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Abstract

In topology optimization, iterative, gradient-based methods are used to find the material distribu-
tion of structures which maximizes some objective function, typically the structures’ stiffness, or in
some cases the fundamental frequency. Finite element analysis is used to compute the structural
response in each iteration, leading to large systems of equations. Several hundred iterations may
be needed for convergence of the optimization problem, however the design changes may be very
small, particularly towards the end of the optimization process. This raises the question if the
systems need to be solved exactly, or if information from previous iterations can be used to reduce
the computational effort. This is the fundamental idea of reanalysis, which Kirsch used to develop
effective basis generation methods for reduced order models, known as combined approximation
(CA) [1].

Kirsch’s combined approximation has seen some use for static problems in topology optimiza-
tion, and methods which take the approximations inaccuracies into account for a consistent sen-
sitivity analysis have been developed [2]. Kirsh’s CA has also been used for eigenvalue problems,
and consistent sensitivity analysis for optimization of a single eigenfrequency have been developed.

We found that some of the basis generation methods Kirsch proposes may be ill suited when
multiple eigenfrequencies are used to approximate the fundamental frequency, and we propose a
simple remedy to these problems. The sensitivities of the eigenfrequencies and the objective function
are derived using the adjoint method, and are compared to finite difference approximations. The
simulations show that the basis generation methods which Kirsch proposes are inconsistent, but that
the novel method is consistent with a full model. Although, all reduced order methods produced
indiscernible results and had similar performance in regard to computational effort saved.
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Chapter 1

Introduction

Many modern Finite Element Analysis software packages, such as COMSOL and ABAQUS, now
include implementations of structural optimization which are capable of handling three-dimensional
structures and advanced techniques such as stress constraints. Structural optimization is a term
which refers to three different types of optimization, Sizing, Shape and Topology optimization.
In topology optimization the goal is to find the material distribution in a given design domain,
which maximizes some objective function under some constraints. The idea was first presented by
Bendsøe and Kikuchi [3] in their seminal paper from 1989 where they used two different material
models to describe void and mass. Since then the technique has been applied to various problems,
for example designing materials with exceptional properties such as negative Poisson’s ratio [4],
bi-stable structures [5], and compliant mechanisms [6].

Diaz and Kikuchi [7] used topology optimization to reinforce an existing structure, altering
its structural response to free vibrations. This can for example be used to increase a structures
fundamental frequency, or more recently it has been used to design crystal materials with tunable
phononic band-gaps [8].

In topology optimization, the given design domain is discretized into finite elements so that
the structural response (for example deformations, stresses and eigenfrequencies) can be evaluated.
The user then determines the objective and constraints, resulting in an optimization problem.
Gradient based iterative methods are used to solve the problems, meaning at each design cycle
the optimization problem is linearized and solved, resulting in a new design. This process is
repeated until convergence, which can require several hundred design cycles, depending on the
problem. Consequently a large number of (linear or nonlinear) systems need to be solved, which is
computationally expensive, particularly for large and plastic deformations where non-linear finite
element analysis is required.

As the end user requires a certain quality, the finite element analysis results in large, sparse,
systems of equations. In modern applications this can result in several millions of unknowns, for
which exact analysis is not feasible due to limitations on computational power, memory and storage.
This problem is prominent in topology optimization where several hundred design cycles may be
needed, each of which involves solving at least one (linear or non-linear) system. For this reason
consistent numerical methods which reduce the computational effort are sought. Krylov subspace
methods and multigrid methods are popular choices in classical analysis, and have seen use in
high-level implementations of topology optimization, see for example [9]. Kirsch [1] introduced a
technique which reuses information from previous design cycles (known as reanalysis) to produce
a reduced order model of the structural response.

The key component in a reduced order model is the basis generation method. In topology opti-
mization there is a natural way of generating the basis vectors, namely by reusing information from
a previous iteration. For the static equilibrium equations, basis vectors are used to approximate
the deformations. Hence one set of basis vectors used to approximate the deformations need to
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1.1. AIM CHAPTER 1. INTRODUCTION

be generated. For the generalized eigenvalue problem, basis vectors are used to approximate the
eigenvectors. Hence, for each sought eigenpair one set of basis vectors need to be generated. The
basis generation method is particularly important for generalized eigenvalue problems, if they are
not generated carefully one might accidentally approximate the incorrect eigenmode.

1.1 Aim

The aim of this work is to investigate reduced order models (ROM) for generalized eigenfrequency
problems in topology optimization. Previous implementations only consider a single frequency,
whereas in this work a number of the lowest modulus eigenfrequencies are used to approximate the
fundamental frequency. This has implications on the sensitivity analysis, in particular consistent
sensitivity analysis for different basis generation methods is of interest. In addition, the amount of
work saved is investigated.

1.2 Scope

This work investigates Kirsch’s Combined Approximation for solving generalized eigenproblems in
topology optimization. In order to evaluate the numerical methods a thin beam is studied, meaning
plane stress conditions are assumed. The beam’s structural response to small, harmonic oscillations
is computed using finite element analysis. The objective is to maximize the fundamental frequency
which is approximated using the smooth, differentiable p-norm. Svanberg’s method of moving
asymptotes (MMA) is used to solve the optimization problem.
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Chapter 2

Background

In this chapter, essential theory for understanding this thesis is presented. Firstly, a brief overview
of finite element analysis (FEA) for statics and dynamics is given, followed by some important con-
cepts from linear algebra, and lastly structural optimization and some numerical considerations are
presented. In the next chapter, reduced order models and basis generation methods are discussed,
and in the final chapter sensitivity analysis is performed.

In the first two sections the finite element method, used to discretize the balance principle
of forces in continuum structures, is presented. FEA is the basis of topology optimization, and
is therefore important for understanding this work. Linear elasticity and small deformations are
considered, as such the resulting systems of equations are linear. The finite element method for
small deformations is well known, so only a brief overview of the concepts is given, a more detailed
derivation is given in [10].

2.1 The Finite Element Method - Statics

2.1.1 Equilibrium equations

Consider a continuous body at rest, meaning it is in static equilibrium, subjected to body forces
and surface forces. Let the vector of body forces be denoted by b, the traction vector be denoted
by t. It can then be shown that the equilibrium equations become [10]∫

S
tdS +

∫
V
bdV = 0, (2.1)

where V is the body’s domain and S its boundary. For plane stress conditions, which accurately
describes thin beams, this can be reduced to∮

L
tdL+

∫
A
bdA = 0, (2.2)

where A is a cross section of the body and L its boundary. The traction vector can be written in
terms of the symmetric stress tensor S and the normal vector n as t = Sn. This fact can be used
in conjunction with Green-Gauss divergence theorem to rewrite the equilibrium equations in the
compact vectorized form

∇̃T
σ + b = 0, (2.3)

where the matrix differential operator ∇̃ and the stress vector σ have been introduced. For plane
stress conditions they may be written as

∇̃T
=

[
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]
and σ =

σxxσyy
σxy

 .
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2.1. THE FINITE ELEMENT METHOD - STATICS CHAPTER 2. BACKGROUND

Now that the equilibrium of forces have been established consider the body’s deformation, described
by the normal and shear strains. For small deformations, the strains ϵ can be expressed in terms
of the vector of displacements u =

[
ux uy

]
through the kinematic relation below

ϵ = ∇̃u where ϵT =
[
ϵxx ϵyy γxy

]
. (2.4)

Finally, the stresses and strains may be related through a constitutive relation. In this work linear
elasticity is assumed, which gives the constitutive relation

σ =Dϵ, (2.5)

where D is the material tangent stiffness matrix, which for isotropy can be described by two
parameters: Young’s elasticity modulus E and Poissons ratio ν.

D =
E

1− ν2

1 ν 0
ν 1 0
0 0 1

2(1− ν)


Equations 2.3 are known as the strong form of the equilibrium equations, and hold globally.

By multiplying the strong form (2.3) by an arbitrary weight function v and integrating over
the body, the equations may be transformed into the equivalent weak form [10]. Inserting the
constitutive relation (2.5) and the kinematic relation (2.4) and making use of Green-Gauss theorem
to move derivatives from σ to v gives∫

A
(∇̃v)TD∇̃udA =

∮
L
vT tdL+

∫
A
vTbdA. (2.6)

The advantage of transferring derivatives from σ to v is that the number of derivatives that is
required on u is reduced. In fact, the number of derivatives required on u is now only one, which
allows the use of a piecewise continuous representation.

2.1.2 Finite Element Formulation

Lastly, an approximation of the displacement field u is introduced by dividing the body into
elements (also known as discretizing the body), and approximating the displacement field inside
each element using form functions. This may be expressed very generally as

u =Na, ∇̃u = Ba,

where a is a constant vector describing the displacements in the element’s nodes, N are the global
form functions and B = ∇̃N . In this work four-node isoparametric quadrilaterals will be used,
see [10] for details, although the derivation holds for any element. The arbitrary vector v is also
approximated using the form functions according to the Galerkin condition, that is

v =Nc, ∇̃v = Bc,

where c is an arbitrary, constant vector. Inserting the approximation into the weak form (2.6) gives

cT
(∫

A
BTDBadA−

∮
L
NT tdL −

∫
A
NTbdA

)
= 0.

The equation above must hold for all weight functions v and vectors c, meaning the term inside
the parenthesis must be zero. By introducing the stiffness matrix K and the force vector f as

K =

∫
A
BTDBdA (2.7)

f =

∮
L
NT tdL+

∫
A
NTbdA (2.8)

4



2.2. DYNAMICS CHAPTER 2. BACKGROUND

the equilibrium equations may be expressed as the linear system of equations

Ka = f . (2.9)

Since the form functions of any element only has support on said element, the integration in
equations 2.7 and 2.8 may be carried out on each element separately, after which the system

stiffness matrix and system force vector are assembled. Let the symbol
∑∑

denote this operation,

the quantities can then be written as K =
∑∑

Ke and f =
∑∑

f e where

Ke =

∫
Ae

BeTDeBedAe (2.10)

f e =

∮
Le

N eT tedLe +
∫
Ae

N eTbedAe (2.11)

It can be shown [10] that the stiffness matrix is symmetric positive semidefinite, meaning the
equilibrium equations (2.9) do not have a unique solution. The stiffness matrix can however always
be made positive definite by imposing sufficient boundary conditions. Typically, the deformation
is prescribed on a subset of the nodes and the remaining nodes are free. Consequently, the forces
acting on the nodes with prescribed displacements is unknown, and the forces on the free nodes
must be known. The equilibrium equations (2.9) can then be split in the following way[

Kff Kfp

Kpf Kpp

] [
af
ap

]
=

[
ff

fp

]
,

where ap is the deformation in the prescribed nodes and af is the deformation in the free nodes.

Kffaf = ff −Kfpap, (2.12)

where Kff is symmetric positive definite (SPD), guaranteeing that equation 2.12 has a unique
solution. For the coming chapters, we will always assume that sufficient boundary conditions have
been imposed, meaning the equilibrium equations (2.9) can always be reduced to the form above.
In order to simplify notation, we will denote Kff by K, af by a and so on. It is important to
remember that K now refers to Kff , which is SPD.

2.2 Dynamics

The starting point of statics is that the acceleration of a body at rest is zero, while for a dynamic
description the acceleration must be included. According to Newton’s second law, the sum of forces
acting on a body must equal the body’s mass times its acceleration. The strong form of equilibrium
becomes

∇̃T
σ + b = ρmü,

where ρm is the mass density. The weak form can then be derived in the same way as for statics,
resulting in ∫

A
(∇̃v)TD∇̃udA+

∫
A
ρmv

T üdA =

∮
L
vT tdL+

∫
A
vTbdA.

The next step is to discretize the body and to introduce the approximation of the displacement field.
In dynamics the form functions are assumed to be constant in time, but the nodal displacements
are allowed to vary, meaning

u(t) =Na(t) =⇒ ü(t) =Nä(t).

5



2.3. LINEAR ALGEBRA CHAPTER 2. BACKGROUND

Choosing the arbitrary vector v according to Galerkins condition gives

cT
(∫

A
BTDBadA+

∫
A
ρmN

TNädA−
∮
L
NT tdl −

∫
A
NTbdA

)
= 0.

Again, noting that c is an arbitrary vector, the term inside the parenthesis must be zero, which
results in the equations of motion

Mä+Ka = f , (2.13)

where the SPD mass matrix M has been introduced. Similar to the stiffness matrix, the mass

matrix may be written as M =
∑∑

M e where the element mass matrix is given by

M e =

∫
Ae

ρemN
eTN edAe. (2.14)

The equations of motion may be split similarly to the static equations, which gives the equation of
motion in the free nodes

M ff äf +Kffaf = ff −Kfpap −M fpäp,

where analogous to statics äf and af are the accelerations and deformations in the free nodes, and
äp and ap are the corresponding quantities in the prescribed nodes. Note that bothM ff and Kff

are SPD, so to simplify notation we will denote M ff by M and so on.

