
MASTER’S THESIS 2022

The Evaluation of Using
Backend-For-Frontend in a
Microservices Environment
Samer Alkhodary

ISSN 1650-2884
LU-CS-EX: 2022-25

DEPARTMENT OF COMPUTER SCIENCE
LTH | LUND UNIVERSITY

EXAMENSARBETE
Datavetenskap

LU-CS-EX: 2022-25

The Evaluation of Using
Backend-For-Frontend in a Microservices

Environment

Samer Alkhodary

The Evaluation of Using
Backend-For-Frontend in a Microservices

Environment

Samer Alkhodary
sa2808al-s@student.lu.se

June 8, 2022

Master’s thesis work carried out at Qlik Foreign Parent AB.

Supervisors: Alfred Åkesson, alfred.akesson@cs.lth.se
Paul Ericsson, paul.ericsson@qlik.com

Examiner: Niklas Fors, niklas.fors@cs.lth.se

mailto:sa2808al-s@student.lu.se
mailto:alfred.akesson@cs.lth.se
mailtopaul.ericsson@qlik.com
mailto:niklas.fors@cs.lth.se

Abstract

In modern web applications, the client keeps track of several services in a
backend consisting of several microservices, known as the microservices pattern.
The client makes several requests to the services to gather the needed informa-
tion, which adds extra latency. The backend for frontend pattern (BFF) is a pos-
sible solution that mitigates the microservice pattern’s performance overhead.
The BFF pattern is where a BFF service acts as a gateway between the client and
the backend services. Therefore, all communication between the services and the
client goes through the BFF. This thesis investigated the BFF pattern’s effects on
latency, data usage, the dependencies between the client and the backend, and
the client’s code. We implemented the BFF pattern in Qlik’s staging environment
using three different technologies,i.e., gRPC, REST, and GraphQL. As a result,
we found that the BFF positively impacted all the criteria mentioned above.

2

Acknowledgements

I would like to express our sincere gratitude to our supervisors, Alfred Åkesson, Paul Erics-
son, Johan Enell, and Hermann Ronaldsson, for their continuous support and constructive
feedback and provided us with everything we need to finish this thesis.

3

4

Contents

1 Introduction 7
1.1 Objectives . 8
1.2 Overview . 9

2 Background 11
2.1 Services and Endpoints . 11

2.1.1 Web Service . 11
2.1.2 Endpoints . 11

2.2 Service Architectures . 12
2.2.1 Monolithic Architecture . 12
2.2.2 Microservices Architecture . 12

2.3 HTTP Protocols . 13
2.3.1 HTTP/1.1 . 13
2.3.2 HTTP/2 . 13

2.4 Staging and Production Environments . 14
2.5 Containerization and Clustering . 14

2.5.1 Containerization . 14
2.5.2 Docker . 14
2.5.3 Kubernetes . 14

2.6 Gateways and BFFs . 15
2.6.1 API Gateway . 15
2.6.2 BFF Pattern . 16

3 Evaluation Scenario 17
3.1 Qlik Setup . 17
3.2 Solution . 18

4 Technologies and BFFs 21
4.1 REST . 21
4.2 GraphQL . 23

5

CONTENTS

4.3 gRPC . 25

5 Evaluation 27
5.1 Backend System Setup . 27
5.2 BFF Experimental Setup . 27
5.3 Frontend System Setup . 28
5.4 Performance Evaluation . 28

5.4.1 Experimental Setup . 29
5.4.2 Results . 35
5.4.3 Discussion . 47
5.4.4 Threat to Validity . 49

5.5 Implementation Evaluation . 50
5.5.1 Coupling Experiment . 50
5.5.2 Code Metrics Experiment . 51
5.5.3 Results . 52
5.5.4 Discussion . 55
5.5.5 Threat to Validity . 56

5.6 BFF Security Evaluation . 56
5.6.1 Threat Analysis . 56
5.6.2 STRIDE Table . 58
5.6.3 Threat Mitigations . 61
5.6.4 Threat-Mitigation Table . 62

6 Related Work 65

7 Conclusion 67

References 69

Appendix A Tables 75
A.1 Experiment 1 . 75

A.1.1 History Latency in 3G Network . 76
A.1.2 History Latency in Edge Network 77

A.2 Experiment 2 . 78
A.2.1 Experiment 3 . 79

A.3 Experiment 4 . 80
A.3.1 Alert Normal Network . 80
A.3.2 Alert 3G Network . 81
A.3.3 Alert Edge Network . 82
A.3.4 User Normal Network . 83
A.3.5 User 3G Network . 83
A.3.6 User Edge Network . 83
A.3.7 User Data Usage . 84
A.3.8 History Data Usage . 84

6

Chapter 1

Introduction

Since the boom of smartphones, the internet has played a significantly larger role in our lives,
and gradually everything has become just a click away. Nowadays, we can keep track of the
latest news using our favorite news platform, stay connected with other people, and shop-
ping is easier than ever. We can buy whatever we want using only our phones. We can do all
that by using different applications that we can easily download on our phones, tablets, and
computers.

The majority of these applications share a similar design. They have one or more client types(
mobile, browser, or desktop) and a backend system that these clients can communicate with.
Many internet giants,e.g., Google, Netflix, and eBay’s backend, consisted of large services
that handled all the requests from the clients,i.e., the Monolithic Architecture. However, in
the 2010s, they shifted to an architecture where the backend system gets divided into several
smaller services that interact with each other to fulfill the purpose of the entire system. Ev-
ery service handles parts of the incoming requests to the backend application, which enables
the modularization of the backend system, and this architecture is called the Microservices
Architecture[28].

The microservice architecture has several benefits over the monolithic architecture. First,
it improves the scaling capabilities of the system because only services that handle many re-
quests can be scaled compared to the monolithic architecture where the entire system gets
scaled, requiring more resources. Moreover, with microservices, each service can use a differ-
ent technology stack depending on the performance requirements [2]. Additionally, the mi-
croservices architecture increases the resilience of the system because when a service crashes,
it does not crash the entire system compared to the monolithic architecture, where any crash
in the program can stop the entire system [2].

The microservice architecture does not come without some drawbacks. One of the draw-
backs is that the clients have to keep track of many services and the different entry points

7

1. Introduction

the services offer, also known as Endpoints. Also, the microservices architecture forces the
clients to make several requests to different endpoints and services to fetch the informa-
tion they need. Compared to the monolithic architecture where everything could be fetched
with one request. However, some solutions have emerged to mitigate this issue, e.g., the API
gateway pattern and the Backend-for-Frontend design pattern. The API gateway is a ser-
vice that sits between the clients and the backend services and acts as a single entry point to
the system. First, clients send requests to the gateway, and then the API gateway contacts
the relevant endpoints to gather the clients’ information. Eventually, it sends back responses
to the clients[1]. The Backend-For-Frontend pattern, also known as BFF, is similar to the
API gateway pattern. However, every client type, e.g., mobile, desktop, tablet, browser, gets
its own BFF. Consequently, the frontend team can tailor the BFFs to fit the needs of their
client types. For example, they can manipulate responses from the services and only send
back the data the client needs. Moreover, some logic can be moved from the client to the
BFF. Consequently, the code complexity of the client codebase is reduced, which reduces
the number of bugs in the client codebase. This can be particularly useful in mobile clients
where publishing updates to fix bugs can be a time-consuming process because the App Store
or the Play Store must approve the updates before they get released to the mobile users[12][4].

In this thesis, we will investigate the impact of the BFF design pattern on the communi-
cation between a mobile client and a backend system that consists of several microservices.
Moreover, we will implement three different proof of concept BFFs using three different
technologies, i.e., gRPC, GraphQL, and REST. Finally, we will investigate the effects of using
those different technologies on the implementation of BFFs and conduct a threat analysis on
the design pattern. Consequently, this study will help software providers make an informed
decision regarding the BFF design pattern and which communication technique to use within
the BFF.

We conduct this thesis at Qlik[31]. Qlik has an application called Qlik Sense SaaS [13][38]
which helps users monitor their data using visualizations, charts, and data alerts that trigger
when certain conditions are met. We will use the application and its backend system as a test
bed for our experiments.

1.1 Objectives

• Investigate the benefits of using the BFF design pattern to optimize the communica-
tion between the mobile client and the backend system.

• Evaluate the implemented techniques with respect to maintainability and performance.

• Evaluate the BFF design pattern from a security perspective and provide recommen-
dations that make the entire design pattern more secure.

8

1.2 Overview

1.2 Overview
First, in chapter two, we familiarize the reader with the core concepts and the background
information needed to follow this study. After that, in chapter three, we talk about Qlik’s
current setup with their backend and mobile client and the challenges they face. Also, we
suggest the BFF as a possible solution, and we mention the methods we want to use to in-
vestigate the impact of the BFF design pattern on the entire system. Then, in chapter four,
we specify the technologies we chose to implement for the different BFFs. Finally, we also
give an example that explains how those technologies function. Chapter five describes the
experiments that we are conducting and lists all the metrics that we collect to compare the
different implementations of the BFFs and the impact of the BFF on the entire system. We
also state our results and findings in this chapter, evaluate them based on the hypothesis we
have and mention any factors that could have affected the accuracy of the results. Also, in
chapter five, we conduct the BFF’s threat analysis to shed light on the cyber security aspects
of the BFF. Then, in chapter six, we mention some related studies and research papers about
the BFF design pattern, and we compare our results to their findings. Eventually, in chapter
seven, we discuss the conclusion.

9

1. Introduction

10

Chapter 2

Background

This chapter contains the necessary background information to understand the report.

2.1 Services and Endpoints
First we explain the concept of web services and endpoints, because it is important that the
readers familiarize themselves with these concepts to understand the two different service
architectures that we explain next. Also, we use those concepts a lot in the paper.

2.1.1 Web Service
Web services are internet applications that can communicate with other applications using
well-defined communication protocols[9]. In this thesis, we use the "services" term to refer
to programs that are part of the backend system and are responsible of sending data to other
programs when they are requested.

2.1.2 Endpoints
Endpoints are entry points for other web applications that allow those applications to com-
municate with the web service[30]. For example a user service can have these endpoints:

• GET users/v1/users

• GET users/v1/users/{id}

Sending a GET request to "user/v1/users" endpoint, would return a list of users

11

2. Background

2.2 Service Architectures
There are several ways to design services in the backend, and here we discuss two differ-
ent approaches, i.e., the monolithic and the microservices architectures. These concepts are
essential for the reader to understand how the BFF pattern functions. Also, Qlik uses mi-
croservices architecture. Therefore, we conduct the entire experiments in this paper in a
microservices environment.

2.2.1 Monolithic Architecture
The monolithic architecture consists of one relatively large service that handles the logic of
the entire web application and is responsible for responding to all the requests that reach the
application. Moreover, all the modules inside that service are dependent on each other and
must be present to compile the application. For example, a monolithic webshop service is
one program that responds to requests about users, products, and prices(see figure 2.1).

Figure 2.1: Monolithic web-shop example

2.2.2 Microservices Architecture
The microservices architecture is an architectural style where a web application is split up
into several small services that can be compiled and shipped independently. Every service
is specialized to handle part of the applications’ logic, and all these services work together
to fulfill the purpose of the web application [33]. For example, applying the microservices
architecture with the previous webshop example, the webshop backend would consist of a
paying service, a users service, a products service, and a prices service (see figure 2.2).

12

2.3 HTTP Protocols

Figure 2.2: Microservices web-shop example

2.3 HTTP Protocols
Qlik uses HTTP as a communication protocol between its backend system and the differ-
ent frontend clients. Also, our BFF implementations will use both HTTP/1.1 and HTTP/2.
The Hypertext Transfer Protocol (HTTP) is an application-level stateless protocol[19]. The
HTTP protocol allows Clients to request server resources by sending HTTP requests. The
servers then send the requested resources by sending HTTP responses to the client.

