
I

Department of Economics

Classification of Premium and Non-Premium

Products using XGBoost and Logistic Regression

An empirical study in the Food and Beverage Industry

Master’s Essay in Data Analytics and Business Economics (DABN01, 15 credits)

Authors: Francisco Erazo and Stephany Rojas Gerena

Supervisor: Antonio Marañon

May 2022

II

Abstract

In the past few years, many industries have become interested in premium product segmentation

to achieve higher unit margins. In this paper, we applied machine learning algorithms to predict

whether a product is premium or non-premium. This product is manufactured by a food and

beverage company that considers the incorrect classification of products as their primary concern,

especially when incorrectly predicting premium products (False Positives). Therefore, the focus

of this study is to minimize the misclassification of premium products. We selected Logistic

Regression (LR) and XGBoost (XGB) and applied balancing methods, feature selection, and

tuning parameters. The main contribution of this research is the application of a Cost-Sensitive

(CS) analysis for addressing misclassification with a highly imbalanced dataset. According to our

results, the model with the best performance was CS-XGB-SMOTE achieving a False Positive

Rate (FPR) of 2.7%. A more robust way to assign the costs for the CS analysis and a direct

modification of the loss function for XGB can be explored for future research and may improve

the performance of this algorithm.

Keywords: XGBoost, Logistic Regression, Classification Algorithms, Food and Beverage, Cost-

Sensitive Analysis, SMOTE.

Disclaimer: Due to confidentiality reasons, it is not possible to present or divulge all aspects or

characteristics of the cooperating company and its dataset.

III

Acknowledgments

Firstly, we would like to express our sincere gratitude to our supervisor Antonio Marañon for his

support and commitment throughout the process. We genuinely value all the time he dedicated to

supervising our thesis.

Special Thanks

My special gratitude to my parents and sister for motivating me to achieve my personal and

professional goals, and Yael, for her unconditional support and for being there when I needed it.

Francisco Erazo

My genuine gratitude to my beloved parents for their constant support and motivation to dream

big. Thank you for backing me up in every goal I decide to pursue and constantly to remind me

what I am capable of.

Stephany Rojas

IV

Table of Contents

1. Introduction.. 1

2. Literature Review .. 1

3. Theoretical Analysis .. 4

3.1 Machine Learning for Classification ... 4

3.2 Boosting ... 4

3.2.1 XGBoost ... 5

3.3 Logistic Regression ... 7

3.4 Confusion Matrix ... 8

3.5 ROC Curve .. 11

3.6 Precision-Recall Curve .. 12

4. Empirical Analysis ... 13

4.1 Dataset Description .. 13

4.2 Data Cleaning .. 15

4.2.1 Encoding Variables: One Hot Encoder ... 15

4.3 Train and Test Datasets ... 16

4.4 Balancing Data ... 16

4.4.1 Data-Level Solution .. 16

4.4.2 Algorithm-Level Solution ... 19

4.4.3 Balancing Methods Results .. 20

4.5 Feature Selection ... 22

4.5.1 Filter Method: Correlation-Based ... 23

4.5.2 Wrapper Method: Sequential Forward Selection (SFS) ... 24

4.5.3 Embedded Method: XGBoost... 24

4.5.4 Feature Selection Methods Results ... 24

4.6 Parameter Tuning ... 26

4.6.1 Tuning Parameters in XGBoost .. 26

4.6.2 Tuning Parameters for Logistic Regression ... 27

4.6.3 Parameter Tuning Results ... 29

4.7 Models Comparison ... 30

4.8 Optimal Threshold ... 33

4.8.1 Mathematical Approach .. 33

V

4.8.2 Cost-Sensitive Analysis .. 34

5. Conclusions.. 37

6. References .. 39

7. Appendices .. 44

VI

List of Figures

Figure 1. Workflow Diagram .. 1

Figure 2. Boosting illustration. Taken from Wikimedia [File: Ensemble Boosting.svg - Wikimedia

Commons].. 5

Figure 3. Confusion Matrix ... 8

Figure 4. ROC Curve (Brownlee, 2022) .. 12

Figure 5. Precision-Recall Curve (Brownlee, 2022) ... 13

Figure 6. Production Process ... 14

Figure 7. Outcome Variable Class Distribution .. 15

Figure 8. Class Distribution with SMOTE Balancing Method.. 17

Figure 9. Class Distribution with SMOTETomek Balancing Method .. 18

Figure 10. Class Distribution with SMOTEENN Balancing Method ... 18

Figure 11. Class Distribution with Random Undersampling Method ... 19

Figure 12. Correlation Matrix using Pearson’s R (Variables with a Coefficient > 0.8) 23