2.2.1 Free vibrations

The dynamic analysis in this work is limited to free vibrations, meaning all external forces are
set to zero and the nodal displacements are described as harmonic vibrations. Hence, an ansatz
is made comprised of two parts: one time independent vector describing the vibration shape ψ,
and a time dependent part describing the vibrations amplitude. A convenient way of introducing
harmonic motion is through the exponential function

a(t) = ψejωt =⇒ ä(t) = −ω2ψejωt,

where the constant vector ψ is known as the mode shape (or eigenmode), ω is the angular frequency
and j is the complex square root of −1. It is assumed that the frequencies are positive, as a negative
frequency only has the effect of shifting the phase. The ansatz is inserted into the equation of motion
(2.13), according to the proverb ein ansatz setz mann in, giving

ejωt
(
−ω2Mψ +Kψ

)
= 0.

Since the exponential function is never zero, the expression inside the parenthesis must be zero.
Rearranging the terms gives the generalized eigenproblem

Kψ = ω2Mψ, (2.15)

where the numbers ω2 and vectors ψ are commonly referred to as the eigenvalues and eigenvectors
respectively. In this case the eigenvalues are the squares of the eigenfrequencies and the eigenvectors
are the eigenmodes. Sometimes the eigenvalues will be denoted by λ = ω2 for convenience.

2.3 Linear Algebra

In this section, the solution of linear systems of equations and the associated eigenproblems are
discussed. These concepts are the building blocks of the reduced order methods discussed in later
parts, and are therefore very important for understanding this work. The following sections are
restricted to symmetric, positive definite (SPD) matrices as this is generally the case for finite
element analysis (assuming sufficient boundary conditions are imposed).

6



2.3. LINEAR ALGEBRA CHAPTER 2. BACKGROUND

2.3.1 Matrix Factorization - solving the equilibrium equations

Consider the SPD n× n matrix A. It has been proven in several texts, see for example [11], that
A always has a unique Cholesky factorization, meaning it can be written as the product

A = RTR,

where R is an upper triangular n×n matrix with nonzero diagonal elements. This fact can be used
to solve systems of equations with real, symmetric positive definite matrices. Take for example the
system below, where b is an arbitrary vector with length n.

Ax = b (2.16)

By computing the Cholesky factorization A = RTR and inserting it into the equation above, the
problem can be split into two sub problems, namely

RT t = b (2.17)

Rx = t (2.18)

Since R is upper triangular, t can be found by solving Eq. 2.17 using forward substitution, after
which x is found by inserting t into Eq. 2.18, and using backward substitution. This can be written
as

x = R−1R−Tb, (2.19)

where the symbol R−T is unambiguous since
(
R−1

)T
=
(
RT
)−1

= R−T . The notation x = R−1t
means to solve for x using backward substitution, that is R−1 is not actually computed. Similarly,
t = R−Tb means to solve for t using forward substitution, without actually computing R−T . The
notation in Eq. 2.19 is quite cumbersome, so when the linear system of equations (2.16) is solved
using the Cholesky factorization we will instead write

x = A−1b,

where the symbol A−1 refers to the action of computing a forward and a backward substitution on
b, which is equivalent to multiplying by A−1. The work for computing the Cholesky factorization
is approximately 1

3n
3 floating point operations (flops), and the work for backward- and forward

substitution is approximately n2 flops each [11]. The work of solving the linear system of equations
is hence dominated by the computation of the Cholesky factorization, and totals to about 1

3n
3 flops

for large n.

2.3.2 Solving eigenproblems

Let us begin this section by considering non-trivial solutions, meaning vectors x which are not the
zero vector, to the standard eigenproblem

Ax = λx, (2.20)

where λ is an eigenvalue and x is an eigenvector to the matrix A. Classically, this is approached
by considering the characteristic polynomial, which can be found by moving all terms to the left
hand side.

(A− λI)x = 0,

where I is the identity matrix. he eigenproblem can now be interpreted in the following way: the
eigenvalues are the scalars λ for which the matrix Aλ = A − λI is singular, and the eigenvectors
x are the vectors which span the nullspace of Aλ. Defining the characteristic polynomial as the

7



2.3. LINEAR ALGEBRA CHAPTER 2. BACKGROUND

determinant Aλ, that is pA(λ) = det(A − λI). The matrix Aλ is singular if and only if its de-
terminant is zero, hence the eigenvalues can be found by solving for the zeros of the characteristic
polynomial. However, finding the eigenvalues by solving for the zeros of the characteristic polyno-
mial is ill conditioned [11], meaning it is very susceptible to round-off errors. Therefore, iterative
methods such as Arnoldi iteration are used in practice, for more details see [11].

Next, consider non-trivial solutions to the generalized eigenproblem

Ax = λBx (2.21)

where again λ is an eigenvalue and x is the corresponding eigenvector. All generalized eigenproblems
with SPD left or right hand side can be transformed by the use of similarity transformations to
standard eigenproblems. By assumption B is SPD so it has a Cholesky factorization B = RTR,
which inserted into the generalized eigenproblem gives

Ax = λRTRx ⇐⇒
(
R−TAR−1

)
Rx = λRx ⇐⇒ Cy = µy.

where C = R−TAR−1 and y = Rx. That is, the generalized eigenproblem has been transformed
into a standard eigenproblem which can be solved with iterative methods. The eigenvectors of the
generalized eigenproblem x can be found by forward substitution.

2.3.3 Properties of the Generalized Eigenproblem

In this section some properties of the generalized eigenproblem (2.15) are discussed. Firstly, if ψ
solves the generalized eigenproblem (2.15), then so does any scaled vector αψ. In other words, the
eigenmodes are unique up to a scaling. Typically, the scaling is chosen such that the eigenmodes
are M -normal, meaning ψTMψ = 1.

Furthermore, it can be shown that the eigenfrequencies ω2 must be positive real numbers by
multiplying both sides of the generalized eigenproblem (2.15) by ψT

ψTKψ = ω2ψTMψ ⇐⇒ ω2 =
ψTKψ

ψTMψ
∈ R+,

where it was used that M and K are SPD, that is xTKx, xTMx ∈ R+ for any nonzero vector
x. It can also be shown that for n × n matrices M and K there are n eigenvalues ω2 that solve
the equation 2.15. Firstly, sinceM is SPD it has a unique Cholesky factorizationM = LTL. The
generalized eigenproblem can then be transformed into a standard eigenproblem with the same
eigenvalues by inserting the factorization and premultiplying by L−T .

L−TKL−1Lψ = ω2Lψ ⇐⇒ Ay = ω2y (2.22)

where A = L−TKL−1 and y = Lψ. It has been shown in many texts, see for example Trefethen
and Bau in [11], that the standard eigenproblem (2.22) has n eigenvalues counting multiplicity. It
then follows that the generalized eigenproblem (2.15) also has n eigenvalues.

Finally, let ω1, ω2, ... ωn denote the positive roots of the n eigenvalues of the generalized
eigenproblem (2.15). Since they are positive numbers they may be labeled in order of ascending
magnitude, hence the eigenpair with index (or order) k denoted by (ωk,ψk) is well defined up to a
scaling of ψk. As noted previously, this is chosen such that the eigenmodes are M -normal.

An important property of the generalized eigenproblem is that two eigenmodes with distinct
eigenfrequencies are M -orthogonal. To prove this, let (ωi,ψi) and (ωj ,ψj) be two eigenpairs with
distinct eigenfrequencies, meaning ωi ̸= ωj . They both satisfy the generalized eigenproblem (2.15),
meaning¨

Kψi = ω2
iMψi

Kψj = ω2
jMψj

8



2.4. TOPOLOGY OPTIMIZATION CHAPTER 2. BACKGROUND

Premultiplying the first row by ψj , the second by ψi and taking their difference gives

ψT
j Kψi −ψT

i Kψj = ω2
iψ

T
j Mψi − ω2

jψ
T
i Mψj ⇐⇒ 0 =

(
ω2
i − ω2

j

)
ψT

j Mψi

where the symmetry of K and M was used, meaning ψT
j Mψi = ψT

i Mψj . Since the eigenfre-
quencies are distinct the term ω2

i − ω2
j is nonzero, hence the eigenvectors must be M -orthogonal.

This implies that the eigenmodes are also K-orthogonal, since

ψT
j Kψi = ω2

iψ
T
j Mψi = ω2

iψ
T
i Mψiδij .

2.4 Topology Optimization of Continuum Structures

In this section, topology optimization of continuum structures is presented. Numerical considera-
tions such as checkerboard patterns, mesh dependence, and the non-convex nature of the problem
are discussed. Lastly, the method of moving asymptotes (MMA) which is used to solve the opti-
mization problem is presented, see Svanberg [12].

Structural optimization consists of two main parts: structural analysis and optimization. The
former is formulated as an objective function, often tied to the structure in question, and some
constraints on said structure. Typically the objective is to maximize the stiffness of a structure,
or perhaps the fundamental frequency, and the available material usually serves as a constraint
(also known as the volume constraint). The latter divides the field into three separate groups of
problems:

1. sizing optimization in which structures comprised of bars are studied and the design variables
are the bars’ thicknesses

2. topology optimization which considers continuum structures which are discretized into finite
elements and the design variables are the elements’ densities

3. shape optimization which also handles continuum structures, but where the mesh’s boundary
is subject to change and its parameterization is the design variable

The common denominator for all groups is that they can be formulated as mathematical optimiza-
tion problems of the form

(SO)


min
z

g0(z)

subject to

gj(z) ≤ 0, j = 1, 2, ...,m

z ∈ Z =
{
z ∈ Rn

∣∣ zmin ≤ zl ≤ zmax, l ∈ [1, n]
} (2.23)

where g0 is the objective function, z are the design variables constrained to the domain Z and gi
are functions describing constraints put on the design variables. Typically, equilibrium equations
are not used as constraints in the optimization formulation, but are instead enforced implicitly
through the connection between the design variables and the objective function.

The focus of this work is on topology optimization, which was first presented by Bendsøe and
Kikuchi [3] as a material distribution problem. In their formulation, a continuum is discretized into
finite elements, each of which is described by one of two different microscopic material constituents:
substance or void. Consequently, the design variables are binary which is problematic since binary
functions are not differentiable. Later, Bendsøe [13] proposed that the design variables should
instead be allowed to vary continuously from 0 to 1. This makes the approximation differentiable, at
the cost of the physical interpretation of the design variables and the resulting material distribution.
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Bendsøe suggested what is now known as the SIMP scheme (Solid Isotropic Material with
Penalization) where an elements elasticity modulus is given as a continuous function of the design
variables

E(ze) = zqeEmax,

where Emax is the elasticity modulus of the given material, ze is the design variable of element e,
and q is a penalty exponent (usually set to 3) which is introduced to penalize intermediate values
of ze. Since the volume constraint is linear in the design variables z, intermediate values offer low
stiffness at an unreasonably high cost driving the optimal solution to a nearly binary result. The
scheme has then been refined by Bendsøe and Sigmund [14] to include measures preventing the
stiffness matrix from becoming singular due to the elasticity modulus nearing void,

E(ze) = Emin + (Emax − Emin)z
q
e . (2.24)

2.4.1 Numerical considerations

It is important to remember that the resulting material distribution produced by the optimization
algorithm must be a structure which is possible to construct. Unfortunately, the scheme suggested
by Bendsøe and Sigmund is ill posed and produces results which depend on mesh’s resolution and
contain checkerboard patterns. Moreover, the optimization problem is non-convex meaning that if
the program converges there is no guarantee that it does so to the global minima of the problem
(that is the truly ”optimal” solution). In the next subsections methods which aim to mitigate the
problems above are discussed.