2.3.1 HTTP/1.1
HTTP1.0 and HTTP1.1 create a new TCP connection for every HTTP request, which in-
creases the latency due to the extra internet packages that are sent when creating and closing
down TCP connections. However, HTTP 1.1 introduced the concept of Persistence connec-
tion which allows multiple HTTP requests to use the same TCP connection. However, each
connection can only handle one request at a time. To solve this issue, HTTP 1.1 allows users
to enable Pipelining which allows multiple inflight requests over the same connection, but
the requests need to be served in order. As a consequence, requests that require a long time
to process can block all the requests that come after it, and this problem is called Head Of
The Line Problem[36].

2.3.2 HTTP/2
HTTP2 is an optimization of the HTTP1.1 protocol. It allows multiplexing multiple requests
over a single TCP connection,i.e., each request and response gets sent in a unique HTTP2

13

2. Background

stream. This feature improves the HTTP1.1 Pipelining because the requests do not need to
be processed in order, which mitigates the Head of the line problem in HTTP1.1 without
opening several TCP connections. Also, HTTP2 introduces several new features, such as
allowing servers to push data to the client in advance and compressed HTTP1 headers[7].

2.4 Staging and Production Environments
The reader needs to be familiar with the differences between the staging and the production
environments because we host our BFFs in Qlik’s staging environments.

• Production environment is the current released version of the services that the clients
and users can contact.

• Staging environment: is an environment that contains the upcoming versions of the
services in production, and it is normally a mirror of the production environment and
is used for testing the services before they reach production.

2.5 Containerization and Clustering
When deploying our BFFs to the staging environment, we wrap them in Docker containers
and then add them to the staging cluster using Kubernetes.

2.5.1 Containerization
When deploying a web application, developers wrap the web application and all the appli-
cation’s dependencies in an isolated environment. As a consequence, the programs become
decoupled from the rest of the developing environment, which increases the portability of
that software, thus, allowing them to run smoothly in any environment[22].

2.5.2 Docker
Docker is a technology that enables developers to encapsulate programs within containers
s[21]. In order to run a container in Docker, first, we need to create a Dockerfile that contains
instructions for Docker to build a Docker image. After that, Docker uses the instructions to
create a read-only Docker image that contains the program’s binaries and all the dependencies
and configurations the program needs to execute. We run the image. Then Docker creates
a container which is a writable layer on top of the read-only image. Any changes made to
a running container are registered on the container layer, which means that the image does
not change.

2.5.3 Kubernetes
Kubernetes is an open-source project that Google created for managing containerized ser-
vices. It can deploy a certain number of containerized services and their replicas to the

14

2.6 Gateways and BFFs

specified computers. Moreover, it offers features that help monitor running services, self-
healing of crashed services by re-running them automatically, and automated roll-outs of the
pods(containers). Also, it handles load balancing by distributing the network traffic among
the running services [24].

2.6 Gateways and BFFs
API gateways and BFFs act as facades that hide the complexity of the backend system from
the clients, and they orchestrate the microservices so they can fetch any information the
client requests.

2.6.1 API Gateway
An API gateway is a service that sits between the backend services and the different clients,
and it acts as a single entry point to the backend system. The client first sends requests to
the API gateway, and then, based on the request, the API gateway contacts the appropriate
service to send a response back to the client[1]. It can decouple the application from the many
services it depends on because the client only communicates with the Gateway. Also, when
rendering a page that requires different data fetched from different endpoints and services,
the client only needs to send one request to the Gateway. After that, the Gateway sends the
necessary requests to the endpoints to build a response that has the necessary information
for the client (see:2.3).

Figure 2.3: BFF Pattern

15

2. Background

2.6.2 BFF Pattern
Backend for frontend is a design pattern where there is a service called BFF for each client
type, and each of these services acts as an API gateway for its client type. Therefore, the
BFF service can manipulate the responses from the microservices to fit the exact needs of the
client type the BFF communicates with (see:2.4).

Figure 2.4: BFF Pattern

16

Chapter 3

Evaluation Scenario

This chapter will discuss Qlik’s current solution and some of its drawbacks. After that, we
will suggest using the BFF design pattern as a possible solution to mitigate those drawbacks.
Lastly, we will describe a method to investigate the effects of the BFF on the entire system.

3.1 Qlik Setup
The Qlik Sense mobile application is connected to a backend system that consists of several
containerized microservices that run in Kubernetes clusters. The mobile application has to
keep track of several services and endpoints (see figure:3.1), and as a consequence, the app
is tightly coupled to the backend services. Moreover, the application sends several HTTP
requests to different endpoints to gather data to render complex information. For example,
let us say that the mobile client wants to render a page called the Alert History page, which
shows a list of specific alert evaluations. The application makes the following requests:

1. The client sends a request to the data-alert service to fetch the executions of the alert.
Let us assume that the alert has N executions.

2. The client sends N requests to the data-alert service to fetch the results of every exe-
cution, also known as evaluations.

3. The client sends a request for each evaluation to the notification service to fetch the
rendering information for the evaluation.

Every API call adds extra latency to the total time needed to render the page, and in most
cases, the mobile client wastes internet bandwidth to fetch more data than it needs (over-
fetch). This can be a problem, especially for clients that have slower internet connections or
live in places where mobile internet is relatively expensive.

17

3. Evaluation Scenario

Figure 3.1: Qlik Setup

3.2 Solution
To solve these issues mentioned in the previous section, we will implement three different
BFFs to sit between the microservices and the mobile application (see figure:3.2). Each BFF
will use different technology, and we will use these different BFFs to compare the effect of
using those different technologies when implementing a BFF. Also, we will compare those
three BFFs to the current setup that does not utilize a BFF. All communication between the
clients and the microservices will go through the BFFs. In the previous example, where the
app wanted to fetch the data needed to render the Alert History page, The protocol becomes
the following:

1. The client requests the BFF

2. The BFF sends a request to the data-alert service to fetch the executions.

3. The BFF sends N requests to the data-alert service to fetch the evaluations.

4. The BFF sends N request to the notification service to fetch the rendering information

5. The BFF sends the data to the client.

Since the BFF lives in the same cluster as the other microservices, the latency of the API
calls between the microservices and the BFF should be lower than the latency between the
mobile application and the microservices. Therefore, the BFF design pattern should reduce
the latency of fetching the data the mobile client needs.

18

3.2 Solution

Figure 3.2: Qlik-BFF

19

3. Evaluation Scenario

20

Chapter 4

Technologies and BFFs

This chapter lists the different BFFs that we implement and the technologies that we chose
to use in our BFFs. The examples we mention below are simplified examples of fetching the
history page for some alert. Many fields are removed from the examples to make them easier
to understand.
It is important to note that we wrote all the BFFs in Typescript, and we used Docker to
containerize the services.

4.1 REST
This version of the BFF uses REST to communicate with the microservices, and it uses REST
to communicate with the clients. REST stands for Representational State Transfer, and it is
a set of rules that define how APIs must function. Any API that follows those constraints
is considered to be a RESTful API[25]. Some of the REST constraints are that the commu-
nication between the server and the client must be stateless. Moreover, the client and the
server must use HTTP methods to communicate with each other in a way that follows the
protocol definition in RFC 2616 [34]. We chose REST because it is one of the most popu-
lar ways to design APIs. Also, the current solution in Qlik Sense Application uses REST to
communicate with the backend services. The following is an endpoint in our BFF to fetch
the information for the alert history page using REST:
The BFF exposes the following endpoint:

/v1/bff/history

The client sends a GET request to this endpoint

const response = fetch('https://example.com/history?id="123"')

21

https://www.ietf.org/rfc/rfc2616.txt

4. Technologies and BFFs

The the BFF sends back the following response to the client:

{
// Response from the service containing the history
// of the alert that we asked for.
"history": {

"executions":[
{

"alertId": "123",
"evaluation": {

"conditionId": "some id"
}

},
]

}
}

22

4.2 GraphQL

4.2 GraphQL
The GraphQL version of the BFF communicates with the microservices using HTTP1.1, and
it communicates with the mobile application using GraphQL. We used the Apollo server to
implement the BFF [3]. GraphQL is a query language for APIs[15], and it is governed by the
GraphQL Foundation that is made up of different companies, e.g., Airbnb, AWS, Meta,
and IBM. However, Facebook developed its first specifications[14]. Therefore, we Chose
GraphQL because it provides a simple method to prevent over-fetching[15] as we will see
in the example below. A GraphQL service first creates a schema that defines all the service’s
data. Then, the service defines queries that the clients can use to fetch the data defined in
the schema, which means that GraphQL services execute client queries using the predefined
types in the schema. This is an example of a GraphQL service: First, we define our types and
query in the schema:

//Here first we define our custom types.
//We use the custom types to define our schema.
type Evaluation {

endTime: String
conditionId: String
ownerId: String
status: String

}
type Execution {

alertId: String
evaluation: Evaluation
text: String

}
type HistoryResponse {

history: History
}
type History {

executions: [Execution]
}

//Here we define the query that the client can use
//It requires a alertId as an argument
//It returns the HistoryResponse object
extend type Query {

getHistory(
alertId: String!

): HistoryResponse!
}

23

4. Technologies and BFFs

The client send a query to the GraphQL service,

//This a query that has two parameters(alertId and the locale.
getHistory(alertId: "123"){
//We define inside the query the fields we want the
//response to contain.

history{
executions{

alertId
evaluation{

condtionId
}

}
}

}

After that, the service analyzes the queries, and then it sends back the requested fields in the
GraphQL queries to the client:

{ //We can see that the response contains only the
//fields the client requested in the query.

"getHistory": {
"history": {

"executions":[
{

"alertId": "123",
"evaluation": {

"conditionId": "some id"
}

},
]

}
}

}

24

4.3 gRPC

4.3 gRPC
The gRPC version of the BFF also uses REST to communicate with the backend services, and
it uses gRPC to communicate with the frontend clients. gRPC (General Remote Procedure
Call) is an open-source Remote Procedure Call framework created by Google, where clients
can call methods in the server application on a different machine[16]. gRPC utilizes HTTP/2,
and therefore, it can process multiple remote procedure calls in a single TCP connection mak-
ing use of the multiplexed stream functionality in HTTP/2[11]. In gRPC, programmers first
define services and then specify which methods the client applications can call with their pa-
rameters and return types using protocol buffer (a.k.a Protobuf)(Google’s method for binary
serializing structured data). Also, gRPC clients and services use binary when communicating
with each other, while REST and GraphQL use text-based transfer of information.

// Here we define our custom types that we
// use in our communication.
message Evaluation{

string conditionId = 2;
string endTime = 1;

}
message Execution{

string alertId = 1;
Evaluation evaluation = 2;
string text = 3;

}
// Repeated means a sequence (Array)
message History{

repeated Execution executions = 4;
}
message HistoryRequest{

string alertId = 1;
string locale = 2;

}
service Users{

// Here we define the different procedures
// we want the use in our communication.
// GetHistory is a procedure that takes a HistoryRequest object
// as an argument and returns a History object as a response
rpc GetHistory(HistoryRequest) returns Histroy{};

}

After specifying the data structure and the services, the protocol buffer compiler generates
the server interface and the client stub. The server implements the interface and then runs
a gRPC server to handle the client calls. On the client-side, the client uses the client stub to
call the specified methods on the server[16].

// Here we create a HistoryRequest object
// Then we call the getHistory procedure that the

25

4. Technologies and BFFs

// client implents with the request as an argument.
const request = new HistoryRequest().

setAlertId("123").
setLocale("US");

const history = client.getHistory(request);

The server responds with a history object that contains the same fields that are listed in the
message History above.

