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Abstract

Machine learning has acquired a lot of attention in the economic forecasting literature

in recent years. In this thesis we forecast Swedish energy consumption and compare the

forecasting performance of a machine learning technique with that of more traditional

time series models. In fact, the LSTM neural network is compared with ARIMA and

VAR forecasts. We conclude that in our setting, while these newer techniques perform

well under some conditions and are able to outperform the ARIMA forecast, they are

not found to outperform the VAR model which remains the best modelling choice among

those considered here.
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Abbreviations

ML: Machine Learning

ANN: Artificial Neural Network

RNN: Recurrent Neural Network

LSTM: Long Short-Term Memory

ARIMA: Autoregressive (AR) Integrated (I) Moving Average (MA)

VAR: Vector Autoregression

RMSE: Root Mean Squared Error

MAPE: Mean Average Percentage Error
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1 Introduction

This paper aims to compare benchmark time series forecasting models with a newly

popularized machine learning model to forecast energy consumption in Sweden. We use

the benchmark ARIMA and VAR models and compare the forecasting accuracy with that

of a newly popularized machine learning technique, namely the LSTM neural network

model. We examine the benefits as well as problems of ML in forecasting and evaluate

this by using total energy consumption in Sweden as the variable to forecast. In many

contexts, ML has shown superior prediction accuracy compared to traditional econometric

methods, and the benefits of the ML approach have led to much interest in economics

forecasting (Ghoddusi, Creamer, and Rafizadeh, 2019).

ML models also have their complications in economics applications. One aspect of

ML models is that they generally require large datasets, which can pose an issue in areas

such as macroeconomics. In such fields, observations are generally available in the 50-

100 range, which in machine learning terms often is the bare minimum. We will evaluate

empirically the LSTM neural network’s ability to forecast a macroeconomic variable with a

small number of observations using yearly data between 1971-2020. We will then compare

the results to benchmark econometric models to examine whether this particular neural

network can enhance economic forecasts.

The dependent variable was chosen due to its importance to the Swedish economy. As

energy supply is essential for households, the manufacturing sector, and the transporta-

tion industry, precise predictions are crucial for policymakers. Sweden has committed to

lowering its carbon footprint by joining the Paris agreement (United Nations, 2015) and

pledging to be leading in Agenda 2030 and become the first fossil fuel-free welfare country

in the world (Regeringskansliet, 2015). One way Sweden has reduced fossil fuel usage is by

shifting energy production towards solar and wind (Regeringskansliet, 2018). Change in

the structure of energy production requires an accurate forecast of future energy demand

so that households and industries can continue to have access to their required energy

supply.

The thesis is organized as follows: Chapter 2 outlines the research which has previously

been made in energy consumption forecasting, as well as some theoretical background.
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Chapter 3 explains the methodology behind the three models used in this paper and

Chapter 4 explains the variables used in the models. Chapter 5 then presents the results

of the models and Chapter 6 discusses the results of the different models.

2 Previous Research

In this section, an overview of previous research in forecasting energy-related variables

is presented. We focus on applications using ML as well as the benchmark ARIMA and

VAR models. The methodology of these will be presented in Section 3.

2.1 Energy consumption forecasting, benchmark models

2.1.1 ARIMA

ARIMA is a benchmark model in time series forecasting, especially in univariate forecast-

ing. The ARIMA model was generalized by Box and Jenkins who developed a method

for time series forecasting using the model (further explained in section 3.1) (Zivot and

Wang, 2006). The application of the ARIMA model has since seen a great increase in its

applications. It has in forecasting become a standard benchmark method (Studenmund

and Johnson, 2016) and has also been used in energy-related forecasting.

Nichiforov, Stamatescu, Fagarasan & Stamatescu (2017) compare energy consumption

forecast results using the ARIMA model and a non-linear Autoregressive Neural Network

(NAR) model and find that the ARIMA model outperforms the NAR model. Jahan-

shahi, Jahanianfard, Mostafaie, & Kamali (2019) were able to predict household energy

consumption in the Euro-area using the Box-Jenkins methodology. Elsaraiti, Musbah,

Merabet & Little (2021) apply the ARIMA model to electricity consumption and were

able to accurately predict energy consumption with high accuracy. Dritsaki, Niklis, &

Stamatiou (2021) forecast oil consumption in Greece using the ARIMA model and find

that the oil consumption in the country will decrease after 2020 following the coronavirus

as well as regulatory measures to decrease oil use. These papers are part of a wide range of

academic research which successfully forecasts energy-related variables using the ARIMA

framework.
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2.1.2 VAR

The use of VAR in macroeconomic forecasting was popularised after the work published

in 1980 by Cristopher A. Sims. The then-new framework of VARs was provided by Sims

as a critique of the models used in that period, which Sims claimed illogically excluded

key aspects of data analysis (Sims, 1980). Sims then proposed the VAR model which

incorporates lagged values of the dependent variable as well as lagged values of the other

variables. Since its introduction by Sims, the VAR has continued to provide a systematic

and straightforward approach to forecasting time series and evaluating economic models

(Christiano, 2012). The use of the VAR model has also found application in energy

economics, as many works have found this approach robust and able to increase forecasting

accuracy.

