city
Most fields are common around the world but Danish addresses have two fields that are a bit
uncommon: postal district and supplementary city name.

A postal district is usually associated with a city or municipality. In Denmark, this is not
always the case. Smaller areas may share the same postal district while larger cities, such as
Copenhagen, are divided into several (København S, V, N, K and Ø).

The supplementary city name, in Danish known as supplerende bynavn, is an supplementary
city name linked to a group of addresses when it is appropriate to specify their location
within the municipality or postal district. Approximately 30% of Danish addresses are asso-
ciated with a supplerende bynavn. Any local place name can be used as a supplementary city
name, e.g. the name of a district or a larger building in the area. In other cases, the name of
a land area or e.g. an island can be used. In most cases, however, it is the name of the town
or village which means that sometimes the supplementary city name and the postal district
can be the same. In our complete data set there are 36827 such entries which correspond to
approximately 1% of the data. An example of this can be seen below:

Hyldeblomsthaven 18, Havdrup, 4622 Havdrup

34

3.2 Danish addresses

3.2.3 Test set
Due to limitations in our hardware, we chose to run the tests with a subset of the full test set
instead of using our full test set containing more than 500,000 entries. The division of data
can be seen in Figure 3.1. The division of data was originally done geographically on the full
data set. We used the regions of Aalborg, Aarhus and Odense for our validation data and the
region of Copenhagen as our test data. This gave us a rough split of 70-15-15. When creating
our smaller subset we took data from these larger sets but with a 75-12.5-12.5 split. It gave us
a somewhat fairly represented data set which was later oversampled, see Chapter 5.

Figure 3.1: Division of data between test-, train- and validation data.

35

3. Data

36

Chapter 4

Methodology

In this section, we will give an overview of the methodology used in this thesis, along with
our approach to answer the research questions. We will also describe our experimental setup
as well as the technology and libraries used in the implementation.

4.1 Research Approach
To answer the research questions, an experimental approach was taken. The experiment
design looked something like Figure 4.1, where the last four steps were performed for each
model.

The approach for RQ1 was to train and evaluate a couple of deep learning models with
different architectures and then directly compare their F1-scores. For this part we also did
a number of experiments with regard to hyperparameters, to see how these would affect the
result. These tests are presented in Section 4.4.4. The goal for this question is to find the
combination of hyperparameters that returns the highest score for the non-context model.

RQ2 required us to evaluate libpostal, one of our baselines. While we could not train the
model from libpostal ourselves, we ran the same test set that we used fort the previous models
through the models prediction. For this question, the goal is to beat the libpostal baseline.
A good result for this question is simply one where we score higher than the baseline, when
evaluation our model. The evaluation for RQ2 had to be done differently than for RQ1,
which is explained later in Section 4.2.

For RQ3, we had to find a way to inject context into the model. We have previously
defined context as nearby addresses. For each address in the data set, we queried the spatial
database to find its closest neighbouring address. This was used as context. This will be
further expanded upon in Section 4.4.5. For this question, the goal is to see an improvement
from our models that did not use context. A good result would then be one where the context
model scores higher than the non-context models.

37

4. Methodology

Figure 4.1: The pipeline of our project

4.1.1 Data analysis
One of the primary goals was to acquire and understand the data, as the structure of the data
played a large role in the project. Naturally, this was the next step to take after setting the
goals for the thesis. This was done by reading theory, contacting Danish authorities with
questions about the address format and looking at the data using exploratory analysis. We
then divided the data into geographical regions, see Section 3.2.3.

4.1.2 Pre-processing
The only pre-processing done was the tokenization. FLAIR uses segtok to tokenize on whites-
paces for its models and for our BERT-models using transformers we used a BERT tokenizer
that is based on Wordpiece. The main difference between these two in this use-case is that
the dot (’.’) belonging to the level-tag becomes an individual token with BERT as opposed to
belonging to the level-token. This will be discussed further down.

4.1.3 Post-processing
After training the model and before evaluating it, we need to do some post-processing. We
extracted all our fields from the database and created tuples such as (’Street’, ’Danskevej’).
We then fed the entire address into our machine and the predictions were presented as tuples
such as the ones in our comparative data. The final step was to go through the comparative
list that we knew were true and make sure that every token existed in the right place in our
prediction.

38

4.2 Evaluation

4.2 Evaluation
In section we will describe how the evaluation was performed for the different experiments,
and adaptations that had to be taken to account for the different frameworks. We will also
define what we consider to be a good result.

4.2.1 Full comparison
As Libpostal does not produce the same labels as the other models we had to compare it
differently as no tool could produce the normal measurements (such as f1-score) easily. We,
therefore, used the following measurements:

• Full Parse Accuracy: We counted the number of entries that had every label in them
correctly and divided it by the total amount of entries.

• Accuracy: The normal measurement. We counted the number of labels that were cor-
rect and divided by the total amount. We also did this for every label type providing
us with the accuracy of each label.

