
NEURAL NETWORKS FOR

CREDIT RISK AND XVA IN A

FRONT OFFICE PRICING

ENVIRONMENT

ISABELLE FRODÉ, VIKTOR SAMBERGS

Master’s thesis
2022:E31

Faculty of Engineering
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Abstract
We present a data-driven proof of concept model capable of reproducing
expected counterparty credit exposures from market and trade data.
The model has its greatest advantages in quick single-contract exposure
evaluations that could be used in front office xVA solutions. The data
was generated using short rates from the Hull-White One-Factor model.
The best performance was obtained from a GRU neural network with
two recurrent layers, which with adequate accuracy could reproduce
the exposure profile for an interest rate swap contract. Errors were
comparable to those expected from a Monte Carlo simulation with 5K
paths. With regards to computational efficiency, the proposed model
showed great potential in outperforming traditional numerical methods.
Further development and calibration to actual market data is required for
the model to be applicable in the industry. The proposed architectures may
then prove useful, especially for contracts with high-rated counterparties,
traded in a normal and liquid market.

Keywords: OTC, xVA, CVA, Counterparty Credit Risk, Interest Rate
Swaps, Hull-White Model, Machine Learning, Artificial Neural Networks,
Gated Recurrent Units.

Acknowledgments

This project would not have been possible without Nordea and our
industry supervisor Shengyao Zhu at Nordea Markets Copenhagen. We
are very thankful for all guidance and valuable discussions throughout
the project.

We would further like to extend our special regards to our academic
supervisor, Associate Professor Magnus Wiktorsson at the Centre for
Mathematical Sciences of Lund University, for his wholehearted commitment
and for bringing new perspectives. With great enthusiasm, he provided
us with important insights and knowledge even beyond the scope of this
project.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Literature Review . 2
1.3 Objective . 4
1.4 Procedural Overview . 4

2 Theoretical Framework 7
2.1 The OTC Derivatives Market 7

2.1.1 Counterparty Credit Risk 8
2.1.2 Wrong Way and Right Way Risk 9
2.1.3 Basel III . 9

2.2 Valuation Adjustments (xVA) 10
2.2.1 CVA/DVA . 11
2.2.2 FVA . 12
2.2.3 KVA, MVA, TVA and ColVA 13
2.2.4 Implementation 13

2.3 Interest Rate Swaps . 17
2.3.1 Assumptions . 17
2.3.2 Valuation . 17

2.4 Short Rate Models . 20
2.4.1 Affine Term Structure 21
2.4.2 The Hull-White One-Factor Model 22
2.4.3 Change of Numeraire in the Hull-White

Framework . 23
2.5 The Monte Carlo Method 24
2.6 Neural Networks . 25

2.6.1 Regularization . 28
2.6.2 Recurrent Neural Networks 29
2.6.3 Long Short-term Memory 33

CONTENTS

2.6.4 Gated Recurrent Unit 36
2.6.5 Robustness . 38

3 Method 39
3.1 Contract Specification 39
3.2 Data . 40

3.2.1 Augmentation . 40
3.2.2 Sample Generation 41

3.3 Model Development . 44
3.3.1 Network Architecture 45
3.3.2 Layers and Units 46
3.3.3 Regularization . 47
3.3.4 Number of Samples 47

3.4 Performance . 47

4 Results 49
4.1 Sample Generation . 49
4.2 Model Development . 49
4.3 Model Specification . 53
4.4 Base Model . 54

4.4.1 Performance Summary 54
4.4.2 Representative Predictions 55
4.4.3 Error Analysis . 57
4.4.4 Generalization Performance 58

4.5 Extended Model . 59
4.5.1 Performance Summary 59
4.5.2 Representative Predictions 60
4.5.3 Error Analysis . 63
4.5.4 Generalization Performance 64

5 Discussion 65
5.1 Performance . 65
5.2 Future Development . 67

List of Figures

1.1 Diagram of workflow . 5

2.1 Schematic diagram of a feed-forward neural network . . . 26
2.2 Schematic diagram of an RNN 30
2.3 Schematic of a LSTM unit 33
2.4 Schematic of a GRU . 37

3.1 Augmented yield curves 41
3.2 Steps in the exposure calculation 42

4.1 Validation loss for different network architectures 50
4.2 Validation loss for GRU networks of different sizes 51
4.3 Learning curve . 52
4.4 Data evaluation plot . 53
4.5 Schematic of our proposed neural network 54
4.6 Error Distributions . 55
4.7 Median loss predictions 56
4.8 Median loss against Hull-White parameters 57
4.9 Largest error . 58
4.10 Largest mean error . 58
4.11 Error Distributions . 60
4.12 Median loss predictions, extended model 61
4.13 Median loss predictions cont., extended model 62
4.14 Largest error, extended model 63
4.15 Largest mean error, extended model 63

List of Tables

3.1 Features description . 40
3.2 Data set specification . 43
3.3 Extra test set specification 44
3.4 Data set for evaluating data, specification 44
3.5 Architectures to compare LSTM units to GRUs 46
3.6 Architectures to compare uni- and bidirectional units . . 46

4.1 Simulation time for varying number of MC paths 49
4.2 Training time for varying number of units per recurrent layer 51
4.3 Training time for varying number of recurrent layers . . . 52
4.4 Results statistics on test data 55
4.5 Results statistics on extra test data 59
4.6 Results statistics on test data, extended model 60
4.7 Results statistics on extra test data, extended model . . 64

Abbreviations

AI Artificial Intelligence
ANN Artificial Neural Network
ATM At the Money
BCBS Basel Committee on Banking Supervision
BCP Basel Core Principles
BIS Bank of International Settlements
BPS Basis Points
BPTT Backpropagation Through Time
ColVA Collateral Valuation Adjustment
CSA Credit Support Annex
CVA Credit Valuation Adjustment
DVA Debit Valuation Adjustment,
EAD Exposure at Default
ENE Expected Negative Exposure
EPE Expected Positive Exposure
FVA Funding Valuation Adjustment
GFC Global Financial Crisis
GRU Gated Recurrent Unit
ICP Insurance Core Principles
IRS Interest Rate Swap
ISDA International Swaps and Derivatives Association
KVA Capital Valuation Adjustment
LIBOR London Interbank Offered Rate
LSTM Long Short-term Memory
MC Monte Carlo
MLP Multilayer Perceptron
MVA Margin Valuation Adjustment

OECD Organisation for Economic Cooperation and Development
OIS Overnight Index Swap
OTC Over-the-counter
OTM Out-of-the-money
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
TVA Tax Valuation Adjustment
xVA Valuation Adjustments

Chapter 1

Introduction

1.1 Motivation

The global financial crisis (GFC) spanning over the years 2007-2009
exposed several critical flaws in the valuation methods used in the
derivatives markets. The default of many large derivative counterparties
during the financial crisis led to an increased demand for counterparty
credit risk assessment in the valuation of derivatives contracts. Thus,
the framework for Credit Valuation Adjustments (CVA) was rapidly
developed. Increased awareness and regulation has since then led to the
development of several Valuation Adjustments, such as Funding Valuation
Adjustments and Capital Valuation Adjustments, all of which are included
in the umbrella term Valuation Adjustments (xVA). Today, even the most
simple derivatives contracts are priced at xVA desks in banks using
complex methods and large scale Monte Carlo simulations [19].

Comparing contracts on the OTC derivatives market is a regular activity
within most banks. A comparison may provide important insights into
how different contract specifications, such as maturities and strike rates,
affect risk profiles. Today, each evaluation relies on time-consuming and
extensive Monte Carlo simulations. We will present a model based on
artificial neural networks that maps yield data to the expected credit risk
exposure for single interest rate swap contacts. A deep learning model,
trained offline, could potentially be a shortcut if it generates an accurate
enough estimate of a simulated exposure profile in an instant.

1

1.2. LITERATURE REVIEW

The potential benefits of machine learning approaches in financial applications,
with regards to their increased efficiency, has been discussed and researched.
Artificial neural networks (ANNs) is a deep learning approach which
have grown largely in effectiveness and popularity in recent years. The
networks have successively been applied to more complex tasks and
performance has increased over time. It is primarily due to improvement
in computer hardware, development of software infrastructure and an
increasing amount of available data [16].

1.2 Literature Review

The bank for international settlements (BIS) points out machine learning
as one of the main drivers of the ongoing transformation of the financial
sector [33]. Machine learning and deep learning have been applied in
various financial applications since the 1990s. Hutchinson et al. (1994)
[25] show that neural networks could be useful in pricing of derivatives.
Ruf and Wang (2020) [34] present an overview of additional 150 papers
on ANNs for pricing and hedging derivatives. Hung et al. (2020) [23]
furthermore show that ANNs have been extensively applied to stock
market prediction, stock trading, portfolio management, exchange rate
prediction, macroeconomic prediction and credit and default risk. Zhu
et al. (2019) [42] highlight the potential of machine learning and neural
networks, particularly in xVA calculations.

Current development of machine learning methods in finance challenges
current standards of regulation and governance [33]. The frameworks for
the governance of machine learning models are still regarded as being in
an early stage of development. In April 2021, the European Commission
issued a proposal for a regulation specifically targeting the use of machine
learning across all sectors. Other attempts to form international principles
related to machine learning include the Organisation for Economic Cooperation
and Development (OECD) AI Principles and the G20 AI Principles. All
publications aim to reduce the risks of machine learning by consolidating
common principles of reliability, accountability, transparency, fairness
and ethics [33].

There exist no international standards or regulations that apply specifically
for the usage of machine learning in the financial industry today. Governance
of machine learning should however be in line with the current requirements
on traditional models, stated for instance in the Basel Core Principles

2

1.2. LITERATURE REVIEW

(BCP) and Insurance Core Principles (ICP). Among the principles in the
BCP and ICP, the usage of machine learning in the financial industry is
particularly challenged by requirements of transparency, reliability and
accountability. Transparency may suffer as many machine learning models
are regarded as ’black box’ models, where it is difficult to derive how
the input data is used in producing the results. Issues in accountability
may arise from difficulties of determining who should be responsible for
the results and performance of the model. The reliability of a machine
learning model differs from a traditional model as the performance is
highly dependent on the quality and relevance of the data. Furthermore,
machine learning models may require regular updates and learn from
new data to stay up to date, which may in current frameworks be
regarded as changes that require supervisory re-approval. For these
reasons, financial regulators are in the process of updating the current
regulatory frameworks to consider the specific challenges of machine
learning governance [33].

A great challenge of machine learning in finance is that of finding enough
and representative data. Ferguson and Green (2018) [13] use an artificial
neural net to value derivatives. They address the issue of insufficient
data by proposing a method to generate realistic data using Monte Carlo
simulations. Their results show that it is beneficial to have a larger
training set with more Monte Carlo noise. Borchani et al. (2019) [6] use
a similar approach to synthetically generate data.

Artificial neural networks have to some extent been applied to xVA.
Crépey et al. (2019) [2] suggest a neural network based forward/backward
stochastic differential equations (SDE) solver for efficient computation of
xVA. Gnoatto et al. (2021) [15] present another deep backward SDE solver
that enables high-dimensional computation of xVA. She and Grecu (2018)
[36] moreover apply the backward SDE solver to calculate CVA/DVA.
Welack (2019) [38] introduces an ANN approach to get market and
trade data from expected exposure. Welack further presents an ANN
that successfully reproduces a Monte Carlo generated expected exposure
profile of an interest rate swap.

3

1.3. OBJECTIVE

1.3 Objective

The aim of this project is to contribute to current research on machine
learning applied to xVA. The paper will focus on the potential benefits
of machine learning methods over traditional numerical methods with
regards to their increased efficiency. The objective is made concrete in
the development of a proof of concept model based on artificial neural
networks that maps market data to the expected credit risk exposure
for an interest rate swap. Such a model has a natural area of use in
swift single contract exposure comparisons, where traditional numerical
methods may be regarded as unnecessarily costly.

By contributing to the discussion on potential benefits and limitations
of applied machine learning in the stated context, the project aims to
contribute with knowledge that may lead to the development of new
data-driven methods. The conclusions and proposed framework may also
be extended to provide insight into other areas of finance and predictive
time series modelling. The problem formulation can be summarized in
the following research questions:

• What are the potential benefits and limitations of a machine learning
approach in exposure calculations with regards to computational
efficiency and accuracy?

• What are the requirements for such a method to be regarded as
feasible in a practical context?

• What is the outlook on machine learning methods in the xVA-area?

1.4 Procedural Overview

The theoretical framework for the study is presented in the next section.
To set the scene, the over-the-counter derivatives market is briefly described
and various Valuation Adjustments are explained. It is demonstrated
that the exposure profile of a derivative plays an important role in
calculating several Valuation Adjustments. The following sections within
the theoretical framework define the building blocks in the data generation
approach. In order to calculate the expected exposure, the value of the
contract is required. Interest rate swaps are therefore introduced and
the valuation methodology defined. A section about the Hull-White
One-Factor model describes how the short rates are simulated from

4

1.4. PROCEDURAL OVERVIEW

market data, and a section about the Monte Carlo method describes
stochastic inference. A section about neural networks is included to
provide a background and to explain the developed model.

The methodology is described in section 3. The contract is specified
and the data generation procedure is properly explained, including all
parameter settings. The model development approach and the measure to
evaluate performance of the model is defined. The results are presented in
section 4, which is followed by a section with a discussion and conclusions.
An overview of the workflow is described in Figure 1.1 below.

Figure 1.1: Schematic diagram of workflow. The data set
consisted of 1,540 observed yield curves and 1,540 synthesized
yield curves. Exposure data was generated with a traditional
and computationally heavy method. The yield data, Hull-White
parameters and deviation from at the money strike rate was
used as model input and the generated exposure data was used
as model target. The data-driven model was developed and the
novel method was then compared to the traditional method.