Figure 13. Confusion Matrix Comparison Between LR-SMOTETomek (Tuned) and XGB-SMOTE....... 31

Figure 14. ROC Curve Comparison Between LR-SMOTETomek (Tuned) and XGB-SMOTE 31

Figure 15. PR Curve Comparison Between LR-SMOTETomek (Tuned) and XGB-SMOTE 32

Figure 16. ROC and PR Curve with Default, G-mean, and F1 Thresholds .. 34

Figure 17. Cost-Sensitive Analysis: Earnings Curve and Thresholds ... 36

Figure 18. Confusion Matrix Comparison Between XGB-SMOTE and XGB-SMOTE (Cost-Sensitive) . 36

VII

List of Tables

Table 1. Confusion Matrix Marginal Totals .. 9

Table 2. XGBoost Metrics According to Balancing Method .. 21

Table 3. Logistic Regression Metrics According to Balancing Method ... 22

Table 4. Variables with a Correlation Coefficient > 0.8.. 24

Table 5. XGB-SMOTE Metrics According to Feature Selection Method .. 25

Table 6. LR-SMOTETomek Metrics According to Feature Selection Method .. 25

Table 7. XGB Hyperparameter Tuning Values ... 27

Table 8. Solver Options for LR and their Respective Penalizations ... 28

Table 9. LR Parameter Tuning Values .. 29

Table 10. XGB Metrics with Parameter Tuning .. 29

Table 11. LR Metrics with Parameter Tuning ... 30

Table 12. Metrics Comparison for Best Models in XGB and LR ... 32

Table 13. Confusion Matrix with Cost-Sensitive Analysis ... 35

Table 14. Metrics with Cost-Sensitive Analysis .. 37

VIII

Abbreviations

AUC Area under the ROC Curve

COR Correct Instances

FN False Negative

FP False Positive

FPR False Positive Rate

INCOR Incorrect Instances

KNN K-Nearest Neighbors

LR Logistic Regression

ML Machine Learning

N Total Instances

NEG Actual Negative Instances

PNEG Predicted Negative Instances

POS Actual Positive Instances

PPOS Predicted Positive Instances

PPV Positive Predictive Value

PR Precision-Recall

RF Random Forest

ROC Receiver Operating Characteristic Curve

SMOTE Synthetic Minority Oversampling Technique

SMOTEENN SMOTE and Edited Nearest Neighbors

SMOTETomek SMOTE and Tomek Links

SVM Support Vector Machine

TN True Negative

TNR True Negative Rate

TP True Positive

XGB XGBoost

1

1. Introduction

Many industries have become interested in premium product segmentation in the past few years.

The term premium refers to a product with superior quality, higher price, and selectively

distributed with the highest quality channels. There are two main reasons why this kind of product

is interesting for the companies. The first is the possibility of achieving higher unit margins, and

the second is the potential to address consumer needs closely (Quelch, 1987).

Several researchers have applied machine learning to categorize food and beverage goods. Some

consider supervised learning (Ma et al., 2021; Kumar, Agrawal and Mandan, 2020; Monforte,

Martins and Silva Ferreira, 2021; Shaw, Suman and Chakraborty, 2019) and unsupervised learning

Gómez-Meire et al., 2014, Mahima et al., 2020; Teye, Amuah, McGrath and Elliott, 2019). There

is, however, not much research that has previously studied the classification of premium and non-

premium products in the food and beverage industry. Furthermore, we have not encountered any

published study about Cost-Sensitive analysis applied to classification problems. In that sense, the

contribution of this paper is twofold, apply machine learning for the classification of premium and

non-premium products in the food and beverage industry, and use Cost-Sensitive analysis to

address misclassification costs.

The primary goal of this study is to predict whether the product is premium or non-premium,

minimizing the misclassification of premium products (False Positives). This classification

problem has a significant economic impact on the company as incorrectly classifying products is

very costly. For that purpose, we used supervised machine learning classifiers to create a premium

product prediction model. In Figure 1, a workflow diagram is presented. The selected algorithms

for this study were Logistic Regression and XGBoost, and the results of each method were

evaluated according to confusion matrix, accuracy, log-loss, Area Under the ROC Curve (AUC),

sensitivity (recall), False Positive Rate (FPR) and precision.