This was only used for the comparison between all models in Table 5.1. An example of how
this looks can be seen below in Figure 4.2:

Figure 4.2: The way accuracy and FPA is calculated

4.2.2 FLAIR
After testing the model, the FLAIR framework used for the no context models, return a
classification report containing performance metrics such as accuracy, f1-score and macro
average by default. This can also be called using the method model.evaluation which lets you
easily evaluate different test sets. Using the information returned after testing, confusion
matrices were constructed to get a better understanding regarding the misclassification of
classes that were returning lower scores. These confusion matrices can be seen in Figures 4.3,
4.4, and 4.5.

39

4. Methodology

Figure 4.3: Confusion matrix depicting the test results with Flairem-
beddings

Figure 4.4: Confusion matrix depicting the test results with
BPEemb.

40

4.3 Validity threats

Figure 4.5: Confusion matrix depicting the test results with
Transformer-embedding BERT.

4.2.3 Transformer
For the Transformer models, evaluation was done using the Python framework seqeval (Nakayama,
2018). Seqeval is used for the evaluation of sequence labeling and returns a classification re-
port like the one returned by FLAIR. We confirmed that seqeval produces the same result as
the evaluation from FLAIR so that they can be compared on equal terms.

4.2.4 Libpostal
As Libpostal does not use entirely the same labels as we do when using our models, we mapped
their predicted labels to match ours, see Table 4.1.

4.3 Validity threats
As mentioned previously in Section 4.2, Libpostal does not return the same type of labels
as our other models. We tried to fix this by introducing accuracy and full parse accuracy as
metrics. It would have been preferable to use F1-score for the libpostal model as it usually a
preferable metric to accuracy in NLP tasks.

Throughout the process of the thesis we were given a lot of suggestions and guidance
from our different supervisors, all more experienced than us in the subject of our thesis. It

41

4. Methodology

is not unthinkable that had we not had our supervisors, some things might have been done
differently, such as the choice of models and what libraries to use.

One type of threat is how generalizable the experiment is. As we will only be using Danish
addresses in this thesis, an external threat that immediately stands out is how generalizble
the results can be considered to be. While it might be applicable to some countries with
similar address structures, e.g. Sweden, this might not be the case where a different address
structure exists, e.g. Nicaragua where street names in the traditional sense do not exist but
instead are a sort of description relative to a central point (Rhind, 2020).

4.4 Models
In this section we will present the different models trained and evaluated in this thesis, along
with the hyperparameter tests performed for the model without context.

4.4.1 Libpostal baseline
We used Libpostal for our baseline. Libpostal uses a special metric called full parse accuracy
which counts a prediction to be correct only if all individual fields have been correctly as-
signed. In addition to normal accuracy we will therefore present full parse accuracy for the
comparative results.

Table 4.1: Labels of Libpostal compared to the ones used in this the-
sis.

Libpostal Ours
Road Street
House_number Number
Level Level
Unit Unit
N/A Supplementary city
Postcode Postcode
City Postal district

4.4.2 BERT model without context
To make a full comparison between context and no context we also made a baseline using
BERT with PyTorch without context. The BERT model that we used was a Danish model
called Danish-Bert-BotxoWe used the default parameters which were the following:

Loss function Batchsize Finetuning
BERT 32 Yes

For the BERT model default settings were used. The default optimizer used for BERT is
AdamW.

42

4.4 Models

4.4.3 FLAIR model without context
The FLAIR framework is easy to use for sequence labeling tasks. This made it a perfect start-
ing point for us. By just changing one line of code we could change what embedding to use
which completely changed the model. The data was entered from a simple text file with an
easy-to-understand structure as can be seen in Table 4.2. We used the default1 parameters
given by FLAIR, with the optimizer being SGD, along with BPE embedding.

Table 4.2: An example of the data used in training and evaluation
with randomized order and fields. "VEJBY" is equivalent to supple-
mentary city.

Token Label
Hf. B-VEJBY
Venners I-VEJBY
LYST E-VEJBY
Bøllemosegårdsvej S-STREET
2100 S-POSTCODE

4.4.4 Tests
We used default parameters when training but did a number of tests to see how changing the
hyperparameters affected the result, listed below. All tests were done using an LSTM-model
trained through FLAIR with a Byte-Pair Embedding except for the test where we compared
different embeddings to each other.

1. Embeddings

Every embedding has its advantages and for us to figure out what would suit the project
best we would have to try different ones. Since FLAIR allows you to change the em-
bedding used (or even combine multiple) with just one line testing multiple was easy.
We decided to start with the recommended approach by FLAIR: stacking backwards
and forwards flair embeddings with GloVe word embeddings. We then removed the
GloVe embedding and later changed the flair embeddings for BPE and then later trans-
formerembedding (using Danish-BERT-Botxo). This means that a comparison was
made in FLAIR between the following three embeddings:

• Transformerembedding using Maltehb/Danish-bert-botxo

• Flairembeddings, stacked multi-language backwards and forwards

• Byte-Pair Embedding (BPEmb)

1https://github.com/flairNLP/flair/blob/master/flair/models/sequence_tagger_model.py#L27

43

4. Methodology

2. Learning rate

Learning rate is something that greatly affects the accuracy of the model. When train-
ing an LSTM model using FLAIR the team behind FLAIR suggested using a learning
rate of 0.1 however since LSTM models have a wide range of good learning rates we
wanted to see how it affected our model. With the transformer model, it was more
straightforward. Generally, a low learning rate is preferred, and when creating BERT
Devlin et al. (2019) used a learning rate of 2e−5 which is the same learning rate recom-
mended with the transformers library.