2.4.2 Filtering

One idea which solves both the issue of checkerboard patterns and mesh dependence is to introduce
a restriction on the length scale, which can be done through a filter. Many different filtering
techniques have been proposed, for example the density filter [15], the sensitivity filter [16] and
most recently the PDE-based filter [17] [18]. However, direct filtering of the design variables
through a density filter or a PDE-filter is the among the most widely used today. In the density
filter approach, the design variables z are mapped to the filtered densities ρ by the relation

ρe =

nelm∑
s=1

w(xe − xs)zsvs

nelm∑
s=1

w(xe − xs)vs

,

where vs =
∫
Ωs

dv is the volume of element s with support on Ωs and center of mass at xs. The
kernel, w, is often chosen as the linearly decaying hat function w(xe−xs) = max(0, r− ||xe−xs||)
where r is the filter radius and determines the length scale. Ultimately the filter can be expressed
in the matrix-vector relation

ρ = Mfz. (2.25)

2.4.3 Heaviside thresholding

While the density filter does solve the issue of checkerboard patterns and serves as an effective
way of introducing a minimum length scale to the problem, it does so at the cost of smearing the
boundary, see for example figure 2.2. Guest [19] suggests to project the densities using a smooth
approximation of the Heaviside step-function as a final measure to achieve a binary design. In

10



2.4. TOPOLOGY OPTIMIZATION CHAPTER 2. BACKGROUND

Figure 2.1: The figure shows the Heaviside approximation in equation 2.26 for η = 0.5 and different
choices of β in the interval x ∈ [0, 1]. Note that for β = 1 the approximation is almost the identity
function y = x, and for β →∞ the approximation approaches the Heaviside step-function, shown
in a dashed black line.

this work the approximation based on the hyperbolic tangent, introduced in [20], is used. The
thresholded densities ρ̄e are in this formulation given by

ρ̄e = H(ρe;β, η) =
tanh(βη) + tanh(β(ρe − η))

tanh(βη) + tanh(β(1− η))
, (2.26)

where η determines the point of the transition and β determines its steepness, see figure 2.1. As
β approaches infinity H converges to the Heaviside step-function, and for β = 1 H approximates
the identity ρ̄e ≈ ρe. Typically, the parameter is allowed to change throughout the optimization
procedure, starting at a low value such that the optimization is not affected and increasing incre-
mentally in order to force a binary layout. Figure 2.2 shows, from left to right, as first a density
filter and then Heaviside projection is applied to a checkerboard pattern.

2.4.4 Sequential Programming

The problems arising from structural optimization can be solved using any optimization algorithm,
such as CG or Newton-Raphson schemes, see for example [21]. What is used instead are methods
that solve a sequence of convex approximations to the optimization problem. The two most general
such methods are Sequential Linear Programming (SLP) which is simply a linearization of the
problem, and Sequential Quadratic Programming (SQP) which extends SLP by adding a second
order term [22]. For structural optimization there are methods that more effectively exploit the
specific structure of the problem, namely Convex Linearization (CONLIN) developed by Fleury
and Braibant in [23] and later the Method of Moving Asymptotes (MMA) developed by Svanberg
in [24] and [12].

The inspiration for CONLIN comes from studying trusses, where it is found that the defor-
mations are given by the reciprocals of the bars’ elasticity moduli, see Christensen and Klarbring
[22] for details. In sizing optimization the bars’ elasticity moduli are the design variables, hence
it is natural to linearize the objective function in the reciprocals of the design variables. MMA
extends this further by introducing move limits, or asymptotes, which control how conservative the
approximation is. That is, at iteration k the objective function (or constraint) gi is approximated

11
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Figure 2.2: From left to right, the first plot shows a design exhibiting a checkerboard pattern. In
the next plot a density filter is applied, smoothing out the checkerboard pattern. The filter kernel
is shown as the red circle. Finally, Heaviside thresholding is applied to force a (nearly) binary
design.

as

g
[M ],k
i (z) = rki +

n∑
l=1

(
pki,l

Uk
l − zl

−
qki,l

zl − Lk
l

)
,

where Uk
l and Lk

l are the upper and lower asymptotes for design variable zl at iteration k, which
determine how conservative the approximation is. The variables pki,l, q

k
i,l and rki are given by

pki,l =

{(
Uk
l − zkl

)2 ∂gi
∂zl

∣∣
zk

if ∂gi
∂zl

∣∣
zk

> 0

0 otherwise

qki,l =

{
0 if ∂gi

∂zl

∣∣
zk
≥ 0(

zkl − Lk
l

)2 ∂gi
∂zl

∣∣
zk

otherwise

rki = gi(z
k)−

n∑
l=1

(
pki,l

Uk
l − zkl

+
qki,l

zkl − Lk
l

)

The choice of rki guarantees that the approximation g
[M ],k
i is exact at the point of linearization,

meaning g
[M ],k
i (zk) = gi(z

k), while pki,l and qki,l guarantee that the gradient is exact at the point

of linearization, meaning
∂g

[M ],k
i
∂zl

∣∣
zk

= ∂gi
∂zl

∣∣
zk
. By introducing the move limits αk

l and βk
l such

that Lk
l < αk

l ≤ zjl ≤ βk
l < Uk

l the approximation is prevented from becoming singular. Putting
everything together gives the MMA-approximation of the optimization problem at step k.

(SO[M ],k)


min
z

g
[M ],k
0 (z)

subject to

g
[M ],k
j (z) ≤ 0, j = 1, 2, ...,m

z ∈ Z [M ],k =
{
z ∈ Rn

∣∣ αl ≤ zl ≤ βl, l ∈ [1, n]
}

It can be shown that this approximation is convex and separable, meaning each design variable zl
can be solved for individually using Lagrangian duality [22]. In this work the Globally Convergent
Method of Moving Asymptotes (GCMMA) is used, which modifies the MMA slightly to guarantee
some convergance properties. Since this work is ultimately about numerical methods the reader is
referred to [12] for details regarding the optimization scheme.
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Chapter 3

Reduced Order Models

This chapter deals with Reduced Order Models and methods for generating basis vectors. In
particular Combined Approximation (CA) developed by Kirsch in [1] will be presented for static
problems and for the generalized eigenproblem. In the context of Topology Optimization these
methods need special care, as the choice of basis vectors affect not only the accuracy of the solution,
but also the sensitivity analysis. Therefore, a modified version of Kirsch’s CA which preserves
consistency in sensitivity analysis is presented. The sensitivity analysis itself is discussed in later
chapters.

In an earlier chapter, a method for solving linear systems of equations using matrix factorization
was presented, and it was shown that the number of flops grows cubically with the number of
unknowns. Moreover, the solution requires storing the Cholesky factorization, which can require
large amounts of memory. Both these problems put a restriction on how large systems of equations
can be solved using matrix factorization. Hence, for large systems of equations other methods
should be considered.

One way of reducing the number of flops is to approximate the solution in a subspace of the
solution space, which is known as Reduced Order Models (ROM). The idea is to first generate a set
of basis vectors, based on prior knowledge of the problem, and then approximate the solution as
a linear combination of such basis vectors. In this work Kirsch’s CA is used to generate the basis
vectors.

There are other methods which can reduce the computational effort when solving linear systems
of equations. Krylov subspace methods such as GMRES, CG with or without preconditioners and
multigrid methods are examples of iterative methods which have also been proven to be efficient in
topology optimization, see for example [2], [9]. In fact, Kirsch has shown that CA is mathematically
equivalent to a preconditioned CG procedure with zero initial guess [25].

3.1 Reduced Static Problem

To begin, consider the equilibrium equations (2.9). Classical methods such as matrix factorization
solve the system exactly, using about n3 operations for a system of size n× n. The computational
effort can be reduced, at the cost of decreasing the accuracy, by the use of an approximation.
Therefore, let us express the solution to the equilibrium equations (2.9) as a linear combination of
the linearly independent basis vectors u1,u2, ...,us, or

u∗ = u1y1 + u2y2 + ...usys =
s∑

i=1

uiyi, (3.1)

where yi are the scalar unknowns to be determined, and the star ∗ is used to separate the exact
solution u from the approximation u∗. If s = n linearly independent basis vectors are used, the
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whole solution space is spanned meaning u∗ = u. However, using a large amount of many basis
vectors is expensive, and the point of a reduced order method is to find good basis vectors such
that only a few s << n are needed (typically five to ten is enough for a good approximation).

Expressing u∗ as a linear combination of basis vectors is equivalent to looking for a solution
in the space spanned by the basis vectors, which can be written as u∗ ∈ Us = span(u1,u2, ...,us).
Expressing the approximation in this way can be convenient when the basis vectors ui are manip-
ulated. For example if u1 is replaced with αu1 the space spanned by the basis vectors does not
change, so this does not affect the solution u∗. For convenience, the linear combination (3.1) is
commonly written in matrix-vector format. Therefore, the matrix of basis vectors U and vector of
unknowns y are introduced,

U = [u1,u2, ...,us] y = [y1, y2, ...ys]
T .

Equation 3.1 may now be written as

u∗ =
s∑

i=1

uiyi = Uy. (3.2)

Provided the basis vectors ui are given, it remains to find the vector y, after which the approxi-
mation is given by equation 3.2. To find y, let us insert the linear combination (3.2) directly into
the equilibrium equations (2.9) and premultiply by U

UTKUy = UTf . (3.3)

Introducing the reduced model stiffness matrix KR = UTKU , and the reduced model force fR =
UTf the system may be written as

KRy = fR. (3.4)

The reduced system (3.4) only has s unknowns, and hence has the complexity of about s3. If
an accurate approximation u∗ can be found by a small number s basis vectors, the complexity of
solving the system can be reduced greatly. The amount of computations that can be saved clearly
depends on how the basis vectors are generated.

3.1.1 Reanalysis

In this section Kirsch’s method for generating basis vectors, introduced in [1], is derived in the
context of topology optimization. In other words, given the vector of design variables z the task is
to solve the equilibrium equations

Ku = f , (3.5)

where the stiffness matrix is a function of the design variables K = K(z) and, without loss of
generality, the load f is a constant vector. Assume that this is not the first design iteration,
meaning there is some initial design z0 in which the equilibrium equations have been solved, that
is

K0u0 = f , (3.6)

where the zeros indicate that the quantities correspond to a previous design cycle, and are hence
known constants with respect to the current design z. Moreover, let us assume that the equilibrium
equations at the initial design were solved by first computing the Cholesky factorization of the old
stiffness matrix K0

K0 = R
TR.
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The goal is to use the factorization above to generate a set of basis vectors that can be used to
solve the equilibrium equations for the updated design z. The stiffness matrix K at the current
design may be related to the old stiffness matrix by introducing the change ∆K,

K =K0 +∆K. (3.7)

The stiffness matrix in equation 3.5 may then be replaced by equation 3.7

(K0 +∆K)u = f .

As mentioned previously it is assumed that the Cholesky factorization of K0 is known and can be
utilized by premultiplying the equation above by K−1

0 , giving

(I +K−1
0 ∆K)u =K−1

0 f .

The inverse of (I +K−1
0 ∆K) exists provided the 2-norm of K−1

0 ∆K is bounded from above by 1,
that is ||K−1

0 ∆K||2 < 1, see for example Renardy and Rogers in [26]. The inverse is given by the
well known power series

(I +B)−1 =
∞∑
k=0

(−B)k where B =K−1
0 ∆K.

This power series has an analog for scalars, recall from elementary analysis that
∑∞

k=0 a
k = (1−a)−1

where |a| < 1. A series representation of u can then be found by premultiplying by the inverse
above, giving

u = (I +B)−1K−1
0 f = (I −B +B2 − ...)K−1

0 f .

It turns out that using only the first few terms, say s << n < ∞, as a basis for a reduced order
model may produce an accurate approximation of u, even if ||K−1

0 ∆K||2 ≥ 1 [1]. The basis vectors
can be generated recursively by

K0u1 = f

K0ui = −∆Kui−1 i = 2..s
(3.8)

The computational effort is dominated by the forward- and backward substitution, hence to gen-
erate s basis vectors the computational effort is on the magnitude sn2.

It can be shown that the approximation’s error depends on the norm of K−1
0 ∆K (to be precise

it is proportional to ||K−1
0 ∆K||s) [9]. Therefore, the larger the changes are between the current

and old design, the larger the error becomes. In other words, the more frequently the stiffness
matrix is factorization, the more accurate the approximation becomes.

3.2 Reduced Eigenproblem

Consider approximating the eigenvector of index k in the generalized eigenproblem (2.15) by the
basis vectors uk,1,uk,2, ...,uk,s. Note that in general a unique set of basis vectors is needed for
each sought eigenvector, which is emphasized by the index k in the basis vectors. Expressing the
approximated eigenvector ψ∗

k as a linear combination of the basis vectors gives

ψ∗
k = uk,1yk,1 + uk,2yk,2 + ..uk,syk,s =

s∑
i=1

uk,iyk,i,

where the basis vectors are linearly independent. Expressing the eigenvectors as a linear combi-
nation of basis vectors is equivalent to searching for a vector ψ∗

k in the span of the basis vectors,
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or ψ∗
k ∈ Uk,s = span(uk,1,uk,2, ...uk,s). It can be convenient to express the eigenvector using a

matrix-vector expression instead of the sum above. Therefore, the matrix of basis vectors Uk and
vector of unknowns yk are introduced,

Uk = [uk,1,uk,2, ...,uk,s], yk = [yk,1, yk,2, ..., yk,s].