5

Chapter 2

Theoretical Framework

2.1 The OTC Derivatives Market

Over-the-counter (OTC) derivatives are financial contracts that are
arranged directly between counterparties instead of being traded on
an exchange. A derivative is a contractual agreement in which involved
parties are bound to deliver payments and obligations that are based
on the value of an underlying asset. OTC derivatives offer solutions to
arrange specialized contracts that may be used to suit specific hedging
needs, to trade large amounts outside the public exchange, or to access
liquidity in an alternative channel [22]. Some examples of common OTC
derivatives are swaps, forwards, swaptions and exotic options.

The customers of OTC derivatives are commonly hedge funds, corporations
or institutional investors. The trades are often executed through large
institutions who act as dealers and in turn hedge their own risk, either in
the interdealer market or the exchange traded market. The institutional
dealers may also engage in their own trades or act as market makers on
the OTC market [22].

Statistics of total outstanding OTC derivative positions are published
each year by BIS. They reported in [4] that the notional outstanding
totaled $610 trillion in June 2021, which is an increase from $607 trillion
in June 2020. The size of the OTC market has been fairly stable since
2008, with its largest total notional outstanding of $707 trillion in June
2011. Interest rate derivatives constitute the largest part of the OTC

7

2.1. THE OTC DERIVATIVES MARKET

market, with a reported fraction of 80% of the total notional outstanding
in June 2021. The corresponding fraction for foreign exchange derivatives
was 16.7% [4].

The legal terms of OTC derivatives trading are commonly established
in an International Swaps and Derivatives Association (ISDA) master
agreement, which is a template published by the ISDA. The purpose of
the ISDA master agreement is to provide legal and risk protection for
the counterparties of the trade. If an institution is involved in several
contracts with the same counterparty, the ISDA master agreement may
allow netting of positions. Netting is a settlement method where the
outstanding transactions are consolidated to a net value, which may reduce
the exposure to the counterparty [22]. The terms for collateralization are
clarified in the Credit Support Annex (CSA) which may voluntarily be
included as one of the annexes in the ISDA master contract. The CSA
may state liabilities between counterparties to post collateral in order to
secure the derivative. Collateralization reduces the credit risk but does
not remove it completely [18].

2.1.1 Counterparty Credit Risk

In contract agreements involving payments between two counterparties,
counterparty credit risk refers to the risk that one of the parties will fail to
fulfill their obligations. Counterparty credit risk is present in loans, bonds,
derivatives contracts and other financial investment products where there
is a risk of insolvency of the counterparty [18].

In trades that involve exposure of one counterparty to another, counterparty
credit risk is always present. The Exposure at Default (EAD) is the value
that would be the loss that one party would face in the event of the
other’s default. The exposure is only non-zero when the value V of any
contract from the investors perspective is positive. The EAD is therefore
computed in accordance with equation 2.1 [18].

EAD = max(V, 0) (2.1)

The Expected Positive Exposure (EPE) is obtained as the expectation of
the exposure at default at a given time t in the future,

EPE(t) = E[max(V, 0)|Ft]. (2.2)

A corresponding Expected Negative Exposure (ENE) is obtained as the

8

2.1. THE OTC DERIVATIVES MARKET

expectation of the positive parts of the negative value,

ENE(t) = E[max(−V, 0)|Ft]. (2.3)

The exposure profile over some time interval can then defined as the
expected exposures in equation 2.2 as a function of time t [18].

2.1.2 Wrong Way and Right Way Risk

One may note that counterparty credit risk is dependent both on market
risk and credit risk. The market risk is dependent on the value of
outstanding transactions and the credit risk is dependent on the probability
of default of the counterparty. Wrong-way and right way risk are important
concepts related to the interplay of market risk and credit risk. By a
definition given by ISDA, wrong way risk is present when the credit
quality of the counterparty is adversely correlated to the exposure. This
implies that the probability of default increases with the credit exposure.
Right way risk is present when the credit quality of the counterparty is
favorably correlated to the credit exposure [18].

2.1.3 Basel III

The OTC derivatives market has been blamed for amplifying and triggering
the GFC. The crisis led to many changes in regulatory requirements with
a great impact on Valuation Adjustments [19]. The global standard for
regulation and supervision of banks is set by the Basel Committee on
Banking Supervision (BCBS) [3]. The committee was initialized by the
G10 after the collapse of the Bretton Woods exchange rate system (1973),
which in turn caused the collapse of two major banks. BCBS presented
a set of standards in the Basel Framework, which has been adopted by
many countries and regions, with the aim to decrease financial bubbles
and make financial crises more rare. The framework has been updated
several times. After the GFC, BCBS made significant changes to the
framework, referred to as Basel III [18]. A major regulatory change for
banks presented in Basel III is strengthening of capital bases in banks,
including an introduction of a CVA capital charge and leverage ratio.
Another major change presented in Basel III is strengthening of liquidity
standards, including liquidity coverage ratio and net stable funding ratio.
The changes made institutions obliged to put more emphasis on several
Valuation Adjustments [19].

9

2.2. VALUATION ADJUSTMENTS (XVA)

2.2 Valuation Adjustments (xVA)

Prior to the GFC, the general framework for valuation of derivative
contracts was more simple than it is today. Valuation of derivatives
was often performed by analyzing cash flows and applying a suitable
discount factor. Derivatives were for a long time valued using single
discounting curves based on three-month interbank offered rates, such
as three-month LIBOR. The xIBOR curve was seen as a proxy for a
unique, risk-free rate and was assumed to accurately represent the bank’s
cost of funding. The xIBOR based models were thus typically used both
for secured and unsecured trades, regardless of their different funding
requirements. Furthermore, even risky OTC derivatives were traded with
very little consideration to the possible impact of credit risk [18].

At the beginning of the GFC in 2007, many larger banks had introduced
Credit Valuation Adjustments to the prices of derivatives. Costs of credit
risk, funding and capital were often priced by banks to some degree
but did in most cases not have a definite impact on trading activity.
The centralization of the OTC market, where a small number of large
institutions trade with a large number of counterparties, was seldom
regarded as a problem prior to the crisis. Large institutions were generally
considered to be ”too big to fail” and many banks naturally used unilateral
CVA models which only considered the credit risk of the counterparty. The
financial crisis exposed several weaknesses in the above assumptions and
eventually led to an increased demand for methods for correctly assessing
the costs associated with credit risk, funding and capital requirements
[19].

The notion that large institutions were ”too big to fail” was proven wrong
as several banks collapsed, among them Lehman Brothers in 2008. Banks
experienced larger CDS spreads and it was evident that their own credit
risk should be considered in pricing. Institutions that used bilateral CVA
models received large Debit Valuation Adjustment (DVA) benefits, which
increased pressure on the development and usage of bilateral models. It
was furthermore made evident that the idea of using the same discounting
curves for collateralized and uncollateralized derivatives had several flaws.
In collateralized trades, a CSA defines the agreed upon provision of
collateral. The counterparty that receives collateral generally pays interest
at an overnight funding rate which is typically approximated by the
overnight index swap (OIS). The spread between OIS and three month

10

2.2. VALUATION ADJUSTMENTS (XVA)

xIBOR was often small prior to the GFC, and was thus not regarded as
significant in valuation. When the spreads increased greatly during the
crisis, banks introduced OIS-based discounting for collateralized trades.
The increased spread also showed that xIBOR should not be regarded
as a good proxy for the risk-free rate. Furthermore, three-month xIBOR
could no longer be regarded to capture banks’ funding costs accurately.
The costs of funding increased as many banks experienced larger CDS
spreads, which exposed the importance of correctly assessing the price of
funding.

Since the crisis, increased awareness and regulation has driven the development
of Valuation Adjustments to the base value of derivatives. Today, the
valuation of derivative contracts is a rigorous task often performed by
two desks at a bank. A risk-neutral base value is assessed by the trading
desk specialized in the relevant asset, whereas the different Valuation
Adjustment calculations are performed at the xVA desk. The Valuation
Adjustment is then added on top of the base value of the contract
[19].

An xVA is generally defined as an adjustment to the price of a derivative.
A large number of different adjustments exist, each motivated by implied
costs and benefits that arise on the derivatives market. Today, the
adjustments play a significant role in pricing, accounting, hedging and
profit and loss analysis. CVA and Funding Valuation Adjustments
(FVA) could be considered as traditional Valuation Adjustments and
account for costs of credit risk and funding [19]. Other common Valuation
Adjustments include Capital Valuation Adjustments (KVA), Tax Valuation
Adjustments (TVA), Margin Valuation Adjustments (MVA) and Collateral
Valuation Adjustments (ColVA). The most commonly adopted adjustments
are briefly described and motivated in subsequent sections.

2.2.1 CVA/DVA

Credit Valuation Adjustment reflects the market price of credit risk. CVA
constitutes a cost for the bank which originates from the expected loss due
to counterparty default. The Valuation Adjustment can thus be defined
as the difference between the risk-free portfolio value and the credit risky
value,

CV A = V (default free)− V (credit risky).

11

2.2. VALUATION ADJUSTMENTS (XVA)

The CVA is computed on a portfolio-level for each counterparty, taking
possible netting effects into account. Models to assess CVA may differ
in their ways of treating the credit risk of both counterparties in a trade.
Unilateral CVA models only consider the credit risk of one counterparty,
whereas bilateral CVA models assume that both counterparties have
a probability of default [18]. The definition generally holds for both
unilateral and bilateral CVA.

Bilateral CVA models introduce a DVA term which reflects the dealer’s
own credit risk. The CVA is a cost, whereas DVA is a benefit which
increases the accounting value. The CVA of one counterparty should thus
be constructed to reflect the DVA of the other, and vice versa. It should
be noted that this relationship only holds in theory due to differences in
accounting practice and CVA models between institutions [18].

2.2.2 FVA

Funding costs and benefits may arise when an institution enters into
uncollateralized and not fully collateralized contracts. Funding Valuation
Adjustments represent those costs and benefits which are similarly to
CVA and DVA sometimes regarded separately [18]. FVA includes net
stable funding ratio and liquidity coverage ratio, both regulated within
the Basel III framework [19].

Assume that a bank enters into an uncollateralized derivative contract with
a corporate counterparty. Hedging the trade with a fully collateralized
trade on the interbank market will bring costs and benefits to the bank
that depend on how the value of the contract evolves over time. When
the unsecured trade has a positive value to the bank, the bank will be
required to post collateral on the secured contract which constitutes a
negative exposure. Funding the collateral is associated with a cost which
would not be present if the trade with the corporate counterparty was
secured under a CSA. The CSA can allow rehypothecation, which allows
parties to offset funding positions without having to enter into additional
loans. In the case where the value of the unsecured contract is negative to
the bank, the bank receives collateral from the offsetting position, thus a
funding benefit [18]. From this argument it may be understood that any
unsecured derivative should be priced with consideration to the associated
funding costs and benefits [18].

12

2.2. VALUATION ADJUSTMENTS (XVA)

2.2.3 KVA, MVA, TVA and ColVA

The GFC led to large increase in the capital requirements for banks and
thus an increased demand for proper assessments of the implications
of holding capital [18]. Capital Valuation Adjustments reflect the cost
of holding regulatory capital during the lifetime of a trade [18]. KVA
includes CVA capital charge and leverage ratio, both regulated in the
Basel III framework [19].

Tax Valuation Adjustments reflect the costs that may arise due to taxation
when a bank reports profits and losses. Profits and losses may be present
when an institution warehouses counterparty credit risk. The profits
are taxable whereas any losses gives the institution future tax benefits
[18].

Margin Valuation Adjustments reflects the funding cost of the initial
margin that is posted for a particular contract. MVA is sometimes
included in valuation along with FVA, but it is not standard valuation
practice [19].

Collateral Valuation Adjustment captures costs that arise from differences
in valuation and remuneration rates for collateral transactions. These
differences may for example be present when transactions in one currency
are collateralized in another or when the margin agreement otherwise
specifies a spread between valuation and margin remuneration rates. The
spread may be handled either by changing the discount rate or including
ColVA as an additional cost [19].

2.2.4 Implementation

Given the large scope of the concept, interpretation and implementation
of xVA may vary slightly between institutions. It is common that the
computation of Valuation Adjustments requires many risk measures
and quantities that have to be regularly assessed and updated. Large
amounts of market and portfolio data, complex mathematical models and
advanced software is required in the procedure. Furthermore, each model
is associated with their own assumptions and parameters which have to
be tuned and calibrated thoroughly.

Counterparty credit exposure is an important risk measure that has to
be evaluated for several Valuation Adjustments. Counterparty credit

13

2.2. VALUATION ADJUSTMENTS (XVA)

exposures have to be computed on a daily level in order to control that
they lie within certain specified thresholds set by the institution. The
exposures are often computed by computationally intensive Monte Carlo
simulations of portfolio scenarios. Each exposure is based on thousands
of Monte Carlo simulations of the portfolio value on a time grid that
is typically discretized in hundreds of time steps. Furthermore, banks
typically have exposures to thousands of derivative counterparties. The
xVA desk thus has to handle very large amounts of data and continuously
analyze limits as well as changes in the obtained exposures.

Credit exposures are natural constituents of all CVA models. The CVA
term is always obtained as an integral over the Expected Positive Exposure
profile and, in bilateral models, the DVA term is an integral over the
Expected Negative Exposure profile. Assume a contract with value V
and maturity time T. The counterparty is assumed to default at time τ
upon which the recovery rate is R. If 1 denotes the indicator function
and Gt is the filtration up to time t, unilateral CVA can be defined as an
expectation,

CV A = E[1(τ ≤ T)max(V (t, τ), 0)(1−R)|Gt].

We will now assume that there is no wrong way or right way risk, which
implies an independence between credit risk and market risk factors.
Expectations over credit and market state variables may thus treated
separately and the unilateral CVA can be expressed as an integral
[18],

CV A(t) =

∫ T

s=t

λC(s)e
∫ s
u=0 −λC(u)duE[e

∫ s
u=0 −r(u)du(1−R)EAD(s)|Fs]ds,

where λC(s) denotes an instantaneous default probability and Fs is the
filtration that contains the information of the market state variables up to
time s. We may define a risky discount factor, Dr+λC

= e
∫ s
u=0 −(λC(u)+r(u))du

and simplify the expression,

CV A(t) = (1−R)

∫ T

s=t

λC(s)Dr+λC
EPE(s)ds.