Jin & Chen (2013) apply the VAR model to energy consumption in China and find

that total energy supply, improvements in living standards, and economic growth con-

tribute to the country’s energy consumption. The authors also conclude that economic

growth has a smaller impact than the other two. Singh & Vashishtha (2020) apply a

bivariate VAR model and conclude that per capita GDP impacts per capita energy con-

sumption, however, any long-run equilibrium between the two variables could not be

found. Yu & Qayyum (2022) use a Panel VAR (PVAR) and find a directional cause from

GDP per capita on energy consumption in industrialized countries. Interestingly, the

paper found a unidirectional relationship from energy consumption to GDP per capita in

non-industrialized countries, implicating that non-industrialized countries rely on energy

consumption for economic development.

2.2 Energy demand forecasting using ML and LSTM models

Machine learning (ML) is a type of data science where an algorithm learns from a dataset

and is able to automatically improve itself, i.e. the ”machine” is learning. Machine

learning emerged in the 1950s as an attempt from the scientific community to replicate

human learning behavior. The applications of machine learning models in the last decades

have shown to be serious competitors to traditional forecasting models, especially for

processing and forecasting complex data. Therefore, ML has grown increasingly useful in
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energy economics and the energy industry (Ghoddusi, Creamer, & Rafizadeh 2019).

In one of the first success stories of price prediction in energy economics Moshiri

& Foroutan (2006) were able to accurately predict crude oil prices using an Artificial

Neural Network (ANN), and the model has since then expanded to being used in different

areas. Lu, Sun, Duan & Wang (2021) published an extensive paper comparing several

different variable selection and forecasting methods and finding that an LSTM forecasting

model outperformed other competing models in crude oil price forecasting. Papadimitriou,

Gogas & Stathakis (2014) were able to predict electricity prices with 76% accuracy over

a 200-day period using a type of ML called a Support-vector machine.

ML techniques have also been used in predicting energy consumption and energy

demand. Geem and Roper (2009) employ an ANN to forecast energy consumption in

South Korea and find that their approach outperforms standard linear and nonlinear

regressions. Ozturk and Ceylan (2005) use a Genetic Algorithm to forecast electricity

consumption in the Turkish industrial sector. Ghoddusi, Creamer, and Rafizadeh (2019)

conclude in a review of 130 published papers between 2005 and 2018 that ML is foremost

used in energy economics for forecasting prices, and mostly the price of crude oil and

power. Li (2019) used an LSTM neural network to estimate energy consumption in

China.

3 Method

3.1 ARIMA

The ARIMA model is a univariate model frequently used in statistics and econometrics,

which effectively forecasts future values of a variable by only using past values of that

variable. The ARIMA model is a composite process that builds upon the past values of

the dependent variable, a differencing process in order to achieve stationarity, and past

values of the error terms (Kennedy, 2008). The ARIMA(p, d, q) model is explained in this

section.

The autoregressive (AR) part of the ARIMA model states that the dependent variable

yt depends on earlier values of itself, yt−p. The model uses the earlier (lagged) values of
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the dependent variable and bases the forecasting on these earlier data points. The AR(p)

process is formulated as:

yt = δ + θ1yt−1 + θ2yt−2 + . . .+ θpyt−p + ϵt (1)

Where δ is a constant, θ is the autoregressive coefficient, ϵt is the white noise error

term. How many earlier values of yt to include in the AR model, i.e. the amount of lags,

is denoted by p. A model with no past values of yt is an AR(0) process and is modeled

as: yt = δ + ϵt. In an AR(0) process only the error term contributes to the value of the

dependent variable and the process is therefore white noise (Studenmund and Johnson,

2016). An AR(1) process includes one lagged period and is therefore modeled as:

yt = δ0 + θ1yt−1 + ϵt (2)

The I part in the ARIMA model stands for Integrated and denotes the fact that the

data has been differenced in order to achieve stationarity. A time-series differenced once

is denoted by equalizing d to 1 in the ARIMA(p, d, q) model (Kotu and Deshpande 2018).