The paper is organized as follows: Section 2 reviews previous literature regarding the

implementation of classification machine learning algorithms in the food and beverage industry.

1

The theory behind the models (Logistic Regression and XGBoost) is explained in Section 3.

Section 4 describes the details of the dataset, balancing and feature selection methods, tuning

parameters, and optimal threshold approaches. It also includes the results for each of the practices

described. Finally, Section 5 contains our conclusions, primary findings, and recommendations.

Figure 1. Workflow Diagram

2. Literature Review

Due to their proven success and practical applicability in various fields, the application of machine

learning algorithms has been increasing within the food science domain in recent times (Wang,

Bouzembrak, Lansink and Fels-Klerx, 2021a; Oliveira Chaves et al., 2021). Two of these methods

are logistic regression (LR) and XGBoost (XGB). For years, the former has been considered one

of the most commonly used statistical procedures for studying the classification of biological

reactions (Granato, de Araújo Calado and Jarvis, 2014) and bacterial food growth (Hajmeer and

Basheer, 2003; Ratkowsky and Ross, 1995). The latter, developed in 2016, increased in popularity

since its introduction, implemented in food classification (He et al., 2021a; Yao et al., 2022) and

beverage classification problems (Bhardwaj et al., 2022; Mu, Gu, Zhang and Zhang, 2020).

2

There is exhaustive research related to classification problems in the food industry. Rodríguez-

Saavedra et al. (2021) implemented LR to help brewers predict whether microorganisms that

produced spoilage in craft beer would grow or not. Bhardwaj et al. (2021) implemented an XGB

algorithm to predict the wine quality of New Zealand pinot noir. Similarly, Trivedi and Sehrawat

(2018) also predicted wine quality using LR and Random Forest (RF), where the classification was

binary: good or bad quality wine. Jiang et al. (2020) used multinomial LR to classify the tomato

according to their level of maturity. Saberioon et al. (2018) categorized rainbow trouts into fish-

meal-based or plant-based diets to analyze the consequences of diet on the fish skin (since

consumers perceive it as related to quality). De Andrade et al. (2022) applied ML classification

algorithms to categorize artisanal cheeses into ten types and four producing areas in Brazil. Some

of the supervised methods they used were Artificial Neural Networks, KNN, Learning Vector

Quantization, LR, RF, and SVM. Koranga, Pandey, Joshi and Kumar. (2021) use LR, RF, SVM,

Naïve Bayes, J48, and Multilayer Perceptron to classify white wine according to quality level.

While there are several classification methods, this paper aims to structure binary classification

using LR and XGB algorithms.

Wang et al. (2021b) used three feature selection methods: filter using correlation, recursive

elimination, and Elastic-Net for penalization. The filter technique removes highly correlated

variables, recursive elimination involves removing one feature at a time, and the Elastic-Net is a

penalization that combines Lasso and Ridge penalties. For tunning the XGB parameters, Bayesian

Optimization was utilized. This method uses the Bayes Theorem for maximizing or minimizing a

given metric. Wang et al. (2021b) worked on a classification problem with imbalanced data, where

there is a significant disparity in proportions between the binary categories. Motivated by them,

we utilized an optimization method for tuning XGB parameters and three strategies for feature

selection: correlation-based, recursive elimination with forward stepwise, and algorithm-level

tuning.

Most research for imbalanced classification problems focuses on oversampling or undersampling

methods for addressing the imbalance. Bhardwaj et al. (2021) used the Synthetic Minority Over

Sampling Technique (SMOTE) to create synthetic observations due to the lack of information on

wine quality variables. Abdulghani (2021) used SMOTE as a balancing technique for legitimate

3

and fraudulent transactions on credit cards. Following this approach, we used SMOTE as one of

our balancing techniques.

There are diverse approaches for which metrics should be used to evaluate the model’s

performance with imbalanced data. Wang et al. (2021b) argue that using the traditional accuracy

performance measure is incorrect, and instead, they use AUC. In the same line, Trivedi and

Sehrawat (2018) and Koranga et al. (2021) consider accuracy insufficient as the only metric, so

they employed f1-score, accuracy, 10-fold accuracy, precision, recall, and specificity. Saberioon

et al. (2018) use the correct classification rate (CCR), Cohen's Kappa coefficient, sensitivity,

specificity, and AUC ROC. On the other hand, Abdulghani (2021) uses accuracy as one of the

primary metrics to evaluate and compare models. This paper does not focus only on accuracy as

the primary metric since it can be misleading when one misclassification error is more costly. We

also consider AUC, precision, recall, log-loss, and FPR as our main metrics to evaluate the

algorithm’s performance.