The linear combination may now be written as

ψ∗
k =

s∑
i=1

uk,iyk,i = Ukyk. (3.9)

Inserting equation 3.9, into the generalized eigenproblem (2.15) and premultiplying by Uk gives

UT
kKUkyk = (ω∗

k)
2UT

kMUkyk. (3.10)

Introducing the reduced model stiffness matrix KR
k = UT

kKUk and reduced model mass matrix
MR

k = UT
kMUk gives the reduced generalized eigenproblem.

KR
k yk = (ω∗

k)
2MR

k yk (3.11)

The first eigenpair of the reduced generalized eigenproblem can then be used to approximate the
kth eigenpair of the full generalized eigenproblem. In other words, λ∗

k = (ω∗
k)

2 approximates the
kth eigenvalue λk = ω2

k, meaning λ∗
k ≈ λk. An important note is that the vector ψ∗

k may not solve
the full generalized eigenproblem, meaning

Kψ∗
k − λ∗

kMψ∗
k = ∆f ̸= 0

Furthermore, there is no guarantee that the first eigenpair of the reduced generalized eigenproblem
(3.11) approximates the kth eigenpair of the full generalized eigenproblem. In fact, if the basis
vectors are chosen poorly, the first eigenpair may approximate a higher or lower order eigenpair.
The method of generating basis vectors is therefore critical for the accuracy of the method.

3.2.1 Kirsch’s Combined Approximation

In this section Kirsch’s Combined Approximation of generating basis vectors for the generalized
eigenproblem is presented in the context of topology optimization. In other words, given the vector
of design variables at the current design cycle z, the task is to solve the generalized eigenproblem

Kψk = λkMψk, (3.12)

where the stiffness- and mass-matrix are functions of the design variables K = K(z) and M =
M(z). In the context of topology optimization, it is natural to assume that the generalized eigen-
problem has been solved in a previous design iteration, meaning the eigenpair (λ0,k,ψ0,k) which
satisfies

K0ψ0,k = λ0,kM0ψ0,k (3.13)

has been found. Assume that, in the process of solving the generalized eigenproblem (3.13), the
Cholesky factorization of K0 has been computed. The goal is to use the factorization of K0 at
the current design cycle to build a set of basis vectors which can be used to and approximate the
eigenmode with a reduced order model. The stiffness matrix can be expressed in terms of the old,
plus some change due to changes in the design,

K =K0 +∆K. (3.14)
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Inserting equation 3.14 into the generalized eigenproblem (3.12), gives

(K0 +∆K)ψk = λkMψk.

As mentioned previously it is assumed that the Cholesky factorization of K0 is known, therefore
it is justified to premultiply by K−1

0 ,

(I +K−1
0 ∆K)ψk = λkK

−1
0 Mψk. (3.15)

Provided the norm ofK−1
0 ∆K is bounded from above by one, that is ||K−1

0 ∆K||2 < 1, the inverse
of the left hand side exists [26] and can be expressed in the power series

(I +B)−1 =
∞∑
k=1

(−B)k where B =K−1
0 ∆K.

Inserting the power series into equation 3.15 gives

ψk =
(
I−B +B2...

)
λkK

−1
0 Mψk.

It turns out that using only the first few terms, say s << n < ∞, as a basis for a reduced order
model may produce an accurate approximation of ψ, even if ||K−1

0 ∆K||2 ≥ 1 [1]. From practical
experience it has been found that the basis vectors produced by the equation above may be poorly
scaled relative to each other resulting in ill conditioned reduced order stiffness and mass matrices.
Therefore, the basis vectors are normalized with respect to the mass matrix.

Finally, the basis vectors may be generated recursively through the equations below, see algo-
rithm 1 in appendix A for the pseudocode. This method will be referred to as Kirsch’s combined
approximation for eigenproblems, or CAE for short.

K0u1 =Mψ0,k

K0ui = −∆Kti−1 i = 2..s

ti = ui

(
uT
i Mui

)−1/2
i = 1..s

(3.16)

Note that the eigenvalue λk has been ignored since it is an arbitrary scaling factor and will only
affect the generation of basis vectors, the space they span is unchanged.

3.2.2 Basis Deflation

Kirsch noted that the accuracy of approximation can be very poor for higher order eigenpairs, since
the approximation may converge to lower order eigenmodes (also known as relaxing) instead of the
sought eigenmode [1]. This can be prevented by deflating the eigenvectors, meaning components of
lower order eigenmodes are removed from the basis vectors through orthogonalization, preventing
the approximation from converging to them.

Assume that the first l eigenmodes have been approximated, that is ψ1,ψ2, ...ψl are known, and
we wish to deflate the basis vector ti used to approximate the l+1 eigenmode ψl+1. The resulting
deflated basis vector vi can then be expressed as a linear combination of ti and the eigenmodes
ψ1,ψ2, ...ψl.

vi = ti −
l∑

j=1

αjψj , (3.17)

where αj are scalars that should be chosen such that vi is orthogonal to the old eigenmodes, in
other words

ψT
kMvi = 0 k = 1...l.
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The scalars can be found by premultiplying equation 3.17 by ψT
kM and using the orthonormality

of the eigenmodes ψT
kMψj = δkj ,

0 = ψT
kMvi = ψ

T
kMti −

l∑
j=1

αjψ
T
kMψj = ψ

t
kMti − αk =⇒ αk = ψT

kMti.

Inserting the expression found above into equation 3.17 gives

vi = ti −
l∑

j=1

(
ψT

j Mti
)
ψj .

Combining this with Kirsch’s CA (3.16) gives the eigenmode orthogonalized CA, or CAEEON for
short. The scheme to generate the basis vectors is shown below, see algorithm 2 for the pseudocode.

K0u1 =Mψ0,k

K0ui = −∆Kti−1 i = 2..s

ti = ui

(
uT
i Mui

)−1/2
i = 1..s

vi = ti −
k−1∑
j=1

(
ψT

j Mti
)
ψj i = 1..s

(3.18)

3.2.3 Modified Basis Deflation

Note that by orthogonalizing the basis vectors with respect to the current eigenvectors as done
above, the basis vectors corresponding to eigenvalue l depend on the eigenmodes of first l − 1
eigenmodes. Consequently, the ne reduced eigenvalue problems are coupled, meaning they can not
be solved independently. In coming chapters sensitivity analysis of the eigenvalues is discussed, in
which it is seen that the coupled nature of the orthogonalization is very problematic. Since the
eigenmodes are dependent on the current design, their derivative appears in the sensitivity analysis.

We present a novel approach to the orthogonalization which remedies the problems mentioned
above by orthogonalizing with respect to a set of old eigenmodes. Firstly, the orthogonalization is
done with respect to a given set of known vectors, meaning the problems are no longer dependent on
each other, hence the problems are no longer coupled. Secondly, the old eigenmodes are constants
with respect to the current design hence their derivative is zero and the problems in sensitivity
analysis is avoided.

The question is which eigenmodes should be chosen for orthogonalization. Remember, the
reason the basis vectors are orthogonalized to the eigenvectors is to deflate them such that the
reduced eigenproblem converges to the desired eigenvalue. Hence, one could argue that the best
option would be the most recent eigenvectors. We argue that the natural choice would be the
eigenmodes corresponding to K0, that is ψ0,1,ψ0,2...ψ0,l−1, although it is up to the user which

eigenmodes are chosen. The scheme to generate the basis vectors is shown below, where ψ̂j denotes
some old eigenvector of index j, see algorithm 3 for the pseudocode. This method will be referred
to as the modified eigenmode orthogonalized CA, or CAEEONmod for short.

K0u1 =Mψ0,k

K0ui = −∆Kti−1 i = 2..s

ti = ui

(
uT
i Mui

)−1/2
i = 1..s

vi = ti −
k−1∑
j=1

(
ψ̂

T

j Mti

)
ψ̂j i = 1..s

(3.19)
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3.3 Numerical considerations

As noted previously, the accuracy of the reduced order model depends on how often a factorization
of the stiffness matrix is performed. At the same time, the fewer times this is done the more work
is saved overall. Therefore, it is important to consider how frequently the stiffness matrix should
be factorized. As mentioned previously the error of the approximation depends to the norm of
K0∆K, meaning a measure of the change in the design could be used to determine when a new
factorization needs to be performed.

Amir [2] suggests to use the cosine of the angle between the current design z, and the de-
sign corresponding to the stiffness matrix K0, meaning z0, to determine if a new factorization is
necessary. The cosine between two vectors is given by the dot-product

cos(θ) =
zTz0

||z||2||z0||2
. (3.20)

If the design changes are small, the vectors z and z0 should be roughly parallel meaning the cosine
of the angle is 1. If, on the other hand, the designs are very different the vectors should be almost
perpendicular, meaning the cosine of the angle is 0. Equivalently, one can consider the sine of the
angle, given by the trigonometric identity

sin(θ) =
√

1− cos2(θ) =

√
1− (zTz0)

2

||z||22||z0||22
. (3.21)

The advantage is that the sine of the angle is small when the change between the vectors is small,
and the sine of the angle is almost 1 when the designs are perpendicular, which corresponds nicely
to the norm of two vectors.

During the optimization, if the sine of the angle between the current and old design supersedes
the tolerance αtol a factorization is performed. In addition, Amir suggests to force a factorization
at set intervals. Bogomolny found that often times CA would produce accurate results, but that
sometimes an additional exact analysis is needed [27]. He suggests that a criterion on the approx-
imation’s accuracy should be introduced, which he defines as the magnitude of the vector ∆fk

relative KUkyk, or

δk =
||∆fk||2
||KUkyk||2

=
||KUkyk − λkMUkyk||2

||KUky||2
≤ δtol. (3.22)

Meaning, after the reduced order model is solved the condition above is checked, and if it fails an
additional factorization is performed and the full problem is solved.
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Chapter 4

Consistent Sensitivity Analysis

In this chapter expressions for the eigenfrequencies sensitivity to design changes (gradients) will
be derived. In [2] Amir uses reduced order methods to approximate the equilibrium equations and
presents a consistent approach to sensitivity analysis which takes the inaccuracies of the reduced
order method into account. Consistent sensitivity analysis has then been extended to the reduced
eigenproblem by Bogomolny [27], which is used as a base for this chapter. The sensitivity analysis
will depend on the choice of basis vectors, hence each basis generation method described in the
previous chapter needs its own sensitivity analysis.

In the following sections the numerator convention for computing derivatives between scalars,
vectors and matrices is used. Hence, vector valued functions retain their orientation when differ-
entiated with respect to scalars, whereas the derivative of a scalar valued function with respect to
a column vector is a row vector, and vice versa.

4.1 Full eigenproblem

First, consider the full generalized eigenproblem (2.15). To find the sensitivity of the kth simple
eigenvalue λk = ω2

k differentiate the equation implicitly with respect to the filtered design variables
ρ̄e, (

∂K

∂ρ̄e
− λk

∂M

∂ρ̄e

)
ψk + (K − λkM)

∂ψk

∂ρ̄e
− ∂λk

∂ρ̄e
Mψk = 0.

Premultiplying by the eigenvector implies

ψT
k

(
∂K

∂ρ̄e
− λk

∂M

∂ρ̄e

)
ψk +ψ

T
k (K − λkM)

∂ψk

∂ρ̄e
=

∂λk

∂ρ̄e
ψT

kMψk.

Note that the middle term is zero, since ψk solves the generalized eigenproblem (2.15). Assuming
that the eigenvectors are M -normal, meaning ψT

kMψk = 1 the sensitivity may be expressed as

∂λk

∂ρ̄e
= ψT

k

(
∂K

∂ρ̄e
− λk

∂M

∂ρ̄e

)
ψk. (4.1)

4.2 Reduced eigenproblem

The sensitivity of the eigenfrequencies produced by the reduced order model may be found in a
similar way as above, by differentiating the reduced generalized eigenproblem (3.11) implicitly with
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respect to the design variables.(
V T

k

∂K

∂ρ̄e
V k − λ∗

kV
T
k

∂M

∂ρ̄e
V k

)
yk +

(
V T

kKV k − λ∗
kV

T
kMV k

) ∂yk
∂ρ̄e
−

∂λ∗
k

∂ρ̄e
V T

kMV kyk+

2
(
V T

kK − λ∗
kV

T
kM

) ∂V k

∂ρ̄e
yk = 0.