A time-series variable is stationary if the mean and variance of the variable are constant

over time, and the autocovariance of two observations in time only depends on the length

between observations (Studenmund and Johnson, 2016).

Themoving-average process (MA) part of the ARIMAmodel states that the dependent

variable yt is defined as a linear combination of past values of the white noise error term

ϵt. In the MA(q) process the dependent variable yt is a function of past and current

values of the random error term, and the amount of previous error terms included in the

estimation is denoted by q. The MA(q) process is formulated as:

yt = ϵt + Φ1ϵt−1 + Φ2ϵt−2 + . . .+ Φqϵq (3)

Where ϵt is the error term, or random noise, Φ is the moving average coefficient (Kotu

and Deshpande, 2018).

These three components, the AR(p), I(d), and MA(q) process create the ARIMA(p, d, q)

model. For example, the ARIMA(1,1,2) model is shown below:
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y∗t = δ0 + θ1y
∗
t−1 + ϵt + ϵt−1 + ϵt−2 (4)

We can observe that the dependent variable is once-differenced, denoted by ∗, and

the model includes one autoregressive term and two moving-average terms as well as a

constant. We will follow the Box-Jenkins methodology for an ARIMA model. It con-

sists of (1) applying necessary transformations to achieve stationarity, (2) identifying the

autoregressive component p and the moving average component q, (3) fit the time series

ensuring that there is no autocorrelation in the residuals, (4) forecast future values of the

variable (Kennedy, 2008).

3.2 VAR

The VAR model was popularised by Sims and has shown to be one of the more effective

models in multivariate financial and economic time-series forecasting. The VAR model

extends upon univariate autoregression and allows for multiple time-series variables to be

included in the model with the lagged values of these variables as regressors (Hashimzade

& Thornton, 2013). The VAR(p) model is used in this paper as a multivariate benchmark

model to be used in comparison to the other models presented.

A simple one-lag univariate AR model would take the form yt = θ1yt−1 + ϵt where the

current value of y depends on the previous value of y multiplied with the autoregressive

coefficient θ and an error term (Kotu and Deshpande, 2018). However, it is possible that

the value of yt is dependent on other exogenous variables. Because of the possibility of two

or more variables having a causal effect on each other in both directions, we can create

a VAR(p) model with several variables, where p denotes the number of lags to include in

the estimation. For example, a VAR(p) model with two variables yt and xt is formulated

as follows:

yt = δ1 + θ11yt−1 + . . .+ θ1pyt−p + γ11xt−1 + . . .+ γ1pxt−p + ϵ1t

xt = δ2 + θ21yt−1 + . . .+ θ2pyt−p + γ21xt−1 + . . .+ γ2pxt−p + ϵ2t

(5)

The VAR(p) model can also be expressed in matrix form (Zivot and Wang, 2006). A

bivariate VAR(1) model is formulated as:
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yt
xt

 =

δ1
δ2

+

θ11 γ12

θ21 γ22


yt−1

xt−1

+

ϵ1
ϵ2

 (6)

These equations show that in the VAR model framework both variables are endogenous

and the matrix formulation shows that the addition of an additional variable will generate

one additional equation. The coefficients θ and γ are estimated using OLS and therefore

the Gauss Markow assumptions on ϵ1, ϵ2, need to be satisfied. The number of lags

included i.e. how many values from past years to include in the model, are determined

using information criteria (IC). The three most common IC are AIC, BIC, and HQ.

These test specified lags p = 0, 1, ..., pt and then select the lag which minimizes one of the

selection criteria (Zivot and Wang, 2006). The mathematics of these is beyond the scope

of this paper and will not be further discussed here.

The benefits of VAR models over univariate models as the ARIMA model is that the

model can consider the interconnectedness of several variables over time (Kim, Shim and

Park, 2022), which has led to the model becoming one of the most used tools in applied

finance and macroeconomics (Miao, Phillips and Su, 2022).

3.3 LSTM neural network

The LSTM neural networks have in recent years become a popular neural network system

in Artificial Intelligence and ML. The network is highly useful in tasks such as classifi-

cation, processing, and time series prediction. The LSTM network builds upon a special

type of Artificial Neural Network (ANN) called Recursive Neural Network (RNN) (Yu,

Si, Hu and Zhang, 2019). The mathematical aspects of ANNs, RNNs, and LSTMs are

beyond the scope of this paper and will not be discussed in detail. Rather, this section

aims to give the reader intuition of the basic structure of these algorithms.