The integral may be approximated with a sum [18],

CV A(t) = (1−R)
n−1∑
i=0

PD(ti, ti+1)EPE∗(ti),

14

2.2. VALUATION ADJUSTMENTS (XVA)

where EPE∗ denotes the discounted Expected Positive Exposure and
PD(ti, ti+1) is the default probability in the interval [ti, ti+1]. Thus,
unilateral CVA can be represented by a weighted average of the EPE
profile. The EPE is often obtained in a risk-neutral measure, and explicit
discount factors are thus generally not needed. The interpretation of the
above formula is that CVA roughly can be seen as the product of EPE
and the probability of default. CVA can be calculated path-wise using
the discrete sum. It is a straightforward but computationally heavy and
time consuming approach [19].

Bilateral CVA is motivated by the need to consider the credit risk of both
the counterparty and the institution. In a simple form, bilateral CVA can
be represented as a cost term (CVA) and a benefit term (DVA),

BCV A = CV A+DV A.

The CVA and DVA are obtained as integrals over the positive and negative
expected exposures respectively. The suffixes ”C” and ”I” indicate that
recovery rates, instantaneous default probabilities and discount factors
are now considered for both sides of the trade,

CV A(t) = (1−RC)

∫ T

s=t

λC(s)Dr+λC+λI
EPE(s)ds,

DV A(t) = (1−RI)

∫ T

s=t

λP (s)Dr+λC+λI
ENE(s)ds.

Similarly to unilateral CVA, bilateral CVA can be represented as weighted
sums of credit exposures,

CV A(t) = (1−RC)
n−1∑
i=0

EPE∗(ti)PDC(ti, ti+1)[1− PDI(ti, ti+1)],

DV A(t) = (1−RI)
n−1∑
i=0

ENE∗(ti)PDI(ti, ti+1)[1− PDC(ti, ti+1)].

Note that the sums that represent bilateral CVA include own default
probability. The CVA term in bilateral CVA thus differs from the
unilateral CVA in which only considers the default probability of the
counterparty [19].

FVA is similarly to CVA often calculated in exposure based frameworks.
Funding costs arise from in-the-money contracts and Expected Positive

15

2.2. VALUATION ADJUSTMENTS (XVA)

Exposures (EPE) whereas funding benefits arise from out-of-the-money
(OTM) contracts and Expected Negative Exposures (ENE). Assessing
FVA can be done in numerous ways depending on convention and the
premises for funding. We may show a simple example of an exposure
based framework for FVA by regarding a symmetric FVA formula which
can be expressed as

FV A =
m∑
i=1

EFV ∗(ti)FS(ti−1, ti)(ti − ti−1).

Note the similarities to the CVA formula. EFV, which is the discounted
expected value which has to be funded has replaced EPE, and FS which
is the funding spread has replaced the counterparty default probability of
the CVA formula [19]. The EFV may be seen as the sum of the expected
positive and negative exposures, and the equation for FV A may therefore
be seen as a combination of funding costs and funding benefits FCA and
FBA

FV A = FCA+ FBA,

where FCA and FBA is defined as

FCA =
m∑
i=1

EPE∗(ti)FS(ti−1, ti)(ti − ti−1),

FBA =
m∑
i=1

ENE∗(ti)FS(ti−1, ti)(ti − ti−1).

Note how, similarly to CVA, the FVA can be represented as a weighted
sum over exposure profiles.

There is a generally agreed upon overlap between funding benefits (FBA)
and DVA as defined in a bilateral CVA framework. Both the DVA and
the FBA are defined as benefits that arise from negative exposures. Many
models therefore assess CVA and FVA together, in order to properly
evaluate the benefits of negative exposures without double counting [19].
In a study performed by Deloitte in 2013, it is reported that frameworks
based on CVA and symmetric funding, which include CVA, FCA and
FBA, were the most common among market practitioners [9]. Another
common framework assumes bilateral CVA and symmetric funding and
thus includes CVA, DVA and FCA.

It is clear that counterparty credit exposures play a significant role in xVA
calculations, especially in CVA and FVA. These are also very common

16

2.3. INTEREST RATE SWAPS

adjustments among institutions, with well developed frameworks for their
implementation. Other adjustments may differ more between institutions,
partly because of differences in capital requirements, taxation laws, and
accounting practice. KVA is the Valuation Adjustment which differs
the most between institutions. Mainly because banks of different size in
different regions need to follow different capital requirements, different
models are used in different banks and finally banks have different view
on return on capital [19].

2.3 Interest Rate Swaps

An interest rate swap (IRS) is an OTC derivative where a fixed interest
rate typically is exchanged for a floating interest rate on the same notional
principal. The notional principal is the amount on which the derivative
is contracted on. The parties of the contract do not usually exchange
notional principal, instead only streams of future interest payments are
exchanged. The payment stream corresponding to the fixed rate is referred
to as the fixed leg of the swap and the payment stream corresponding to
the floating rate is referred to as the floating leg [24]. In this section, the
valuation of a plain vanilla IRS where the interest rate is set in advance
and pays in arrears (later) is derived.

2.3.1 Assumptions

In order to value the contract, some assumptions about the bond market
are required. Let the price of a zero-coupon bond with maturity T at time
t be p(t, T). As a means to avoid arbitrage, it is assumed that p(t, t) = 1
for all t. It is further assumed that there is a market for zero-coupon
bonds for all maturities T > 0 and that there are no transaction costs
involved. The zero-coupon bond price p(t, T) is furthermore assumed to
be stochastic with variables t and T [5].

A normal bid-ask spread for an IRS is assumed to be between 0.1 and
0.2 basis points (BPS) under the condition that there is a liquid currency
and the market is calm.

2.3.2 Valuation

There are two basic models for valuing interest rate swaps. One model
interprets the IRS as the difference between two bonds, whilst the

17

2.3. INTEREST RATE SWAPS

other model interprets the IRS as a replicating portfolio of forward
rate agreements [24]. Here, the former approach is applied.

For the pay fixed receive floating party, or the receiver party of a swap
agreement, the swap is equivalent to having a long position in a floating-rate
bond and a short position in a fixed-rate bond. The value of the IRS at
time t can then be described as the difference between the value of the
two bonds, V (t) = Vfl(t)− Vfix(t) for all remaining payments after t [24].
The IRS is initialized at T0 and the dates T0, T1, ..., Tn are equally spaced
on an interval I ∈ [T0, Tn]. The fixed leg of the swap with payments
at Ti, i = 1, ..., n can be replicated by a portfolio of zero-coupon bonds
with maturities Ti. The time between any two payments is given by
δfixi = Ti − Ti−1. The notional principal which the IRS is based on is
denoted N and the fixed strike rate R. At every Ti the amount paid is
Nδfixi R.

To get the present value of the swap, all future cash flows need to be
discounted. The discounting factor at t < Ti of the cash flow at Ti is
denoted Di and it is equivalent to the present value of receiving $1 at the
future date Ti. It can thus be obtained from the zero-coupon bond price
at t with maturity corresponding to the time of the payment Ti, that is
Di = p(t, Ti). The present value at t of the fixed leg is given by the sum
of all future discounted cash flows in accordance with equation 2.4.

Vfix(t) = RN
n∑

i=1

δfixi Diθi, θi =

{
1 if t ≤ Ti

0 if t > Ti
(2.4)

The floating leg of the swap with payments received at Tj , j = 1, ...,m can
be replicated by a self-financing portfolio [5]. Let the dates T0, T1, ..., Tm

be equally spaced, the time between any two payments δflj = Tj − Tj−1

and the notional principal the same N as above. The floating-rate is the
spot LIBOR rate L(Tj−1, Tj). The rate is set at Tj−1 and paid at Tj. It
is by definition [5] given by

L(Tj−1, Tj) = −p(Tj−1, Tj)− 1

δflj p(Tj−1, Tj)
.

The amount received at Tj is Nδflj L(Tj−1, Tj). The simple forward rate,
or the LIBOR forward rate, contracted at t and received at Tj is used to
value the contract at time t. The definition [5] of the LIBOR forward

18

2.3. INTEREST RATE SWAPS

rate Fj(t) is [5],

Fj(t) = L(t;Tj−1, Tj) = −p(t, Tj)− p(t, Tj−1)

δflj p(t, Tj)
. (2.5)

The present value of the floating leg at t is given by equation 2.6, summing
up all future discounted cash flows.

Vfl(t) = N
m∑
j=1

Fjδ
fl
j Djθj, θj =

{
1 if t ≤ Tj

0 if t > Tj
(2.6)

When valuing the floating leg at time t∗ between any two payments Tj−1

and Tj, the LIBOR forward rate corresponding to payment j can be
approximated by the LIBOR spot rate,

F ∗
j (t

∗) ≈ L(Tj−1, Tj).

The value Vfl between two floating payments at t∗ ∈]Tj−1, Tj[can then
be simplified as follows

Vfl(t
∗) = N

(
L(Tj−1, Tj)δ

fl
j Dj +

n∑
k=j+1

L(t∗;Tk−1, Tk)δkDk

)

= N

(
p(t∗, Tj)

(1

p(Tj−1, Tj)
− 1
)
+

n∑
k=j+1

(
p(t∗, Tk−1)− p(t∗, Tk)

))

= N

(
p(t∗, Tj)

p(Tj−1, Tj)
− p(t∗, Tn)

)
.

The value of the floating leg at t = 0 can further be obtained from
equation 2.6:

Vfl(0) = N

m∑
j=1

Fj(0)δ
fl
j p(0, Tj) = N

m∑
j=1

(
p(0, Tj−1)− p(0, Tj)

)
= N

(
1− p(0, Tn)

)
.

If the swap is considered at the money (ATM), the strike rate R is
determined such that it is fair at initialization. It means that at t = 0,
the value of the fixed interest rate cash flows and the value of the floating
interest rate cash flows are equal [5]. Inserting the expression for the
floating leg value at t = 0 above and the fixed leg value at t = 0 gives the
strike rate,

Vfl(0) = Vfix(0) =⇒ R =
1− p(0, Tn)∑n

i=1 δ
fix
i Di

. (2.7)

19

2.4. SHORT RATE MODELS

Once the zero-coupon bond prices p(t, T) are known for every point in time
t ∈ {[0, Tn] ∪ [0, Tm]} and maturities T corresponding to the payments,
the risk neutral value of the IRS at time t can be obtained. The IRS is
valued by computing the difference between the value of the floating and
fixed leg for all remaining payments after t. Using equation 2.4-2.6, the
contract value V can be obtained. The expression for the contract value
is properly demonstrated in equation 2.8.

V (t) = N

(
m∑
j=1

Fjδ
fl
j Djθj −R

n∑
i=1

δfixi Diθi

)
(2.8)

The LIBOR forward rate Fi obtained from equation 2.5 and the strike
rate R is obtained by applying equation 2.7. θi and θj represent the
step functions defined in equation 2.4-2.6. The discount factors are
Di = p(t, Ti) and Dj = p(t, Tj). The notional principal N is solely a
scaling factor.

2.4 Short Rate Models

A short rate model describes how interest rates evolve through time and
can be used to calculate bond prices p(t, T). The interest rate depends
on how the short rate evolves through time, thus it can be obtained once
the process of the short rate is determined [24].

The short rate rt, or the instantaneous short rate, is the interest rate for
an infinitesimally short period specifically at time t. The instantaneous
forward rate f(t, T) is the corresponding forward rate for an infinitesimally
short period. Given that p(t, T) is the observed price at time t ∈ [0, T]
of a zero-coupon bond maturing at T, then according to Björk [5], the
instantaneous forward and short rate can be defined as

f(t, T) = −∂ lnp(t, T)

∂T
,

rt = f(t, t).

An Itô process is used in most short rate models to model the risk-neutral
process for the instantaneous short rate. The drift of the short rate is
denoted m and the instantaneous standard deviation by s. The process
for the short rate under the risk-neutral measure Q can then be described
by the following equation [24]

dr = m(r)dt+ s(r)dW (t). (2.9)

20

2.4. SHORT RATE MODELS

Equilibrium models and no-arbitrage models are two different types of
short rate models. The former include models such as the Vasicek Model
(1977) and the Cox, Ingersoll and Ross Model (1985). These models
assume that the instantaneous drift m of the short rate and the standard
deviation s are time independent as in equation 2.9, hence providing an
approximate fit to today’s term structures of interest rates [24].

The latter no-arbitrage models can provide an exact fit to today’s term
structures. The difference is that the drift m generally is time dependent
for these no-arbitrage models. Examples of such models are the Hull-White
One-Factor Model (1990) which extends the Vasicek Model, the Hull-White
Two-Factor Model (1994) which gives a richer pattern of the term structure
and volatility than the One-Factor version, and the Hoo-Lee Model (1986)
[24]. Hull (2012) emphasizes that one should use a model with more
than one factor when hedging whilst the standard procedure when pricing
interest rate derivatives is to use a one-factor model [17].

2.4.1 Affine Term Structure

In an arbitrage free setting, the family of zero-coupon bonds {p(., T);T >
0} is assumed to be dependent on the short rate rt through the relation,

p(t, T) = F (t, rt;T).

It is assumed that F is a smooth function of the evaluation time t, the
corresponding short rate rt and the time to maturity T. In risk-neutral
valuation, bond prices are obtained through

F (t, rt;T) = EQ
t,r[e

∫ T
t rsds].

The Q-dynamics of the short rate are given by equation 2.9. In the case
where F (t, rt;T) has the form

F (t, rt;T) = A(t, T)e−B(t,T)rt , (2.10)

the model is said to have an affine term structure. In a model that
possesses an affine term structure, bond prices can be obtained by
evaluating equation 2.10 for its associated functions A(t,T) and B(t,T)
[5].