By multiplying the equation above by the reduced model eigenmode yk from the left and moving
some terms around the expression may be simplified

∂λ∗
k

∂ρ̄e
yTkV

T
kMV kyk =yTkV

T
k

(
∂K

∂ρ̄e
− λ∗

k

∂M

∂ρ̄e

)
V kyk + y

T
k

(
V T

kKV k − λ∗
kV

T
kMV k

) ∂yk
∂ρ̄e

+

2yTkV
T
k (K − λ∗

kM)
∂V k

∂ρ̄e
yk

The expression can be simplified further by assuming that the approximate eigenmodes are nor-
malized with respect to the reduced mass matrix, meaning yTkV

T
kMV kyk = 1. Furthermore, since

yk solves the reduced generalized eigenproblem (3.11), the term multiplying the derivative of yk is
zero. Lastly, the quantity ∆fk = (K − λ∗

kM)V kyk may be introduced to condense the expression
slightly.

∂λ∗
k

∂ρ̄e
= yTkV

T
k

(
∂K

∂ρ̄e
− λ∗

k

∂M

∂ρ̄e

)
V kyk +

s∑
i=1

2∆fT
k

∂vi
∂ρ̄e

yi

Two things should be noted here. Firstly, as the approximate eigenpair (λ∗
k,V kyk) approaches the

exact eigenpair, ∆fk approaches zero. Thus the quantity ∆fk can be interpreted as the approx-
imated eigenpair’s ’error’. Consequently, if the approximation is good (meaning in this context
that the ’error’ is small), the last term vanishes and the sensitivity approaches the exact value in
equation 4.1. Hence, if the reduced order model accurately approximates the eigenfrequencies, the
sensitivity analysis is also accurate. However, if ∆fk is not zero, the second term is needed for a
consistent sensitivity analysis.

Secondly, the derivative of the basis vectors appeared in the sensitivity. Consider for the sake
of argument, differentiating the first basis vector u1 given by the first row in equation 3.16,

K0
∂u1

∂ρ̄e
=

∂M

∂ρ̄e
ψ0,k =⇒ ∂u1

∂ρ̄e
=K−1

0

∂M

∂ρ̄e
ψ0,k.

Thus, if the basis vectors’ derivatives were to be used directly, one pair of backward and forward
substitutions would be needed for each basis vector and design variable. This is not feasible for
anything more than a few design variables. Hence the sensitivity needs to be computed in some
other way, by for example the use of adjoint equations similar to [2] and [27]. This process will of
course depend on how the basis vectors are generated, and will be discussed in upcoming sections.

4.2.1 Standard basis vectors

As noted above and in [2] the basis vectors needs to be taken into account in sensitivity analysis.
This was then developed by Bogomolny in [27] for consistent sensitivity analysis for eigenproblems,
which will be the basis of this section.

Therefore, consider first the optimization problem when the standard basis vectors from section

21



4.2. REDUCED EIGENPROBLEM CHAPTER 4. CONSISTENT SENSITIVITY ANALYSIS

3.2.1 is used to reduce the generalized eigenvalue problem

min g0(λ
∗
k)

subject to

V TKV yk = λ∗
kV

TMV yk

K0u1 =Mψ0,k (4.2)

K0ui = −∆Kvi−1 i = 2, ...s (4.3)

vi = ui

(
uT
i Mui

)−1/2
i = 1, ...s (4.4)

As suggested by Bogomolny adjoints corresponding to terms 4.2 and 4.3 are added to the eigenvalue.
However, in contrast to the work by Bogomolny terms corresponding to basis normalization (4.4),
are added in our work. The resulting augmented eigenvalue is given below

λ̃∗
k = λ∗

k + z
T
1

(
K0u1 −Mψ0,k

)
+

s∑
i=2

zTi (K0ui +∆Kvi−1) +
s∑

i=1

qTi

(
vi − ui

(
uT
i Mui

)−1/2
)

The constant vectors zj and qj are known as adjoints and since they multiply zeros λ∗
k, λ̃

∗
k and

their sensitivities are equal. The advantage of introducing the adjoints is that they are free to be
chosen, and so the sensitivity of λ̃∗

k may be easier (and even cheaper) to evaluate if the adjoints
are chosen in a smart way. Differentiating the augmented eigenvalue λ̃∗

k with respect to the design
variables gives

∂λ̃∗
k

∂ρ̄e
= yTkV

T
k

(
∂K

∂ρ̄e
− λ∗

k

∂M

∂ρ̄e

)
V kyk +

s∑
i=1

2∆fT
k yi

∂vi
∂ρ̄e

+ zT1

(
∂K0

∂ρ̄e
u1 +K0

∂u1

∂ρ̄e
− ∂M

∂ρ̄e
ψ0,k −M

∂ψ0,k

∂ρ̄e

)
+

s∑
i=2

zTi

(
∂K0

∂ρ̄e
ui +K0

∂ui

∂ρ̄e
+

∂∆K

∂ρ̄e
vi +∆K

∂vi−1

∂ρ̄e

)

+

s∑
i=1

qTi

(
∂vi
∂ρ̄e
− ∂

∂ρ̄e

[
ui

(
uT
i Mui

)−1/2
])

(4.5)

Using the definition of ∆K in equation 3.14 and that K0 and ψ0,k are constants with regard to
the current design, gives

∂ψ0,k

∂ρ̄e
= 0,

∂K0

∂ρ̄e
= 0,

∂∆K

∂ρ̄e
=

∂K

∂ρ̄e
(4.6)

Lastly, rewriting the normalization term ui

(
uT
i Mui

)−1/2
using index notation (disregarding the

index i for a moment) its sensitivity can be computed

∂

∂x

[
ul (umMmnun)−1/2

]
=

=
∂ul

∂x
(umMmnun)−1/2 − 1

2
ul (uoMopup)−3/2

(
∂uq

∂x
M qrur + us

∂M st

∂x
ut + uvMvw ∂uw

∂x

)
=

(
(umMmnun)−1/2 ∂u

l

∂x
− ul (uoMopup)−3/2 ∂u

q

∂x
M rqur

)
− 1

2
ul (uoMopup)−3/2 us

∂M st

∂x
ut

=
(
δqlu

mMmnun − ulurM rq
)
(uoMopup)−3/2 ∂u

q

∂x
− 1

2
ul (uoMopup)−3/2 us

∂M st

∂x
ut,

where it was used that the mass matrix is symmetric, meaning uvMvw ∂uw

∂x = uvMwv ∂uw

∂x =
∂uv

∂x Mvwuw. The expression may now be written in matrix-vector format

∂

∂ρ̄e

[
ui

(
uT
i Mui

)−1/2
]
=

[(
uT
i Mui − uiu

T
i M

) ∂ui

∂ρ̄e
− 1

2
ui

(
uT
i

∂M

∂ρ̄e
ui

)] (
uT
i Mui

)−3/2
(4.7)
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Inserting equations 4.6 and 4.7 into equation 4.5 gives

∂λ̃∗
k

∂ρ̄e
= yTkV

T
k

(
∂K

∂ρ̄e
− λ∗

k

∂M

∂ρ̄e

)
V kyk +

s∑
i=1

2∆fT
k yi

∂vi
∂ρ̄e

+ zT1

(
K0

∂u1

∂ρ̄e
− ∂M

∂ρ̄e
ψ0,k

)
+

s∑
i=2

zTi

(
K0

∂ui

∂ρ̄e
+

∂K

∂ρ̄e
vi−1 +∆K

∂vi−1

∂ρ̄e

)

+
s∑

i=1

qTi

(
∂vi
∂ρ̄e
−
[(
uT
i Mui − uiu

T
i M

) ∂ui

∂ρ̄e
− 1

2
ui

(
uT
i

∂M

∂ρ̄e
ui

)] (
uT
i Mui

)−3/2
)

The trick is now to find expressions for the adjoints such that the basis vector’s sensitivities do not
contribute. Therefore, collect the terms that multiply them.

∂λ̃∗
k

∂ρ̄e
= yTkV

T
k

(
∂K

∂ρ̄e
− λ∗

k

∂M

∂ρ̄e

)
V kyk − zT1

∂M

∂ρ̄e
ψ0,k

+
s∑

i=2

zTi
∂K

∂ρ̄e
vi−1 +

1

2

s∑
i=1

qTi ui

(
uT
i

∂M

∂ρ̄e
ui

)(
uT
i Mui

)−3/2

+
s∑

i=1

(
zTi K0 − qTi (uT

i Mui − uiu
T
i M)

(
uT
i Mui

)−3/2
) ∂ui

∂ρ̄e

+
s−1∑
i=1

(
2yi∆f

T
k + qTi + zTi+1∆K

) ∂vi
∂ρ̄e

+
(
2ys∆f

T
k + qTs

) ∂vs
∂ρ̄e

(4.8)

The first two rows of equation 4.8 are simple to evaluate, and do not contain derivatives of basis
vectors, although the last rows do. It is at this point the augmented eigenvalue is advantageous, as
the adjoints are free to choose. If they are chosen according to the equations below, the last three
rows may be eliminated.

qs = −2ys∆fk

K0zi = (uT
i Mui −Muiu

T
i )(u

T
i Mui)

−3/2qi i = s, ...1

qi = −2yi∆fk −∆Kzi+1 i = s− 1, ...1

(4.9)

These equations must be solved in reverse order, meaning first qs can be solved, followed by zs after
which qs−1 and zs−1 can be solved, and so on. The vectors qj are given by simple matrix-vector
multiplication and do not require a lot of work, but solving for the s vectors zj does require an
additional s backward and forward substitutions, which has the complexity of about sn2, but this
is still an inexpensive step compared to finding the eigenvalues of the full system which has the
complexity of n3.

After the adjoint equations are solved, the sensitivities become

∂λ̃∗
k

∂ρ̄e
= yTkV

T
k

(
∂K

∂ρ̄e
− λ∗

k

∂M

∂ρ̄e

)
V kyk − zT1

∂M

∂ρ̄e
ψ0,k

+

s∑
i=2

zTi
∂K

∂ρ̄e
vi−1 +

1

2

s∑
i=1

qTi vi

(
vTi

∂M

∂ρ̄e
vi

) (4.10)
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4.2.2 Eigenmode Orthogonalized Combined Approximation

The same procedure as above may be performed for eigenmode orthogonalized CA, where the
optimization problem may be stated as

max g0(λ
∗
k)

subject to

V T
kKV kyk = λ∗

kV
T
kMV kyk

K0u1 =Mψ0,k

K0ui = −∆Kti−1 i = 2, ...s

ti = ui

(
uT
i Mui

)−1/2
i = 1, ...s

vi = ti −
k−1∑
j=1

(
tTi Mψj

)
ψj i = 1, ...s

As in section 4.2.1, one term per constraint (in total 3s terms) is added to the eigenvalue in order
to remove derivatives of basis vectors

λ̃∗
k = λ∗

k + z
T
1

(
K0u1 −Mψ0,k

)
+

s∑
i=2

zTi (K0ui +∆Kti−1)

+
s∑

i=1

qTi

(
ti − ui

(
uT
i Mui

)−1/2
)
+

s∑
i=1

wT
i

vi − ti + k−1∑
j=1

(
tTi Mψj

)
ψj

 ,

(4.11)

where, due to the extra set of equations, an extra set of adjointswj have been added. Differentiating
with respect to the design variables gives

∂λ̃∗
k

∂ρ̄e
= yTkV

T
k

(
∂K

∂ρ̄e
− λ∗

k

∂M

∂ρ̄e

)
V kyk + 2∆fT

k

s∑
i=1

∂vi
∂ρ̄e

yi

+ zT1

(
K0

∂u1

∂ρ̄e
− ∂M

∂ρ̄e
ψ0,k

)
+

s∑
i=2

zTi

(
K0

∂ui

∂ρ̄e
+

∂K

∂ρ̄e
ti−1 +∆K

∂ti−1

∂ρ̄e

)

+

s∑
i=1

qTi

(
∂ti
∂ρ̄e
−
[(
uT
i Mui − uiu

T
i M

) ∂ui

∂ρ̄e
− 1

2
ui

(
uT
i

∂M

∂ρ̄e
ui

)] (
uT
i Mui

)−3/2
)

+

s∑
i=1

wT
i

∂vi
∂ρ̄e
− ∂ti

∂ρ̄e
+

k−1∑
j=1

(
∂tTi
∂ρ̄e

Mψj

)
ψj +

(
tTi

∂M

∂ρ̄e
ψj

)
ψj +

(
tTi Mψj +ψjt

T
i M

) ∂ψj

∂ρ̄e


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Collecting terms gives

∂λ̃∗
k

∂ρ̄e
= yTkV

T
k

(
∂K

∂ρ̄e
− λ∗

k

∂M

∂ρ̄e

)
V kyk − zT1

∂M

∂ρ̄e
ψ0,k +

s∑
i=2

zTi
∂K

∂ρ̄e
ti−1

+
1

2

s∑
i=1

qTi ui

(
uT
i

∂M

∂ρ̄e
ui

)(
uT
i Mui

)−3/2
+

s∑
i=1

k−1∑
j=1

wT
i ψj

(
tTi

∂M

∂ρ̄e
ψj

)