Artificial Neural Networks:

An Artificial Neural Network is a computer algorithm inspired by biology. The structure

of an ANN simulates human brain processes by mimicking the way that neurons in a
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brain signal each other. The structure of an ANN consists of at least three layers: 1) an

input layer, 2) one or more ”hidden” layers, 3) an output layer. In each of these layers,

there are nodes (imitated neurons), which connect all the layers together (Gibbs et al.,

2006). The nodes are connected to each other by weighted links. If the information sent

to a neuron from another is important enough to pass a certain threshold, the data is

passed along. Otherwise, it doesn’t. If the information passes, the node has a weight that

adjusts the information that flows to the next node (Vanneschi and Castelli, 2019).

The network learns and improves by comparing its output to the actual observed values

and adjusting the weights of its neurons accordingly. The errors are sent back through

the hidden layer1 and every node changes its own weight depending on how ”wrong” it

was, and the procedure is then repeated with a new observation. The number of times

the data is sent through the network is called epochs and for every epoch, the weights

of the neurons are adjusted to minimize the errors. Neural networks generally use the

sigmoid function to scale inputs between 0 and 1, by doing this they minimize the impact

of a single variable on the output of the neural network (Dreyfus, 2005). A typical ANN

with one hidden layer is illustrated in Figure 1.

Figure 1: Artificial Neural Network

Recursive Neural Networks:

A Recursive Neural Network builds upon the idea that the quality of processing informa-

1This process is called backpropagation
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tion is improved when recalling earlier inputs of that information. Just as humans are

able to watch a movie and process a frame depending on the frames that came earlier,

RNNs try to mimic this process by including long-term memory. Traditional ANNs do

not remember information from earlier processes, thus lowering their efficiency compared

to RNNs. The hidden layers in a RNN acts as memory storage and transmit information

from earlier processing of the data in the sequence. The hidden layer cell takes an in-

put xt and from the neural network transmits this information to the next cell (Dreyfus,

2005), as illustrated in Figure 2. Every A denotes an artificial neural network as the one

illustrated in Figure 1.

Figure 2: Recurrent Neural Network Loop

RNNs mainly have two issues that arise in the transmission of information between

cells. The first issue is that the RNN only remembers a few steps back in the data se-

quence and is therefore not a good fit for longer sequences of data with long memory.

The second issue is that of exploding and vanishing gradients. As inputs flow through the

memory cells of the network the weight of an input can increase or decrease with every

iteration and therefore ”explode” or ”vanish” (Schmidt, 2019). LSTMs were envisioned

to address this issue and have shown success in its applications.

LSTM:

The LSTM neural network aims to resolve the two issues related to RNNs. The LSTM

network adds additional features in every neural network, denoted by A in Figure 2, to
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handle the transmission of data between cells. Three gates are implemented in every cell

and the data has to pass through this gate in order to continue on to the next cell. The

main addition of LSTMs can be described as a transport line, passing data from one cell

to the next cell only if that data is found to be significant enough to pass through the

gates (Lu, Sun, Duan and Wang, 2021). The gates are based upon the sigmoid function,

a central function in ML which outputs a number between 0 and 1 and has the equation:

σ(x) =
1

1 + e−x
(7)

The sigmoid function reduces all real numbers IR into the range (0, 1) which makes

processing data between cells in the neural network easier (Liu, 2021). The three gates

added in every cell using the sigmoid function are:

• A Forget Gate which outputs a number between 0 and 1. An output of 1 in this

gate means “let everything through” and a 0 means “let nothing through”.

• A Memory Gate which chooses which new data needs to be stored in the cell.

• An Output Gate which decides what will be the output of each cell.

The LSTM network is structured as a transport line, where the data moves on the

transport line and passes through cells that can filter and change the data, completely stop

the data from continuing on the transport line, or let all the data through. The previously

processed data flowing on the memory line is then remembered and processed to make

predictions (Al-jabery, Obafemi-Ajayi, Olbricht and Wunsch II, 2020). The LSTM model

has several parameters which can be tuned to increase accuracy, such as Layers, Batch

size, Epochs, which are explained in Table 1 (Dreyfus, 2005) (Li, 2019). The parameters

chosen in the neural network for this paper are explained in Table 9.
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Parameter Explanation

Layers
Layer of nodes between input and output layer, where each
node has an assigned weight

Loss
Function chosen to minimize loss or maximize gain, ex. Mean
Squared Error Loss

Optimizer
Function which changes the learning attributes of neural net-
works

Epochs
Each time the entire dataset is passed through the network
layers counts as one epoch

Batch size
No observations from the dataset which passes trough the net-
work at a time before updating weights