The tests were performed on the LSTM-model created with FLAIR using BPEmp.

3. Incompletion & disarrangement

Inputting the full address in correct order results in a very easy problem that could be
resolved without machine learning by splitting on ’,’ or looking for certain keywords.
But when someone looks for an address they rarely enter the full address and sometimes
they even enter it in the wrong order. Both Li et al. (2014) and Sharma et al. (2018)
suggest that the order of the data matters and it can be accounted for by either training
the model on randomized data or by reordering it before feeding it into the machine. In
this paper, we decided to train the model on randomized data and see how it affects the
results. In addition to swapping the order of the fields, we also introduced randomness
to whether certain fields would appear or not. Street, postcode and postal district
all have a 50% chance of appearing in the entry regardless of the other ones, creating
blanks.

We do not address blank addresses as it is unlikely that anyone would search for a blank
address.

4. Size of training set

With many research-orientated machine learning programs, it is assumed that the en-
tire data set fits in your RAM. This essentially means that without time-consuming
optimizations that performance scales with your hardware (in addition to speed). As
we were very restricted in our hardware we trained the model on a smaller set. To see
how the size of the training data set affects the accuracy we did run one test comparing
different training sizes presented in Figure 5.2.

5. Oversampling

As seen in our exploratory analysis of the data, the supplementary city name, appears
in few entries. In our initial test set, there were only 24 entries out of 5000 containing
this field and our training set contained 9139 out of 30 000. We, therefore, decided to
oversample so that 50% of the entries in training and test contained this field to see
how it affected the accuracy of the model on this field.

44

4.5 Implementation

As FLAIR was developed to be used for quite specific tasks, we were unable to find an
easy way to modify the code to use context. Due to the complexity, we deemed that it
would take too long to modify it, which meant that we had to switch framework.

4.4.5 BERT model with context
We chose to work with transformer as it is considered to be state of the art (Vaswani et al.,
2017), despite being developed five years ago, and it was also suggested from multiple parties
that we used it. The most common transformer is BERT and we chose to use the basic version
that had been trained on Danish data instead of any of the other versions available such as
RoBERTa due to BERT being the most common.

The transformer was implemented using one of the tutorials of the transformers library
called run_ner_no_trainer.py. This tutorial was chosen as it provided every part of the process
exposed and modifiable. This allowed us to easily understand how you used PyTorch to train
a model even though we had never used it before.

To be able to use our own data, we needed to modify it to work together with the trans-
formers data loader. This was done by copying and modifying the data loading script of an-
other data set available through Hugging Face, allowing us to use the same format on our data
files as with FLAIR.

The next step was to add context. We already knew that the BERT tokenizer could take
two sentences, sentence A and sentence B, as input so by adding our context to our data file
with O-labels (outside) we could later separate it from the actual data and feed both sentences
into the tokenizer. One issue with this was that almost every label came out with an O-label.
By modifying the loss function, we managed to remove every token with an O-label so that
it was ignored by the loss function, which rectified this issue.

4.5 Implementation
In this Section, we present some of the technological features we used during the thesis along
with some parameters.

4.5.1 Environment
The department of computer science has supplied us with a lab computer with a lot of RAM
and a high-end CPU to run the training of the models on but since a high-end GPU decreases
the run time enormously and none was available in the department we decided to run it on
one of our private machines. This caused some problems when trying to run the whole set
due to lack of RAM however downsampling the data set removed this issue. Hardware and
software versions used can be seen in Table 4.3 and Table 4.4.

45

4. Methodology

Table 4.3: Hardware used in this project.

CPU GPU RAM
AMD Ryzen 5600x Geforce GTX 1080 Ti 32GB DDR4 3600MHz

Table 4.4: Software versions used in the paper.

Version
FLAIR 0.10
Transformers 4.15.0
Libpostal 1.1
Ubuntu 20.04 LTS
Python 3.8.10

4.5.2 Postgres/PostGis
We decided to use PostgreSQL 12.9 along with the extension PostGIS 3.0 after an unsuc-
cessful attempt to use Spatialite for SQLite. We used the geography data type. PostgreSQL
allows for various spatial indexing methods, for example, Generalized Search Tree (GiST)
which is the most commonly used method and is what we ended up using.