+
s∑

i=1

[
zTi K0 − qTi (uT

i Mui − uiu
T
i M)

(
uT
i Mui

)−3/2
] ∂ui

∂ρ̄e

+
s−1∑
i=1

zTi+1∆K + qTi −wT
i +

k−1∑
j=1

(wT
i ψj)ψ

T
j M

 ∂ti
∂ρ̄e

+

qTs −wT
s +

k−1∑
j=1

(wT
s ψj)ψ

T
j M

 ∂ts
∂ρ̄e

+

s∑
i=1

[
2∆fT

k yi +w
T
i

] ∂vi
∂ρ̄e

+

s∑
i=1

wT
i

k−1∑
j=1

(
tTi Mψj +ψjt

T
i M

) ∂ψj

∂ρ̄e

(4.12)

Choosing the adjoint vectors according to the equations below eliminates derivatives of basis vectors,
but there are not enough adjoints to eliminate derivatives of the eigenmodes (the last row of equation
4.12). Again, another s back- and forward substitutions are needed.

wi = −2∆fkyi i = 1, ...s

qs = ws −
k−1∑
j=1

(wT
s ψj)(Mψj)

K0zi = (uT
i Mui −Muiu

T
i )(u

T
i Mui)

−3/2qi i = s, ...1

qi = wi −
k−1∑
j=1

(wT
i ψj)(Mψj)−∆Kzi+1 i = s− 1, ...1

(4.13)

Inserting the adjoints (4.13) into equation 4.12 gives

∂λ̃∗
k

∂ρ̄e
= yTkV

T
k

(
∂K

∂ρ̄e
− λ∗

k

∂M

∂ρ̄e

)
V kyk − zT1

∂M

∂ρ̄e
ψ0,k +

s∑
i=2

zTi
∂K

∂ρ̄e
ti−1

+
1

2

s∑
i=1

qTi ti

(
tTi

∂M

∂ρ̄e
ti

)
+

s∑
i=1

k−1∑
j=1

wT
i ψj

(
tTi

∂M

∂ρ̄e
ψj

)

+
s∑

i=1

wT
i

k−1∑
j=1

(
tTi Mψj +ψjt

T
i M

) ∂ψj

∂ρ̄e
.

(4.14)
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However, the sensitivities of the eigenmodes
∂ψj

∂ρ̄e
are not known so they are discarded, and the

eigenvalues sensitivites become approximately

∂λ̃∗
k

∂ρ̄e
≈ yTkV T

k

(
∂K

∂ρ̄e
− λ∗

k

∂M

∂ρ̄e

)
V kyk − zT1

∂M

∂ρ̄e
ψ0,k +

s∑
i=2

zTi
∂K

∂ρ̄e
ti−1

+
1

2

s∑
i=1

qTi ti

(
tTi

∂M

∂ρ̄e
ti

)
+

s∑
i=1

k−1∑
j=1

wT
i ψj

(
tTi

∂M

∂ρ̄e
ψj

)
.

(4.15)

4.2.3 Modified Eigenmode Orthogonalized Combined Approximation

Finally, in the following section the sensitivities of the eigenvalues when modified eigenmode orthog-
onalized CA is used, is derived. The eigenmodes with hats correspond to an old design iteration,
and are constants in regard to the current design iteration. Hence their sensitivities to the current
design is indeed zero. The optimization problem is given below

max g0(λ
∗
k)

subject to

V TKV yk = λ∗
kV

TMV yk

K0u1 =Mψ0,k

K0ui = −∆Kti−1 i = 2, ...s

ti = ui

(
uT
i Mui

)−1/2
i = 1, ...s

vi = ti −
k−1∑
j=1

(
tTi Mψ̂j

)
ψ̂j i = 1, ...s

As in section 4.2.1, one term per constraint (in total 3s terms) is added to the objective function
in order to remove derivatives of basis vectors

λ̃∗
k = λ∗

k + z
T
1

(
K0u1 −Mψ0,k

)
+

s∑
i=2

zTi (K0ui +∆Kti−1) +
s∑

i=1

qTi

(
ti − ui

(
uT
i Mui

)−1/2
)
+

+
s∑

i=1

wT
i

vi − ti + k−1∑
j=1

(
tTi Mψ̂j

)
ψ̂j


Differentiating with respect to the design variables gives the expression

∂λ̃∗
k

∂ρ̄e
= yTkV

T
k

(
∂K

∂ρ̄e
− λk ∂M

∂ρ̄e

)
V kyk + 2∆fT

k

s∑
i=1

∂vi
∂ρ̄e

yi

+ zT1

(
K0

∂u1

∂ρ̄e
− ∂M

∂ρ̄e
ψ0,k

)
+

s∑
i=2

zTi

[
K0

∂ui

∂ρ̄e
+

∂K

∂ρ̄e
ti−1 +∆K

∂ti−1

∂ρ̄e

]

+

s∑
i=1

qTi

(
∂ti
∂ρ̄e
−
[(
uT
i Mui − uiu

T
i M

) ∂ui

∂ρ̄e
− 1

2
ui

(
uT
i

∂M

∂ρ̄e
ui

)] (
uT
i Mui

)−3/2
)

+
s∑

i=1

wT
i

∂vi
∂ρ̄e
− ∂ti

∂ρ̄e
+

k−1∑
j=1

(
∂tTi
∂ρ̄e

Mψ̂j

)
ψ̂j +

(
tTi

∂M

∂ρ̄e
ψ̂j

)
ψ̂j



26



4.2. REDUCED EIGENPROBLEM CHAPTER 4. CONSISTENT SENSITIVITY ANALYSIS

Collecting terms gives

∂λ̃∗
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∂ρ̄e
= yTkV

T
k

(
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∂ρ̄e
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i
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)(
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(
tTi
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+
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[
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i Mui − uiu
T
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(
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i Mui
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+
s−1∑
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zTi+1∆K + qTi −wT
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(wT
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T

j M

 ∂ti
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+

qTs −wT
s +

k−1∑
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(wT
s ψ̂j)ψ̂

T

j M

 ∂ts
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+
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[
2∆fT

k yi +w
T
i

] ∂vi
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Choosing the adjoint vectors according to the equations below eliminates derivatives of basis vectors,
and in contrast to the sensitivities of CAEEON no terms including derivatives of the eigenmodes
are present. The sensitivities are hence consistent with the reduced order model.

wi = −2∆fkyi i = 1, ...s

qs = ws −
k−1∑
j=1

(wT
s ψ̂j)(Mψ̂j)

K0zi = (uT
i Mui −Muiu

T
i )(u

T
i Mui)

−3/2qi i = s, ...1

qi = wi −
k−1∑
j=1

(wT
i ψ̂j)(Mψ̂j)−∆Kzi+1 i = s− 1, ...1

The sensitivities become
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tTi

∂M

∂ρ̄e
ψ̂j

) (4.16)
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Chapter 5

Problem formulation

In this chapter the optimization problem used to test the reduced order methods discussed in
chapter 3 is presented. In particular, the aim is to maximize the fundamental frequency under
a volume constraint. In addition to presenting the optimization problem, the sensitivities of the
objective function and the constraints are derived. Finally, the geometry of the design domain
is presented. It should be noted that the reduced order methods are not limited to this specific
problem, and can be applied to any generalized eigenproblem in topology optimization.

5.1 Objective and constraints

The idea of manipulating a structure’s eigenfrequencies using topology optimization was first pre-
sented by Dı́as and Kikuchi in [7], where the homogenization method from [3] was used to maximize
the fundamental frequency of an existing structure. Manipulating the eigenfrequencies has been
applied to other problems, for example by Dalklint in [8] to create crystals with phononic band
gaps. In this work maximizing the fundamental frequency will be considered as a test problem.
The motivation is that by maximizing the fundamental frequency resonance can be avoided.

As suggested by Torii and Faria [28] the p-norm is used as a smooth approximation of the
fundamental frequency, which they showed is always differentiable. In other words, the fundamental
frequency ωmin is approximated as

ωmin ≈ ||ω||−p =

(
ne∑
i=1

ω−p
i

)− 1
p

, (5.1)

where p is the penalization exponent (also known as the p-value), ωi are the eigenfrequencies, and
ne is the number of eigenvalues included in the approximation. Although the form above is very
compact, it may be hard to interpret. The p-norm may be rewritten in the form below, allowing
for a richer interpretation

||ω||−p =
1((

1
ω1

)p
+
(

1
ω2

)p
+ ...

(
1

ωne

)p) 1
p

=
ω1(

1 +
(
ω1
ω2

)p
+ ...

(
ω1
ωne

)p) 1
p

A few remarks can be made about the approximation. Firstly, due to the eigenfrequencies be-
ing positive numbers the denominator is always larger than one, meaning the approximation is
conservative, or ||ω||−p < ω1.

Secondly, the larger an eigenfrequency is compared to the fundamental frequency ω1, the less
it influences the approximation. If for example an eigenfrequency is two times larger than the
fundamental frequency, then a p-value of eight will make its influence 0.58 ≈ 0.004, compared to
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the fundamental frequency which has the weight 1. In other words, only eigenfrequencies which
are very close to the fundamental frequency will influence the approximation.

Thirdly, the higher the p-value, the less other eigenvalues influence the approximation, and
the more accurately it approximates the fundamental frequency. As p approaches infinity this
approximation becomes increasingly accurate. However, using a too large p can cause problems
due to numerical round-off errors. Thus, a moderate value of about eight is usually chosen. Lastly,
the number of eigenvalues considered needs to be larger than one. Torri and Faria found that using
a small amount of eigenvalues, in the range of five to ten, is usually sufficient.

The objective is to maximize the fundamental frequency, which is equivalent to minimizing
minus one times the fundamental frequency. Using the p-norm this gives the objective function

g0 = −||ω||−p

The total volume of the design can be expressed as the scalar product between the thresholded
densities and the vector of element volumes v who’s ith component is the volume of element i.
The volume of the structure for a certain design ρ̄, V , and total available volume, V0, can then be
expressed as

V =

nelm∑
i=1

viρ̄i = v
T ρ̄ and V0 =

nelm∑
i=1

vi = v
T1,

where 1 is a vector of ones. A constraint is added on the total volume of the structure, which
should be no more than a portion of the total available volume. Introducing the volume fraction
α ∈ (0, 1], this can be written as

g1 = V − αV0 ≤ 0. (5.2)

The design variables are normalized such that they are contained in the interval from zero to one,
which is often referred to as box constraints. Thus, and element with density ρ̄i = 1 is interpreted
as filled, whereas an element with density ρ̄i << 1 is interpreted as void. The optimization problem
may now be stated as

(TO) :


min
z

g0

subject to

g1 ≤ 0

0 ≤ zi ≤ 1 i = 1...nelm

. (5.3)

The SIMP scheme is used to penalize intermediate density values, which means that the elasticity
modulus for the element with index e is given by the SIMP-scheme (2.24) where the penalty
exponent q is chosen as 3. The element stiffness matrix may then be expressed as

Ke =
(
Emin + (Emax − Emin)ρ̄

3
e

)
Ke

0 (5.4)

where Ke
0 is the element stiffness matrix defined in equation 2.10 with unit elasticity modulus. A

well known consequence of using SIMP in eigenfrequency optimization is the appearance of localized
low energy modes which appear in low density regions where the stiffness is very small compared
to the mass. A remedy to this is suggested by Du and Olhoff in [29], where the mass in low density
regions is scaled according to the scheme below,

M e =

{
ρ̄eM

e
0 ρ̄e ≥ 0.1(

c1ρ̄
6
e + c2ρ̄

7
e

)
M e

0 ρ̄e < 0.1
, (5.5)

where M e
0 is the element mass matrix defined in equation 2.14 and the coefficients c1 and c2 are

chosen such that the interpolation is C1 (meaning it is continuous and has a piecewise continuous
derivative). Choosing c1 = 6 · 105 and c2 = −5 · 106 fulfills this requirement.
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5.2 Sensitivity Analysis

As discussed in section 2.4 gradient based algorithms are used to solve the optimization problem,
as such the sensitivities of the objective function and the constraint(s) are needed. Using the chain
rule for the sensitivity of the objective function gives

∂g0
∂ze

=

ne∑
i=1

∂g0
∂ωi

∂ωi

∂ze
, (5.6)

where the first term in the sum can be found by considering the derivative of ||ω||−p, see equation
5.1

∂||ω||−p

∂ωi
=

∂

∂ωi

(
ne∑
i=1

ω−p
i

)− 1
p

=
−1
p

(
ne∑
i=1

ω−p
i

)− 1
p
(p+1) (

−pω−p−1
i

)
=

(
ωi

||ω||−p

)−p−1

Expanding the second term in the sum using the chain rule and ∂λi
∂ze

=
∂ω2

i
∂ze

= 2ωi
∂ωi
∂ze

gives

∂ωi

∂ze
=

1

2ωi

nelm∑
j=1

∂λi

∂ρ̄j

∂ρ̄j
∂ρj

∂ρj
∂ze

.