26

Chapter 5

Evaluation

5.1 Backend System Setup
The backend consists of several containerized microservices hosted in a Kubernetes cluster
hosted in Qlik’s stage environment. Each service exposes several endpoints the clients use
to communicate with it. In our experiments, we will be only interacting with the dataalerts
service, the users service and the notification service which is an internal service, so it is not
available for the general public. The data-alerts service exposes several endpoints that we
can use to fetch data with varying degrees of complexity. Moreover, the data-alerts service
sends back lots of data that the application does not need when rendering the history of an
alert. On the other hand, the user service returns relatively smaller responses that limit over-
fetching to minimal levels. With the help of these two services, we can study the effect the
BFF has on the amount of redundant data the application receives from the backend system.
Additionally, we can analyze the BFF’s impact on the latency when the application asks for
data that require a different number of API calls.

5.2 BFF Experimental Setup
We wrap each BFF into a Docker container, and we add it to the Kubernetes cluster in the
staging environment. We can’t have all three BFFs available simultaneously in the cluster.
Because of that, we swap them every time we finish conducting the experiments for each BFF.

27

https://qlik.dev/apis/rest/data-alerts
https://qlik.dev/apis/rest/data-alerts
https://qlik.dev/apis/rest/users

5. Evaluation

We used the metrics in the experiments to study the performance, code implementation,
and security aspects of the different technologies. We hosted the three BFFs in the same
cluster as the other microservices. The BFFs are connected to three services, i.e., the users’
service and the data-alerts service, and the notification service, and they can send requests to
the following endpoints:

• /data-alerts/{taskId}/executions

• /data-alerts/{taskId}/executions/{executionId}/evaluations

• /users/{userId}

• /notification/renderInformation

5.3 Frontend System Setup
To test the effect introduced by the BFF, we emulated the mobile client by creating four
scripts. The first script directly contacts the microservices’ endpoints without going through
the BFF. This script aims to collect data about the system’s performance without having a BFF
in place. For the rest of the scripts, strictly contact the BFF when making backend system
requests. We modified each script to use one of the technologies we used to implement the
three BFFs,i.e., (GraphQL, REST, and gRPC). Each script contacts the BFF that uses the
same communication method as the BFF,e.g., the GraphQL script communicates only with
the GraphQL BFF. The purpose of the scripts is to simulate the requests that the mobile
client makes when fetching the data it needs.

5.4 Performance Evaluation
In this section, we study the BFF’s impact on communication performance,i.e., latency and
data volume between the client and the backend system when fetching data with different
complexities. We created three different experiments to measure the latency of getting the
alert history for the different alerts in different network conditions,i.e., Normal(WiFi), 3G,
and Edge. We use the Network Link Conditioner, which is software that can change the
network environment according to the selected configurations [27]. The Network Link Con-
ditioner allows us to alter the network’s configurations for our scripts to simulate mobile
application users with slower internet connections. Also, we create an experiment to mea-
sure the latency of fetching the user information using the BFFs and the current solution in
all network conditions. To measure the data volume, we create an experiment that measures
the amount of data the client sends receives when fetching different alerts’ histories. Finally,
we create one more experiment to measure the data that the client sends and receives when
fetching some user’s information. The configurations for the different network conditions
that we use are the following:

28

https://nshipster.com/network-link-conditioner/

5.4 Performance Evaluation

Network U Bandwidth U Delay D Bandwidth D Delay
Normal 350.4 Mbps 1 ms 575.5 Mbps 1 ms

3G 330 kbps 100 ms 780 kbps 100 ms
Edge 200 kbps 440 ms 240 kbps 400 ms

Table 5.1: Different network conditions where:
D = Download
U = Upload

5.4.1 Experimental Setup
The mobile application shows a page called alert history for every alert, and to render that
page, first, the app sends a request to the data-alerts service to fetch the alerts’ executions by
conducting the following operations:

1. First, it sends a request to the data-alerts service to get the alert’s executions. It sends
the requests to the following endpoint:
GET /data-alerts/{taskId}/executions

2. Then, for every execution, it sends a request to the data-alerts service to fetch the eval-
uation data of that execution by sending requests to the following endpoint:
GET /data-alerts/{taskId}/executions/{executionId}/evaluations

3. Eventually, the application uses the information to render the alert’s history page.

In this experiment, we emulate getting the data the application needs to render the alert
history page. We chose this page because it is easy for us to manipulate the number of API
calls the application or the BFF needs to collect the necessary data, i.e., for an alert with N
evaluations, the application needs to make 2N+1 API calls to fetch the data.
The first script contacts the microservices directly, and it follows the same steps as the ap-
plication when fetching the data to render the alert history page. see figure 5.1.

29

5. Evaluation

Figure 5.1: Current solution script

The other scripts first send a request to the BFF, and then the BFF sends requests to the
previously mentioned endpoints, and eventually, it sends back a response to the clients. See
figure 5.2.

30

5.4 Performance Evaluation

Figure 5.2: Scripts that use BFFs

First, we create five identical alerts in Qlik’s stage environment to evaluate each alert a
different number of times. The more times we evaluate an alert, the more API calls will be
needed to get the alert’s history, and the larger the history response will get.

Alert # Evaluations (N)
Alert-1 1
Alert-2 4
Alert-3 7
Alert-4 10
Alert-5 13

Table 5.2: Alerts

Then we run the four scripts to fetch the data the application needs to render the history
page for the first alert 300 times. After that, we run the four scripts another 300 times each
to get the data needed for the second alert. Then, we repeat the process for the rest of the

31

5. Evaluation

alerts. Next, we measure the duration of each request by registering the time before making
each request and then registering the time after receiving the response. Then, we subtract
the two times. Finally, we save the measurements into a file. We use the generated data to
calculate the means, standard deviations, and lower and upper confidence interval bounds
for the latencies. This method is similar to the experimental setup of [18]. First, the authors
of [18] measure the response times while varying the concurrent users’ numbers and then
use the times to calculate the means. Eventually, they use the means to present their results.
This method is quite similar to our method. However, we calculate the standard deviations
and the confidence intervals to give a more accurate representation of our results. The paper
compares the performance impact when the system handles several users simultaneously.
We create four different experiments to measure the performance differences between the
four different solutions (gRPC, REST, GraphQL, and current solution) in different network
conditions 5.1. We use the five alerts we mentioned earlier in these experiments.

Experiment 1
In this experiment, we fetch the history of each alert 300 times in the Normal network con-
dition, which is the WiFi we have, without manipulating the network configurations.
After that, we repeat the previous experiment in a 3G network and finally in an edge network
to measure the latency for the different solutions in different network conditions.

Experiment 2
We run the scripts to fetch a single user’s information 300 times. Then, we repeat the exper-
iment for all three different network conditions. This experiment aims to study the possible
communication overhead that the BFFs might introduce because fetching the user’s informa-
tion involves contacting one service only.
The first script fetches the user’s information according to the following sequence diagram:5.3

Figure 5.3: Current solution script

The rest of the scripts send a request to the BFF and then the BFF contacts the users service

32

5.4 Performance Evaluation

and returns the response back to the scripts. See the call graph:5.4

Figure 5.4: Scripts that use BFFs

33

5. Evaluation

We measure the latency of fetching the user’s information in different network condi-
tions.

Experiment 3
In this experiment, we run the (REST, GraphQL, and the current solution) scripts 300 times
each to fetch the data needed to render the alerts using the BFFs and the current solution
while registering the packets’ sizes using Wireshark. Then, we repeat the experiment, but
this time we use the scripts to fetch the information for a specific user. Finally, we calculate
the total packets’ sizes means for every solution. This experiment aims to study the effect of
the BFF pattern on the size of data clients upload and download when fetching data with
different sizes and complexities using the different BFFs and the current solution. After
running the scripts for each test scenario,i.e., each alert and user information, we filter the
packets between the client and the backend system. Then we get the accumulated sizes of
those packets by summing the sizes of all the packets between the client and the backend
system.
Then we calculate the mean using the following formula:

mean =
accumulated packets’ sizes

300

This way we calculate the mean of the amount of data transferred to fetch the requested
resources.

Experiment 4
We can not host the gRPC BFF in Qlik’s staging due to restrictions in the Kubernetes Clus-
ter’s configurations. Therefore, we created this experiment to gather the metrics we need to
compare the BFFs. In this experiment, we host the three BFFs on a computer (outside the
Qlik’s staging cluster) and run the scripts from a different computer. The scripts send re-
quests to the BFFs. The BFFs contact the staging cluster to gather the information they need
then they send responses back to the scripts. We fetch the histories of the different alerts and
the user information while measuring the latency and the responses’ sizes. We compare the
results from this experiment with the other experiments to get an idea of how the gRPC BFF
would perform in the staging cluster.

34

5.4 Performance Evaluation

Figure 5.5: Experiment 4

5.4.2 Results

Experiment 1

Here we can see the results from the first experiment in the "normal" network condition. We
created a table that shows which scripts we used, the mean standard deviation, 95% confi-
dence interval and the number of iterations for each alert (See the tables in the appendix A
A.1,A.2,A.3,A.4,A.5). The graph below visualizes the results from the first experiment, and
we can see that the BFFs are significantly faster than the current solution that does not use
a BFF. The confidence interval for the GraphQL BFF and the REST BFF overlap, and there-
fore, we can say that there is no significant difference in performance between the two BFFs.

35

5. Evaluation

Figure 5.6: Latency in Normal Network

36

5.4 Performance Evaluation

In this part, we can see the results that we obtained from fetching the histories in a 3G
network. The tables for the different alerts can be found in appendix A (See the tables
A.6,A.7,A.8,A.9,A.10).
The graph below shows the latencies of the different alerts’ histories with the different scripts.
We can see from the graph that the latency of the current solution increases when the number
of evaluations increases. However, the number of evaluations does not significantly impact
the latencies of the scripts that use the BFFs. When fetching the same alerts, the confidence
intervals do not intersect for the different BFFs. Therefore, we can say that the REST BFF
has lower latency than the GraphQL BFF.

Figure 5.7: Latency in 3G Network

37

5. Evaluation

Finally, these are the results for the latencies in the edge network (See the tables in the
appendix A A.11,A.12,A.13,A.14,A.15).
When fetching the same alert, the confidence intervals do not intersect for the different
BFFs. Therefore, the REST BFF has lower latency than the GraphQL BFF. The graph shows
the average latencies for the different solutions when fetching the different alerts’ histories.

Figure 5.8: Latency in Edge network

38

5.4 Performance Evaluation

Experiment 2
This subsection displays the results of fetching a specific user using the different scripts we
have and in different network environments. The tables are available in appendix one under
Experiment 4 A.16,A.17,A.18.
The graph below shows the latencies of fetching the user using the different scripts in the
different network conditions. We can see from the graph that even with small requests that
only require one API call to complete, the BFF does not introduce any significant latency to
fetching

Figure 5.9: Latency for fetching user’ information in different net-
works

39

5. Evaluation

Experiment 3
The results of measuring the amount of data the scripts send and receive when fetching the
different alerts are available in the tables in appendix one under Experiment 5 A.19. The
graph below plots the amount of data the different scripts used to get the information they
needed to render the different alerts. We can see a significant reduction in the data sizes in
the scripts that used the BFFs.

Figure 5.10: Amount of the used data to fetch alerts’ histories (Bytes)

40

5.4 Performance Evaluation

The following table A.20 and the graph below shows the amount of data the scripts used
to fetch a certain user information. We can see from the graph that the script that uses REST
script and the current solution use almost the same amount of data. On the other hand, we
can see that the GraphQL script uses almost 20% more data than the other scripts.