Different authors in the food and beverage industry have used different splits for training and

testing the data, and in most cases, the datasets do not have many observations. Jiang et al. (2020)

have 300 instances, and the dataset is split into 60% for training and 40% for testing. Rodríguez-

Saavedra et al. (2021) used twenty craft beers and modified their features to create 331 instances,

and for the validation data, they used ten craft beers. However, one drawback was the small number

of instances. According to Beleites et al. (2013), for classification models, a sample size of 5 to 25

observations per category helps to achieve acceptable performance. However, a range between 75

to 100 observations is necessary to test or validate a fair classifier. De Andrade et al. (2021) have

422 observations that were split into 75% for the training dataset and 25% for the test dataset. The

dataset used in this paper contains a significantly higher number of observations compared to

previous research in the food and beverage industry. In that sense, we can have a smaller

percentage of testing data and still cover many observations. Following De Andrade et al. (2021),

we split the data into 75% for the training dataset and 25% for the test dataset.

Some authors in other industries have addressed the classification problem by combining

algorithms. Dong et al. (2021) created a classification model for a system to predict whether a

person had coronavirus or not. With this aim, they used an XGB algorithm combined with LR to

4

have better performance, achieving an AUC of 98.8%. They used the XGB as feature selection,

and with those features, they built the LR. Adapting this to the domain of our paper, we used

feature selection of XGB as input for LR, but unfortunately, it did not improve our results.

A cost-sensitive analysis has been suggested for cases where misclassification represents different

costs. He et al. (2021b) applied a Cost-Sensitive analysis for an XGB model for classification for

Malicious URL detection. The idea of the Cost-Sensitive approach is that the model is trained to

consider that each misclassification error represents a cost, and some might be more expensive

than others. In their paper, they created a new loss function for XGB that included the

misclassification costs, which was also their way of balancing the data. Inspired by this idea, we

explored the Cost-Sensitive analysis in XGB, but we took a slightly different approach. Instead of

using Cost-Sensitive analysis as the balancing method, we used our balanced algorithm and

applied the Cost-Sensitive approach to achieve better performance.

3. Theoretical Analysis

3.1 Machine Learning for Classification

The main goal of classification problems in machine learning is optimally categorizing objects in

a set of classes. The output is a classification rule that determines which category the object should

be classified. This classification rule is also called a classifier. We use some existing data, referred

to as the training data, to train the algorithm and estimate the necessary parameters. The idea is to

create a classifier that can perform adequately in unseen or test data (Schapire and Freund, 2014).

As mentioned earlier, there are multiple algorithms for classification purposes, and this paper

focuses on LR and XGB.

3.2 Boosting

Gradient boosting is one of the most powerful techniques for prediction. It was created to make a

weak learner a better predictor by using the learner multiple times (Brownlee, 2018). Those weak

learners can refer to as classification trees. As a classification model by itself, trees produce too

5

accurate models and tend to overfit when generalizing to new data. Assemble methods such as

boosting help to address this problem and make classification models better predictors (Wade and

Glynn, 2020).

In boosting algorithms, multiple models are built sequentially. It means that each model is built to

correct the errors of the previous model. The final prediction is a weighted average of the models,

which gives more importance to the more accurate classifiers (Hastie, Tibshirani and Friedman,

2017). The process is as illustrated in Figure 2, where every model is trained based on the errors

found in the previous model, and the prediction is the weighted average.

Figure 2. Boosting illustration. Taken from Wikimedia [File: Ensemble Boosting.svg - Wikimedia

Commons]

3.2.1 XGBoost

Tianqi Chen from the University of Washington went deeper into the boosting methods and created

a gradient boosting method that included regulation and was computationally more efficient. This

method is called XGBoost, which stands for eXtreme Gradient Boosting (Wade and Glynn, 2020).

It implements gradient boosting with trees as base learners. According to Wade and Glynn (2020)

formally, the objective of XGBoost is to minimize the loss function that has an added

regularization term, as follows:

6

𝑜𝑏𝑗𝑡 = ∑ 𝑙(𝑦𝑖 , 𝑦�̂�
𝑡)

𝑛

𝑖=1

+ ∑ Ω(𝑓𝑡)

𝑡

𝑖=1

Where 𝑙(𝑦, �̂�) is the loss function of the 𝑡-th boosted tree, and Ω(𝜃) a regularization term. Since

XGBoost is a boosting algorithm where the current prediction considers the previous one, the loss

function part can be rewritten as follows:

𝑜𝑏𝑗𝑡 = ∑ 𝑙(𝑦𝑖 , 𝑦�̂�
𝑡−1 + 𝑓𝑡(𝑥𝑖))

𝑛

𝑖=1

+ ∑ Ω(𝑓𝑡)

𝑡

𝑖=1

Where 𝑦�̂�
𝑡−1

 is the previous prediction and 𝑓𝑡 (𝑥𝑖) is the current prediction. We explain the two

components of this objective in greater detail.