The density filter (2.25) gives
∂ρj
∂ze

= Mf
je, and the smooth Heaviside approximation (2.26) may be

differentiated using hyperbolic trigonometric identities

∂ρ̄j
∂ρj

=
∂H(ρj)

∂ρj
=

∂

∂ρj

tanh(βη) + tanh(β(ρj − η))

tanh(βη) + tanh(β(1− η))
=

β cosh−2(β(ρj − η))

tanh(βη) + tanh(β(1− η))
,

where it was used that ∂
∂x tanh(x) = cosh−2(x). The second term in equation 5.6 can then be

expanded to

∂ωi

∂ze
=

1

2ωi

nelm∑
j=1

∂λi

∂ρ̄j

βMje cosh
−2(β(ρj − η))

tanh(βη) + tanh(β(1− η))
.

The sensitivity of the objective function is finally given by

∂g0
∂ze

= −
(

ωi

||ω||−p

)−p−1 1

2ωi

nelm∑
j=1

∂λi

∂ρ̄j

βMje cosh
−2(β(ρj − η))

tanh(βη) + tanh(β(1− η))
,

where the eigenvalues sensitivity, ∂λi
∂ρ̄j

depend on what method is used to compute them, see chapter

4. Lastly, the stiffness and mass matrices sensitivities and the volume constraints sensitivity are
given below

∂K

∂ρ̄e
= 3(Emax − Emin)ρ̄

2
eK

e
0

∂M

∂ρ̄e
=

{
M e

0 ρ̄e ≥ 0.1(
6c1ρ̄

5
e + 7c2ρ̄

6
e

)
M e

0 ρ̄e < 0.1

∂g1
∂ze

=

nelm∑
j=1

∂g1
∂ρ̄j

∂ρ̄j
∂ze

=

nelm∑
j=1

vjβMje cosh
−2(β(ρj − η))

tanh(βη) + tanh(β(1− η))

5.3 Geometry and design domain

The design domains used to test the methods are shown in figures 5.1a-5.1c. Since the designs are
expected to have some symmetry properties, they are subject to symmetry constraints. This also
reduces the computational effort of solving the resulting optimization problem slightly, although
the majority of the time is spent on the FEA. Three different sets of boundary conditions are used
in order to investigate the numerical methods, hence three different design domains are shown.
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(a) The design domain is the upper right quadrant with the black question mark. The
densities in the remaining quadrants are given by reflecting the densities in the upper
right quadrant about the dashed lines. The reflection is indicated by the reflected, gray
question marks. The beam is referred to as the symmetric A-beam.

(b) The design domain is the upper half with the black question mark. The densities in
lower half are given by reflecting the densities in the upper half about the dashed line.
The reflection is indicated by the reflected, gray question mark. The beam is referred
to as the symmetric B-beam.

(c) The design domain is the upper right quadrant with the black question mark. The
densities in the remaining quadrants are given by reflecting the densities in the upper
right quadrant about the dashed lines. The reflection is indicated by the reflected, gray
question marks. The beam is referred to as the symmetric C-beam.

Figure 5.1: The figures depict three beams with dimensions L×H and unknown density. For the
nodes connected to walls or triangles the boundary conditions are zero displacement in both the
horizontal and vertical direction.
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5.4 Finite difference approximation

In order to verify that the analytical expressions for sensitivities are correct, or to evaluate the
error, a finite difference approximation is used. The approximation is based on well known explicit
Euler scheme, which approximates the scalar function f of one variable at x by

∂f

∂x

∣∣∣∣
x

≈ f(x+ h)− f(x)

h
.

This approximation closely resembles the derivatives definition, except the infinitesimal small h
is replaced by a finite difference h, since finite precision computers are used. In order to avoid
numerical round off errors h is often chosen to be around the square root of machine tolerance,
which is about 10−8. For a function f of multiple variables the gradient at x may be approximated
as

∂f

∂xi

∣∣∣∣
x

≈ f(x+ eih)− f(x)

h
,

where ei is the vector of unit length with a 1 at index i. Evaluating the gradient at every xi can
be very expensive if the cost of evaluating the function is, thus only a few xi are chosen to verify
that the sensitivities in those particular directions are correct.
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Chapter 6

Numerical tests

The goal of this chapter is to investigate the methods performance. The optimization problem is
given by equation 5.3, and is tested on a set of reference geometries consisting of thin beams, see
figures 5.1a-5.1c. The length and height of the beams are set to 8000 and 1000 mm respectively,
and are discretized using isoparametric quadrilateral elements. Symmetry conditions are imposed
on the designs in order to reduce the computational effort of solving the optimization problem, and
to guarantee symmetry in the designs. The material parameters used in all tests are the same, and
are given by table 6.1. The volume fraction α is set to 50%.

The implementation is written in MATLAB. Krister Svanberg’s GCMMA code is used to solve
the optimization problem, and MATLAB’s eigs-function is used to solve the generalized eigen-
problem and the reduced order generalized eigenproblem. When the full model is used to solve the
generalized eigenproblem, a Cholesky factorization of the stiffness matrix using MATLAB’s chol
is first computed and then used in eig. This factorization is then stored to build a reduced order
model.

6.1 Verifying sensitivities

Firstly, the analytical expressions for the sensitivities derived in previous chapters are verified. This
can be done by comparing the sensitivities computed using the expressions derived in Chapter 4 to
finite-difference approximations. These approximations can be computed by first choosing a set of
ncheck design variables, with indices I = {i1, i2, ..., incheck

}, and then computing the finite difference
approximations of the sensitivities

∂ω∗
k

∂zij
≈
(
∂ω∗

k

∂zij

)fda

=
ω∗
k(z + eijh)− ω∗

k(z)

h

∂g0
∂zij

≈
(
∂g0
∂zij

)fda

=
g0(z + eijh)− g0(z)

h

For example, consider verifying the analytical sensitivities for the kth eigenfrequency for a re-
duced order model using CAE. The first step is to compute the basis vectors according to equation
3.16, after which the approximated eigenfrequency is found by solving the reduced order general-
ized eigenproblem (3.11). The design variable with index ij is then perturbed by h, after which
the basis vectors are computed again according to equations 3.16 and the eigenfrequency is found
by solving equation 3.11. Now a finite difference approximation of the kth sensitivity may be
computed according to the equation above, where ω∗

k(z + eijh) and ω∗
k(z) are the approximated

eigenfrequencies at the perturbed and unperturbed design, respectively. The result may be com-
pared to the analytical sensitivity of the kth eigenfrequency, which is found by first solving for the
adjoints according to equations 4.9 and then inserting them into equation 4.10.
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Table 6.1: Material parameters used in the optimization.

Material parameters

Emax 210 GPa
ν 0.3
t 10 mm
ρm 7800 kgm−3

Each sensitivity test consists of performing 1000 design cycles (nits) using the method of moving
asymptotes. The A-beam is used as the design domain, given by figure 5.1a, which is discretized
into a 160× 20 grid of quadrilateral isoparametric elements. The filter radius is set to 5L/160, the
p-value is kept at 8 and the Heaviside projection is removed by keeping β at 1. A factorization
is performed every 10 design cycles or if the sine of the angle between the old and current design
supersedes the tolerance αtol = 10·10−3. The tolerance on the error in the design is set to δtol = 0.1.
The methods were tested using 4 and 8 eigenvalues and 2, 4 and 8 basis vectors.

A finite difference approximation of the eigenfrequencies and objective function’s sensitivities
are computed at each design cycle. Since each approximation requires solving the eigenproblem
an additional time, only a few design variables are chosen. In this case the elements with index
10, 20, 50 and 150. The step-size is set to h = 10−5.

The root-mean-square-norm (RMS-norm) of the difference between the eigenfrequencies sen-
sitivity and the finite difference approximation is computed, giving an average over all iterations
and the subset of design variables for which the sensitivities are tested. The RMS-norm of the
difference between the objective functions sensitivity and the finite difference approximation is also
computed, giving an average over the chosen design variables, with one point for each design cycle.
The expressions are given below.

||∆ω∗
k||RMS =

√√√√ 1

nits

nits∑
l=1

1

ncheck

ncheck∑
j=1

∣∣∣∣∣
(
∂ω∗

k

∂zij

)
l

−
(
∂ω∗

k

∂zij

)fda

l

∣∣∣∣∣
||∆g0||RMS =

√√√√ 1

ncheck

ncheck∑
j=1

∣∣∣∣∣
(
∂g0
∂zij

)
−
(
∂g0
∂zij

)fda
∣∣∣∣∣

6.1.1 Results

Figures 6.1a to 6.3b show plots of the RMS-norms of the errors for different choices of number
of eigenvalues and number of basis vectors. For two basis vectors and four eigenvalues, see figure
6.1a, CAE seems to follow the full models error, except for a few iterations. CAEEON seems to
follow the full models errors with a slight deviation for the fourth eigenvalue, while the error in the
objective function seems to follow the full model. Lastly, CAEEONmod seems to follow the full
models errors exactly.

The deviation is increased when eight eigenvalues are considered, see figure 6.1b. For CAE,
the first two eigenvalues are still accurate, while the higher order eigenmodes are not. This is also
seen in the objective function’s error. For CAEEON the errors in the higher order eigenvalues also
deviate, whereas the objective function’s error seems to follow the full models.

Moving on to the next test case where four basis vectors are used, see figure 6.2a - 6.2b. The
only notable difference from the previous case is that CAE seems to struggle more, even for four
eigenvalues. There is also a slight increase in the error of the sixth eigenvalue for CAEEON. The
same seems to happen when the number of basis vectors is increased to eight, see figures 6.3a -
6.3b.
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(a) The figure shows the errors when 4 eigenval-
ues are used in the p-norm.

(b) The figure shows the errors when 8 eigenval-
ues are used in the p-norm.

Figure 6.1: The figures show the difference between the analytical sensitivities and the finite dif-
ference approximation when 2 basis vectors are used. On the top of respective figure is the error in
the eigenvalues, and on the bottom is the error in the sensitivities. As a reference the error when
the full formulation is used is plotted in a green line.
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(a) The figure shows the errors when 4 eigenval-
ues are used in the p-norm.

(b) The figure shows the errors when 8 eigenval-
ues are used in the p-norm.

Figure 6.2: The figures show the difference between the analytical sensitivities and the finite dif-
ference approximation when 4 basis vectors are used. On the top of respective figure is the error in
the eigenvalues, and on the bottom is the error in the sensitivities. As a reference the error when
the full formulation is used is plotted in a green line.
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(a) The figure shows the errors when 4 eigenval-
ues are used in the p-norm.

(b) The figure shows the errors when 8 eigenval-
ues are used in the p-norm.

Figure 6.3: The figures show the difference between the analytical sensitivities and the finite dif-
ference approximation when 8 basis vectors are used. On the top of respective figure is the error in
the eigenvalues, and on the bottom is the error in the sensitivities. As a reference the error when
the full formulation is used is plotted in a green line.
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6.2 Performance

In this section the overall performance of the reduced order methods is investigated, and is com-
pared to the full model. The methods are tested using a grid of 400 × 50 elements, using eight
eigenfrequencies and two, four and six basis vectors. The number of factorizations is counted
throughout the optimization, and their proportion is plotted in figures 6.4a - 6.4c. The angle be-
tween consecutive iterations is plotted in figures 6.5a - 6.5c. Lastly, the proportion of factorizations
and the objective function at the final iteration are given in table 6.2 and 6.3. The geometries used
are the symmetric beams, see figures 5.1a - 5.1c. The filter radius is set to 3L/400, and αtol and
δtol is the same as before.

6.2.1 Results

Figures 6.4a-6.4c show what proportion of iterations uses a factorization throughout the optimiza-
tion. For the first 25-50 iterations a factorization is almost always performed, after the first 100
iterations however the design changes are small enough to never require a factorization. The design
changes throughout the optimization are shown in figures 6.5a-6.5c. The number of factorizations
after all 1000 iterations is shown in table 6.2. Note that generally, increasing the number of basis
vectors reduces the number of factorizations. The change is most significant going from two basis
vectors to four, and very subtle going from four to six.