Figure 5.11: Amount of uploaded and downloaded data to fetch user
information (Bytes)

41

5. Evaluation

Experiment 4
These are the results for fetching the different alerts’ histories in a normal network con-

dition (See the tables in appendix A:A.21,A.22,A.23,A.24,A.25)
We can see from the tables that the confidence intervals for all the different scripts overlap
when fetching the same alerts. As a result, we can not see a significant difference in the la-
tencies for the different scripts. The graph below shows the mean values of the latencies: 5.12

Figure 5.12: History Latency in Normal Network

42

5.4 Performance Evaluation

Here we can see the results that we obtained from fetching the histories using the differ-
ent scripts in a 3G network. The tables for the different alerts can be found in appendix A(
See the tables A.26,A.27,A.28,A.29,A.30).
The confidence intervals for the different scripts do not overlap when fetching different
alerts, except for the alert with four evaluations. However, the GraphQL BFF and the REST
BFF overlap for that alert. The graph below shows the latencies of the different alerts’ histo-
ries with the different scripts 5.13 Furthermore, we can see that the gRPC BFF is the fastest,
followed by the REST BFF.

Figure 5.13: History Latency in 3G Network

43

5. Evaluation

Now we can see the results that we obtained from fetching the histories using the different
scripts in an Edge network. The tables for the different alerts can be found in appendix A(
See the tables A.31,A.32,A.33,A.34,A.35).
The confidence intervals for the different scripts do not overlap when fetching different
alerts. The graph below shows the latencies of the different alerts’ histories with the different
scripts 5.14. We can see that the gRPC BFF is the fastest and the second fastest BFF is the
REST BFF.

Figure 5.14: History Latency in Edge Network

44

5.4 Performance Evaluation

Here we can see the latency results for fetching the user information using the three different
BFFs. The tables are in Appendix A (See A.36, A.37A.38).
We can see in the tables that the confidence interval overlaps for the three scripts when
fetching the user in a normal condition. Also, the confidence interval for GraphQL and
REST overlap when fetching the information in the edge network. Therefore we can say that
the performance of the GraphQL, REST, and gRPC BFFs are similar in a normal network
condition. However, in the slower networks, we can see that the gRPC BFF outperforms the
other BFFs. We can see the latencies in the graph below 5.15

Figure 5.15: User Latency in all Networks

45

5. Evaluation

The table in Appendix A (see A.40) shows the amount of data that the scripts used to
fetch the alerts’ histories. The Graph below 5.16 visualizes the data in the table. We can see
that the REST script uses less data than the GraphQL script and that the gRPC script uses
the least amount of data compared to the other scripts.

Figure 5.16: History Data Usage

46

5.4 Performance Evaluation

The table in Appendix A (see A.39) shows the amount of data that the scripts used to
fetch the user’s information. The Graph below 5.17 visualizes the data in the table. We can
see that the REST script uses less data than the GraphQL script and that the gRPC script
uses the least amount of data among the three scripts.

Figure 5.17: User Data Usage

5.4.3 Discussion
Experiment 1
We can see from the first experiment that all the BFF scripts outperform the current solution
in all network conditions. However, if we compare the different scripts’ latencies, we see that
in the normal condition, there is no significant performance differences between the differ-
ent scripts. As we mentioned earlier, the BFF scripts make one request to fetch the history
data of an alert regardless of the number of evaluations that alert has. On the other hand,
the current solution makes 2N +1 requests –where N is the number of evaluations– to fetch
the data it needs. The current solution uses HTTP 1.2 without the keep-alive option, which
means that every HTTP request starts a new TCP connection with a new TLS handshake
(encryption), and as a result, each of these requests increases the overall latency of the com-
munication.

In the 3G and the Edge network, we can see from the graphs 5.7 and 5.8 that the REST
script has lower latency than the GraphQL script. We can explain this by looking at the
graph 5.10 that shows the amount of data the client uses to fetch the alert history. We can see
that the REST script uses less data, which means that it uses fewer packages, and in slower

47

5. Evaluation

networks, this can decrease the latency of the communication.

Experiment 2

In the second experiment, we measure the latency for fetching a user’s information using the
two scripts that use BFFs and the current solution. This experiment aims to see whether the
BFFs add any extra latency when fetching resources that require only one request to fulfill.
As we can see from the graph 5.9, in all network conditions, there is no significant difference
in the latencies of the three different approaches, which means that the BFFs do not increase
the latency significantly even when we use them to fetch data that require few numbers of
requests to fulfill. In the current solution, the client makes one request to the users service
directly, whereas in the BFF approach, the client makes one request to the BFF and the BFF
makes another request to the users service. However, the experiment shows that the BFF does
not add significant latency to the requests. This is because the BFF lives in the same cluster
as the Users service, and they are on the same network. Therefore, the latency between the
BFF and the users service is negligible compared to the latency between the client and the
cluster.

Experiment 3

In the third experiment, we measure the amount of data the client uses to fetch the data it
needs for the client and the different alert histories. In the alert history case, we can see in
the graph 5.10 that the BFF scripts use significantly less data than the current solution. This
can be explained by the fewer requests the BFF scripts make compared to the current solu-
tion. Also, the BFFs send back smaller JSON responses than the current solution because the
BFFs customize the response to fit the client’s need and only send back the relevant fields,
which prevents over-fetching. On the other hand, we can see from the same graph 5.10 that
the REST script uses less data compared to the GraphQL script, and this can be because the
GraphQL client sends a relatively large query with every request to tell the BFF what fields
the client needs.

In the users’ case, we can see from the graph 5.11 that the current solution and the REST
script use a similar amount of data, while the GraphQL script uses more data than the other
two. Here we see that since all the three approaches make one request only to the backend,
all three approaches open a single connection with the backend system. Therefore, the ad-
vantage that BFF scripts had with the alert histories does not exist with the users’ service
requests. Also, with the user information situation, the client consumes all the data that the
users’ service sends, which means that the JSON responses the BFFs send back and the ones
the users’ service sends back are almost the same. The increase in the GraphQL script data
usage can be due to the GraphQL client including a query with every request to the BFF.

48

5.4 Performance Evaluation

Experiment 4
We could not host the gRPC BFF in the staging environment because the staging environ-
ment is not configured to expose a gRPC service externally. Therefore, we created experiment
number 4 to compare the REST and the GraphQL scripts with the gRPC script. In the first
graph 5.12, we can see that there is no significant difference in the different scripts’ latencies
when fetching the different alerts in the normal network condition. In slower network con-
ditions, i.e., 3G 5.13 and Edge 5.14, we can see that similar to the results from experiment 1,
the REST script has lower latencies when fetching the histories of the different alerts. How-
ever, the gRPC script has even lower latencies than the REST script. The reason behind this
latency reduction in the gRPC script’s case can be that the gRPC client uses less data when
fetching the data needed to render the alerts’ histories 5.16. Consequently, the communica-
tion requires fewer packages, which can reduce the latency of the entire communication.

In the user’s information case, we can see from the graph 5.15 that all three scripts have
similar latencies when fetching the user’s information in a normal network condition. How-
ever, in slower networks, i.e., 3G and Edge, the gRPC script has lower latency when fetching
the user’s information, and also this can be due to the lower data usage in the gRPC script’s
case, as we see in the following graph 5.17.

The data usage experiment shows that the REST script uses less data than the GraphQL
script. However, the gRPC script uses even less data than the REST script. As mentioned ear-
lier, gRPC uses HTTP 2.0 protocol to communicate compared to GraphQL and REST.HTTP
2.0 uses HPACK [32] that specifies how to compress HTTP headers consequently HTTP 2.0
eliminates redundant information for the header packets, and as a result, HTTP 2.0 uses less
data[10].

When comparing the results from experiment 4 and the previous experiments, we can un-
derstand how the gRPC BFF would perform in the staging environment. The results deduct
that the gRPC BFF would have lower latency than the GraphQL and the REST BFFs in slower
network conditions. Moreover, the gRPC BFF would use less data when fetching users’ in-
formation and alerts’ histories.

5.4.4 Threat to Validity
Some confidence intervals intersect for the latencies, indicating that we can not determine
which solution has lower latency. There are several ways to decrease the length of a confidence
interval, one of which is increasing the number of iterations. In our experiments, we chose
300 as the number of iterations, and this is due to the long time and the large number of
requests each iteration sends to the backend system. We have five alerts and combined they
have 35 evaluations. Also, we have three different network conditions and three different
solutions. This means that in each iteration, the backend makes

(35 × 2 + 5) × 3 × 3 = 675 Requests

So in 300 iterations the system makes

675 × 300 = 202500 Requests

49

5. Evaluation

We see that the first experiment only results in 202500 requests. The other experiments
invoke many more requests in the backend system. Also, looking at alert history latency
tables in the Appendix, we can see that fetching the history evaluation of an alert takes, on
average 3.64 seconds. Therefore, fetching the history of five alerts using three different scripts
in three different network conditions takes around

5 × 3 × 3 × 3.64 = 49140 Seconds −→ 13.67 Hours

After that, we need to conduct the second, third, and fourth experiments, which are also
time-consuming. From all the above, we can see that the experiments are resource and time-
consuming, and therefore we could not increase the number of iterations. Moreover, increas-
ing the number of iterations has a small impact on the confidence interval’s length, which
means that the number of iterations must be increased significantly to significantly reduce
the confidence interval, especially when the mean values are so near to each other. Moreover,
we experimented in Qlik’s staging environment. Therefore, more elements were involved in
the process, i.e., a load balancer, authentication service, metrics, and tracings gathered from
the BFFs, which we did not mention in this thesis. We wanted to test the BFF pattern in
a real production environment where these elements are present in most microservices pat-
terns. Since the staging environment mirrors the production environment, we experimented
there. Also, we implemented tracing and metrics the same way for all the BFFs. Moreover,
the GraphQL BFF and the REST BFF had the same configurations in the cluster to reduce
the cluster’s effect on the BFFs. For the gRPC BFF, we could not add the BFF to the cluster
due to configuration issues, and therefore, we did a new experiment to compare it with the
other BFFs.

5.5 Implementation Evaluation
In this section, we are interested in measuring the impact of the BFF design pattern on the
coupling between the different components of the system, i.e., the backend services, the BFF,
and the client. Also, we are interested in measuring the effect of the BFF design pattern on
the client’s code base. Therefore, we create two experiments to do the measurements.

5.5.1 Coupling Experiment
In this section, we are interested in measuring how the BFF design pattern affects the cou-
pling of the system, i.e., between the microservices, BFFs, and the clients. We study the effects
of some changes that can take place in similar systems and whether we need to change the
codebases of the BFFs or the clients to adjust to those changes. The changes that we will
investigate are the followings:

1. We assume that the address of the data-alerts service is changed.

2. We assume that the name of some fields in the users service response is changed.

3. We change the clients to request more fields about the users.

4. We change the client to request data about alert conditions. The data comes from a
new service not implemented in the BFF.

50

5.5 Implementation Evaluation

5.5.2 Code Metrics Experiment
We want to study the code complexity impact of using different BFF technologies on the
clients’ code bases. Therefore, we apply software complexity metrics to each client’s source
code. These are the complexity metrics we are using:

Lines of Code(LOC)
The LOC metric is the lines of code in the source code of a program. It is easy to calculate
and understand. However, the LOC metric does not consider the complexity of each line of
code. For instance, LOC does not differentiate between "i=1" and "i = func(1+2,3)/func(5);"
[39].

Halstead Complexity Metric (HCM)
HCM is calculated using the number of operators and operands in the source code. Operators
are symbols used in expressions to manipulate the operands[39].
In this experiment, we calculate the metrics mentioned below for each function involved in
the process of fetching the needed data.
HCM uses the following metrics:

• n1 = the number of unique operators

• n2 = the number of unique operands

• N1 = the number of all operators

• N2 = the number of all operands

to calculate the following metrics:

• Volume: V = (N1 + N2) ∗ log2(n1 + n2)

• The software’s ideal volume: V ∗ = (n1N2/2n2)(N1 + N2)log2(n1 + n2)

• Programming Difficulty: D = V /V ∗

• Programming Effort : E = V ∗ D

• Error Estimate: B = V /S∗

• S∗ is the programmer’s ability, Halstead sets it to 3000.