Activation
Function used to determine the output of the neural network,
giving the output in the range (0,1) or (-1,1) as an example

Table 1: LSTM model parameters

3.4 Evaluation metric

For the comparison of the three different forecasting models, the RMSE and MAPE will

be used. Both metrics are frequently used to evaluate model prediction accuracy. The

equations are:

RMSE =

√√√√ 1

n

n∑
t=1

(yt − ŷt)
2

MAPE =
1

n

n∑
t=1

100
|yt − ŷt|
|yt|

(8)

Where n is the number of time periods observed, yt is the actual value and ŷt is

the predicted value from the model. The RMSE measures the differences between the

actual values and the predicted values; the square root penalizes large errors. The MAPE

measures the percentage error for every predicted value (standardizes unit of measurment)

(Ji and Gallo, 2006). The model with the lowest RMSE and MAPE is then selected as

the most efficient.
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3.5 Time series properties

3.5.1 Cointegration and Stationarity

Before we can begin creating our models we have to test for stationarity. A time series

variable is covariance stationary if:

1. The mean of the variable is constant over time, E[yt] = µ∀t

2. The variance of the variable is constant over time, V ar(yt) = σ2∀t

3. The autocovariance function between two observations separated by time k, Cov(yt, yt−k),

only depends on k

(Studenmund and Johnson, 2016). A time series that does not fulfill such requirements

is non-stationary and has trends (Zivot and Wang, 2006). Testing for the presence of unit

roots in the series is fundamental to avoiding spurious regression issues. If no unit root is

found in the series, they are said to be stationary (Studenmund and Johnson, 2016). To

achieve stationarity one has to apply differencing, which consists of taking the difference

of the variables of interest (Kotu and Deshpande, 2018):

y∗t = ∆yt = yt − yt−1 (9)

If the time series is not stationary, then any inference or regression runs the risk of

spurious correlation. Spurious correlation occurs when two variables that do not have

any real underlying correlation show a strong relationship because of their shared drift in

time (Smith, 2015).

However, if we have non-stationary variables we could have cointegration which could

avoid us taking the differences of the series altogether, but we need to test this. Two

variables that are cointegrated share a trend. If cointegration is found between two or

more variables the variables should not be differenced, as they do not run the risk of

spurious correlation and we can consistently fit our model (Kennedy, 2008).
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3.5.2 Autocorrelation in residuals

For the time series to be correctly modeled, the residuals should be white noise i.e. have

a constant mean and variance. Testing for autocorrelation is done to ensure that there is

no misspecification in the model (Cryer and Chan, 2008). We test for autocorrelation in

this paper by using the Ljung-Box test, a type of Portmanteau test.

4 Data and Software

4.1 Variables

The variables used in this paper are presented in Table 2 and justification of the selected

variables is presented in 4.1.1. All variables are measured in a yearly frequency and the

observations are for the years between 1971-2020.

Variable name Description and measurement Source

Energy con-
sumption

Energy Consumption in Peta-
joules, Sweden

International Energy
Agency & Swedish Energy
Agency

Real GDP GDP in 2015 US$, Sweden World Bank national ac-
counts

Population Swedish Population, all residents
United Nations & Statistics
Sweden

Energy intensity
Energy consumption per unit of
gross domestic product, Sweden

Our World in Data

Oil Price Crude Oil Price ($ per barrel), US
U.S. Energy Information
Administration

CPI
Consumer Price Index Energy
Products, Sweden

OECD

Table 2: Variable description

Energy consumption is the variable being predicted by the different models. It is mea-

sured in Petajoules. One Petajoule is equal to 31.6 millionm3 of natural gas or 278 million
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kilowatt-hours of electricity. The data is obtained from the International Energy Agency

(IEA) and encompasses the total energy used (industry, household, transportation, etc.)

of all energy types (coal, oil, electricity, etc.) in Sweden per year (IEA, 2021) (Swedish

Energy Agency, 2021).

Real GDP is the value of all goods and services produced in Sweden each year. The

variable is measured in 2010 dollars and the dataset is obtained from the World Bank

(World Bank national accounts, 2022).

Population is data on the total population of Sweden regardless of resident status.

The data is obtained from the United Nations Population Division (United Nations, 2019)

(Statistics Sweden, 2022).

Energy intensity is included as an indicator of the technological advancements and

effectiveness of the country’s energy infrastructure. As energy use decrease with more

energy-efficient technology in manufacturing, transportation, etc. the inclusion of this

variable could have a significant relationship with total energy consumption. In fact, it

measures the energy consumed per unit of GDP, thus measuring how effective a country

is in producing economic output. It can also represent industry structure, as a shift in

industry from manufacturing to services can decrease energy use but maintain or increase

economic output (Our World in Data, 2022).