● Loss function:

The loss function used for classification problems is log-loss. We can include the log-loss in the

objective to obtain:

𝑜𝑏𝑗𝑡 = ∑ 𝑙(𝑦𝑖 − (𝑦�̂�
𝑡−1 + 𝑓𝑡(𝑥𝑖)))

𝑛

𝑖=1

+ ∑ Ω(𝑓𝑡)

𝑡

𝑖=1

Here, expanding the terms and using the fact that a second-degree polynomial can be rewritten

using Taylor polynomial (further details in Wade and Glynn (2020)), we arrive at:

𝑜𝑏𝑗𝑡 = ∑ 𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓𝑡(𝑥𝑖)

2

𝑛

𝑖=1

+ ∑ Ω(𝑓𝑡)

𝑡

𝑖=1

Where 𝑔𝑖 and ℎ𝑖 can be written as partial derivative as follows:

7

The XGBoost algorithm is a solver that maximizes the objective function taking 𝑔𝑖 and ℎ𝑖 as

inputs.

● Regularization term:

This regularization term is what makes XGBoost different from other boosting algorithms. It is

used to prevent overfitting as a penalty that is added to the loss function. Formally it is:

Ω(𝑓𝑡) = 𝛾𝑇 +
1

2
 𝜆 ||𝑤||

2

Where T is the number of leaf nodes, ||w|| is the module of the leaf node vector, Υ is the difficulty

of node segmentation, and λ is the L2 regularization coefficient (Dong et.al, 2021).

3.3 Logistic Regression

LR is a statistical procedure that has been adopted in the field of ML due to its historical application

in binary classification problems. It works similarly to other regression techniques, LR finds a

model with optimal coefficients or weights that maximize the log-odds and can explain the

relationship between a response variable and a group of explanatory variables. Its name comes

from the base function it uses, the logistic or sigmoid function. Moreover, LR differentiates from

the linear regression model since the outcome, or dependent variable, is binary (Hosmer,

Lemeshow and Surdivant, 2013).

LR provides a probability of the default class (e.g., Y=1), wherein these probabilities are

transformed into binary values using the sigmoid function. The log odds function used in LR is as

follows:

log (
𝑃(𝑌 = 1|𝑋)

1 − 𝑃(𝑌 = 1|𝑋)
) = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑁𝑋𝑁

Here, 𝛽0 corresponds to the intercept, while 𝛽1 …𝛽𝑛 are the weights related to the independent

variables 𝑥1,...,𝑥𝑛 These are not necessarily dichotomous, and they can be discrete or continuous,

or a combination (Hajmeer and Basheer, 2002). The ratio on the left of the equation is the log-

8

odds. To calculate the odds, we take the probability that the default class will occur divided by the

likelihood it will not happen. After that, the proportion is transformed using the logarithm, which

results in the log-odds.

3.4 Confusion Matrix

The confusion matrix is a cross-tabulation used to summarize machine learning classifiers'

performance by representing the counts of various classes (Larner, 2021). It is a variant of the

well-known contingency table that has been broadly applied within the medical field (Matthews,

1995; Stigler, 2002).

The confusion matrix, also known as the error matrix, tabulates all instances into actual and

predicted classes by presenting the number of observations of a real category in the rows against

the observations of a predicted category in the columns. It helps graphically identify if a ML

algorithm is confusing two or more categories when predicting (Larner, 2021).

Figure 3. Confusion Matrix

This 2x2 table divides the instances into True Negative (TN), False Positive (FP), False Negative

(FN), and True Positive (TP). The TN ("correct rejections") and TP ("hits") represent the correct

classification in the classes of a binary variable, while FP ("false alarms") and FP ("misses")

represent the misclassified observations between the same classes (Larner, 2021; Fernández et al.,

2018).

Additionally, as specified in Table 1, we can obtain marginal totals from the confusion matrix by

adding the values within the respective columns and rows, such as the total number of instances

9

(N), actual positive instances (POS), actual negative instances (NEG), predicted positive instances

(PPOS), predicted negative instances (PNEG), correct instances (COR), and incorrect instances

(INCOR) (Larner, 2021).