[39]

51

5. Evaluation

Cyclomatic Complexity Metric (CCM)
CCM represents the number of linearly independent paths in the control flow graph of a
program’s source code, thus, it indicates the minimum paths that the programmers should
test. The formula to calculate CCM is CCM = e− n+ 2 where e is the number of edges and
n is the number of nodes in the control flow graph.[39]. According to [26] the control flow
graph represents all the flow of control that may arise during the program’s execution, and
we can explain it with an example:

a = 0
b = 2
while a < b:

b =- 2
print(b)
the control flow graph for the code above is the following 5.18:

Figure 5.18: Control Flow Graph

5.5.3 Results
Coupling Experiment
Here we create a table to present the results of the coupling experiment. We put X next to
the entity if the changes in the system require the developers to update the entity’s codebase.

52

5.5 Implementation Evaluation

The changes:

1. The data alert service’s address changes

2. We assume that the name of some fields in the users service response is changed

3. We change the clients to request more fields about the users

4. We change the client to request data about alert conditions. The data comes from a
new service not implemented in the BFF.

Entity/ Changes 1 2 3 4
GraphQL BFF X X X

REST BFF X X X X
gRPC BFF X X X X

No BFF Script X X X X
GraphQL Script X X
REST BFF Script X X

gRPC Script X X

Table 5.3: System Coupling

Code Metrics Experiment

The Lines of code table 5.4 shows the lines of code number involved in getting the history
of an alert in each script. We can see that the current solution, i.e., the script that does not
use the BFF, has the largest code base. The second-largest code base is the GraphQL script,
which is due to the large query in the code.

Entity LOC
No BFF 180

GraphQL BFF 101
REST BFF 42
gRPC BFF 23

Table 5.4: Alert Lines of Code Metrics

The table 5.5 shows the lines of code metrics for the script that fetches the user infor-
mation. We can see that the largest code base is the GraphQL code base. This is due to the
relatively large query that is sent in the post request.

53

5. Evaluation

Entity LOC
No BFF 15

GraphQL BFF 51
REST BFF 22
gRPC BFF 20

Table 5.5: User Lines of Code Metrics

The table 5.6 shows the Halstead metrics for each alert history script where the lower the
difficulty, programming effort, and estimated bug count, the better. We want to point out
that the script that uses the current solution is the same code that Qlik uses in the mobile
application, i.e., code in production. The script has eight different functions that get called
to fetch an alert’s history. The rest of the scripts use one function to get the required data.
For simplicity, we refer to every helper function in the current solution as Function 1,2,3, and
so on.

Type Function D E B
No BFF Function 1 18.79 13806.74 0.191
No BFF Function 2 2.37 266.87 0.0138
No BFF Function 3 2.44 316.12 0.015
No BFF Function 4 3.42 805.09 0.0288
No BFF Function 5 4.16 594.26 0.023
No BFF Function 6 9.21 3247.01 0.073
No BFF Function 7 2.37 266.87 0.013
No BFF getHistory 5.4 1218.35 0.038

GraphQL BFF getHistory 2.88 392.30 0.017
REST BFF getHistory 2.84 418.75 0.018
gRPC BFF getHistory 0.593 116.809 0.007

Table 5.6: History Halstead Complexity

Entity Function D E B
No BFF getUser 2.96 339.03 0.016

GraphQL BFF getUser 2.58 295.57 0.014
REST BFF getUser 2.33 177.33 0.010
gRPC BFF getUser 0.625 89.974 0.006

Table 5.7: User Halstead Complexity

The table 5.8the cyclomatic complexities of the different scripts. If a script has more than
one function, we summed the CCMs of all the functions in that script.

54

5.5 Implementation Evaluation

Entity CCM
No BFF 35

GraphQL BFF 2
REST BFF 2
gRPC BFF 2

Table 5.8: History Cyclomatic Complexity

Entity CCM
No BFF 2

GraphQL BFF 2
REST BFF 2
gRPC BFF 2

Table 5.9: User Cyclomatic Complexity

5.5.4 Discussion
Coupling Experiment
The first experiment shows that the GraphQL BFF requires the least number of releases in
the four scenarios that we have suggested. The GraphQL BFF allows the client to specify the
fields it needs in every request. As a result, if the GraphQL client needs different fields in a
response, as long as the GraphQL BFF has the fields in its schema and the microservice still
serves that field, there is no need to release a new version of the BFF. On the other hand, the
same does not apply to gRPC and REST. because with those two, the fields that the BFFs
send are hard-coded into the BFFs, and therefore, the BFFs have to be updated if the client
decides to ask for more or even fewer fields.

For the clients, the experiment showed that the BFF design pattern reduces the coupling
between the client and the backend system. This is because we moved all the logic dependent
on the internal services into the BFF instead. As a consequence, the client became more
independent from the internal services. This means that we can reduce the number of client
releases related to changes in the backend system.

Code Metrics Experiment
The second experiment shows that for the alert history fetching scripts, the BFF design pat-
tern reduces the code complexity of the client code. We also see that all the BFF scripts have
fewer lines of codes compared to the current solution script(see table:5.4). Also, when we
look at the Halstead complexity metrics in table 5.6, we can see that the current solution uses
eight functions to fetch the alert history data. Each of those functions needs to be tested and
maintained. Each BFF script has only one function to fetch the needed data. If we compare
the Halstead metrics (See table: 5.6) for the BFF scripts functions and the current solution

55

5. Evaluation

function, we see that the BFFs’ source codes are easier to maintain and have on average lower
estimated bugs number than the current solution code. On the other hand, for the scripts
that fetch the user’s information, we can see that the BFFs do increase the length of clients’
source code compared to the current solution (See table 5.5) because the BFFs and current
solution clients only send one request to the backend. The current solution does not need to
format the response. However, the increase in the code lines does not necessarily mean an
increase in code complexity. If we look at the Halstead metrics for the user code in the table
5.7, we see that the difficulty, programming effort, and estimated bug count are lower for the
BFFs clients compared to the current solution client. This can indicate that the BFF clients
would be easier to maintain compared to the current solution client code.

5.5.5 Threat to Validity
The Halstead metrics, lines of code, and Cyclomatic complexities guide programmers to
write more maintainable and readable software. They do not give objective results that can
be used to compare to methods because programmers can refactor any piece of code to alter
those results. However, to minimize the effect of the programming style in the metrics, one
programmer wrote the code of all the scripts, and that programmer followed the same coding
style and design pattern in all the scripts.

5.6 BFF Security Evaluation
We conduct the security evaluation by doing a threat analysis on the BFFs. After that, we
recommend security requirements to mitigate the effects of the threats we find.

5.6.1 Threat Analysis
First, we create a Data flow diagram (DFD) to visualize all the processes and entities in the
system and how data flows between them, and then we set our different trust boundaries.
Next, we use the STRIDE[35] method to conduct our threat modeling on all the data that
flows across different trust boundaries.
STRIDE is an abbreviation for:

• Spoofing: is an attack where an adversary impersonates a legitimate user in the system

• Tampering: is an unauthorized modification of information or processes in the system.

• Repudiation: is to dismiss responsibility of action.

• Information Disclosure: is when the attacker gets access to confidential information.

• Denial of Service: This attack overwhelms the system with illegitimate requests or
requests to prevent the system from responding to legitimate ones.

• Privilege Escalation: is when a user can access more information or services than they
are allowed.

56

5.6 BFF Security Evaluation

To conduct threat enumeration using STRIDE per interaction that considers tuples of (ori-
gin, destination, interaction) and enumerates threats against them [37]. First, we identify all
the interactions that cross the trust boundary in DFD5.19. After we identify all the interac-
tions, we create a stride table to identify the S.T.R.I.D.E threats applicable to each interaction,
and we put a checkbox for each valid S.T.R.I.D.E risk for every interaction as we did in this
table 5.10. For example the interaction "BFF has inbound data flow from a client." is suscep-
tible to Spoofing, Denial of service and Privilege Escalation, So the table for that interaction
would be:

Element Interaction S T R I D E
1 BFF BFF has inbound data flow from a client X X X

After creating the STRIDE table, we create a new table where we place a threat per
checkbox (see table: 5.11).

Security Assumptions

The readers need to understand why we avoid analyzing specific system parts, i.e., the internal
services and Ingress. Therefore, we state the reasons to avoid those analyses in the security
assumptions we have regarding the system.

1. Ingress only forwards the requests and responses between the client to the BFF, and
therefore, we treat every data flow between the client and the BFF that goes through
Ingress as a data flow between the client and the BFF directly.

2. The entire cluster is hosted on a secure network. Therefore we do not consider attacks
from the microservices or attacks on the data flow inside the cluster.

Data Flow Diagram

We represent every service and entity that we do not have control over as a rectangle, process
that we can control as a circle, and data stores as parallel lines.

57

5. Evaluation

Figure 5.19: Data Flow Diagram for fetching the history

5.6.2 STRIDE Table

When creating a STRIDE table we are only interested in interactions that cross trust bound-
aries.
Elements are the different entities in the system.

58

5.6 BFF Security Evaluation

Element Interaction S T R I D E
1 Process(BFF) BFF has inbound data flow from a client X X X
2 BFF has outbound data flow to the client X X X

3
BFF has inbound data flow from

Data Alert service X X X

4
BFF has outbound data flow

to Data Alert service X X X

5
BFF has inbound data flow
from Notification service X X X

6
BFF has outbound data flow

to Notification service X X X

7
External

Interactor
(Client)

Client has inbound data flow from the BFF
through Ingress X

8
Client has outbound data flow to BFF

through Ingress X X

9 Data Flows
Data flow between the client and

Ingress X X X

10
Data flow between the BFF and

Data Alert service X X X

11
Data flow between the BFF and

Notification service X X X

12

External
Interactor

(Data Alert
Service)

Service has inbound data flow from
the BFF X X X

13
Service has outbound data flow from

the BFF X X X

14

External
Interactor

(Notification
Service)

Service has inbound data flow from
the BFF X X X

15
Service has outbound data flow from

the BFF X X X

Table 5.10: Stride Table

59

5. Evaluation

S T R I D E

1

BFF
not sure

of client’s
identity

BFF might
crash

or
Client

overwhelms
the BFF

with requests

Client sends
malicious
request

to force BFF
to request
internal
services

with BFF
privileges

2

Attacker
pretends

to be
the user

Client
dismisses
receiving
any thing

from
the BFF

BFF
sends data

to
unauthorised

client

3
.
.
6

Not in
the scope of
this paper

7

Attacker
pretends
to be the

BFF

8

Client not
sure about

the identity
of the BFF

The BFF
dismisses
receiving
anything

from
client

9

Attacker
can tamper

with
packets

Attacker
can

sniff packets

Attacker
can interact

with the TCP
packets to
stop the

communication
10
.
.

15

Not in
the scope of
this paper

Table 5.11: Stride Table

60

5.6 BFF Security Evaluation

5.6.3 Threat Mitigations
In this section we provide some security requirements for the BFF and the entire system,
and in the security requirements we use the certain keywords to indicate requirement levels
according to RFC 2119 [5] and these keywords are the following:

• Must means that the definition is an absolute requirement of the specification

• Must not means that the definition is an absolute prohibition of the specification

• Should means that there may exist valid reasons in particular circumstances to ignore
a particular item, but the full implications must be understood and carefully weighed
before choosing a different course.

• Should not means that there may exist valid reasons in particular circumstances when
the particular behavior is acceptable or even useful, but the full implications should
be understood and the case carefully weighed before implementing any behavior de-
scribed with this label.