Our main table named "addresses" consists of 3 832 933 rows with 11 columns. Three
of the columns (level, unit, supp. city) may have a null value. All fields except for the geog
field were entered as-is from the data. The "geog" value was calculated from the latitude and
longitude coordinates of the address, using the built-in geography type constructor in Post-
greSQL. An example can be seen in Table 4.5.

After determining how to split the data into our training, validation and test sets, we
created three new tables in our database depending on the municipality.

Table 4.5: Example entry in our database.

address Mælkevejen 69D, 1440 København K
street Mælkevejen
number 69D
level null
unit null
supp. city null
postcode 1440
postal district København K
municipality København
geog 0101000020E61000007E4EC5B6DA332940AE0E3E9C59D64B40

46

4.5 Implementation

4.5.3 Overview of data sets used in the tests
• Normal: The normal data set consisting of 30 000 entries for training, 5000 for testing

and 5000 for validation.

• Randomized: The normal set that has been randomized as described in Section 4.4.4.

• Oversampled: A data set that is almost the same as the randomized one however we
have oversampled as described in Section 4.4.4.

47

4. Methodology

48

Chapter 5

Results

5.1 Comparison all models
In Table 5.1 below we present a comparison of the accuracy of the models presented in this
paper. Total label count means the number of entries where it has all labels correctly labeled.
We can see that Libpostal is easily beaten by our BPEmb model however that our final model,
BERT with context, falls a bit short being held back by its accuracy on levels.

Table 5.1: Comparison of all models.

Label Libpostal BPEmb BERT BERT with context
Street 71.46% 76.02% 93.95% 95.64%

Number 78.74% 98.85% 83.88% 93.52%
Level 1.38% 57.97% 1.85% 2.14%
Unit 0.33% 65.58% 83.56% 88.76%

Supplementary city 0.00% 55.52% 34.78% 40.58%
Postcode 62.06% 99.34% 84.04% 90.28%

Postal district 67.54% 43.91% 85.71% 99.86%
Accuracy 59.52% 71.86% 75.95% 83.23%

Full Parse Accuracy 16.12% 37.88% 11.68% 15.28%

5.2 Baselines

5.2.1 Libpostal
As we can see in Table 5.2, Libpostal performs worse than expected on normal data and with
a terrible full-parse accuracy when we introduce disarrangement and incompletion.

49

5. Results

Table 5.2: Libpostal baseline. Random means that the data it has
been tested on has been randomized as per section 4.4.4

.
Testdata Full Parse Accuracy Accuracy
Normal 56.91% 87.23%
Random 16.12% 59.52%

5.2.2 BERT model without context
Before modifying the transformer to include context we had to establish a baseline using the
transformers library. The results can be seen in Table 5.3.

Table 5.3: BERT baseline with randomized data.

Label Precision Recall f1-score

Level 0.9000 0.0124 0.0245
Number 0.9626 0.9690 0.9658
Postcode 0.9994 0.9994 0.9994

Postal district 0.9473 0.7523 0.8386
Street 0.8728 0.9368 0.9037
Unit 0.3351 0.8947 0.4877

Supplementary city 0.5462 0.6005 0.5721

micro avg 0.8564 0.8535 0.8550
macro avg 0.7948 0.7379 0.6845

weighted avg 0.8867 0.6005 0.5720

F1 Score 0.8524
Accuracy Score 0.8413
Precision Score 0.8644
Recall Score 0.8528

5.3 Hyperparameter tests
In the first experiment, we experimented with different embeddings for FLAIR to evaluate
which one would best suit our needs. We also tested how different learning rates affected the
result and oversampling of the supplementary city name as it was underrepresented compared
to other labels.

5.3.1 Embedding comparison
As we can see in Table 5.4 BPEmb wins in every category except for accuracy which instead is
won by the flairembedding. BPEmb claims a much better prediction speed and size compared
to the other embeddings while also claiming a better f1-score which is impressive.

50

5.3 Hyperparameter tests

Table 5.4: Comparison done with 0.1 LR, 20 epochs, randomized
data.

Embedding Predictions/s Size F1-score (macro) Time to train Accuracy
Transformer(BERT) 137 453.4 MB 0.8253 18 min 81.05%

BPEmb 445 28 MB 0.8601 8 min 71.86%
FlairEmbeddings 47 448 MB 0.8588 150 min 81.97%

5.3.2 Learning Rate comparison

Figure 5.1 shows the results from the comparison of different learning rates when training
a model in FLAIR using Byte-Pair embedding. We can see that a higher learning rate of
0.1 performs best and requires the least amount of epochs while the lowest learning rate of
0.0001 does not get close even though it runs for 200 epochs.

Figure 5.1: Test with different learning rates

5.3.3 Effects of incompletion & disarrangement

Using incompletion and disarrangement to create a random data set we trained models on
both random and normal data and tested both on random and normal data. The results can
be found in Table 5.5. We can see that a model trained on random data performed better on
the random data than the model that was only trained on normal data while still not losing
too much performance on normal data.

51

5. Results

Table 5.5: Testing normal and randomized model on randomized
data. Test on normal data for reference.