Table 1. Confusion Matrix Marginal Totals

Other relevant measures can be derived from the confusion matrix, such as sensitivity and

specificity, which are terms introduced by Yerushalmy (1947). Sensitivity is also called true

positive rate (TPR) or recall, whereas specificity is also known as true negative rate (TNR). The

former indicates the probability of a TP instance in the presence of the actual positive instances;

the latter suggests the likelihood of a TN instance given the actual negative instances. There is a

tradeoff between these two metrics. If the ratio of one increases, the other decreases (Larner, 2021).

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑇𝑃𝑅 𝑜𝑟 𝑟𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑇𝑁𝑅) =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)

Similarly, we can also determine the False Positive Rate (FPR) and False Negative Rate (FNR).

They are both measures of misclassification. FPR indicates the probability of an incorrect positive

prediction given the actual negative instances, while FNR expresses the likelihood of an incorrect

negative prediction given the actual positive instances (Larner, 2021).

𝐹𝑃𝑅 (1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) =
𝐹𝑃

(𝑇𝑁 + 𝐹𝑃)

Marginal Totals Formula

Number of Instances (N) TP + FP + FN + TN

Actual Positive Instances (POS) TP +FN

Actual Negative Instances (NEG) FP + TN

Predicted Positive Instances (PPOS) TP + FP

Predicted Negative Instances (PNEG) FN + TN

Correct Instances (COR) TP + TN

Incorrect Instances (INCOR) FP + FN

10

𝐹𝑁𝑅 (1 − 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =
𝐹𝑁

(𝑇𝑃 + 𝐹𝑁)

The accuracy and inaccuracy (error rate) metrics are defined as follows. Accuracy is the sum of

the TP and TN divided by the total number of observations from the confusion matrix, where

higher ratio values imply better accuracy of the ML model. On the contrary, inaccuracy is the sum

of the FP and FN divided by the total number of observations. It is desirable to obtain lower values

for this proportion, which means lower error (Larner, 2021).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑁

𝐼𝑛𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑒𝑟𝑟𝑜𝑟) =
𝐹𝑃 + 𝐹𝑁

𝑁

Finally, the Positive Predictive Value (PPV) and Negative Predictive Value (NPV). The PPV or

precision corresponds to the probability of a TP instance in the presence of the predicted positive

instances. On the other hand, NPV is the probability of a TN instance given the predicted negative

instances. Higher values for these ratios imply better predictive results (Larner, 2021).

𝑃𝑃𝑉 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) =
 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

𝑁𝑃𝑉 =
𝑇𝑁

(𝐹𝑁 + 𝑇𝑁)

All the metrics mentioned above range between 0 and 1, where 1 is the highest score and 0 is the

lowest.

In this paper we pursued to reduce false positives (FP), meaning we want to achieve a low FPR.

Given the highly imbalanced dataset, accuracy can be a misleading metric, since we could have a

high accuracy by only predicting the majority class (only non-premium products), but we do care

about predicting premium products. Therefore, we focus more on metrics such as precision, recall,

log-loss, and FPR.

11

3.5 ROC Curve

One of the most common ways to measure the predictive power and performance of a classifier is

by finding the misclassification errors. TPR and FPR can be understood as conditional

probabilities of having a particular predicted class given the true class (Krzanowski and Hand,

2009). If 𝑡 is the threshold, and 𝑠 is the classification score. We can say that an observation is

classified in class 1 or class 0, according to the following:

● True Positive Rate 𝑝(𝑠 > 𝑡|𝑌 = 1) is the probability that an observation in class 1 is

correctly classified.

● False Positive Rate 𝑝(𝑠 > 𝑡|𝑌 = 0) is the probability that an observation in class 0 is

incorrectly classified.

Given that definition, the class in which an observation is assigned depends on the definition of

the threshold (𝑡), which is the point that determines the cutoff of the class.

The Receiving Operating Characteristic (ROC) Curve is a graph that illustrates the TPR on the

vertical axis and FPR on the horizontal axis as the classification threshold changes. The threshold

takes values between 0 and 1, so the ROC curve lies between those values (Krzanowski and Hand,

2009). The ROC curve is helpful in ML because it illustrates the tradeoff between two types of

error. In Figure 4, a typical ROC curve is shown. The ideal classifier would have TPR=1 and

FPR=0 at the top left of the graph, with coordinates (0,1) (Brownlee, 2022).