1. TLS
Transport Layer Security a.k.a TLS [20] encrypts the communication channels between the
cluster and the client. We should use TLS 1.3 and if that is not applicable, TLS 1.2 must be
used instead. Also, for the client would be able to authenticate the cluster, a trustworthy
certificate authority (a.k.a CA) must sign the server’s certificate.

2. Authentication Tokens
The client must send an authentication token (a.k.a auth token) with every request to the
cluster. When the request reaches the cluster, the authentication service must verify the token
before it reaches the BFF, and then the BFF must forward the token to the internal services.
The internal services must also send the token to the authentication service to verify the
token. The BFF will have no privileges that an attacker can abuse.

3. Logging
The BFF must log every event that the client takes. Also, the BFF must log every request and
response. The logs are helpful to prove any action the users make, and it helps developers
to find bugs. Moreover, extensive logging can help security experts determine an adversary’s
actions in case of a security breach. We must not log any data that the General Data Protec-
tion Regulation a.k.a GDPR [23] classifies as a personally identifiable information (a.k.a PII)
e.g., usernames, emails or personal addresses.

4. Using cluster management tools and monitoring
The cluster management tools can automatically restart services if they crash without any
human intervention. Also, service monitoring can flag any potential crashes of the BFF to
the developers so that they can fix the bugs that caused the crashes. Therefore, we should use
cluster management tool and monitoring.

61

5. Evaluation

5. Scaling and Cloud Hosting

Services should be hosted in the cloud, because cloud hosting makes it easier to scale the
services both vertically by increasing the computing power for each server and horizontally
by creating multiple replicas of the BFF. In addition, scaling allows the BFF to handle more
traffic.

6. Time-outs to drop slow connections

If a request takes more time than a time limit, the BFF must drops the request, freeing up
resources to handle other requests. Also, this can mitigate some attacks where attackers open
many slow communication channels with the BFF, which can affect the service’s capabilities
to handle legitimate requests.

7. Restricting the IP addresses that the BFF can send a request
to

The programmers must specify the IP addresses that the BFF can interact with to prevent
attackers from using the BFF to contact any internal or external services and endpoints.

8. Not allowing the client to specify the services’ addresses to
the BFF

The BFF must either use a discovery service or a list of hard-coded IP addresses of the services
it needs to contact and the BFF must not wait for the client to provide these addresses.
Otherwise, the BFF would be vulnerable to Server Side Request Forgery attacks.

5.6.4 Threat-Mitigation Table

The 5.12 table shows us which recommendation mitigates which threat. The numbers in the
mitigation row map to the threat mitigations in 5.6.3 and the numbers in the threats column
map to the numbers in this table 5.11

Evaluate the BFF design pattern from a security perspective and provide recommendations
that make the entire design pattern more secure.

62

5.6 BFF Security Evaluation

Threats/ Mitigations 1 2 3 4 5 6 7 8
1.Spoofing X

1.Denial of Service X X X
1.Privilege Escalation X X

2.Spoofing X
2.Repudiation X

2.Information Disclosure X
7.Spoofing X
8.Spoofing X

8.Repudiation X
9.Tampering X

9.Information Disclosure X
9.Denial of Service X

Table 5.12: Threat-Mitigation Table

63

5. Evaluation

64

Chapter 6

Related Work

There are already research papers and articles investigating different ways of integrating fron-
tend technologies into a backend consisting of several microservices. For example, Brown and
Woolf [6] propose the BFF design pattern as a possible solution to connect different frontend
application types such as mobile, desktop, and web application clients. According to the au-
thors, the BFF design pattern can orchestrate several API calls that result from a single client
action. Moreover, the BFF pattern can translate the microservices’ responses so they fit the
clients’ needs, and it also can filter away data that the clients do not need[6]. Also Brown and
Woolf state, that in most cases, to increase the development efficiency, the team responsible
for the frontend client application is also responsible for the BFF because the client team
does not have to waste time collaborating with other teams to add some changes to the BFF.
Moreover, the client team knows best how to optimize the BFF to fit their client’s needs.
Hamrs, Rogowski, and Lo Iacono [17] compare different methods of implementing frontend
architectures that are connected to a microservices backend. One of the methods they exam-
ine is integrating microservices using the BFF design pattern. According to the paper, the
BFF design pattern can separate the development of the microservices and the client appli-
cations, and this makes it easier to modify different releases of the client applications[17].
Furthermore, we saw in our results 5.5.3 that the BFF design pattern decreases the dependen-
cies between the client and the backend services, which makes it easier to introduce specific
changes to the services without impacting the client. Sound Cloud implemented the BFF
design pattern into their system back in 2013, and they wrote a blog [8] about their expe-
rience with the BFF pattern. The blog informs about the advantages and disadvantages of
using BFFs. According to them, BFFs provide autonomy because having different BFFs for
different client types enables the developers to optimize each BFF to fit its clients’ needs. Fur-
thermore, BFFs provide resilience in the system because a bad deployment can bring down
a BFF, but it should not bring down the whole platform. As a consequence, high autonomy
and lower risk increase the development speed. The blog points out that feature integration
tends to end up in the BFFs in some cases. Consequently, the code for the feature gets dupli-
cated in the different BFFs, which leads to inconsistent implementations that diverge with

65

6. Related Work

time. Moreover, the blog states that there should be a strategy to determine the maximum
number of BFFs a system can have because it is tempting to create too many BFFs, which
increases the autonomy. However, creating too many BFFs increases the maintenance and
operational overhead[8]. The following paper [29] discusses different methods to make the
microservices design pattern more secure. It highlights that the authentication token must
be verified at the microservices level. On the other hand, verifying the access token at the
API gateway level makes the system vulnerable if the API gateway gets compromised. This
is called the confused deputy problem. Since BFFs are very similar to API gateways, we can
extrapolate this reasoning to apply to the BFF design pattern. Similarly, in our threat analysis
5.6, we state that the microservices must check the token validity when getting requests from
the BFF, which would prevent an attacker from using the BFF to access services that the at-
tacker does not have access to. Moreover, we suggest more measures that improve the BFF’s
security as a service and the entire infrastructure that the BFF is part of. All these papers
contain important information about the BFF design pattern, and they inspect elements of
interest to us in our thesis. However, in our thesis, we go into detail of what technologies to
use when implementing a BFF. Moreover, we study the BFF’s impact on the maintainability
of the frontend and the BFF service. Furthermore, we create a threat model for the BFF de-
sign pattern to give a solid understanding of how to secure the BFF and mitigate the cyber
security threats when implementing a BFF.

66

Chapter 7

Conclusion

This thesis evaluates the BFF design pattern as a possible solution to the performance-overhead
the microservices pattern introduces. We found that the BFF design pattern mitigates the
microservices overhead. It decreased the dependencies between the backend services and the
clients because the client does not have to know about the different services and endpoints
in the backend system. Also, in our case that the BFF reduced the client’s code complexity
because we moved any processing or formatting of the incoming responses from the client
to the BFF. Moreover, we migrated the code that makes several requests to several services
to the BFF. As a result, the client code had fewer potential bugs according to the Halstead
metrics. Moreover, any changes in the shape of the requests or responses did not affect the
client. As a result, the frontend team’s productivity increased, and the number of releases
related to those changes reduced.
When comparing the different BFFs and their effect on the client-backend dependencies 5.3,
we saw that the GraphQL BFF had the least dependency among the three BFFs. However,
when looking at the client code metrics (5.6, 5.7), we saw that the gRPC client has the least
programming effort, difficulty, and estimated bug counts.

We show that the BFF design pattern significantly decreased the latency between the
clients and the backend when fetching data requiring several backend requests, especially
for clients with slower internet connections. When looking at the results for the latency
of the different BFFs’ clients in different network conditions, we found that for complex
requests, in fast network conditions, the REST, GraphQL, and gRPC BFFs had similar la-
tencies. However, we found that the gRPC client had the least latency in slower network
conditions, followed by the REST and GraphQL clients. However, for data that do not re-
quire several requests to fulfill, we found that the gRPC client had the least latency 5.15. On
the other hand, the current solution, REST and GraphQL clients, had similar latency results
5.9.

For the data usage, when fetching complex data that require several requests to fulfill, we

67

7. Conclusion

found that the BFFs significantly reduced the amount of data the client sends and receives
5.11 compared to the current solution where no BFFs are used. This reduces the data usage
costs for clients operating on relatively expensive mobile networks. After comparing the data
usage for fetching complex data 5.16, we found that the gRPC client used the least amount of
data, then followed by the REST client and finally the GraphQL client. When comparing the
data usage between the BFFs’ scripts and the current solution when fetching data that does
not require several requests, we found that the REST client uses a similar amount of data to
the current solution. However, the GraphQL client used more data than the current solution
and the REST clients. However, the gRPC client used fewer data to fetch the needed data. We
also found that the BFF design pattern introduces security risks that need to be mitigated
to make it harder for malicious users to abuse the system. In conclusion, the BFFs reduce
latency, data usage, client-backend dependencies, and client codebase complexity.

68

References

[1] Akhan Akbulut and Harry G Perros. Performance analysis of microservice design pat-
terns. IEEE Internet Computing, 23(6):19–27, 2019.

[2] Omar Al-Debagy and Peter Martinek. A comparative review of microservices and
monolithic architectures. In 2018 IEEE 18th International Symposium on Computational
Intelligence and Informatics (CINTI), pages 000149–000154. IEEE, 2018.

[3] Apollo. Introduction to apollo server. Available at https://www.apollographql.
com/docs/apollo-server/ (). Last Access 2022/1/24.

[4] Apple. App review. Available at https://developer.apple.com/app-store/
review/ (). Last Access 2022/2/14.

[5] Scott Bradner. Key words for use in rfcs to indicate requirement levels. Available
at https://datatracker.ietf.org/doc/html/rfc2119 (1997/03). Last Access
2022/5/11.

[6] Kyle Brown and Bobby Woolf. Implementation patterns for microservices architectures.
In Proceedings of the 23rd Conference on Pattern Languages of Programs, pages 1–35, 2016.

[7] Romuald Corbel, Emile Stephan, and Nathalie Omnes. Http/1.1 pipelining vs http2
in-the-clear: Performance comparison. In 2016 13th International Conference on New Tech-
nologies for Distributed Systems (NOTERE), pages 1–6. IEEE, 2016.

[8] Jorge Creixell. Service architecture at soundcloud — part 1: Backends for
frontends. Available at https://developers.soundcloud.com/blog/
service-architecture-1 (2021/07/29). Last Access 2022/1/17.

[9] Francisco Curbera, William Nagy, and Sanjiva Weerawarana. Web services: Why and
how. In Workshop on Object-Oriented Web Services-OOPSLA, volume 2001. Citeseer, 2001.

[10] Hugues de Saxcé, Iuniana Oprescu, and Yiping Chen. Is http/2 really faster than
http/1.1? In 2015 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 293–299, 2015.

69

 https://www.apollographql.com/docs/apollo-server/
 https://www.apollographql.com/docs/apollo-server/
 https://developer.apple.com/app-store/review/
 https://developer.apple.com/app-store/review/
 https://datatracker.ietf.org/doc/html/rfc2119
 https://developers.soundcloud.com/blog/service-architecture-1
 https://developers.soundcloud.com/blog/service-architecture-1

REFERENCES

[11] Sang Gyun Du, Jong Won Lee, and Keecheon Kim. Proposal of grpc as a new northbound
api for application layer communication efficiency in sdn. In Proceedings of the 12th
International Conference on Ubiquitous Information Management and Communication, pages
1–6, 2018.

[12] Google. About app review. Available at https://developers.google.com/
workspace/marketplace/about-app-review (). Last Access 2022/2/14.

[13] GooglePlay. Qlik sense saas. Available at https://play.google.com/store/apps/
details?id=com.qlik.qsm&gl=SE (). Last Access 2022/2/14.