Trained on F1-score (macro) Test-set
Randomized 0.9229 Normal
Normal 0.9720 Normal
Randomized 0.8542 Randomized
Normal 0.5219 Randomized

5.3.4 Size of training set
As we can see Figure 5.2 a model performs better the more data is has been trained on. Train-
ing was done with eight different training set sizes, with the largest containing 100 000 en-
tries.

Figure 5.2: F1-score depending on size of training set.

5.3.5 Oversampling
In Table 5.6 we present these results. We can see that the model trained on oversampled data
actually performs worse than the one that was trained on normal data.

Table 5.6: Comparison done between models trained on normal and
oversampled amounts of supplementary city name entries, oversam-
pled from 0.7% to 50%. Tests were done both on normal and over-
sampled test data.

Training data F1-score (macro) Test data F1-score (Supplementary city name)
Normal 0.8542 Normal 0.3129
Oversampled 0.7583 Normal 0.0478

52

5.4 BERT model with context

5.4 BERT model with context

In this section, we present the results of running BERT with context. We ran it both on non-
randomized 5.7 and randomized data 5.8. We see here that training on a random data set
only offers a slight increase in performance compared to a normal one. While resulting in a
good overall performance the label-wise performance for level is very low.

Table 5.7: Non-randomized data with context.

Label Precision Recall f1-score

Level 1.0000 0.0124 0.2449
Number 0.9779 0.9908 0.9843
Postcode 1.0000 1.0000 1.0000

Postal district 0.9587 0.9614 0.9600
Street 0.9692 0.9894 0.9792
Unit 0.3221 0.9424 0.4801

Supplementary city 0.8203 0.6910 0.7501

micro avg 0.9144 0.9238 0.9191
macro avg 0.8640 0.7982 0.7398

weighted avg 0.9441 0.9238 0.9148

F1 Score 0.9237
Accuracy Score 0.9146
Precision Score 0.9101
Recall Score 0.9212

53

5. Results

Table 5.8: Randomized data with context.

Label Precision Recall f1-score

Level 0.3333 0.0069 0.0135
Number 0.9441 0.9872 0.9652
Postcode 0.9968 0.9974 0.9971

Postal district 0.9756 0.9776 0.9766
Street 0.9587 0.9834 0.9709
Unit 0.3499 0.8898 0.50233

Supplementary city 0.8548 0.7354 0.7906

micro avg 0.9182 0.9278 0.9230
macro avg 0.7733 0.7968 0.7452

weighted avg 0.9217 0.9278 0.9164

F1 Score 0.9216
Accuracy Score 0.9238
Precision Score 0.9249
Recall Score 0.9323

54

Chapter 6

Discussion

6.1 Comparison with baselines

6.1.1 Libpostal
Our first objective of this thesis was to see if we could beat the score of Libpostal. As can be
seen in Table 5.2 Libpostal run on randomized data resulted in an accuracy of 59.52% which
was easily beaten by all of our models trained in FLAIR as can be seen in Table 5.4. It also
had a full-parse accuracy of 16.12% which is far from the claimed 99.45%. What is clear is that
Libpostal could easily be beaten by a model in an area where the model is only trained on
that area however as Libpostal is claimed on data from all over the world it does not entirely
make it a fair comparison.

6.1.2 BERT model without context
Our second baseline to beat was the transformer-based model that was not trained using
geographical context. The result from the baseline can be seen in Table 5.3. We ran the
context-based model both on randomized and standard data and the results can be seen in
Table 5.7 and 5.8. As we can see the model using context shows a slight improvement over
the baseline with a macro average f1-score of 0.75 compared to the baseline of 0.68. What
is more interesting is how the supplementary city name has improved. In the baseline, we
had a poor result of 0.57 whereas in our context-based model we got a macro average f1-score
of 0.79 which gives us an impressive increase of 0.22. One may be alarmed by the very low
results for level and unit but this has to do with the transformers tokenizer which we will go
more into in Section 6.8.

55

6. Discussion

6.2 Embedding comparison
One of the first things we did in the first part of the project was to compare how different
embeddings performed. As can be seen in Table 5.4, the Byte-Pair embedding wins in almost
every category. The results were also presented as confusion matrices in the following Figures:
4.4, 4.5 and 4.3.

6.3 Learning rate
As seen in Figure 5.1 the smaller learning rates perform worse than the larger and take much
longer to reach their peak performance. Since FLAIR automatically lowers the learning rate
when there has not been any improvement for 5 epochs it is always better to start with a
larger learning rate. It also automatically stops training when the learning rate is too low
which is why when starting with a higher learning rate it does not run for as many epochs.

6.4 Incompletion disarrangement
Just as expected and in agreement with Li et al. (2014) and Sharma et al. (2018) we could see
in Table 5.5 that if you did not take into account the random addresses your performance
would suffer. At the cost of slightly lowered accuracy on the normal data set we had a huge
increase of 0.33 on the random data set. A comparison that could have been made would be
to take the approach of Sharma et al. and instead of training the model on random data we’d
instead re-arrange the data to the correct order. This feels like it would be a more difficult
problem than just training it on random order and would probably not yield a better result.