21

2.4. SHORT RATE MODELS

2.4.2 The Hull-White One-Factor Model

In the Hull-White One-Factor model, the following Q-dynamics of the
short rate are assumed,

drt = {θ(t)− art}dt+ σdWQ
t , (2.11)

where WQ is a Brownian motion under the risk-neutral measure Q, in
which prices are adjusted for risk aversion in the market. The model
introduces two constants, the mean reversion a and the volatility σ. The
time dependent and deterministic function θ(t) is defined as,

θ(t) =
d

dt
f(0, t) + af(0, t) +

σ2

2a
(1− e−2at),

where f(0, t) denotes the observed instantaneous forward rate which
allows for calibration to the current term structure of interest rates. The
volatility structure of the model is commonly set by calibrating a and σ
to observed market data of caps and swap options [24].

The Hull-White One-Factor model assumes a mean reverting behavior,
where the short rates will revert back to their long term mean θ(t)

a
. This

is a common property among short rate models since rates are expected
to stay within certain limits [24].

Using Itôs lemma, the solution to the stochastic differential equation in
2.11 can be obtained for 0 ≤ s ≤ t ≤ T as,

r(t) = e−a(t−s)r(s) +

∫ t

s

e−a(u−t)θ(u)du+ σ

∫ t

s

e−a(t−u)dWu.

Conditionally on Fs, the short rates are Gaussian distributed with
expectation and variance given by,

E[rt|Fs] = e−a(t−s)r(s) +

∫ t

s

e−a(u−t)θ(u)du,

V ar[rt|Fs] =
σ2

2a

(
1− e−2a(t−s)

)
.

Due to the conditional distribution of the short rates, simulated paths
can be obtained by using a step-wise stochastic simulation method from
a defined starting point.

22

2.4. SHORT RATE MODELS

Zero-coupon bond prices in the Hull-White One-Factor model can be
obtained by exploiting the affine term structure. The bond prices p(t, T)
at time t are then given by equation 2.10, where A(t,T) and B(t,T) are
defined as,

B(t, T) =
1

a
{1− e−a(T−t)} (2.12)

lnA(t, T) = ln
p(0, T)

p(0, t)
+B(t, T)f(0, t)− 1

4a3
σ2(e−aT − e−at)2(e2at − 1).

(2.13)

2.4.3 Change of Numeraire in the Hull-White
Framework

So far we have defined the short rate in the risk-neutral measure Q, in
which the bank account B is the numeraire. The forward T-measure QT

is defined as the martingale measure where the numeraire process is a
zero-coupon bond p(t, T). A change of numeraire from the risk-neutral
measure Q to the T-forward measure QT may facilitate computations as
it allows for simple discounting with zero-coupon bond price processes
p(t, T). The price Πt is for any contingent claim X with maturity T , or
T-claim, given by

Πt[X] = p(t, T)ET [X|Ft],

where ET denotes integration with respect to QT [5]. In the following
derivation a Hull-White One-Factor model framework as defined in the
previous section is assumed. The QT -Brownian motion W T is defined [7]
by,

dW T = dWQ + σB(t, T) (2.14)

where WQ is the Q-Brownian motion and B(t, T) is defined by equation
2.12. The short rate dynamics in the T-forward measure are obtained by
substituting the dynamics in 2.14 into the short rate dynamics in equation
2.11. Thus,

drt = {θ(t)− art − σ2B(t, T)}dt+ σdWQT

t . (2.15)

The solution to 2.15 implies that short rates obtained in the Q-measure
can be transformed to the QT -measure by adding a deterministic term
M(s, t),

rQ
T

t = rQt +M(s, t),

23

2.5. THE MONTE CARLO METHOD

where the correctional term M(s, t) is given by

M(s, t) = −σ2

a2
(
1− e−a(t−s)

)
+

σ2

2a2
(
e−a(T−t) − e−a(T+t−2s)

)
.

Short rates are after a change of measure from Q to QT still, conditionally
on Fs, Gaussian distributed with expectation and variance given by,

E[rt|Fs] = e−a(t−s)r(s) +

∫ t

s

e−a(u−t)θ(u)du+M(s, t), (2.16)

V ar[rt|Fs] =
σ2

2a

(
1− e−2a(t−s)

)
. (2.17)

2.5 The Monte Carlo Method

Monte Carlo simulation is a method for statistical estimation of integrals
which is performed by repeated evaluations of the integrand at points
determined by random draws from a suitable distribution. Let µ denote
the expectation of a function h(X) of a random variable X. By drawing
identically distributed and independent random samples X1, ...,Xn from
the probability density f of X we may estimate the expectation of h(X),
E[h(X)] [14]. As n −→ ∞, the law of large numbers implies for the Monte
carlo estimate µMC ,

µMC =
1

n

n∑
i=1

h(Xi) −→
∫

h(x)f(x)dx = µ.

Under the assumption that the variance of the objective function, V[h(X)]
is finite, the central limit theorem implies a normal distribution of
estimation error,

√
n(µMC − µ)

d.−→ N (0, V ar[h(X)]).

This implies an O(n−1/2) convergence of the integration as,

D[µMC − µ] =
√

V ar[µMC − µ] =

√
V ar[h(X)]

n
=

D[h(X)]√
n

.

Note that due to the slow convergence, the Monte Carlo method may,
depending on chosen accuracy requirements, require a large number of
samples n. Monte Carlo integration is thus often a computationally

24

2.6. NEURAL NETWORKS

demanding task where the complexity of the implementation is also highly
dependent on the dimensionality of the problem.

An unbiased estimate of the sampling variance is obtained as,

V ar[µMC] =
1

n− 1

n∑
i=1

[h(Xi)− µMC]
2

The two-sided confidence interval that covers µ with a 1-α probability
can be obtained,

Iα = (µn − λα/2
D(µMC)√

n
, µn + λα/2

D(µMC)√
n

),

where λp denotes the p-quantile of the normal distribution.

2.6 Neural Networks

Deep learning, or ANNs, is a machine learning technique and an approach
to AI partly inspired by the biological brain. The idea is to learn the
mapping from input to output for a particular task. The network uses
a series of simple mappings, each mapping known as a layer, to solve a
complicated mapping problem. In a regular feedforward neural network,
the input data is fed to a visible first layer of the network and then
propagated forward through a series of hidden layers and finally to an
output layer. Each layer has multiple neurons, or units, that perform tasks
simultaneously. The concept is visualized in figure 2.1 below. The layers
are called hidden because the model itself determines which concepts are
essential for explaining the patterns in the observed data. Similarly to
any other data-driven machine learning method, neural networks learn
from experience and data [16].

25

2.6. NEURAL NETWORKS

Figure 2.1: Schematic diagram of a feed-forward neural
network with two hidden layers. Each node represents a unit and
each directed edge represents a connection between the output
of one unit to the input of another unit. Each connection has
weights, which determines the influence of a node on another
[16].

One of the most common acyclic feedforward neural networks is the
Multilayer Perceptron (MLP). A forward pass of a MLP with one layer is
the process of passing an input vector x to the input layer and propagating
it forward through the hidden layer to the output layer. The hidden
layer calculates the weighted sum of the input units and thereafter the
activation function is applied to the sum. Nonlinear activation functions
are appropriate for complex tasks since they make it possible for a neural
network to model nonlinear equations. Two of the most common nonlinear
activation functions are the hyperbolic tangent,

tanh(x) =
e2x − 1

e2x + 1
,

and the logistic sigmoid,

σ(x) =
1

1 + e−x
.

The hyperbolic tangent take an input x and give a value in the interval
[−1, 1] and the logistic sigmoid gives a value in the interval [0, 1]. The

26

2.6. NEURAL NETWORKS

output of the hidden layer, the activations, is then the input to the output
layer. The output layer operates similar to the hidden layer. It calculates
the weighted sum of the activations from the hidden layer and then applies
an activation function to get the output vector y [17].

The idea when training a neural network for a regression task is to
minimize the loss. When training a model on noisy data, it is important
that the loss function is robust towards outliers. A robust loss function
means that outliers have a minor impact on the model [30]. A commonly
used loss function L is the mean squared error (MSE) of targets y and
predictions ŷ,

L(y, ŷ) = 1

N

N∑
i=0

(yi − ŷi)
2 (2.18)

where N is the number of samples. In the training phase, the neural
network learns the optimal weights w, or parameters, such that the loss
function is minimized for the training data. Training is an extremely
important and expensive part of machine learning and ANNs, hence
optimization methods have been developed specially for training machine
learning and deep learning models [16].

Most deep learning models use some gradient-based optimization method
to minimize the loss function L. The weights of the neural network are
commonly updated in iterative algorithms that utilize the gradients to
minimize the loss function. These algorithms are called gradient descent
algorithms [16]. The gradients with respect to the weights therefore need
to be calculated. An efficient way to calculate the gradients is to repeatedly
apply the chain rule, as suggested by the renowned backpropagation
algorithm [17]. After each forward pass of the neural network, the
backpropagation performs a backward pass through the network to tune
the model’s parameters.

Stochastic gradient descent is an extension of gradient descent algorithms
that is used in most neural networks. Regular gradient descent may be
computationally expensive for large data sets as every sample has to be
propagated through the network in order to update the weights. In SGD,
the training data set is randomly divided in batches that contain a subset
of the whole set. All the weights of the network are then updated once
every time a batch has been propagated through the network. Note that
the particular case where batch-size equals the size of the whole data
set is exactly regular gradient descent. An epoch has been performed

27

2.6. NEURAL NETWORKS

when all the samples have been used for weight updates once. Stochastic
gradient descent is typically more efficient than regular gradient descent
as the weights are updated several times in every epoch. Furthermore,
SGD may be beneficial for avoiding local minima of the loss function
[16].

Supervised learning is a type of machine learning and ANN problem
where input-target pairs are used for training. Sequence data, in terms of
supervised learning, consists of input-target pairs (x,y) where x belongs
to the input space X = RM and y belongs to the target space Y = RN.
The input and target spaces are sets of real-valued vectors of size M and
N respectively [17]. The input-target pairs are commonly divided into a
training set, a validation set and a test set with samples assumed to be
independently drawn from a fixed distribution DX×Y [17].

The loss is minimized for the training set during training, but the loss is
also computed on the validation set to validate the performance and to
determine a suitable number of epochs. The trained model is tested on
previously unseen data in the test set. The goal when training an ANN is
to carry over the performance from the training set to the test set, known
as generalization [17]. Discrepancy between performance on training and
test data is referred to as overfitting. It means that bias is low at the
cost of increased variance, giving a complex and precise model but with
considerable variation. Decreasing the variance will increase the bias and
the model may be prone to underfitting instead, which means that the
model is too simple. The bias-variance tradeoff refers to this challenge of
finding the appropriate model complexity [32].

2.6.1 Regularization

Goodfellow et. al (2016) defines regularization as any modification to
a learning algorithm that is intended to reduce its generalization error
but not its training error. Common regularization strategies include
parameter norm penalties, which constrain the parameter values of the
model by modifying the objective function. Another common class of
regularization methods is ensemble methods, which combine the outputs
from several trained models. Choosing a small batch size is another way
to achieve a regularizing effect. Batch normalization may also have a
regularizing effect.

28

2.6. NEURAL NETWORKS

Parameter norm penalty methods can generally be described by,

Ẽ(ω) = E(ω) + αΩ(ω),

where Ω is the regularization term and the real number α is the regularization
strength. A common regularization term Ω is the L2 norm regularization,
defined as,

Ω =
1

2

∑
i

ω2
i ,

where the sum is obtained over all the weights. Another regularization
term is the L1 norm regularization term, also known as lasso,

Ω =
∑
i

|ωi|.

The gradient of the L1-regularization term does not go to zero for
small weights, which may force unnecessary weights to zero. Therefore
L1-regularization can be used as a method for feature selection [16].

The dropout method introduces regularization by temporarily and randomly
omitting nodes in the network. During training, the weights that correspond
to a certain node are at random removed along with the node itself. The
probability of removing a node is governed by a specified parameter p.
The dropout procedure is applied for each sample and only the weights
that have not been dropped are updated. The dropout method can thus
be seen as a means to generate an ensemble of thinned networks. When
the network is used for new data, the output of the ensemble can be
approximated by the output of the unthinned network where the weights
are multiplied with their probabilities of being included in the network.
This result is known as the weight scaling inference rule [16].

Goodfellow et al. (2017) [16] recommend using some form of regularization
as long as the data set does not include > 10M samples, it is however
highly problem specific. According to Goodfellow et al., the best models
are typically large and well regularized.

2.6.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are designed specially for sequence
modelling [16]. The connections of the network form cycles that allow
the network to store information about the surrounding context of each

29

2.6. NEURAL NETWORKS

value in the sequence. Figure 2 shows a simplified view of an RNN.
In addition to the connections that propagate data forward as in an
MLP, there are connections between each hidden layer. Content from the
previous timestep is thus available to the network, making it possible for
an RNN to learn sequential patterns [17]. The universal approximation
theory applied to RNNs implies that an RNN with an adequate number
of hidden units can approximate any sequence-to-sequence mapping with
an arbitrary high accuracy [21].

Figure 2.2: Schematic diagram of an RNN with one hidden
layer. Each node represents a unit and each directed edge
represents a connection between units. Connections from any
hidden layer to another hidden layer are recurrent connections
[17].

An RNN could be regarded as a feed-forward network with shared weights.
The hidden nodes ht can be seen to constitute a new hidden layer at
each timestep t = 0, ..., T and their feedback weights are shared between
the layers. This way of regarding a recurrent neural network is called
unfolding in time and it gives an intuitive representation of how the node
outputs are affected by their previous timesteps [16]. The forward pass is
the same in RNNs as in feed-forward neural networks, except that the
input to the hidden layer also includes the hidden layer activations from
the previous timestep. Assume the input vector has T timesteps and xt

i

is the input i at time t. Further assume that the RNN has I input units,

30

2.6. NEURAL NETWORKS

H hidden units and K output units. The weight wih is the connection
from unit i to h. The network input a

(t)
h for a particular timestep t and

hidden unit h is given by

a
(t)
h =

I∑
i=1

wihx
(t)
i +

H∑
h′=1

wh′hb
(t−1)
h′ ,

where the first term corresponds to the network input to unit h at timestep
t and the second term includes the information from all hidden units for
the previous timestep [17]. The activation function θh for the hidden layer

h is then applied to a
(t)
h , which gives the activation b

(t)
h of the hidden unit

h at timestep t,
b
(t)
h = θh(a

(t)
h).