Oil Price is measured as the price per barrel of crude oil traded in the US. Crude oil

prices for Sweden are not available for the time period in this paper, but we can assume

that prices in the US and Sweden will follow a similar pattern. As oil is frequently used

in manufacturing and heating, an increase in oil prices can have a significant connection

with energy consumption (U.S. Energy Information Administration, 2022).

Consumer Price Index (CPI) measures the increase in consumer products related to

energy, such as an increase in heating oil and electricity prices. This variable is included as

increases in energy products could cause consumers to consume less energy and thus lower-

ing aggregate energy consumption. The price of consumer energy products is assumed to

be closely related to production-side prices of energy products and can therefore represent

both consumer and manufacturing energy product prices (OECD, 2022).
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4.1.1 Variable choice

The selection of relevant variables for energy consumption is central to the multivariate

models used in this paper. Here we draw inspiration from other papers’ conclusions on

relevant variables to explain energy consumption and focus on the case of Sweden. Sev-

eral papers have found a causal relationship between population and economic output on

energy consumption in developed and developing countries. Li (2019) found that GDP,

population, secondary sector, and tertiary sector were significantly linked to energy con-

sumption in China. Geem and Roper (2009) found that gross domestic product (GDP),

population, import, and export amounts were significantly linked to energy consumption

in South Korea. Camarero et al. (2015) applied a variable selection model to energy con-

sumption determinants and found that variables such as economic growth, energy prices,

government spending, energy efficiency, and source of energy production all contribute to

explaining energy consumption.

Various potential variables had to be excluded due to them not being available for

the time period researched. Data on industry sectors is only available from 1981 onward.

In an attempt to address any omitted variable bias this paper included variables such as

Energy Intensity and CPI, which are indices representing various parts of the economy

(explained in Section 4.1). We perform a Granger causality test to aid this paper in

understanding which variables have predictive power with respect to energy consumption.

The test found that Real GDP, Energy Intensity, Oil Price, and CPI all have a significant

predictive relationship on energy consumption and are therefore used in the VAR and

LSTM models. Table 3 clarifies which variables were used for which model.
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ARIMA VAR LSTM

Energy consumption Energy consumption Energy consumption

Real GDP Real GDP

Energy Intensity Population

Oil Price

CPI

Table 3: Variables in models

4.2 Software

For this paper the statistical open-source software R was used, version 4.2.0 (2022-04-22).

Some of the packages used in the paper for standard operations were tidyverse, readxl,

tseries, dplyr, and graphics. For the ARIMA and VAR modeling the packages forecast

respectively vars was used. The package necessary for the LSTM neural network is the

keras package (R Core Team, 2021).

5 Results

5.1 ARIMA model

ARIMA is used in this paper as the benchmark univariate model for comparison with

other models. We evaluate its accuracy in predicting the dependent variable Energy

consumption. In forecasting, we follow the Box-Jenkins method for ARIMA forecasting.

(1)Stationarity : To ensure stationarity we test the Energy consumption variable for

unit root. The unit root test was performed by using the Augmented Dickey-Fuller test

at the 5% level which tests the null hypothesis that the data is nonstationary. After

performing this test we find the presence of a unit root in Energy consumption. After

taking the first difference of the dataset we can state that we have removed the unit root
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and made the time series stationarity. The autocorrelation observed in the time series

has been accounted for by taking the first difference, as shown in Figure 3 and Figure 4.

(a) Total Energy Consumption (b) Autocorrelation Function

Figure 3: Energy Consumption 1971-2020

(a) Energy consumption (b) Autocorrelation Function

Figure 4: Energy Consumption, first difference 1972-2020

ADF-test after differencing, Energy Consumption

Dickey-Fuller statistic p-value

−3.5269 0.04844∗

H0: Unit root is present (non-stationary)

Ha: Unit root is not present (stationary)

Table 4: Augmented Dickey-Fuller test, Energy consumption

(2) Identifying the required parameters :

The Box-Jenkins approach involves fitting the number of autoregressive lags p and the

number of moving averages q. These components can be determined by analyzing the
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Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF), but

we can automatically obtain these parameters in the auto.arima function in the R package

”forecasts”. The auto.arima function uses a variation of the Hyndman-Khandakar algo-

rithm (Hyndman & Khandakar, 2008) to estimate the model parameters. The function

finds that ARIMA(3, 1, 0) is the optimal fit for the dataset, meaning that the model in-

cludes 3 autoregressive terms, the time series is once differenced, and no moving averages

are included. Our model is thus fitted with the equation:

y∗t = δ + θ1y
∗
t−1 + θ2y

∗
t−2 + θ3yt−3 + ϵt (10)

(3) Evaluating the residuals :

To ensure that the ARIMA model is appropriate for the data, we need to evaluate

the residuals. It is necessary that the residuals are uncorrelated and normally distributed

with a constant mean and variance. For the residual diagnostic, we use the plots of the

ACF and PACF to qualitatively identify any autocorrelation, then we quantitatively test

for autocorrelation using the Ljung-Box Q-test.