6.5 Size of training set
As expected and as can be seen in Figure 5.2 more data yields higher accuracy which is not
very surprising. All our tests ran on 30 000 entries which corresponds to 1% of the data due
to hardware limitations however if we were to deploy this solution it would be beneficial to
train on a larger data set.

6.6 Oversampling
In Table 5.6 we presented the results from tests where we oversampled one of our labels that
were underrepresented in the data set. While we see a big improvement using an oversampled
model on a similarly oversampled test data set, we see a fall when using the oversampled
model on the normal test data set. Since the whole point of oversampling is to increase
performance on the normal data set we consider this test a failure. It comes as a surprise
since it has already been shown in papers that oversampling improves the results and Viloria
et al. (2020) claimed a remarkable improvement in their results by oversampling. A possible

56

6.7 Postal district vs supplementary city

explanation for the poor results might be the very low occurrence of the oversampled field
in our normal test set.

6.7 Postal district vs supplementary city
One of the main issues we found during our exploratory data analysis was the similarity
between the two fields ’postal district’ and ’supplementary city’. In some instances, they were
even the same and when they were not one often included parts of the other. We contacted the
Danish data authorities to see if there was any logic behind these fields and they informed us
that there was none. This makes it very difficult for a machine learning model to understand
as there is essentially nothing to learn and is why the supplementary city label has a much
lower f1-score than the postal district which can be seen in any of our tests. We successfully
increased the accuracy by oversampling which is shown in Table 5.6.

6.8 Level and Unit
While it might seem odd that the results for level and unit saw such a sharp decrease between
the FLAIR models and the transformer models, there is likely a simple explanation for this.
The reason for this is solely based on tokenization and the structure of the Danish address.
As mentioned before the level is always followed by a dot, for example, ’st.’. This in turn
makes it very easy for a machine learning model to label correctly. So what is the difference
between the FLAIR and transformer model?

The problem lies in its tokenization. FLAIR uses a very simple algorithm for tokenization
which puts ’st’ and ’.’ as the same token ’st.’. Transformer on the other hand breaks it up into
sub-words resulting in it becoming two different tokens, ’st’ and ’.’. While it may still seem
simple to solve the transformer model had a lot of issues with it and performed very poorly.
This can be fixed by changing the tokenizer but as we knew what the issue was we chose not
to include it in this thesis due to a lack of time. Similarly since unit always follows level the
results of the predictions on unit are also affected by the failure to predict level correctly.

6.9 No context vs context
The big question of this thesis: does adding context help? In short, yes. As per Table 5.3 we
got an F1-score of 0.85 using the transformer model without context and 0.92 with context
5.8. While it might be a small increase it shows that using geographical context has merit.
Notably, adding context yielded a rather large increase on our weakest label, Supplemental
city name, going from 0.57 to 0.79.

57

6. Discussion

58

Chapter 7

Conclusions

In this thesis, we have experimented with different models and parameters to try to achieve
the best result in address parsing. We have confirmed that methods such as randomizing the
data and using the right embeddings can benefit you greatly. We have shown that both LSTM
and transformer models perform well on the address parsing task (RQ1). We have shown that
both deep learning models tested in this thesis, LSTM and transformer, performs a lot better
than the reference library Libpostal (RQ2). Worth noting though is that these are only trained
on the type of data that we test on while Libpostal is trained on addresses from all over the
world which might make for an unfair comparison. Finally, we have also established that the
prediction can be improved by adding geographical context (RQ3), however, we believe that
further reasearch needs to be done to fully establish how much the geographical context can
help.

7.1 Future work
In this chapter we will present some ideas for future work on the topic of our thesis, and how
we might have proceeded if we were to continue the work.

7.1.1 Ensemble learning
A potential alternate approach could be to experiment with ensemble learning. Ensemble
learning is a method of machine learning that instead of training one big classifier, trains
several smaller classifiers which are then combined to obtain a better predictive result. En-
semble models have been shown to outperform single classifiers and can be an appropriate
technique to use for many types of tasks (Opitz & Maclin, 1999). We planned to experiment
with an ensemble model towards the end, consisting of our FLAIR model, then using output
and context etc, then feed into a linear regression model. Due to time constraints, we instead

59

7. Conclusions

decided to try a more naive approach using our FLAIR model, closest addresses and then a
majority rule decision. However, we were unable to finish this naive experiment in time.

7.1.2 Tokenization
As mentioned in Section 6.8, we saw in our later experiments with the transformer models
that the action of removing punctuation from our data set heavily affected the results for
the level and unit classes. Experimenting further with the tokenization process, adding more
rules, for example, could prove to help get better results more similar to our FLAIR models.