All hidden activations are obtained by recursively computing a
(t)
h and b

(t)
h ,

starting from t = 1 and iterating through all timesteps. The input a
(t)
k to

the output units for each timestep is given by

a
(t)
k =

H∑
h=1

whkb
(t)
h

where whk is the connection from unit h to k [17].

The derivatives with respect to the weights in RNNs are typically obtained
by applying a variant of the classical backpropagation algorithm, namely
the Backpropagation Through Time (BPTT) algorithm [16]. The difference
between the BPTT and the traditional backpropagation algorithm is
that the loss L on the activation depends on the impact on the hidden
layer at the next timestep in addition to the impact on the output [17].

Differentiating L with respect to the activation a
(t)
j at unit j gives the

following expression [17],

∂L
∂a

(t)
j

= θ′(a
(t)
j)
(K∑

k=1

∂L
∂a

(t)
k

wjk +
H∑

h=1

∂L
∂a

(t+1)
h

wjh

)
.

The full sequence of L differentiated with respect to all timesteps of the
activation is obtained by starting at the final timestep and moving through
all steps backwards [17]. The weights are shared over all timesteps, hence
the derivatives with respect to the weights are given by summing over
the weights of all timesteps,

∂L
∂wij

=
T∑
t=1

∂L
∂a

(t)
j

∂a
(t)
j

∂wij

.

31

2.6. NEURAL NETWORKS

The BPTT algorithm described above can be used with any gradient-based
optimization method [16]. One of the most popular optimization algorithms
is the adaptive movements algorithm Adam [16]. Adam is especially
designed for optimization of large scale problems with large data sets
and large amounts of parameters, making it suitable for training neural
networks [28].

Traditional RNNs process the input sequence in order which makes
the output depend on past context solely. There are however many
circumstances in sequence modelling that could be improved by letting
the output depend on future context as well. Bidirectional recurrent
neural networks (BRNN) targets this issue by reading the input sequence
forwards in one hidden layer and backwards in another hidden layer. Both
hidden layers are connected to the output layer such that the output layer
knows the full, past and future, context [17].

A major issue for conventional RNNs is the vanishing gradient problem
and more rarely the exploding gradient problem [16]. It refers to the effect
of a given input on the hidden layer, which either decays or blows up
exponentially as it passes through the network in cycles. There have been
many attempts to solve this problem [17]. One of the most successful
architectures targeting the issue is the long short-term memory (LSTM)
architecture developed in 1997. In 2014, Cho et al. presented the Gated
Recurrent Unit (GRU) architecture, similar to LSTM but with fewer
parameters [16].

For tasks where input and output are sequences, Goodfellow et al. (2017)
[16] suggest using a gated recurrent net such as LSTM or GRU. Chung
et al. (2014) [10] conducted an empirical study of RNNs comparing
different recurrent units. The study shows that the LSTM units and
GRUs outperformed traditional recurrent units without gates. The study
further suggests that there are situations where the LSTM units perform
better than GRUs, and situations where GRUs perform better. Chung et
al. (2014) therefore emphasizes that the choice of unit highly depends on
the data set and task in question. Graves (2012) [17] suggests starting the
model development phase by conducting an experiment where different
network architectures are tested. Graves states that it is important to
have simple models with approximately the same number of parameters
for comparability reasons.

32

2.6. NEURAL NETWORKS

2.6.3 Long Short-term Memory

The major difference between an LSTM and a traditional RNN is the
concept of memory blocks and memory cells introduced in the LSTM
architecture [17]. The memory blocks replace the summation units in the
hidden layer of a traditional RNN. Each memory block consists of a cell
input activation function, at least one memory cell, three multiplicative
units (referred to as the input, output and forget gate) and an output
activation function [17]. Figure 2.3 shows the schematic of a LSTM block,
or memory block, with one single memory cell. A common choice for the
input and output activations is the hyperbolic tangent tanh [17].

Figure 2.3: Schematic of a LSTM unit with one memory cell.

The gates control the activation of the memory cell whilst no activation
function is applied directly to the memory cell itself. Instead, the cell has
an internal state with an update rule that incorporates the information
from the input gate and forget gate. Each gate has an activation function,
here and typically, it is the logistic sigmoid σ. When the activation is
close to 0, the gate is closed and when the activation is close to 1, the
gate is open. If the input gate is open, the activation of the memory
cell is overwritten by new inputs. If the output gate is open, previous
information is used by the neural network. Closing the forget gate allows
the memory cells to reset itself and forget previous input. The memory
cell is connected to the gates through weights, referred to as peephole

33

2.6. NEURAL NETWORKS

weights [17].

The forward pass in an LSTM is similar to the one in an RNN. The
difference, in simple terms, is that the hidden units are replaced by
memory blocks. The information from the gates thus need to be added
in the forward and backward pass of the neural net [17]. Let the weight

from i to j be wij and the input i at time t be x
(t)
i , consistent with the

previous RNN section. Let the gates have indexes ι for input, ϕ for forget
and ω for output. Let the peephole weights for the corresponding gates
be wcι, wcϕ and wcω. The index c refers to the memory cell in question.
The state of memory cell c at time t is further denoted stc. Moreover, let

the network input and activation of j at time t once again be a
(t)
j and

b
(t)
j . The number of inputs, outputs and cells in the hidden layer and the
number of memory cells are denoted I, K, H and C respectively.

In a LSTM forward pass, all activations are computed for a sequence x of
length T . At t = 0, all activations and states are set to zero. Thereafter,
the sequence is passed, one t at a time, starting at t = 1. The forward
pass of a hidden layer in a LSTM network, for a single memory block,
is obtained by first computing the network input and activation of the
input gate [17],

a(t)ι =
I∑

i=1

wiιx
t
i +

H∑
h=1

whιb
(t−1)
h +

C∑
c=1

wcιs
(t−1)
c ,

btι = σ(a(t)ι).

The next step is to calculate the network input and activation to the
forget gate [17],

a
(t)
ϕ =

I∑
i=1

wiϕx
(t)
i +

H∑
h=1

whϕb
(t−1)
h +

C∑
c=1

wcϕs
(t−1)
c ,

btϕ = σ(a
(t)
ϕ).

The network input to the memory cell is the same as the network input
to a traditional RNN. Instead of calculating the activation of the network
input a

(t)
c as in the simple RNN case, the LSTM updates the state using

the activations from the input gate and forget gate. The network input
to the memory cell and the update of the state is given by [17],

a(t)c =
I∑

i=1

wicx
(t)
i +

H∑
h=1

whcb
(t−1)
h ,

34

2.6. NEURAL NETWORKS

s(t)c = b
(t)
ϕ s(t−1)

c + b(t)ι g(a(t)c),

where g is either the logistic sigmoid σ or the hyperbolic tangent tanh.
The network input and activation of the output gate can then be calculated
[17],

a(t)ω =
I∑

i=1

wiωx
(t)
i +

H∑
h=1

whωb
(t−1)
h +

C∑
c=1

wcωs
(t)
c ,

b(t)ω = σ(a(t)ω).

The cell output is then obtained [17],

b(t)c = b(t)ω h(stc),

where h is either the logistic sigmoid σ or the hyperbolic tangent tanh.
The cell output is connected to the other blocks in the network layer and
the rest of the information is kept hidden from the other blocks [17].

The BPTT backward pass in LSTM is similar to the BPTT backward
pass in a regular RNN. The expressions for differentiating L with respect
to the network input, activation, and state can be defined as

δ
(t)
j :=

∂L
∂a

(t)
j

, ϵ(t)c :=
∂L
∂b

(t)
c

, ϵ(t)s :=
∂L
∂s

(t)
c

.

By repeatedly applying the chain rule, the complete BPTT backward
pass of the network can be obtained. Gradients are equal to zero at the
first step at t = T + 1 and t is then decremented. The number of inputs
to the hidden layer, regardless of type (both cell inputs and gate inputs),
is denoted G. The expression for the cell output is obtained from

ϵ(t)c =
K∑
k=1

wckδ
(t)
k +

G∑
g=1

wcgδ
(t+1)
g .

Let h be either the hyperbolic tangent tanh or the logistic sigmoid σ.
The backward pass equation for the output gate is then

δ(t)ω = σ′(a(t)ω)
C∑
c=1

h(s(t)c)ϵ(t)c .

Let g also be either the hyperbolic tangent tanh or the logistic sigmoid σ.
The states and cells backward pass equations are

ϵ(t)s = b(t)ω h′(s(t)c)ϵ(t)c + b
(t+1)
ϕ ϵ(t+1)

s + ωclδ
(t+1)
l + ωcϕδ

(t+1)
ϕ + ωcωδ

(t)
ω ,

35

2.6. NEURAL NETWORKS

δ(t)c = b
(t)
l g′(a(t)c)ϵ(t)s ,

respectively. The forget and input gate backward pass equations are
thereafter given by

δ
(t)
ϕ = f ′(a

(t)
ϕ)

C∑
c=1

s(t−1)
c ϵ(t)s ,

δ
(t)
l = f ′(a

(t)
l)

C∑
c=1

g(a(t)c)ϵ(t)s .

2.6.4 Gated Recurrent Unit

The GRU is similar to the LSTM unit in the sense that it has gating units
controlling the information flow inside the units, or blocks. The major
difference between GRU and LSTM is that GRU networks lack memory
cells, or other internal states [9]. GRU further has two gates, an update
gate and a reset gate, instead of three. As a result, GRU networks have
less parameters than LSTM networks. The GRU and LSTM unit have in
common that they keep the information from the previous timestep at
t− 1 and add the new information at t on top of it. This is not the case
in traditional RNNs, which completely replace the information at each
timestep. The addition makes the LSTM and GRU networks remember
important features for long periods and reduces the vanishing gradient
problem that traditional RNNs are commonly facing [9]. The schematic
of a GRU is illustrated in figure 2.4.

36

2.6. NEURAL NETWORKS

Figure 2.4: Schematic of a GRU.

The forward pass in a GRU network is given by calculating the output
h(t) for each cell [16],

h(t) = b(t−1)
u h(t−1) + (1− b(t−1)

u)tanh

(
I∑

i=1

wihx
(t−1)
i +

H∑
h′=1

wh′hb
(t)
r h(t−1)

)
,

where bu and br is the activation from the update and reset gate respectively.
The connection from i to j is again denoted wij and the input i at time

t is denoted x
(t)
i . The network input and activation of the update gate,

indexed u, is given by

a(t)u =
I∑

i=1

wiux
(t)
i +

H∑
h=1

whuh
(t)
h ,

b(t)u = σ(a(t)u).

The network input and activation of the reset gate, indexed r, is similarly
given by [16]

a(t)r =
I∑

i=1

wirx
(t)
i +

H∑
h=1

whrh
(t)
h ,

b(t)r = σ(a(t)u).

37

2.6. NEURAL NETWORKS

The BPTT backward pass in GRU is obtained by applying the same
algorithm as for the BPTT backward pass in LSTM derived in the previous
section.

2.6.5 Robustness

Robustness of a model refers to the model’s ability to consistently
generate accurate predictions under various conditions. Adversarial
robustness is a similar concept which refers to the models ability to
not be fooled when input is manipulated in order to disturb the model or
network [27]. Sengputa and Friston (2018) [35] show that highly accurate
RNNs, including LSTMs and GRUs, can be unstable and lack robustness.
Goodfellow et al. [16] suggest using data augmentation, which means
creating fake data and adding it to the training set, in order for the model
to generalize better and increase robustness.

Machine learning and deep learning models have generated great results
in various fields and applications. There is still however a reliability issue
when it comes to machine learning due to the lack of proven robustness of
models [26]. Robustness and adversarial robustness is clearly a major issue
and focus area especially in security-critical applications [8]. It has gained
more attention recently as models have improved and a lot of research
has been published on the area [26], [27], [41], [31], [40], [39].

Most research on robustness and neural networks concerns feed-forward
neural networks and convolutional neural networks. Some work has
been published on robustness in RNNs including LSTMs and GRUs.
The Propagated-output Quantified Robustness Algorithm for RNNs
(POPQORN) [29] (2019) has been considered state-of-the-art on the
topic. In November 2021 CERT-RNN, another framework for certifying
robustness of RNNs, was published [11]. The authors state that CERT-RNN
outperforms POPQORN in terms of effectiveness and efficiency. Amini
et al. proposed yet another algorithm to improve robustness of RNNs in
2021 [1].

38

Chapter 3

Method

In this section, we describe our method for data augmentation, sample
generation, model development and performance evaluation. A machine
with Intel Core i5-4690K CPU and 8.0 GB DDR3 RAM was used to
generate data, train and evaluate the model. The data generation
methods and models were implemented using QuantLib-Python [12]
and the neural network was implemented by using the machine learning
platform TensorFlow [37]. The software environment was Python 3.8.
The code is available on GitHub1.

3.1 Contract Specification

The considered contract was specified as a ten-year pay fixed receive
floating plain vanilla IRS where the interest rate is set in advance and
pays in arrears. The floating-rate payments are expected every 3 months
and fixed-rate payments every 6 months. The notional principal amount
was set to 100M USD. All payments were assumed to be made in USD and
the floating rate to be based on the LIBOR spot rate. The contract was
defined as initialized at t = 0, 3 months before the first payment.

1https://github.com/frodiie/Credit-Exposure-Prediction-GRU

39

https://github.com/frodiie/Credit-Exposure-Prediction-GRU

3.2. DATA

3.2 Data

The objective of the model was to predict the Expected Positive Exposure
of the contract specified in section 3.1. The input to the model was
market data, Hull-White parameters and deviation from ATM strike rate
as described in table 3.1. The Hull-White parameters capture the market
dynamics and the deviation from the ATM strike rate expressed in BPS
relates to the contact specification.

Table 3.1: Features description.

yield 10 year yield curve on USD bonds.
σ Hull-White volatility parameter.
a Hull-White mean rate reversion parameter.
strike Positive or negative deviation from the ATM strike rate.