Table 6.3 shows the objective function’s value at the final iteration. The difference is on the
magnitude of a few parts per thousand. The results suggest that while increasing the number of
basis vectors can reduce the amount of work, it does not increase the quality of the results, at least
not noticeably. Lastly, figures 6.6a-6.8d show the final designs. The differences in design are very
subtle.

Table 6.2: The table shows the proportions of the total amount of iterations where a factorization
was performed (in percent), for the three beams.

A B C
# Basis vectors 2 4 6 2 4 6 2 4 6

CAE 35.9 17.3 16.5 58.7 26.5 25.5 21.0 15.3 15.3
CAEEON 35.7 16.8 16.4 59.9 26.2 23.6 21.7 15.5 15.4
CAEEONMOD 37.6 16.9 16.4 60.7 28.3 25.0 22.4 15.4 15.5

Table 6.3: The table shows the value of the objective function (in Hz) at the final design cycle for
the three beams. The top row shows the value when the full model is used, and the bottom three
rows show the difference between the full model and the reduced model.

A B C
# Basis vectors 2 4 6 2 4 6 2 4 6

Full 267.08 434.30 644.63

CAE -0.01 -0.00 -0.35 +0.06 +0.01 -0.10 +0.14 -0.03 -0.03
CAEEON -0.06 -0.02 -0.35 +0.13 +0.35 +0.31 +0.20 +0.03 -0.06
CAEEONMOD +0.05 -0.11 -0.06 +0.11 +0.24 +0.22 +0.02 +0.09 +0.10
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(a) The figure shows the proportions of design cycles
where a factorization was performed for the symmet-
ric A-beam, see figure 5.1a.

(b) The figure shows the proportions of design cycles
where a factorization was performed for the symmet-
ric B-beam, see figure 5.1b.

(c) The figure shows the proportions of design cycles
where a factorization was performed for the symmet-
ric C-beam, see figure 5.1c.

Figure 6.4: The figures show the proportions of design cycles where a factorization was performed
throughout the optimization. The methods were tested on the three different beams, using two,
four and six basis vectors and eight eigenvalues.
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(a) The figure shows the sine of the angle between
consecutive designs for the A-beam. The black
dashed line shows the tolerance αtol used to deter-
mine when a factorization should be performed.

(b) The figure shows the sine of the angle between
consecutive designs for the B-beam. The black
dashed line shows the tolerance αtol used to deter-
mine when a factorization should be performed.

(c) The figure shows the sine of the angle between
consecutive designs for the C-beam. The black
dashed line shows the tolerance αtol used to deter-
mine when a factorization should be performed.

Figure 6.5: The figures show the sine of the angle between consecutive designs throughout the
optimization. Four basis vectors and eight eigenvalues was used.
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(a) Final design using full model.

(b) Final design using reduced order model with CAE.

(c) Final design using reduced order model with CAEEON.

(d) Final design using reduced order model with CAEEONmod.

Figure 6.6: The figures show the final design for the full model and the different reduced order
methods without Heaviside thresholding for the A-beam. Yellow indicates a filled element and blue
void. Since ramping is not used some regions contain intermediate density values.

(a) Final design using full model.

(b) Final design using reduced order model with CAE.

(c) Final design using reduced order model with CAEEON.

(d) Final design using reduced order model with CAEEONmod.

Figure 6.7: The figures show the final design for the full model and the different reduced order
methods without Heaviside thresholding for the B-beam. Yellow indicates a filled element and blue
void. Since ramping is not used some regions contain intermediate density values.
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(a) Final design using full model.

(b) Final design using reduced order model with CAE.

(c) Final design using reduced order model with CAEEON.

(d) Final design using reduced order model with CAEEONmod.

Figure 6.8: The figures show the final design for the full model and the different reduced order
methods without Heaviside thresholding for the C-beam. Yellow indicates a filled element and blue
void. Since ramping is not used some regions contain intermediate density values.
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Chapter 7

Discussion

7.1 Consistent sensitivity analysis

As seen in figure 6.1a the analytical sensitivities for all the reduced order methods seem to agree
with the full models sensitivities, for two basis vectors and four eigenfrequencies. This is expected
for CAE and the modified CAEEON, and some error is expected for CAEEON due to the term
ignored in the sensitivity analysis. We expect the error in eigenvalues sensitivities to grow with the
number of basis vectors and eigenvectors.

Moving on to the case when eight eigenfrequencies are considered, see figure 6.1b. For CAEEON,
the eigenfrequencies error deviates from the other methods, and it seems to grow with the eigenvalue
number. This is expected, which is again due to the term in the sensitivity analysis which is ignored.
Although, this does not appear to have any effect on the objective functions sensitivity. This can
be explained by the fact that the p-norm is used, meaning that the effect from the higher order
eigenfrequencies is many times smaller than that of lower order eigenfrequencies.

The same cannot be said for CAE, whose errors in the higher order eigenfrequencies are many
orders of magnitude larger than the errors from the other methods. This can also be seen in the
objective functions sensitivities, which deviates from the other methods. The reason CAE struggles
more could be explained by the basis vectors relaxing to lower order eigenmodes since they are not
deflated. In other words, it seems that deflation is necessary to achieve accurate sensitivity analysis.

When the number of basis vectors is doubled from two to four, see figures 6.2a-6.2b CAE
struggles even more while CAEEON does not seem to be affected as much. CAE struggling more
is expected, again due to the fact that deflation is not used and now more basis vectors are used,
resulting in larger errors. This may be the reason CAEEON is not affected by the increase in basis
vectors. It should also be pointed out that the modified CAEEON is still looking very similar to
the full model.

When the number of basis vectors is doubled again, the errors for CAE increase further. Mean-
while, the modified CAEEON seems to follow the full model, and while there is a slight error in
the higher eigenvalues for CAEEON the objective function’s sensitivity is unchanged.

Seeing that the resulting designs of the methods are very similar, see table 6.3 and figures
6.6-6.8, the question is if the errors in the sensitivity analysis matter.

7.2 Performance

The reduced order models performance is measured in the number of factorizations, since it requires
on the order of n3 operations, where the reduced order models need about sn2 operations. Thus, for
moderately large n >> s this should be a good measure. The wall-time is not used as a metric to
compare the methods, since it greatly depends on the implementation. The reduced order models
are implemented in a high-level language and do not take advantage of effective memory usage or
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parallellization. This also limits studying the methods for a small number of unknowns, here a
grid of 400× 50 elements is used which amounts to about 41,000 degrees of freedom, whereas the
method is intended for up to 1,000,000-10,000,000. Beyond that point memory requirements and
computational effort becomes too large, so iterative methods are used instead.

Evaluating the performance of a numerical method can be difficult, particularly if the goal is
to make general claims about how it performs versus other methods. One reason is that there are
many different parameters which, if tuned correctly can bring out the full potential in a method,
and if not can bring out all its flaws.

Let us begin with considering the number of basis vectors, see figures 6.4a - 6.4c which show the
proportions of design cycles where a factorization was performed. The gain of going from two basis
vectors to four is substantial for all the cases, around half the number of factorizations is needed.
The gain of going from four to six is however very slight, in fact studying table 6.2 shows only a few
percentage points is saved at most. Thus it seems that using a moderate amount of basis vectors,
say about four, is best. For the B-beam the difference between using two and four basis vectors is
the most significant, while for the C-beam the difference is only around 25%. Although using circa
four basis vectors seems like the best choice, it is clear that the results depend on what problem is
considered.

Furthermore, from table 6.3, we see that the objective’s value is very similar among the methods.
In fact, the difference between the methods is so small that the table shows the difference of the
objective function’s value between the full model and the reduced model. At most a few tenth’s of
a Hz is the difference, plus or minus, which is completely insignificant. In particular for topology
optimization which is used as a first step in most design processes. Figures 6.6 - 6.8 show that even
the designs are indistinguishable. Perhaps a less conservative value of αtol and δtol could be used,
since the results are so close to the full model.

Moving on to comparing the methods, see table 6.2, we see there is not a huge difference
among the methods with regard to the amount of factorizations computed, at best differing by a
percentage point. It is also seen that although the proportion of design cycles where a factorization
is performed changes with the iteration number, it is a steady decrease. This is expected since
the changes in design decreases with the iteration number, see figures 6.5a - 6.5c, meaning that
the reduced order model, which is based on a previous design, should be accurate when the design
changes are small.

The question is, given a certain stopping critera if one of the three reduced order methods
would converge quicker than the other. This is very difficult to investigate since there can be many
stopping criteria and the best method could depend on what measure is chosen. The modulus of
the gradient, the change in objective function value, or the norm of the design changes between
consecutive iterations can be used as convergence measures. Take for example the sine of the angle
between consecutive designs, see figures 6.5a - 6.5c. Apart from the C-beam, it is hard to choose a
value at which the design changes reach a minimum, that is where the optimization would converge.
Moreover we see that the sine of the angle has a large variance, meaning the optimization could
reach the threshold by pure chance.

This brings us to the final question, which method should be chosen? From the sensitivity
analysis we see that CAEEONmod is more accurate, although they result in similar designs and
save about the same amount of work in terms of factorizations. Perhaps there are cases where the
error in sensitivity analysis for CAE and CAEEON are large enough to impact the end result, and
if so CAEEONmod is the more reliable choice. However no such cases could be found. There could
also be cases where CAEEON outperforms CAEEONmod.

Lastly, it should be noted the parameters δtol and αtol are here kept constant, but they will also
influence the performance of the methods. If a lower αtol is used the number of factorizations is
expected to increase, while a higher value might lead to less accurate results from the reduced order
model, but save a few factorizations. However, there is nothing that says one method could benefit
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more from tuning these parameters than the other. Furthermore, the results from varying the
amount of basis vectors indicate that the optimal value depends on which problem is considered.
Hence no truly ’best’ values may exist, and they should be determined heuristically from trial and
error.

From table 6.2 we see that we can save about 85-75% of the work after 1000 iterations. This
will again depend on the choice of αtol, δtol, the number of basis vectors s, the size of the problem n,
and the implementation. The amount of work saved will also depend on the convergance criteria,
since the majority of factorizations occur in the beginning of the optimization process.
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Chapter 8

Conclusions

From sensitivity analysis we saw that, for a small number of basis vectors and eigenfrequencies, the
sensitivity analysis for all reduced order methods were consistent with the full models sensitivities.
However, when the number of eigenfrequencies and basis vectors was increased, only the novel
method which used the old eigenmodes to deflate the basis vectors was consistent. With that said,
this did not seem to have a significant impact on the methods performance, the resulting designs
and fundamental frequencies were identical regardless of method. No definitive answer could be
given as to which method is the best, although the novel method was shown to be more consistent.
Using a moderate amount of basis vectors was seen to have the most success for all reduced order
methods, reducing the work by around 80% for four basis vectors.
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Appendix A

Pseudocode

Algorithm 1: CA

Input: ∆K,K−1
0 ,M ,ψ0

Output: T
/* Compute first basis vector */

B ←K−1
0 ∆K ;

u1 ←K−1
0 Mψ0 ;

t1 ← u1

(
uT
1Mu1

)−1/2
;

/* Compute remaining basis vectors */

for i = 2→ s do

ui ← −K−1
0 ∆Kti−1 ;

ti ← ui

(
uT
i Mui

)−1/2
;

end

Algorithm 2: CA with Eigenmode Orthogonalization (CAEEON)

Input: ∆K,K−1
0 ,M ,ψ0,k, {ψi}k−1

i=1

Output: V
/* Compute first basis vectors */

u1 =K
−1
0 Mψ0,k ;

t1 = u1(u
T
1Mu1)

−1/2 ;
v1 ← t1 ;
for j = 1→ k − 1 do

v1− = (tT1Mψj)ψj ;

end
/* Compute remaining basis vectors */

for i = 2→ s do

ui = −K−1
0 ∆Kti−1 ;

ti = ui(u
T
i Mui)

−1/2 ;
vi ← ti ;
for j = 1→ k − 1 do

vi− =
(
tTi Mψj

)
ψj

end

end
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Algorithm 3: Modified CAEEON (CAEEONmod)

Input: ∆K,K−1
0 ,M ,ψ0,k, {ψ̂0,i}k−1

i=1

Output: V
/* Compute first basis vector */

u1 =K
−1
0 Mψ0,k ;

t1 = u1(u
T
1Mu1)

−1/2 ;
v1 ← t1 ;
for j = 1→ k − 1 do

v1− = (tT1Mψ̂j)ψ̂j ;

end
/* Compute remaining basis vectors */

for i = 2→ s do

ui = −K−1
0 ∆Kti−1 ;

ti = ui(u
T
i Mui)

−1/2 ;
vi ← ti ;
for j = 1→ k − 1 do

vi− =
(
tTi Mψ̂j

)
ψ̂j

end

end
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