7.1.3 Class distribution
Another area that could be reworked with more in future attempts would be the distribution
of classes in our data set. As mentioned previously, to have sufficient data points contain-
ing the supplementary city, we used oversampling. Unfortunately, what we did not notice
was that many of the data points containing a supplementary city, in return did not con-
tain level or unit. Where before we had a data set that contained 11 times more unit fields
than supplementary city fields, after doing the oversampling to get more supplementary city
fields, the ratio flipped and we instead had 10 times more supplementary city fields than
unit fields. This, along with the tokenization issue mentioned previously is not unlikely to
have contributed to our poor results in these classes. It would be interesting to do another
experiment where the data set is more balanced, and there is an equal distribution of samples.

7.1.4 Different data set
At the start of the project, we considered several different countries to work on, including
Sweden, Norway and France. Had time permitted, we would likely have done some exper-
iments on French addresses. The reason for choosing the Danish data was partly due to its
similarity to the Swedish address format that we are already quite familiar with. It would be
interesting to see if and how context improves performance for addresses in other countries
that might have a different structure than Danish addresses.

7.1.5 More data
If we had had access to more powerful hardware, or if time had not been a constraint so that
the code could have been optimized, more data could have been used for training. While
throwing more data at the model is not always the solution, it would be interesting to see
what difference it would make.

60

References

Akbik, A., Bergmann, T., Blythe, D., Rasul, K., Schweter, S., & Vollgraf, R. (2019). Flair: An
easy-to-use framework for state-of-the-art NLP. NAACL 2019, 2019 Annual Conference
of the North American Chapter of the Association for Computational Linguistics (Demonstra-
tions), 54–59.

Akbik, A., Blythe, D., & Vollgraf, R. (2018). Contextual string embeddings for sequence la-
beling. Proceedings of the 27th international conference on computational linguistics, 1638–
1649.

Barrentine, A. (2016). Statistical NLP on OpenStreetMap [Blog post]. https://medium.com/
@albarrentine/statistical-nlp-on-openstreetmap-b9d573e6cc86

Chang, K.-T. (2008). Introduction to geographic information systems (Vol. 4). McGraw-Hill Boston.

Chollet, F. (2021). Deep learning with Python (Second edition). Manning Publications.

Cord, M., & Cunningham, P. (Eds.). (2008). Machine learning techniques for multimedia: Case
studies on organization and retrieval ; with 20 tables. Springer.

Craig, H., Yankov, D., Wang, R., Berkhin, P., & Wu, W. (2019). Scaling Address Parsing Se-
quence Models through Active Learning. Proceedings of the 27th ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems, 424–427. https :
//doi.org/10.1145/3347146.3359070

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding.

Du, J. (2019). The Frontier of SGD and Its Variants in Machine Learning. Journal of Physics:
Conference Series, 1229, 012046.

Ghosh, B., Dutta, I., Carlson, A., Totaro, M., & Bayoumi, M. (2020). An Empirical Analysis of
Generative Adversarial Network Training Times with Varying Batch Sizes. 2020 11th
IEEE Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEM-
CON), 0643–0648. https://doi.org/10.1109/UEMCON51285.2020.9298092

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

61

https://medium.com/@albarrentine/statistical-nlp-on-openstreetmap-b9d573e6cc86
https://medium.com/@albarrentine/statistical-nlp-on-openstreetmap-b9d573e6cc86
https://doi.org/10.1145/3347146.3359070
https://doi.org/10.1145/3347146.3359070
https://doi.org/10.1109/UEMCON51285.2020.9298092

REFERENCES

Güting, R. H. (1994). An introduction to spatial database systems. the VLDB Journal, 3(4),
357–399.

Haykin, S. (2004). A comprehensive foundation. Neural networks, 2(2004), 41.

Heinzerling, B., & Strube, M. (2018). BPEmb: Tokenization-free Pre-trained Subword Em-
beddings in 275 Languages. Proceedings of the Eleventh International Conference on Lan-
guage Resources and Evaluation (LREC 2018). https://aclanthology.org/L18-1473

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),
1735–1780.

Hsu, L. S., & Obe, R. (2021). Postgis in action. Simon; Schuster.

Jabbar, H. K., & Khan, R. Z. (2014). Methods to Avoid Over-Fitting and Under-Fitting in
Supervised Machine Learning (Comparative Study). Computer Science, Communication
and Instrumentation Devices, 163–172. https://doi.org/10.3850/978-981-09-5247-1_017

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https:
//doi.org/10.1038/nature14539

Leijnen, S., & Veen, F. v. (2020). The neural network zoo. Multidisciplinary Digital Publishing
Institute Proceedings, 47(1), 9.