A data set consisting of 1,540 yield curves of observed USD bonds between
dates 04-01-2016 and 26-01-2022 was gathered and used. All yields, at
maturities less or equal to 10 years, were included in the data set. The
data set was properly explored to detect any abnormalities. No samples
were excluded.

3.2.1 Augmentation

To increase the amount and diversity of the data and thus improve the
robustness of the model, an additional set of augmented yield curves
were synthesized. The full data set was expanded to consist of 3,080
different yield curves, 50% observed and 50% augmented. The augmented
curves were created through manipulation of the observed data. The
manipulation techniques included parallel shifting, tilting, merging and
multiplication of different yield curves. Each augmented sample was
created by performing 5-10 manipulation techniques in sequence on one
observed yield curve. Examples of augmented yield curves are presented
in figure 3.1.

40

3.2. DATA

Figure 3.1: Five augmented yield curves. All curves are based
on the same observed curve marked in the figure.

3.2.2 Sample Generation

The next step in generating data was to calculate the exposure profile for
each yield curve using different a-, σ- and strike-values. The yield
curves were interpolated to a monthly time grid using cubic spline
interpolation.

The exposure calculation for each yield curve and parameter combination
consisted of four steps shown in figure 3.2. The first step was to simulate
the short rate paths using the Hull-White One-Factor model in accordance
with the theory in section 2.4. The simulated paths are obtained from
equation 2.16 and 2.17 by using a step-wise stochastic simulation method
from a defined starting point. An example of a short rate simulation is
shown in figure 3.2(a). The zero-coupon bond price paths could then be
obtained from equation 2.10, 2.12 and 2.13. Figure 3.2(b) show simulated
bond price paths. The risk-neutral IRS value paths in figure 3.2(c) were
calculated from the bond prices using equation 2.8. Once the value
paths were obtained, the Expected Positive Exposure was computed in
accordance with equation 2.2 as explained in section 2.1.1. All obtained
exposures follow a pattern of jumps which correspond to the specified
transaction frequency of the contract. An example of an expected exposure
over the lifetime of the trade is shown in figure 3.2(d).

41

3.2. DATA

(a) Simulated paths of the short rate rt. (b) Simulated zero-coupon bond price
paths p(t, T). All price paths reach one at
maturity.

(c) Interest rate swap values V (t). The
values are both positive and negative over
the lifetime of the contract.

(d) Expected Positive Exposure EPE(t).
The obtained exposures follow a pattern
of jumps that correspond to the specified
transaction frequency of the contract.

Figure 3.2: Steps in the exposure calculation.

Two data sets were generated in order to develop a first model and then
expanding it with an additional feature. Intervals for the parameters a
and σ in the Hull-White One-Factor model and the number of paths for
each Monte Carlo simulation were defined to mimic realistic bank settings
for the first data set. Five a-values and six σ-values, evenly spaced in the
intervals, were used in simulation. The exposures for each yield curve
were thus computed using 30 different parameter combinations. The
parameters settings, number of Monte Carlo paths and number of samples
are shown in table 3.2. The deviation from the ATM strike rate was added
in the second data set. The interval was defined to mimic realistic bank
settings. In order to keep the amount of data within reasonable limits,
the intervals for a and σ were made smaller. Three a-, three σ-, and seven

42

3.2. DATA

strike-values were evenly spaced in the intervals. The exposure profiles
for each yield curve were thus computed using 63 different parameter
combinations.

Table 3.2: Data set specification.

Parameter Set/Value
Data set 1 Data set 2

a ∈ [0.001, 0.23] ∈ [0.05825, 0.17275]
σ ∈ [0.001, 0.01] ∈ [0.00280, 0.00640]
strike 0 ∈ [−3, 3] BPS
#observed 1,540 1,540
#augmented 1,540 1,540

#samples 92,400 194,040
#MC paths 5,000 5,000

Both data sets were separately divided into a training and a test set,
where 90% of the data was used to train the model and the last 10%
to test the model. The test set consisted of augmented curves. During
the training phase, 20% of the training data was used for validation.
The training data was used for testing network architectures and tuning
hyperparameters, and the rest of the data was used for testing the final
model. An additional test set was generated to accompany each set in
table 3.2. The purpose was to test the generalization performance of the
network by introducing exposure profiles generated with new Hull-White
parameters. The additional test set’s parameters are specified in table 3.3.
The parameters a and σ were chosen in the same interval as in Data set
1 and Data set 2 respectively, but with an as large as possible deviation
from the parameter values in those data sets.

43

3.3. MODEL DEVELOPMENT

Table 3.3: Extra test set specification.

Parameter Set/Value
Test set 1 Test set 2

a ∈ [0.0296, 0.201] {0.0087, 0.144}
σ ∈ [0.0019, 0.0091] {0.0037, 0.0055}
strike 0 {±0.5,±1.5,±2.5} BPS
#observed 0 0
#augmented 462 809

#samples 9,240 19,400
#MC paths 5,000 5,000

To get a better understanding of how much data that could be useful
and how well the data augmentation works, an additional data set was
created. This data set consisted of 64K augmented yield curves and the
1,540 observed real life yield curves. The exposures were generated with
one combination of parameters, instead of 30 or 63 as in the other sets.
The specification of parameter values and number of samples are specified
in table 3.4.

Table 3.4: Data set for evaluating data, specification.

Parameter Value

a 0.1155
σ 0.0064
strike 0
#observed 1,540
#augmented 64,000

#samples 65,540
#MC paths 5,000

3.3 Model Development

The neural network was developed in two steps where the initial attempt
was based on a contract specified with a fair strike rate at inception. This
baseline network was trained and validated on data in Data set 1 with
settings defined in table 3.2. Experiments described below were carried
out to find the most suitable network architecture. An additional feature

44

3.3. MODEL DEVELOPMENT

specified as deviation from at the money (ATM) strike was added in the
next stage. The same network architecture was used in an expanded
version of the model using data in Data set 2.

Each input to the model was a time series consisting of a yield curve
sampled with a resolution of one point per month, and the Hull-White
parameters a and σ. In the expanded model, the deviation from ATM
strike rate was added. The Hull-White parameters a and σ, as well as the
strike were regarded as constant time series. The output of the model
was a time series consisting of the EPE sampled on the same dates as the
input yield curve. Adam was used as the optimization algorithm. The
hyperbolic tangent tanh was used in all architectures, except for the gates
which always use the logistic sigmoid as the activation function. A dense
layer was added as a final layer to all architectures and all units were
biased.

3.3.1 Network Architecture

In order to find a suitable network architecture, a few different reasonable
architectures were tested. The architectures had roughly the same number
of parameters for the performance to be comparable and the considered
network architectures were simple to avoid overfitting.

The considered nets were trained for 30 epochs and with a batch size of
32. The experiment included four RNN architectures with either LSTM
units or GRUs. The architectures are presented in table 3.5. All recurrent
layers returned the full sequence of hidden states except for the last
recurrent layer which only returned the last value. Bidirectional units
are denoted BiLSTM and BiGRU. The performance of each model was
assessed by evaluating the mean squared error (MSE) between observed
and predicted values in the validation set.

45

3.3. MODEL DEVELOPMENT

Table 3.5: Network architectures to compare LSTM units to a
GRUs.

Architecture Number of units Parameters
Layer 1 Layer 2

LSTM 18 18 6,547
BiLSTM 11 10 6,501
GRU 20 20 6,561
BiGRU 12 11 6,449

Another experiment was carried out to compare the bidirectional unit
to the unidirectional unit. The networks were trained for 50 epochs and
with a batch size of 32. Each hidden layer had approximately the same
number of parameters. The networks are presented in table 3.6.

Table 3.6: Network architectures to compare a unidirectional
unit to a bidirectional.

Architecture Number of units Parameters
Layer 1 Layer 2

GRU 46 32 18,711
BiGRU 32 16 18,969

3.3.2 Layers and Units

A GRU network was expanded by adding recurrent layers and output
units. The number of hidden layers was fixed to three. The networks had
two recurrent layers with the same number of units and one dense layer.
The full sequence of hidden states was returned in the first recurrent
layer and only the last value in the sequence was returned in the second
recurrent layer. The number of output units per recurrent layer was varied
between 8-128 units and the validation losses compared. The networks
were trained for 30 epochs.

The number of output units, or nodes, per recurrent layer was then fixed
to 16. The number of recurrent layers was varied between 2-10 layers.
The validation losses were compared. All recurrent layers except the last
returned the full sequence of hidden states. The last recurrent layer only

46

3.4. PERFORMANCE

returned the last value in the sequence. The networks were trained for 30
epochs.

3.3.3 Regularization

The learning curve was inspected and considered throughout all experiments
to get an indication of whether the net was suffering from overfitting at
any point. The learning curve for the GRU network with two recurrent
layers, 32 and 64 number of units per recurrent layer was carefully
examined.

3.3.4 Number of Samples

To gain insight into how well the data augmentation worked and how many
augmented samples that would be required for the model to learn the
mapping, another experiment was carried out. The data set for evaluating
data, specified in table 3.4 was used. One combination of parameters
was considered instead of 30 or 63. The input to the neural network was
solely the yield curve. The model was trained for 50 epochs on 1-64K
number of augmented samples which is assumed to roughly represent
30K-1.92M samples in a data set with 30 parameter combinations. The
model was tested on the observed data consisting of 1,540 samples and
an additional augmented data set consisting of 1,540 randomly selected
augmented samples.

3.4 Performance

The proposed network was evaluated on data in the original test set. The
yield curves and Expected Positive Exposures were thus unseen by the
model but generated with parameter combinations that had been part of
the training set. Further generalization performance was then evaluated
by testing the performance on data generated with previously unseen
parameters specified in table 3.3. The new parameter values were the
midpoints of the intervals between any two seen subsequent parameter
values

The main metric for evaluating the network was the percentage of
predicted points with absolute errors less than 10 BPS of the notional
amount. For liquid currency and normal market conditions the bid-ask
spread for the used interest rate swap is usually in the range between 0.1

47

3.4. PERFORMANCE

and 0.2 BPS of the notional amount. We regard CVA errors as acceptable
if they are within the bid-ask spread of the IRS. We assume that our
model is used for contracts with high rated counterparties with default
probabilities less than 2%. Any absolute exposure error less than 10 BPS
of the notional amount will thus not lead to CVA errors that are above
the threshold for acceptable errors.

The model was further evaluated by analyzing the error distributions and
worst predictions with regards to i) largest absolute error and ii) largest
mean error over the whole curve.

The proposed machine learning model was benchmarked against a traditional
Monte Carlo approach by comparing the error distributions with maximum
deviations within a 95% confidence interval for the simulated exposures.
The confidence interval for the simulated Expected Positive Exposure is
given by equation 2.5. The errors as well as the maximum deviations
implied by the confidence interval were visualized in histograms in order
to compare the distributions. The percentage of samples predicted within
a confidence interval for the Monte Carlo simulation could be used as
an alternative benchmark. This could however be considered as a rather
unforgiving metric since the standard deviation is small or even zero in
some data points, often in the beginning and end of the curve.

The efficiency of the method was evaluated by considering the offline
training time and the prediction time compared to the corresponding
Monte Carlo simulation time.

48

Chapter 4

Results

4.1 Sample Generation

The sample generation computation time were dependent on the number
of paths in the Monte Carlo simulation. Computation times for varying
numbers of simulation paths are shown in table 4.1.

Table 4.1: Simulation time for varying number of Monte Carlo
paths.

MC paths Time per sample (s)

5,000 1.75
10,000 2.18
20,000 3.98
50,000 10.45

4.2 Model Development

The validation loss (MSE) for the network architectures specified in table
3.5 comparing an LSTM unit to a GRU are shown in figure 4.1(a) below.
The outcome of the experiment indicates that GRU networks are more
suitable than LSTM networks for this particular task and data, since the
GRU networks give similar or lower validation loss while having a simpler
structure.

Figure 4.1(b) shows that GRU and bidirectional GRU networks specified

49

4.2. MODEL DEVELOPMENT

in table 3.6, performed similarly in terms of validation loss. The networks
compared in figure 4.1(b) approximately had 19K parameters instead of
6.5K parameters as the networks in figure 3.5. Each training epoch was
1.13 times faster for the GRU network than for the bidirectional GRU
network. There were no signs of overfitting. Given that GRU networks
have a more simple structure than bidirectional GRU networks, figure
4.2 imply that a GRU network with a normal unidirectional unit is most
suitable for the task.

(a) 6.5K parameters. (b) 19K parameters.

Figure 4.1: Validation loss for different network architectures
in logarithmic scale.

The results obtained from adding more layers and output units are
presented in figure 4.2. The figure shows that in this setting, adding more
layers may not increase performance. The validation loss of the network
with two recurrent layers is somewhat in the middle of the validation
losses of networks with more layers. The figure further indicates that 8-16
units per recurrent layer may be too few and that 32-64 is enough.

50

4.2. MODEL DEVELOPMENT

(a) Varying number of units per recurrent
layer. Number of recurrent layers is 2.

(b) Varying number of recurrent layers.
Number of nodes per recurrent layer is 16.

Figure 4.2: Validation loss for GRU networks of different sizes
in logarithmic scale.

The training times varied as the number of layers and units per recurrent
layer varied. The approximate training times per epoch are presented in
table 4.2. The training time greatly increased when the number of units
increased from 64 to 128, without gaining significant performance. Figure
4.2(a) and table 4.2 thus motivates a choice of 32-64 units per recurrent
layer.

Table 4.2: Training time per epoch for varying number of units
per recurrent layer.

Units Training time/epoch (s)

8 130
16 140
32 150
64 170
128 380

The training time increased as the number of layers increased. The
approximate training times per epoch is presented in table 4.3. The
performance visualized in figure 4.2(b) and the training times in table
4.3 indicates that two recurrent layers is an appropriate choice. The
extended training times when adding more layers can not be motivated
by an increase in performance.

51

4.2. MODEL DEVELOPMENT

Table 4.3: Training time per epoch for varying number of
recurrent layers.

Layers Training time/epoch (s)

2 140
4 270
6 410
8 540
10 680

The learning curve for a GRU neural network with 64 units in a first
recurrent layer and 32 units in a second recurrent layer is presented
in figure 4.3. The figure shows that there are no signs of overfitting.
Regularization was therefore not further explored.