[14] graphql.org. Frequently asked questions (faq). Available at https://graphql.org/
faq/#is-graphql-owned-by-facebook (). Last Access 2022/2/6.

[15] graphql.org. A query language for your api. Available at https://graphql.org ().
Last Access 2022/2/6.

[16] grpc.io. Introduction to grpc. Available at https://grpc.io/docs/
what-is-grpc/introduction/ (2022/8/11). Last Access 2022/1/27.

[17] Holger Harms, Collin Rogowski, and Luigi Lo Iacono. Guidelines for adopting frontend
architectures and patterns in microservices-based systems. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, pages 902–907, 2017.

[18] Xian Jun Hong, Hyun Sik Yang, and Young Han Kim. Performance analysis of restful
api and rabbitmq for microservice web application. In 2018 International Conference on
Information and Communication Technology Convergence (ICTC), pages 257–259. IEEE, 2018.

[19] IETF. Hypertext transfer protocol – http/1.1. https://www.ietf.org/rfc/
rfc2616.txt.

[20] Internet Engineering Task Force (IETF). The transport layer security (tls) protocol
version 1.3. Available at https://datatracker.ietf.org/doc/html/rfc8446 ().
Last Access 2022/5/11.

[21] Docker Inc. Docker. Available at https://www.docker.com. Last Access 2022/1/10.

[22] Docker Inc. Use containers to build, share and run your applications. Available at
https://www.docker.com/resources/what-container. Last Access 2022/1/10.

[23] intersoft consulting services AG. General data protection regulation gdpr. Available at
https://gdpr-info.eu (). Last Access 2022/5/11.

[24] Kubernetes. What is kubernetes? Available at https://kubernetes.io/docs/
concepts/overview/what-is-kubernetes/ (2021/07/23). Last Access 2022/1/11.

[25] Li Li and Wu Chou. Design and describe rest api without violating rest: A petri net
based approach. In 2011 IEEE International Conference on Web Services, pages 508–515,
2011.

70

 https://developers.google.com/workspace/marketplace/about-app-review
 https://developers.google.com/workspace/marketplace/about-app-review
 https://play.google.com/store/apps/details?id=com.qlik.qsm&gl=SE
 https://play.google.com/store/apps/details?id=com.qlik.qsm&gl=SE
 https://graphql.org/faq/#is-graphql-owned-by-facebook
 https://graphql.org/faq/#is-graphql-owned-by-facebook
 https://graphql.org
 https://grpc.io/docs/what-is-grpc/introduction/
 https://grpc.io/docs/what-is-grpc/introduction/
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt
 https://datatracker.ietf.org/doc/html/rfc8446
 https://www.docker.com
 https://www.docker.com/resources/what-container
 https://gdpr-info.eu
 https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
 https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

REFERENCES

[26] Zhuo Ma, Haoran Ge, Yang Liu, Meng Zhao, and Jianfeng Ma. A combination method
for android malware detection based on control flow graphs and machine learning al-
gorithms. IEEE Access, 7:21235–21245, 2019.

[27] Mattt. Network link conditioner. Available at https://nshipster.com/
network-link-conditioner/ (2019/07/29). Last Access 2022/1/13.

[28] Genc Mazlami, Jürgen Cito, and Philipp Leitner. Extraction of microservices from
monolithic software architectures. In 2017 IEEE International Conference on Web Services
(ICWS), pages 524–531. IEEE, 2017.

[29] Antonio Nehme, Vitor Jesus, Khaled Mahbub, and Ali Abdallah. Securing microser-
vices. IT Professional, 21(1):42–49, 2019.

[30] Oracle. What is a server-side endpoint? Available at https://docs.oracle.com/
cd/E17802_01/webservices/webservices/reference/tutorials/wsit/
doc/Initialization2.html. Last Access 2022/1/10.

[31] Qlik. Meet the qlik active intelligence platform. Available at https://www.qlik.
com/us/ (). Last Access 2022/2/14.

[32] H. Ruellan R. Peon. Hpack: Header compression for http/2. Available at https:
//www.hjp.at/doc/rfc/rfc7541.html (). Last Access 2022/4/20.

[33] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. Differences between model-
driven development of service-oriented and microservice architecture. In 2017 IEEE
International Conference on Software Architecture Workshops (ICSAW), pages 38–45, 2017.

[34] Alex Rodriguez. Restful web services: The basics. IBM developerWorks, 33:18, 2008.

[35] Danish Sattar, Alireza Hosseini Vasoukolaei, Pat Crysdale, and Ashraf Matrawy. A
stride threat model for 5g core slicing. In 2021 IEEE 4th 5G World Forum (5GWF), pages
247–252. IEEE, 2021.

[36] Korakit Seemakhupt and Krerk Piromsopa. When should we use http2 multiplexed
stream? In 2016 13th International Joint Conference on Computer Science and Software Engi-
neering (JCSSE), pages 1–4. IEEE, 2016.

[37] Adam Shostack. Threat modeling: Designing for security. John Wiley & Sons, 2014.

[38] App Store. Qlik sense saas. Available at https://apps.apple.com/us/app/
qlik-sense-saas/id1523006591 (). Last Access 2022/2/14.

[39] Sheng Yu and Shijie Zhou. A survey on metric of software complexity. In 2010 2nd IEEE
International Conference on Information Management and Engineering, pages 352–356, 2010.

71

 https://nshipster.com/network-link-conditioner/
 https://nshipster.com/network-link-conditioner/
 https://docs.oracle.com/cd/E17802_01/webservices/webservices/reference/tutorials/wsit/doc/Initialization2.html
 https://docs.oracle.com/cd/E17802_01/webservices/webservices/reference/tutorials/wsit/doc/Initialization2.html
 https://docs.oracle.com/cd/E17802_01/webservices/webservices/reference/tutorials/wsit/doc/Initialization2.html
 https://www.qlik.com/us/
 https://www.qlik.com/us/
 https://www.hjp.at/doc/rfc/rfc7541.html
 https://www.hjp.at/doc/rfc/rfc7541.html
 https://apps.apple.com/us/app/qlik-sense-saas/id1523006591
 https://apps.apple.com/us/app/qlik-sense-saas/id1523006591

REFERENCES

72

Appendices

73

Appendix A

Tables

A.1 Experiment 1

Script Mean Std 95% CI #Iterations
GraphQL BFF 443.002 16.111 [441.179 , 444.825] 300

No BFF 1463.167 36.709 [1459.013 , 1467.321] 300
REST BFF 442.731 20.039 [440.463 , 444.999] 300

Table A.1: Latency results for alert with 1 evaluation

Script Mean Std 95% CI #Iterations
GraphQL BFF 466.68 15.607 [464.914 , 468.446] 300

No BFF 1509.392 72.754 [1501.159 , 1517.625] 300
REST BFF 467.888 32.718 [464.186 , 471.59] 300

Table A.2: Latency results for alert with 4 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 484.775 20.826 [482.418 , 487.132] 300

No BFF 1537.509 31.626 [1533.93 , 1541.088] 300
REST BFF 482.925 21.636 [480.477 , 485.373] 300

Table A.3: Latency results for alert with 7 evaluations

75

A. Tables

Script Mean Std 95% CI #Iterations
GraphQL BFF 507.874 31.429 [504.317 , 511.431] 300

No BFF 1566.174 49.609 [1560.56 , 1571.788] 300
REST BFF 504.077 32.751 [500.371 , 507.783] 300

Table A.4: Latency results for alert with 10 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 545.932 52.838 [539.953 , 551.911] 300

No BFF 1610.774 192.896 [1588.946 , 1632.602] 300
REST BFF 529.869 43.986 [524.892 , 534.846] 300

Table A.5: Latency results for alert with 13 evaluations

A.1.1 History Latency in 3G Network

Script Mean Std 95% CI #Iterations
GraphQL BFF 1202.828 38.392 [1198.484 , 1207.172] 300

No BFF 4319.291 114.443 [4306.341 , 4332.241] 300
REST BFF 1151.847 47.395 [1146.484 , 1157.21] 300

Table A.6: Latency results for alert with 1 evaluation

Script Mean Std 95% CI #Iterations
GraphQL BFF 1253.851 35.103 [1249.879 , 1257.823] 300

No BFF 4649.397 128.276 [4634.881 , 4663.913] 300
REST BFF 1207.364 40.829 [1202.744 , 1211.984] 300

Table A.7: Latency results for alert with 4 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 1304.631 37.098 [1300.433 , 1308.829] 300

No BFF 4966.262 127.305 [4951.856 , 4980.668] 300
REST BFF 1256.858 36.445 [1252.734 , 1260.982] 300

Table A.8: Latency results for alert with 7 evaluations

76

A.1 Experiment 1

Script Mean Std 95% CI #Iterations
GraphQL BFF 1359.337 33.574 [1355.538 , 1363.136] 300

No BFF 5302.108 174.608 [5282.349 , 5321.867] 300
REST BFF 1306.057 49.87 [1300.414 , 1311.7] 300

Table A.9: Latency results for alert with 10 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 1409.747 39.253 [1405.305 , 1414.189] 300

No BFF 5769.792 160.431 [5751.638 , 5787.946] 300
REST BFF 1352.106 43.698 [1347.161 , 1357.051] 300

Table A.10: Latency results for alert with 13 evaluations

A.1.2 History Latency in Edge Network

Script Mean Std 95% CI #Iterations
GraphQL BFF 3353.031 48.3 [3347.565 , 3358.497] 300

No BFF 12686.576 230.015 [12660.547 , 12712.605] 300
REST BFF 3258.266 75.919 [3249.675 , 3266.857] 300

Table A.11: Latency results for alert with 1 evaluation

Script Mean Std 95% CI #Iterations
GraphQL BFF 3475.488 85.174 [3465.85 , 3485.126] 300

No BFF 13687.583 221.591 [13662.508 , 13712.658] 300
REST BFF 3386.001 139.406 [3370.226 , 3401.776] 300

Table A.12: Latency results for alert with 4 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 3601.621 36.979 [3597.436 , 3605.806] 300

No BFF 14597.061 264.408 [14567.14 , 14626.982] 300
REST BFF 3495.012 102.417 [3483.422 , 3506.602] 300

Table A.13: Latency results for alert with 7 evaluations

77

A. Tables

Script Mean Std 95% CI #Iterations
GraphQL BFF 3768.41 220.581 [3743.449 , 3793.371] 300

No BFF 15876.536 685.995 [15798.908 , 15954.164] 300
REST BFF 3638.098 109.776 [3625.676 , 3650.52] 300

Table A.14: Latency results for alert with 10 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 4148.87 171.016 [4129.518 , 4168.222] 300

No BFF 20181.909 3271.295 [19811.727 , 20552.091] 300
REST BFF 3807.324 179.263 [3787.038 , 3827.61] 300

Table A.15: Latency results for alert with 13 evaluations

A.2 Experiment 2

Type Mean Std 95% CI #Iterations
GraphQL BFF 365.137 11.419 [363.845 , 366.429] 300

No BFF 366.314 10.679 [365.106 , 367.522] 300
REST BFF 361.651 13.798 [360.09 , 363.212] 300

Table A.16: Latency results for user in a normal network

Type Mean Std 95% CI #Iterations
GraphQL BFF 1086.986 18.183 [1084.928 , 1089.044] 300

No BFF 1069.618 31.027 [1066.107 , 1073.129] 300
REST BFF 1063.208 25.487 [1060.324 , 1066.092] 300

Table A.17: Latency results for user in a 3G network

Type Mean Std 95% CI #Iterations
GraphQL BFF 3190.003 34.673 [3186.079 , 3193.927] 300