The main index for the ROC curve is the Area Under the Curve (AUC). It refers to the probability

that the scores given to a classifier will rank a positive class higher than the negative one. The

AUC takes values from 0 to 1, where a value of 1 indicates a perfect classifier (Brownlee, 2022).

AUC values of acceptable classification models are above 0.5. An AUC value of 0.5 suggests that

the classification model exhibits no effective discrimination.

However, for cases of highly imbalanced data, ROC is not the most accurate measurement. ROC

is insensitive to class distribution; therefore, it is very likely that using a default threshold (0.5),

the predicted class corresponds to the majority class in most cases (Brownlee, 2022). One way to

address this problem is to find a different threshold. This option is explored in this paper.

12

Figure 4. ROC Curve (Brownlee, 2022)

3.6 Precision-Recall Curve

A less frequent method for a graphical description of a model's performance, which is similar to

ROC, is the Precision-Recall (PR) Curve. It illustrates the precision (PPV) against the recall

(sensitivity). The curves within the PR plot could also be considered "threshold-free". Because

they represent all the possible combinations of precision and recall ratios for different threshold

values illustrating the evolution of the algorithm performance (Larner, 2021). Figure 5 shows the

PR curve, where the orange line represents the curve among all possible combinations of

thresholds.

For imbalanced datasets, PR reports the performance of an algorithm better than ROC curves since

standard measures such as TPR and FPR are not affected by the weight ratios of the classes. On

the contrary, precision or PPV can identify these differences on an imbalanced dataset (Cook &

Ramadas, 2020; Ozenne, Subtil and Maucort-Boulch, 2015, Saito and Rehmsmeier, 2015).

13

Figure 5. Precision-Recall Curve (Brownlee, 2022)

4. Empirical Analysis

4.1 Dataset Description

The dataset used for this study was provided by a food and beverage manufacturer. Considering

that confidentiality is an important concern for the company and the authors, it is not possible to

present and divulge all the aspects of the data.

The data file contains information about a manufactured product that can be classified as premium

or non-premium. According to the company, the term “premium” defines a product with specific

prominent characteristics and, consequently, a superior margin. For this case, the margin of a

premium product is five SEK, while for a non-premium one, the margin is minimal, just one SEK.

The production process is described in Figure 6. We have two types of inputs: catalyzers and

chemicals. These inputs are processed in machines for a given time and a specific temperature.

This transforms the inputs into a final product (batch), which can be classified as premium or non-

premium.

14

Figure 6. Production Process

The dataset contains 15609 observations and 37 features. The features are divided into three

groups:

● Time: They represent a machine's time to do steps in the production process.

● Temperature: The temperature readings needed for steps in the process.

● Input: They represent chemicals or catalyzers needed as inputs for production.

The outcome variable is a categorical variable that indicates whether the product/observation is

premium or not. The corresponding category proportions can be seen in Figure 7, where 0 is a non-

premium product and 1 is a premium product. As can be seen, there are much more observations

for non-premium (88% of total observations) than for premium products (12% of total

observations), which means that we have an imbalanced dataset with a ratio of 7.2 non-premium

products for each premium product.

From the 37 features, 4 are categorical variables and 33 quantitative variables. We exclude two

variables from the analysis, one for possible data leakage and another related to the time. The

manufacturer did not consider the latter relevant for addressing the classification problem.

The goal of the models is twofold, on one side, predict whether the product is premium or non-

premium, and on the other side, have the least possible amount of False Positive (FP). This means

that we should target the minimum possible incorrect predictions of premium products since this

is the company's primary concern.

15

Nowadays, the manufacturer can only identify whether a product is premium or non-premium after

its commercialization in the market for some time. They consider that predicting whether a product

is a premium or not can affect the planning, storage, and logistical processes of that product. And

as a result, it can lead to costs and expenses optimization.

Figure 7. Outcome Variable Class Distribution

4.2 Data Cleaning

4.2.1 Encoding Variables: One Hot Encoder

XGBoost, and in general machine learning algorithms, may assume that encoded numerical

variables have an ordinal relationship. If the categories are 0, 1, 2, or 3, the algorithm would assume

that 3 is somehow more important or higher than 0, which is not the case (Brownlee, 2018).

We created dummy variables for each category to solve this technical predicament. This is done

for the three categorical variables and increases the feature space from 35 features to 148 features

since several levels or categories exist.