Li, X., Kardes, H., Wang, X., & Sun, A. (2014). Hmm-based Address Parsing: Efficiently Pars-
ing Billions of Addresses on MapReduce. Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, 433–436. https:
//doi.org/10.1145/2666310.2666471

Manning, C., Raghavan, P., & Schütze, H. (2010). Introduction to information retrieval. Nat-
ural Language Engineering, 16(1), 100–103.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Nakayama, H. (2018). seqeval: A python framework for sequence labeling evaluation. https:
//github.com/chakki-works/seqeval

Nugues, P. M. (2014). Language Processing with Perl and Prolog. Springer Berlin Heidelberg.
Retrieved February 20, 2022, from http://link.springer.com/10.1007/978- 3- 642-
41464-0

Opitz, D., & Maclin, R. (1999). Popular Ensemble Methods: An Empirical Study. Journal of
Artificial Intelligence Research, 11, 169–198. https://doi.org/10.1613/jair.614

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S. (2019). Pytorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Process-
ing Systems, 32. https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-
Paper.pdf

Rhind, G. (2020). Global Sourcebook for International Data Management.

Samuel, A. L. (1959). Machine learning. The Technology Review, 62(1), 42–45.

62

https://aclanthology.org/L18-1473
https://doi.org/10.3850/978-981-09-5247-1_017
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/2666310.2666471
https://doi.org/10.1145/2666310.2666471
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
http://link.springer.com/10.1007/978-3-642-41464-0
http://link.springer.com/10.1007/978-3-642-41464-0
https://doi.org/10.1613/jair.614
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

REFERENCES

Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural Networks,
61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003

Schuster, M., & Nakajima, K. (2012). Japanese and korean voice search. 2012 IEEE international
conference on acoustics, speech and signal processing (ICASSP), 5149–5152.

Sharma, S., Ratti, R., Arora, I., Solanki, A., & Bhatt, G. (2018). Automated Parsing of Ge-
ographical Addresses: A Multilayer Feedforward Neural Network Based Approach.
2018 IEEE 12th International Conference on Semantic Computing (ICSC), 123–130. https:
//doi.org/10.1109/ICSC.2018.00026

Taylor, W. L. (1953). “Cloze procedure”: A New Tool for Measuring Readability. Journalism
Quarterly, 30(4), 415–433.

Tharwat, A. (2020). Classification assessment methods. Applied Computing and Informatics.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polo-
sukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 5998–6008.

Viloria, A., Lezama, O. B. P., & Mercado-Caruzo, N. (2020). Unbalanced data processing using
oversampling: Machine learning. Procedia Computer Science, 175, 108–113.

Walber. (2014). Precision and recall. https://commons.wikimedia.org/w/index.php?curid=
36926283

*

63

https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/ICSC.2018.00026
https://doi.org/10.1109/ICSC.2018.00026
https://commons.wikimedia.org/w/index.php?curid=36926283
https://commons.wikimedia.org/w/index.php?curid=36926283

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-03-17

EXAMENSARBETE Improving Address Sequence Tagger Using Geographical Context
STUDENTER Ludvig Eriksson, Mikael Olsson
HANDLEDARE Marcus Klang (LTH)
EXAMINATOR Martin Höst (LTH)

Förbättra en modell för sekvenstaggning
med hjälp av geografisk kontext

POPULÄRVETENSKAPLIG SAMMANFATTNING Ludvig Eriksson, Mikael Olsson

Att korrekt kategorisera de olika beståndsdelarna i en geografisk adress är ett problem
som flera stora företag kämpar med idag. I den här uppsatsen har vi undersökt
möjligheten för att förbättra resultatet genom att använda närliggande adresser som
geografiskt kontext.

	Introduction
	Problem Formulation
	Scope

	Research Questions
	Contribution
	Work Distribution
	Outline

	Technical background
	Related Work
	Machine learning
	Supervised learning
	Unsupervised learning
	Self-supervised learning

	Deep Learning
	Artificial neural networks
	Transformer

	Natural Language Processing
	Named entity recognition
	Tagging
	Tokenization
	Embeddings

	Spatial data
	GIS
	Spatial databases

	Models
	BERT
	Danish-Bert
	Libpostal

	Libraries
	PyTorch
	FLAIR
	Transformers

	Evaluation Metrics

	Data
	Data set
	Danish addresses
	Level and Unit
	Postal district and supplementary city
	Test set

	Methodology
	Research Approach
	Data analysis
	Pre-processing
	Post-processing

	Evaluation
	Full comparison
	FLAIR
	Transformer
	Libpostal

	Validity threats
	Models
	Libpostal baseline
	BERT model without context
	FLAIR model without context
	Tests
	BERT model with context

	Implementation
	Environment
	Postgres/PostGis
	Overview of data sets used in the tests

	Results
	Comparison all models
	Baselines
	Libpostal
	BERT model without context

	Hyperparameter tests
	Embedding comparison
	 Learning Rate comparison
	 Effects of incompletion & disarrangement
	 Size of training set
	 Oversampling

	BERT model with context

	 Discussion
	Comparison with baselines
	Libpostal
	BERT model without context

	Embedding comparison
	Learning rate
	Incompletion disarrangement
	Size of training set
	Oversampling
	Postal district vs supplementary city
	Level and Unit
	No context vs context

	 Conclusions
	Future work
	Ensemble learning
	Tokenization
	Class distribution
	Different data set
	More data

	References