No BFF 3144.898 89.7 [3134.747 , 3155.049] 300
REST BFF 3128.694 66.448 [3121.175 , 3136.213] 300

Table A.18: Latency results for user in an edge network

78

A.2 Experiment 2

A.2.1 Experiment 3

Script #Evaluations Mean(Size) #Iterations
No BFF 1 34341.183 300

REST BFF 1 7917.286 300
GraphQL BFF 1 10896.263 300

No BFF 4 116168.753 300
REST BFF 4 11221.313 300

GraphQL BFF 4 14405.83 300
No BFF 7 ,197346.643 300

REST BFF 7 14691.086 300
GraphQL BFF 7 17866.44 300

No BFF 10 279253.006 300
REST BFF 10 17382.13 300

GraphQL BFF 10 21295.04 300
No BFF 13 360091.3 300

REST BFF 13 20543.92 300
GraphQL BFF 13 24826.913 300

Table A.19: Amount of uploaded and downloaded data by the client
fetching histories (Bytes)

Script Mean(Size) #Iterations
No BFF 7581.596 300

REST BFF 7614.98 300
GraphQL BFF 9114.26 300

Table A.20: Amount of data downloaded and uploaded to fetch user
information (Bytes)

79

A. Tables

A.3 Experiment 4
A.3.1 Alert Normal Network

Script Mean Std 95% CI #Iterations
GraphQL BFF 1558.621 114.921 [1545.616 , 1571.626] 300

Grpc BFF 1542.89 115.138 [1529.861 , 1555.919] 300
REST BFF 1546.328 116.996 [1533.089 , 1559.567] 300

Table A.21: Latency results for alert with 1 evaluation

Script Mean Std 95% CI #Iterations
GraphQL BFF 1589.592 132.07 [1574.647 , 1604.537] 300

Grpc BFF 1576.938 126.039 [1562.675 , 1591.201] 300
REST BFF 1582.886 125.526 [1568.681 , 1597.091] 300

Table A.22: Latency results for alert with 4 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 1619.54 120.368 [1605.919 , 1633.161] 300

Grpc BFF 1614.886 137.96 [1599.274 , 1630.498] 300
REST BFF 1632.144 151.323 [1615.02 , 1649.268] 300

Table A.23: Latency results for alert with 7 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 1660.537 142.0 [1644.468 , 1676.606] 300

Grpc BFF 1646.015 134.58 [1630.786 , 1661.244] 300
REST BFF 1663.583 155.532 [1645.983 , 1681.183] 300

Table A.24: Latency results for alert with 10 evaluations

80

A.3 Experiment 4

Script Mean Std 95% CI #Iterations
GraphQL BFF 1661.119 155.406 [1643.533 , 1678.705] 300

Grpc BFF 1661.249 154.428 [1643.774 , 1678.724] 300
REST BFF 1665.079 130.652 [1650.294 , 1679.864] 300

Table A.25: Latency results for alert with 13 evaluations

A.3.2 Alert 3G Network

Script Mean Std 95% CI #Iterations
GraphQL BFF 2061.459 119.981 [2047.882 , 2075.036] 300

Grpc BFF 1769.485 125.314 [1755.304 , 1783.666] 300
REST BFF 2017.906 126.802 [2003.557 , 2032.255] 300

Table A.26: Latency results for alert with 1 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 2143.421 134.271 [2128.227 , 2158.615] 300

Grpc BFF 1825.534 123.622 [1811.545 , 1839.523] 300
REST BFF 2123.889 142.106 [2107.808 , 2139.97] 300

Table A.27: Latency results for alert with 4 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 2204.064 177.738 [2183.951 , 2224.177] 300

Grpc BFF 1887.707 132.547 [1872.708 , 1902.706] 300
REST BFF 2157.753 168.03 [2138.739 , 2176.767] 300

Table A.28: Latency results for alert with 7 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 2242.946 209.323 [2219.259 , 2266.633] 300

Grpc BFF 1899.231 149.507 [1882.313 , 1916.149] 300
REST BFF 2199.991 125.657 [2185.772 , 2214.21] 300

Table A.29: Latency results for alert with 10 evaluations

81

A. Tables

Script Mean Std 95% CI #Iterations
GraphQL BFF 2505.991 186.47 [2484.89 , 2527.092] 300

Grpc BFF 1952.467 142.69 [1936.32 , 1968.614] 300
REST BFF 2408.924 165.655 [2390.178 , 2427.67] 300

Table A.30: Latency results for alert with 13 evaluations

A.3.3 Alert Edge Network

Script Mean Std 95% CI #Iterations
GraphQL BFF 3455.312 137.904 [3439.707 , 3470.917] 300

Grpc BFF 2454.965 155.562 [2437.362 , 2472.568] 300
REST BFF 3404.498 145.786 [3388.001 , 3420.995] 300

Table A.31: Latency results for alert with 1 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 3596.961 148.939 [3580.107 , 3613.815] 300

Grpc BFF 2576.41 164.306 [2557.817 , 2595.003] 300
REST BFF 3553.451 140.732 [3537.526 , 3569.376] 300

Table A.32: Latency results for alert with 4 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 3696.988 139.501 [3681.202 , 3712.774] 300

Grpc BFF 2665.46 147.276 [2648.794 , 2682.126] 300
REST BFF 3633.697 156.163 [3616.025 , 3651.369] 300

Table A.33: Latency results for alert with 7 evaluations

Script Mean Std 95% CI #Iterations
GraphQL BFF 3861.509 156.405 [3843.81 , 3879.208] 300

Grpc BFF 2759.331 210.841 [2735.472 , 2783.19] 300
REST BFF 3777.865 163.546 [3759.358 , 3796.372] 300

Table A.34: Latency results for alert with 10 evaluations

82

A.3 Experiment 4

Script Mean Std 95% CI #Iterations
GraphQL BFF 4707.094 227.652 [4681.333 , 4732.855] 300

Grpc BFF 2834.404 233.643 [2807.965 , 2860.843] 300
REST BFF 4505.178 181.524 [4484.637 , 4525.719] 300

Table A.35: Latency results for alert with 13 evaluations

A.3.4 User Normal Network

Type Mean Std 95% CI #Iterations
GraphQL BFF 416.379 52.558 [410.432 , 422.326] 300

Grpc BFF 416.864 50.123 [411.192 , 422.536] 300
REST BFF 412.543 50.686 [406.807 , 418.279] 300

Table A.36: Latency results for User in the Normal Network

A.3.5 User 3G Network

Type Mean Std 95% CI #Iterations
GraphQL BFF 927.096 77.613 [918.313 , 935.879] 300

Grpc BFF 641.675 64.884 [634.333 , 649.017] 300
REST BFF 894.685 86.12 [884.94 , 904.43] 300

Table A.37: Latency results for User in a 3G Network

A.3.6 User Edge Network

Type Mean Std 95% CI #Iterations
GraphQL BFF 2261.67 74.331 [2253.259 , 2270.081] 300

Grpc BFF 1343.304 83.546 [1333.85 , 1352.758] 300
REST BFF 2280.573 229.419 [2254.612 , 2306.534] 300

Table A.38: Latency results for User in an Edge Network

83

A. Tables

A.3.7 User Data Usage

Script Mean(Size) #Iterations
GraphQL BFF 2965.52 300

gRPC BFF 1432.296 300
REST BFF 2686.82 300

Table A.39: Amount of data downloaded and uploaded to fetch user
information (Bytes)

A.3.8 History Data Usage

Script #Evaluations Mean(Size) #Iterations
gRPC BFF 1 1680.263 300
REST BFF 1 2904.06 300

GraphQL BFF 1 4636.11 300
gRPC BFF 4 3526.05 300
REST BFF 4 6024.24 300

GraphQL BFF 4 8243.18 300
gRPC BFF 7 ,5262.2033 300
REST BFF 7 9111.32 300

GraphQL BFF 7 11729.3 300
gRPC BFF 10 7006.103 300
REST BFF 10 12191.52 300

GraphQL BFF 10 15119.18 300
gRPC BFF 13 8636.126 300
REST BFF 13 15198.433 300

GraphQL BFF 13 18668.946 300

Table A.40: Amount of uploaded and downloaded data by the client
fetching histories (Bytes)

84

INSTITUTIONEN FÖR DATAVETENSKAP | LUNDS TEKNISKA HÖGSKOLA | PRESENTERAD 2022-06-08

EXAMENSARBETE The Evaluation of Using Backend-For-Frontend (BFF) in a Microservices Environment
STUDENT Samer Alkhodary
HANDLEDARE Alfred Åkesson (LTH), Paul Ericsson (Qlik), Johan Enell (Qlik)
EXAMINATOR Niklas Fors (LTH)

Everyone Needs a BFF, Even our Mobile
Applications

POPULÄRVETENSKAPLIG SAMMANFATTNING Samer Alkhodary

Mobile and web applications have become significant parts of people’s lives nowadays,
especially with the boom of smartphones and tablets. With the competitive market
of mobile applications, software and service providers need to build more reliable
and faster applications to compete for users’ attention. This thesis shows that the
Backend-for-Frontend design pattern (BFF) improves the communication between
the clients and backend services and reduces the coding complexity of the clients’
codebase.

The majority of us use smartphones for almost
everything, for example, to get the latest news and
discounts and stay connected to friends and loved
ones. However, we hate seeing the never-ending
loading screens that feel like an eternity. Also, we
get irritated when we see that a specific mobile
application uses tons of mobile data, which costs
us more money every month. In this thesis, we
tested a new way for mobile apps to communi-
cate with the cloud and get us the information we
want to see. The experiments showed that the new
approach, which is called Backend-For-Frontend,
a.k.a BFF decreased the time an application needs
to get information up to 4 times. It also reduced
the data usage of that application by a whopping
17 times. This means that applications using the
new solution are much faster. As a result, they
save us, the users, more mobile data, reducing our
mobile bills. The BFF solution helps the program-
mers spend less time fixing bugs which gives them

more time to develop new exciting features that
can improve the user experience. Moreover, we
specified some essential cyber security recommen-
dations to help programmers keep the new ap-
proach safe. This way, we can use our favorite
apps safely, knowing that our data and private in-
formation are secure and tucked away from prying
eyes. We conducted the experiments with the new
cloud approach using Qlik’s mobile application.
We tested the impact of the BFF on the time the
application needs to get the information it needs
from the cloud and the amount of mobile data it
uses while doing so. Moreover, we tested the ef-
fect of the BFF design on the coding process of the
application. We also tried implementing the BFF
design with different communication technologies.
We found that the different technologies had var-
ious advantages that programmers can utilize to
tweak their applications to give the users the best
possible performance.

	Introduction
	Objectives
	Overview

	Background
	Services and Endpoints
	Web Service
	Endpoints

	Service Architectures
	Monolithic Architecture
	Microservices Architecture

	HTTP Protocols
	HTTP/1.1
	HTTP/2

	Staging and Production Environments
	Containerization and Clustering
	Containerization
	Docker
	Kubernetes

	Gateways and BFFs
	API Gateway
	BFF Pattern

	Evaluation Scenario
	Qlik Setup
	Solution

	Technologies and BFFs
	REST
	GraphQL
	gRPC

	Evaluation
	Backend System Setup
	BFF Experimental Setup
	Frontend System Setup
	Performance Evaluation
	Experimental Setup
	Results
	Discussion
	Threat to Validity

	Implementation Evaluation
	Coupling Experiment
	Code Metrics Experiment
	Results
	Discussion
	Threat to Validity

	BFF Security Evaluation
	Threat Analysis
	STRIDE Table
	Threat Mitigations
	Threat-Mitigation Table

	Related Work
	Conclusion
	References
	Appendix Tables
	Experiment 1
	History Latency in 3G Network
	History Latency in Edge Network

	Experiment 2
	Experiment 3

	Experiment 4
	Alert Normal Network
	Alert 3G Network
	Alert Edge Network
	User Normal Network
	User 3G Network
	User Edge Network
	User Data Usage
	History Data Usage