Figure 4.3: Learning curve in logarithmic scale for a GRU
network with two recurrent layers of 64 and 32 units.

Figure 4.4 illustrates the outcome of adding more data. The experiment
was carried out on a separate data set where the Hull-White parameters
and features a and σ were removed. All exposures were instead generated
using the same Hull-White parameters. The results show that adding
more augmented data with our augmentation technique could increase

52

4.3. MODEL SPECIFICATION

performance to a certain degree. The figure shows that it was a significant
difference between the test loss when the model was trained on 1K
samples compared to when the model was trained on 2K samples. The
improvement did however stagnate and there was only a minor difference
between the test loss on the model trained on 16K samples and the model
trained on 64K samples. The figure further shows similar behavior of
the loss on the data generated from the actual observed yield curves and
the data generated from augmented yield curves. There were no signs of
overfitting.

Figure 4.4: Test loss on separate data set in which all training
and test data consisted of exposures generated with Hull-White
parameters a = 0.1155 and σ = 0.0064. All training data targets
(exposures) were generated from augmented yield data. The
test data was generated from the actual observed yield curves,
marked as observed test data, and from augmented yield curves,
marked as augmented test data.

4.3 Model Specification

Our suggested model is a GRU neural network with three hidden layers
motivated by the previous section. The first layer is a recurrent GRU layer
with 64 units where the full output sequence of hidden states is returned.
The second layer is a recurrent GRU layer with 32 units, returning the

53

4.4. BASE MODEL

last hidden state in the output sequence. The last hidden layer is a dense
layer with 121 output units. The optimization algorithm is Adam and the
learning rate initially set to 0.0005 and thereafter continuously decreased.
A schematic of the network is presented in figure 4.5.

Figure 4.5: Schematic of our proposed neural network.

4.4 Base Model

This section shows the performance of the neural network trained on three
features, yield, a and σ, with the deviation from the ATM strike rate fixed
at 0. Data set 1 was used to train the model which was then tested on the
test data in Data set 1 and the accompanied extra test set with unseen
parameters. The model was trained offline within a workday.

4.4.1 Performance Summary

Table 4.4 summarizes results for the evaluation metrics described and
motivated in section 3.5. Only a small proportion of the obtained errors
were greater than 10 BPS of the notional. An exposure profile prediction
with the model takes 0.4 ms which is approximately 4,000 times faster
than the exposure estimation using standard Monte Carlo simulation
with 5K paths and 24,000 times faster than Monte Carlo simulation with
50K paths. The distribution of the pointwise errors expressed in BPS of
notional is shown in figure 4.6(a). The pointwise errors can be compared

54

4.4. BASE MODEL

with figure 4.6(b), in which the distribution of the maximum deviations
within a 95% confidence interval of the Monte Carlo simulation using 5K
paths is expressed in BPS of notional.

Table 4.4: Results statistics on test data with seen Hull-White
parameters.

Metric Value

Absolute errors within 10 BPS of notional (%) 96.90
Prediction time per curve (ms) 0.44
MSE 0.0016
Max. observed error (M USD) 0.449
Max. mean error (M USD) 0.185

(a) (b)

Figure 4.6: Error distribution (a) and distribution of the
maximum deviations within a 95% confidence interval for the
MC simulation (b).

4.4.2 Representative Predictions

Figure 4.7 shows the network’s predictions for eight different parameter
combinations and corresponding targets. The predictions are chosen to
be representative of the network’s performance for the chosen parameter
combinations. The selected predictions have a loss equal to, or approximately
equal to the median loss for each parameter combination. Note that the
exposures originate from different yield curves.

55

4.4. BASE MODEL

(a) σ = 0.001, a = 0.05825 (b) σ = 0.001, a = 0.17275

(c) σ = 0.0064, a = 0.05825 (d) σ = 0.0064, a = 0.17275

(e) σ = 0.01, a = 0.05825 (f) σ = 0.01, a = 0.17275

Figure 4.7: Median loss predictions for different Hull-White
parameter combinations.

Figure 4.8 shows how the median loss depends on the parameters a and
σ. The loss is the largest for large σ and small a and the smallest for
small σ and large a.

56

4.4. BASE MODEL

Figure 4.8: Median loss against Hull-White parameters

4.4.3 Error Analysis

The largest observed test error, presented in table 4.4, was found in
the prediction of the expected exposure profile presented in figure 4.9(a)
below. The largest absolute errors for each predicted exposure profile are
visualized in a histogram in figure 4.9(b). The distribution is right-skewed
and centered around 0.06 M USD. The maximum error, 0.449 M USD, in
figure 4.9(a) could presumably be considered as an outlier. The largest
mean error in an exposure profile was observed for the exposure profile in
figure 4.10(a). Figure 4.10(b) displays a histogram of absolute mean errors
for each predicted exposure profile. The distribution is right-skewed and
centered around 0.02 M USD. The maximum mean error 0.1848 M USD
in figure 4.10(a) could reasonably also be considered as an outlier.

57

4.4. BASE MODEL

(a) Max. error 0.449 M USD at Time=0.2
years.

(b) Distribution of max. error per curve.

Figure 4.9: Worst prediction in terms of largest error and
corresponding distribution.

(a) Max. mean error 0.185 M USD.
(b) Distribution of mean error per curve.

Figure 4.10: Worst prediction in terms of mean error and
corresponding distribution.

4.4.4 Generalization Performance

The model was tested on the additional test data with unseen Hull-White
parameters. The parameters a and σ of the test data were chosen in the
range of the parameters of the training data with an as large as possible
deviation from the seen values. The result statistics are presented in
table 4.5. All statistics are comparable to those presented for the seen
parameters. The results indicate that the network can handle various
feature values in the range it was trained on and not only on the previously
seen parameters.

58

4.5. EXTENDED MODEL

Table 4.5: Results statistics on test data with unseen
Hull-White parameters.

Metric Value

Absolute errors within 10 BPS of notional (%) 96.97
Prediction time per curve (ms) 0.45
MSE 0.0016
Max. observed error (M USD) 0.462
Max. mean error (M USD) 0.181

4.5 Extended Model

This section shows the performance of the neural network for the model
where deviation from the ATM strike rate was included as a feature,
allowing contracts with variable strike rates. The model is thus trained
on all four features described in table 3.1, yield, a, σ, and strike. The
model was trained offline within a workday.

4.5.1 Performance Summary

Table 4.6 summarizes the results on the evaluation metrics. Only a
small proportion of the obtained errors were greater than 10 BPS of the
notional. An exposure profile prediction with the model takes 0.6 ms
which is approximately 2,900 times faster than the exposure estimation
using standard Monte Carlo simulation with 5K paths and 17,400 times
faster than Monte Carlo simulation with 50K paths. The distribution of
the pointwise errors expressed in BPS of the notional is shown in figure
4.11(a). The pointwise errors of the model can be compared with figure
4.11(b), in which the distribution of the maximum deviations within a
95% confidence interval of the Monte Carlo simulation using 5K paths is
expressed in BPS of notional.

59

4.5. EXTENDED MODEL

Table 4.6: Results statistics on test data with seen Hull-White
parameters and deviation from ATM strike.

Metric Value

Absolute errors within 10 BPS of notional (%) 98.56
Prediction time per curve (ms) 0.59
MSE 0.0011
Max. observed error (M USD) 0.753
Max. mean error (M USD) 0.288

(a) (b)

Figure 4.11: Error distribution (a) and distribution of the
maximum deviations within a 95% confidence interval for the
MC simulation (b).

4.5.2 Representative Predictions

Figures 4.12 and 4.13 show the network’s predictions for different parameter
combinations and corresponding targets. The strike rates in figures 4.12
and 4.13 are set to 3 BPS below and above the ATM strike rate respectively.
The presented predictions are chosen to be representative of the network’s
performance for the chosen parameter combinations. The mean error of
the presented predictions is equal or approximately equal to the median
of all mean errors for its parameter combination. Note that the exposures
are based on different yield curves.

60

4.5. EXTENDED MODEL

(a) σ = 0.0028, a = 0.05825 (b) σ = 0.0028, a = 0.17275

(c) σ = 0.0046, a = 0.05825 (d) σ = 0.0046, a = 0.17275

(e) σ = 0.0064, a = 0.05825 (f) σ = 0.0064, a = 0.17275

Figure 4.12: Median loss predictions for different Hull-White
parameter combinations and strike rate set to ATM − 3 BPS.

61

4.5. EXTENDED MODEL

(a) σ = 0.0028, a = 0.05825 (b) σ = 0.0028, a = 0.17275

(c) σ = 0.0046, a = 0.05825 (d) σ = 0.0046, a = 0.17275

(e) σ = 0.0064, a = 0.05825 (f) σ = 0.0064, a = 0.17275

Figure 4.13: Median loss predictions for different Hull-White
parameter combinations and strike rate set to ATM + 3 BPS.

62

4.5. EXTENDED MODEL

4.5.3 Error Analysis

The largest observed test error, which was reported in table 4.6, was
found in the prediction of the expected exposure profile shown in figure
4.14(a) below. The largest mean error over the entire curve was observed
for the exposure profile in figure 4.15(a). The histograms in figure 4.14(b)
and 4.15(b) show the corresponding error distributions. The maximum
observed total and mean error are both far separated from the majority
of the observations in their corresponding histograms.

(a) Max. error 0.753 M USD at Time=0.4
years.

(b) Distribution of largest error per curve.

Figure 4.14: Worst prediction in terms of largest error and
the corresponding error distribution.

(a) Max. mean error 0.288 M USD.
(b) Distribution of mean error per curve.

Figure 4.15: Worst prediction in terms of largest mean error
and the corresponding error distribution.

63

4.5. EXTENDED MODEL

4.5.4 Generalization Performance

The model was tested on the additional test data with unseen Hull-White
parameters and deviations from the ATM strike rate. The parameters
were chosen in the same interval as the seen parameters but with as large
as possible deviations from the seen parameters. The result statistics
are presented in table 4.7 below. All results are comparable to those
presented for the initial test set with seen parameters which implies a
good generalization performance to new parameters within the interval
of seen data.

Table 4.7: Results statistics on test data with unseen
Hull-White parameters and deviation from ATM strike.

Metric Value

Absolute errors within 10 BPS of notional (%) 98.19
MSE 0.0013
Max. observed error (M USD) 0.561
Max. mean error (M USD) 0.255

64

Chapter 5

Discussion

5.1 Performance

The proposed models were capable of reproducing expected counterparty
credit exposures for a wide variety of market conditions. The extended
model introduces additional challenges as the variable strike rate leads
to more variation in the exposure profiles and added complexity in the
mapping. The errors over the entire test set were generally smaller for
the extended model, which indicates that the network responds well to
additional features and increased complexity of task.

Our machine learning model was benchmarked against a traditional Monte
Carlo approach by comparing the error distributions with maximum
deviations within a 95% confidence interval for the simulated exposures.
The errors of the proposed model are comparable in magnitude to the
accepted deviations implied by the confidence intervals. For this particular
task and data, neural networks could thus be regarded to generate
equivalent results to those from a Monte Carlo simulation.

Determining the confidence intervals furthermore brought insight into
how simulation variance may bring errors. The samples generated with
high volatility parameters are associated with a higher uncertainty in the
Monte Carlo simulation. The better overall accuracy of the extended
model may to some degree be attributed to the chosen parameter intervals,
where the smallest and largest volatility parameters were omitted from
the data set in order to keep the amount of data within reasonable limits.

65

5.1. PERFORMANCE

It is reasonable to assume that the model accuracy can be increased by
reducing the variance, either by variance reduction techniques, or by using
a larger number of Monte Carlo simulation paths.

The distributions over the largest errors were similar for both models
which we present in the histograms in figure 4.14(b) and 4.15(b). It is
however noted that the largest observed absolute error and mean error
for a single curve was considerably larger for the extended model. The
presented extremes are clearly separated from the majority of observations
which implies that the largest observed absolute error and mean error
may be regarded as outliers for both models. It should be noted that
the largest errors are less pronounced on a longer tenor, especially for
the extended model. This property is preferable since longer tenors are
associated with more counterparty risk, and thus a larger sensitivity to
errors when pricing xVA.

Comparable performance was demonstrated when the model was tested
on data with a set of parameters that were different from, but within the
same interval as those included in the training set. This result, which was
observed both for the base model and for the extended model, suggests
that the neural network can interpolate to new data in the specified
interval. This could be a useful insight if additional features were to be
added in a future extension of the model.

With regards to computational efficiency, neural networks demonstrate
significant advantages over Monte Carlo methods. Our model generates
predictions in less than 1 ms, which is significantly more efficient than the
corresponding Monte Carlo simulation used in this example. Furthermore,
the computational efficiency of the Monte Carlo method is greatly dependent
on the number of performed simulations. The number of simulations could
be tens or hundreds of thousands in an industry context for portfolios
with more risk factors, which is significantly larger than used in this
example. The possible benefits of a machine learning approach may thus
be even greater than demonstrated in this example.

Another advantage of the model was the rather short offline training time.
Both models were trained within a workday. It is fair to assume that
more data and longer training would further increase the performance of
the network.

66

5.2. FUTURE DEVELOPMENT

5.2 Future Development

This report aims to provide insight into a class of methods that have
the potential to improve the efficiency of banks’ internal processes. In
its current state, the model proposed in this project has its greatest
advantages in quick single-contract exposure evaluations that could be
used in front office xVA solutions. The model could be used as an efficient
pricing tool and complement to existing pricing engines. If a client requests
xVA pricing for a single trade, the model could give a quick indication of
the price level. The area of application could be expanded by extending
the model, for example by training also on quantiles of the exposure.
With further development, the proposed architectures may prove useful
especially for contracts with high-rated counterparties, traded in a normal
and liquid market.

To be useful in an industry context, the machine learning model that is
developed here may be applied to observed market data and exposure
data generated within the bank. We chose to generate all data using the
Hull-White One-Factor model. Even though the Hull-White One-Factor
model is researched and established in financial theory, there exist more
complex models that more accurately represent the dynamics of the short
rate. Reliance on a specific short rate model could be omitted in a future
attempt.