Figure 5: Residual diagnostics ARIMA

We can observe in Figure 5 that there is no autocorrelation as more than 95% of obser-
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vations fall between the bounds ±1.96/
√
n. We have therefore ensured homoscedasticity

in the model and can therefore trust the results to be unbiased. We can also test for

autocorrelation by using the Ljung-Box Q-test at the 5% level, shown in Table 5. The

Ljung-Box test generates a Q test statistic and is used for ensuring that the residuals are

evenly distributed. A large value of Q signals that the autocorrelation in the sample data

is too large for the data to be independent and identically distributed (Cryer and Chan,

2008).

Ljung-Box Test

Q* DF p-value

6.3839 7 0.4957

H0: Residuals are evenly distributed

Ha: Residuals show signs of autocorrelation

Table 5: Ljung-Box test, residuals

We have now satisfied the stationarity requirement, estimated the model parameters

(p, q), and ensured the absence autocorrelation in the model residuals.

(4) Forecasting

The fourth step in the Box-Jenkins methodology is forecast. For the comparison

between models, we have chosen the time frame between 2005 and 2020. We evaluate the

ARIMA models’ effectiveness by obtaining its RMSE and MAPE. The evaluation metrics

are obtained by comparing the actual values to the estimated values for the period 2005-

2020 and presented in Table 6.
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ARIMA Model evaluation

RMSE 46.819

MAPE 2.063

Table 6: ARIMA evaluation metrics

The ARIMA model forecast for the time period is presented in Figure 6, where the

forecasted values are illustrated as the red line and the actual values are presented as the

black line (the forecasted values for the other models are presented in the same way).

Figure 6: ARIMA prediction

5.2 VAR model results

The VARmodel used in this paper contained 5 variables, Energy Consumption, Real GDP,

Energy Intensity, Crude Oil Price, and CPI. We test the variables for a unit root. The p-

value at the 5% level of the Augmented Dickey-Fuller test for the non-stationary variables

is presented in Table 7. The variables are non-stationary but if they are cointegrated we

can still fit our model. Because of this, we test for cointegration by using the Johansen

test (Johansen, 1988). We find no evidence of significant cointegration between the time
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series variables in the Johansen test. The variable Energy Intensity had no unit root, but

the variable exhibited autocorrelation and was therefore differentiated.

Augmented Dickey-Fuller test

Levels ∆

Energy consumption 0.4321 0.04844∗

Real GDP 0.7589 0.04306∗

Crude Oil Price 0.4495 < 0.01∗∗

CPI 0.6501 0.02197∗

H0: Unit root is present (non-stationary)

Ha: Unit root is not present (stationary)

Table 7: Augmented Dickey-Fuller test results

In the table, we can see that we have successfully achieved stationarity by taking the

first-order difference, and we can now construct our VAR model. As mentioned in section

3.2 we will select the number of lags to include by using the most common selection criteria.

The number of lags selected by the AIC and HQ selection criteria is 7 lags, which means

that energy consumption is estimated by using the 7 lagged values of the variables. We

fit the model by using the VAR() function from the ”vars” package in R which estimates

the model using OLS (Lütkepohl, 2006). The results from the VAR(7) model show that

the model can very accurately predict energy consumption. The evaluation metrics and

graphic illustration are presented in Table 8. In Table 8 ”Levels” denotes that the time

series is not differenced, and the symbol ∆ denotes that the series has been differenced

once.

VAR model evaluation

RMSE 8.565

MAPE 0.489

Table 8: VAR evaluation metrics
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Figure 7: VAR prediction

As stated in Section 3.2 the VAR model produces one equation for every variable

in the model and incorporates lagged values of every variable in the equation. Apart

from forecasting, we can also analyze which variables at which lag was significant for

determining energy consumption. The variables significant at the 5% level were Oil Price

L1 and CPI L6. The variables significant at the 10% level were Real GDP L3, L5, L6, L7

and Oil Price L6 (the number after the variable denotes the lag order for the variable).

We analyze the model residuals by using a Portmanteau test to ensure that we have

correctly fitted the model. We find no autocorrelation in the residuals at the 5% level in

the Portmanteau test.

5.3 LSTM neural network

In the prediction for energy consumption using the LSTM network, we find that the

network most accurately predicts using three variables, Real GDP, Population, and one

lagged value of Energy consumption, i.e. predicting today’s energy consumption using the

value of yesterdays energy consumption. Even though Population was omitted in the VAR

model, we find that including the variable improves the accuracy of the LSTM forecast.

The tuning of the LSTM model also showed that including any additional explanatory
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variables in the model overfits the model and worsens the prediction accuracy. We split

the dataset in a 70/30 window, where we use 70% of the observations for training the

model and 30% of the observations for evaluating the model fit. For machine learning

algorithms to properly function different types of scaling are often used to improve the

accuracy of the model (Dreyfus, 2005). We proceed by normalizing the data.

After normalizing and splitting our data we can then form our LSTM network where

our input is Real GDP, Population, Energy consumption (lagged), and our output is

forecasted energy consumption. With ARIMA and VAR models any time series data

needs to be stationary, however, with LSTM this is not required as it can ”remember”

trends over time. Our forecast however shows higher accuracy when our time series is

stationary and we, therefore, use the differentiated series. We create an LSTM neural

network with the parameters presented in Table 9.

Parameter Value

Layers 4

Loss Mean squared error

Optimizer adamax

Epochs 100

Batch size 7

Activation Relu

Table 9: LSTM model parameters

The model inputs the training data 100 times (epochs) through the 4 layers, 7 obser-

vations at a time. The network then adjusts the weights and evaluates the result by mean

squared error. For the reader interested in the process of the neural network, Figure 8

illustrates how the mean squared error (Y-axis) is reduced with every epoch (X-axis).

27



Figure 8: Accuracy improvement with every epoch

After adjusting the weights the model then predicts a value for the remaining years in

the dataset and reverts the scaling. We use the predicted data and compare it to the actual

values to obtain the evaluation metrics. The RMSE and MAPE for the LSTM predictions

are presented in Table 10. The LSTM predictions are shown in Figure 9, where we can

observe the neural networks’ ability to accurately predict energy consumption using only

two input variables and one autoregressive term.

LSTM network evaluation

RMSE 26.616

MAPE 1.495

Table 10: LSTM evaluation metrics
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Figure 9: LSTM prediction
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6 Concluding Remarks and Future Research

This paper set out to compare the forecasting accuracy of the ARIMA and VAR models

and the newer LSTM neural network. While many might expect any model which employs

ML to be the superior model in any aspect, this paper interestingly showed that this is

not the case in energy consumption forecasting. The most accurate model in this paper

showed to be the VAR model, which had better prediction accuracy by both evaluation

metrics. While both the VAR and LSTM could predict and capture shocks, such as the

large increase in energy consumption in the year 2010, the VAR model showed a much

more refined ability to capture these shocks.

We forecasted energy consumption to evaluate how well the LSTM neural network

could be fitted with only 50 observations, and we can conclude that this paper showcased

how ML is dependent on large datasets as compared to traditional benchmark models. In

the training phase of the LSTM model, we split the dataset of 49 variables in a 70/30 split.

This means that only 34 observations for each input variable are available for the neural

network to use for training. We can conclude that with these limited observations the

LSTM network was nevertheless able to provide an accurate forecast. We can hypothesize

that if the input variables were available for a longer time period, or on a more frequent

basis, the LSTM model could increase its forecast accuracy.

The VAR model showed great prediction accuracy in this energy consumption fore-

casting. The model was able to accurately forecast the variable by using 5 variables and

lagged values of itself. With these accurate results, the VAR model could be used by

companies, governments, and organizations as a powerful tool for forecasting energy con-

sumption and other forecasts. The VAR model also generates forecasts for every variable

in the model. For example, we could also analyse how Energy consumption affects Real

GDP, or how Real GDP affects Energy intensity. However, this is beyond the scope of

this paper and was not presented in the model results.

The ARIMA model could not produce as accurate results as the other two models.

This was at some level expected since the model only uses past values of itself and will

therefore have issues in anticipating shocks. However, with only past values of itself the

ARIMA model was able to adequately forecast energy consumption.
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While ML is increasing in application in economics, it could not outperform the VAR

model in this case. Future research could investigate whether this is due to the small

number of observations, or whether the LSTM model is simply not as accurate as the

VAR model for energy consumption forecasting. As both the LSTM and VAR models

showed great forecasting accuracy, future research could expand upon the comparison

between the two in other areas of economics.
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