If deployed in an industrial context, reasonable standards for data gathering
and model retraining should be established. The computational costs
of offline training increase with the amount of data and retraining
frequency. The performance of the model would presumably also increase.
The trade-off between performance and costs needs further assessment.
As proposed in this project, data augmentation may bring increased
robustness and a better generalization to unexpected market conditions.
Further evaluation of robustness of the model was intentionally omitted
due to the recent rapid development in the field. It would be valuable to
investigate robustness of the network if this method were to be adopted
in industry. It is left for future work to apply a robustness framework to
the proposed model and neural network approach.

The time resolution of the generated predictions could be different in a
future model. In the model proposed here, a monthly resolution was used
in all steps of the data generation. The choice of data resolution was
made with consideration taken to simulation accuracy and computational

67

5.2. FUTURE DEVELOPMENT

efficiency. The differences in the obtained exposure profiles were small
when comparing simulations on a monthly and a daily level. Priority
could therefore be placed on computational efficiency, for which a more
sparse data set showed great advantages.

Regarding the network architecture, we suggest a GRU neural network
with two recurrent hidden layers for future attempts with added features.
In our proof of concept model, the simple structure is enabled by the
complexity of the GRU. The results show that a GRU is to prefer over an
LSTM unit or bidirectional GRU. In more complex applications, adding
units and layers may prove beneficial.

Models developed for the financial industry must often comply with
current standards and regulations. The usage of machine learning is
particularly challenged by requirements of transparency, reliability and
accountability. Many banks have nevertheless started to utilize machine
learning to obtain data-driven insights in some parts of the organization.
The proposed area of use is an example of a setting where machine learning
methods may prove valuable as the models are currently not subject to
extensive regulation.

It is unlikely that machine learning will provide an alternative to traditional
MC pricing engines used for end of day pricing and P&L any time soon.
The daily work of an xVA desk includes several xVA evaluations on a
portfolio level. The xVA desks in financial institutions therefore require
flexible models to handle large and frequent variations in their portfolios.
This is an immense challenge for machine learning methods, which are
generally trained for a static context. It is however possible to continuously
update a neural network by feeding it with new data. The model proposed
in this project is incapable of handling diversification effects. We do
however acknowledge the possibility of extending a machine learning model
to portfolio-level calculations. A model trained on standardized cash flows
that represent the portfolio transactions could possibly achieve feasible
results. Such a model would however be immensely more complex than
the single-contract models proposed here, and would thus be associated
with greater challenges in accurate tuning and calibration.

68

Bibliography

[1] Amini, A., Liu, G. & Motee, N. Robust Learning of Recurrent
Neural Networks in Presence of Exogenous Noise. 2021 60th IEEE
Conference on Decision and Control (CDC), (3 May, 2021): 783-788.
Available at: https://doi.org/10.48550/arXiv.2105.00996.

[2] Albanese, C., Crépey, S., Hoskinson, R. &
Saadeddine, B. XVA Analysis from the Balance Sheet.
Quantitative Finance, (2021): 21:1, 99-123. Available at:
https://doi.org/10.1080/14697688.2020.1817533.

[3] The Basel Committee on Banking Supervision. Basel
Committee Charter. Bank for International Settlements, 5 Jun, 2019.
Available at: https://www.bis.org/bcbs/charter.htm.

[4] BIS Statistics Explorer. Global OTC Derivatives Market.
Bank of International Settlements, 21 Apr, 2022. Available at:
https://stats.bis.org/statx/srs/table/d5.1?f=pdf.

[5] Björk, T. 2019. Arbitrage Theory in Continuous Time, 4th ed.
Oxford: Oxford University Press.

[6] Borchani, H., Pawlak, W. Holmslykke, S. &
Engsig-Karup, A. Data-driven American Option Pricing
using Artificial Neural Networks. ICDM, (July, 2019). Available at:
https://www.researchgate.net/publication/336987698 Data-driven
American Op tion Pricing using Artificial Neural Networks.

[7] Brigo, D. & Mercurio, F. 2007. Interest Rate Models. Berlin
Heidelberg: Springer Finance.

69

BIBLIOGRAPHY

[8] Carlini, N. & Wagner, D. Towards Evaluating the
Robustness of Neural Networks. 2017 IEEE Symposium on
Security and Privacy (SP), (22 Mar, 2017). Available at:
https://doi.org/10.48550/arXiv.1608.04644.

[9] Cho, K., Chung, J., Gulcehre, C. & Bengio, Y..
Empirical Evaluation of Gated Recurrent Neural Networks
on Sequence Modeling. NIPS 2014 Deep Learning and
Representation Learning Workshop, (11 Dec, 2014). Available at:
https://doi.org/10.48550/arXiv.1412.3555.

[10] Chung, J., Gulcehre, C., Cho, K. & Bengio, Y.
Empirical Evaluation of Gated Recurrent Neural Networks
on Sequence Modeling. NIPS 2014 Deep Learning and
Representation Learning Workshop, (11 Dec, 2014). Available at:
https://doi.org/10.48550/arXiv.1412.3555.

[11] Du, T., Ji, S., Shen, L., Zhang, Y., Li, J., Shi, J.,
Fang, C., Yin, J., Beyah, R. & Wang, T. Cert-RNN:
Towards Certifying the Robustness of Recurrent Neural Networks.
Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, (13 Nov, 2021). Available at:
https://doi.org/10.1145/3460120.3484538.

[12] Durarte, D. QuantLib-Python Object
Building Documentation, 2020. Available at:
https://quantlib-python-docs.readthedocs.io/en/latest/.

[13] Ferguson, R, & Green, A.D. Deeply Learning Derivatives.
CompSciRN: Artificial Intelligence, (Oct 14, 2018). Available at:
https://doi.org/10.2139/ssrn.3244821.

[14] Givens, G, & Hoeting, J. 2013. Computational Statistics.
Hoboken, New Jersey: John Wiley Sons, Inc.

[15] Gnoatto, A., Reisinger, C. & Picarelli, A. Deep xVA Solver
– A Neural Network Based Counterparty Credit Risk Management
Framework. CompSciRN: Computational (Nov 5, 2021). Available
at: http://dx.doi.org/10.2139/ssrn.3594076.

[16] Goodfellow, I., Bengio, Y., & Courville, A. 2017. Deep

70

BIBLIOGRAPHY

learning. Cambridge, Mass: The MIT Press.

[17] Graves, A. 2012. Supervised Sequence Labelling with Recurrent
Neural Networks. Berlin: Springer.

[18] Green, A. 2016. XVA: Credit, Funding and Capital Valuation
Adjustments. Chichester: John Wiley & Sons Ltd.

[19] Gregory, J. 2020. The xVA challenge: Counterparty Risk, Funding,
Collateral, Capital and Initial Margin. Chichester: John Wiley &
Sons Ltd.

[20] Gregory, J. 2010. Counterparty Credit Risk: The New Challenge
for Global Financial Markets. Chichester: John Wiley Sons.

[21] Hammer, B. On the Approximation Capability of Recurrent Neural
Networks. Neurocomputing, 31(1–4):107–123, (Mar, 2000). Available
at: https://doi.org/10.1016/S0925-2312(99)00174-5.

[22] Heckinger, R., Ruffini, I. & Wells, K.
Understanding Derivatives - Markets and Infrastructure,
Chapter 3 - Over-the-Counter (OTC) Derivatives.
Federal Reserve Bank of Chicago, 2014. Available at:
https://www.chicagofed.org/publications/understanding-derivatives/
index.

[23] Huang, J., Chai, J. & Cho, S. Deep Learning in Finance
and Banking: A Literature Review and Classification.
Front. Bus. Res. China 14, 13 (2020). Available at:
https://doi.org/10.1186/s11782-020-00082-6.

[24] Hull, J. 2012. Options, Futures, and Other Derivatives, 10th ed.
Upper Saddle River, N.J.: Pearson/Prentice Hall.

[25] Hutchinson, J.M., Lo, A.W. & Poggio, T. A Nonparametric Approach
to Pricing and Hedging Derivative Securities via Learning Networks.
The Journal of Finance, (Jul, 1994): 49(3):851–889. Available at:
https://doi.org/10.1111/j.1540-6261.1994.tb00081.x.

[26] IBM Innovation Explanations. The man
who challenge AI every day. IBM. Available at:
https://www.ibm.com/thought-leadership/innovation-explanations/

71

BIBLIOGRAPHY

pin-yu-chen? lnk=ushpv18r1.

[27] Katz, G., Barrett, C., Dill, D., Julian, K. &
Kochenderfer, M. Towards Proving the Adversarial Robustness
of Deep Neural Networks. Electronic Proceedings in Theoretical
Computer Science 257. 10.4204/EPTCS.257.3., (8 Sep, 2017).
Available at: https://doi.org/10.48550/arXiv.1709.02802.

[28] Kingma, D. & Lei Ba, J. Adam: A Method for
Stochastic Optimization. 3rd International Conference
for Learning Representations, (Jul, 2015). Available at:
https://doi.org/10.48550/arXiv.1412.6980.

[29] Ko, C-Y., Lyu, Z., Weng, T-W., Daniel, L., Wong,
N. & Lin, D. POPQORN: Quantifying Robustness of
Recurrent Neural Networks. ICML, (Jun, 2019). Available at:
https://doi.org/10.48550/arXiv.1905.07387.

[30] Lindholm, A., Wahlström, N., Lindsten, F., & Schön, T.
2022. Machine Learning: A First Course for Engineer and Scientists.
Cambridge: Cambridge University Press.

[31] Mangal, R., Nori, A.V. & Orso, A. Robustness of Neural
Networks: A Probabilistic and Practical Approach. 2019 IEEE/ACM
41st International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER), (15 Feb, 2019): 93-96. Available
at: https://doi.org/10.48550/arXiv.1902.05983.

[32] Marsland, S. 2015. Machine learning, An Algorithmic Perspective,
2nd ed. Chapman & Hall, CRC Machine Learning Pattern
Recognition.

[33] Prenio, J & Jeffery Y. FSI Insights on policy implementation
No 35. Humans keeping AI in check – emerging regulatory
expectations in the financial sector. Financial Stability Institute,
Bank for International Settlements, Aug, 2021. Available at:
https://www.bis.org/fsi/publ/insights35.pdf?fbclid=IwAR2wd2L4FU
AqDbxUR ePvoahJua8rSXBSHJFDC9l19ptZKsKSCtL2O506sZw

[34] Ruf, J. & Wang, W., Neural Networks for Option
Pricing and Hedging: A Literature Review. Journal of

72

BIBLIOGRAPHY

Computational Finance, (Nov 13, 2019). Available at:
http://dx.doi.org/10.2139/ssrn.3486363.

[35] Sengputa, B. & Friston, K. How Robust are Deep Neural
Networks? ArXiv abs/1804.11313, (30 Apr, 2018). Available at:
https://doi.org/10.48550/arXiv.1804.11313.

[36] She, J-H. & Grecu, D. Neural Network for CVA: Learning Future
Values. Economics of Networks eJournal, (Nov 6, 2018). Available
at: https://doi.org/10.48550/arXiv.1811.08726.

[37] TensorFlow. TensorFlow API Documentation, 2021. Available at:
https://www.tensorflow.org/api docs.

[38] Welack, S., Artificial Neural Network Approach to Counterparty
Credit Risk and XVA. ERN: Credit Risk, (Jan 9, 2019). Available
at: http://dx.doi.org/10.2139/ssrn.3312944.

[39] Weng, T-S., Zhang, H., Chen, P-Y., Yi, J., Su, D.,
Gao, Y., Hsieh, C-J. & Daniel, L.. Evaluating the
Robustness of Neural Networks: An Extreme Value Theory
Approach. ArXiv abs/1801.10578, (31 Jan, 2018). Available at:
https://openreview.net/pdf?id=BkUHlMZ0b.

[40] Yu, F., Qin, Z., Liu, C., Zhao, L., Wang, Y.
& Chen, X. Interpreting and Evaluating Neural Network
Robustness. ArXiv abs/1905.04270, (10 May, 2019). Available at:
https://dl.acm.org/doi/abs/10.5555/3367471.3367625.

[41] Zheng, S., Song, Y., Leung, T. & Goodfellow, I.
Improving the Robustness of Deep Neural Networks via Stability
Training, 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), (15 Apr, 2016): 4480-4488. Available at:
https://doi.org/10.1109/CVPR.2016.485.

[42] Zhu, S., Chan, J. & Bright, D., Applying Machine Learning for
Troubleshooting Credit Exposure and xVA Profiles. Risk Management
& Analysis in Financial Institutions eJournal, (June 16, 2019).
Available at: https://doi.org/10.2139/ssrn.3404863.

73

Master’s Theses in Mathematical Sciences 2022:E31
ISSN 1404-6342

LUTFMS-3441-2022

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/

	Introduction
	Motivation
	Literature Review
	Objective
	Procedural Overview

	Theoretical Framework
	The OTC Derivatives Market
	Counterparty Credit Risk
	Wrong Way and Right Way Risk
	Basel III

	Valuation Adjustments (xVA)
	CVA/DVA
	FVA
	KVA, MVA, TVA and ColVA
	Implementation

	Interest Rate Swaps
	Assumptions
	Valuation

	Short Rate Models
	Affine Term Structure
	The Hull-White One-Factor Model
	Change of Numeraire in the Hull-White Framework

	The Monte Carlo Method
	Neural Networks
	Regularization
	Recurrent Neural Networks
	Long Short-term Memory
	Gated Recurrent Unit
	Robustness

	Method
	Contract Specification
	Data
	Augmentation
	Sample Generation

	Model Development
	Network Architecture
	Layers and Units
	Regularization
	Number of Samples

	Performance

	Results
	Sample Generation
	Model Development
	Model Specification
	Base Model
	Performance Summary
	Representative Predictions
	Error Analysis
	Generalization Performance

	Extended Model
	Performance Summary
	Representative Predictions
	Error Analysis
	Generalization Performance

	Discussion
	Performance
	Future Development