16

4.3 Train and Test Datasets

An effective way to evaluate an ML model performance is to separate the data into two different

parts, one for training and the other for testing. The model is fitted using the first subset, and the

second makes it possible to assess its predictions against the actual results or evaluate its

performance on new unseen data (Hastie, Tibshirana, & Friedman, 2009).

There is no consensus about an optimal train and test split in ML due to the difficulty or high cost

some fields face in obtaining data (Tan et al., 2021). For that reason, various studies employ

different proportions for splitting. In our research, we proceed with 75% for the training set and

25% for the testing set, following the approach of De Andrade et al. (2021).

4.4 Balancing Data

Most machine learning algorithms operate in classification data where the two classes have a

comparatively equivalent number of observations. In imbalanced datasets, the minority class

would be considered unimportant and could be ignored to achieve high performance (Brownlee,

2021). In other words, if the imbalance problem is not considered, the model would predict the

majority class and ignore the minority class, still giving high accuracy.

In our case, it is essential to consider both premium and non-premium categories for the prediction,

so we balance the imbalanced dataset so that the algorithms consider both classes for the

predictions. However, we do this only for the training dataset since this is the one that is used for

training or structuring the algorithm. It is crucial to keep the test dataset as close to reality as

possible. We use two approaches for balancing the training data: data-level and algorithm-level

solutions.

4.4.1 Data-Level Solution

It is considered one of the first solutions for imbalanced datasets. Essentially, the solution consists

of altering the data using sampling procedures, such as oversampling and undersampling, to

address the imbalance problem (generate a balance between the classes).

17

The former originates a greater dataset by cloning some observations or producing new

observations using the current ones. The latter creates a smaller dataset by removing observations

from the majority class (Fernández et al., 2018).

4.4.1.1 SMOTE (Synthetic Minority Oversampling Technique)

SMOTE is an oversampling technique that works by creating synthetic samples that are neighbors

in the feature space. The algorithm chooses a point in the minority class, finds the KNN in the

feature space, draws a line between them, and creates a point inside that line, which is the synthetic

sample (Chawla, Bowyer, Hall and Kegelmeyer, 2002; Brownlee, 2022). In Figure 8, the resulting

dataset after using the SMOTE technique can be observed.

Figure 8. Class Distribution with SMOTE Balancing Method

4.4.1.2 SMOTETomek (SMOTE and Tomek Links)

SMOTE + Tomek Links is a hybrid-sampling minority technique. It deals with the problem of

interpolating one of the classes in the space of the other class after applying SMOTE oversampling.

Training a model in this kind of scenario usually leads to overfitting. Tomek Links cleans the

oversampled dataset by removing the majority or minority class instances invading the other class's

space, generating a balanced training dataset with distinct class clusters (Fernández et al., 2018;

Batista, Prati and Monard, 2004). In Figure 9, the dataset after using the SMOTETomek technique

can be observed.

18

Figure 9. Class Distribution with SMOTETomek Balancing Method

4.4.1.2 SMOTEENN (SMOTE and Edited Nearest Neighbors)

SMOTEENN has a similar motivation as SMOTETomek since this technique combines the

creation of synthetic samples using SMOTE with a removal technique. Edited Nearest Neighbors

(ENN) is a technique used to remove samples from both classes (the majority and minority class)

when the observation’s class is different from the class of the KNN in the majority class. Compared

to the Tomek Links, ENN removes more observations, providing a deeper data cleaning (Batista,

Prati and Monard, 2004). In Figure 10, the dataset after using the SMOTEENN technique can be

observed.

Figure 10. Class Distribution with SMOTEENN Balancing Method

19

4.4.1.3 Random Undersampling

Random Undersampling is a method that balances the class distribution by randomly removing

instances of the majority class. The main disadvantages of this technique are twofold. Firstly, in a

highly imbalanced dataset, a significant part of the majority class is deleted, causing a substantial

loss in data. Secondly, potentially valuable data for addressing the problem could be removed

(Fernández et al., 2018; Batista, Prati and Monard, 2004).

Figure 11. Class Distribution with Random Undersampling Method

4.4.2 Algorithm-Level Solution

Algorithm-level solutions are alternative methods to data-level solutions for handling imbalanced

datasets. This perspective directly modifies the training process of the algorithm instead of altering

the training dataset to address the imbalance (Fernández et al., 2018).

4.4.2.1 Weighted Approach

This method consists of handling the imbalanced data by assigning the weight ratio of the majority

class to the minority class (sum of the majority instances divided by the sum of the minority

instances). The weighted approach increases the minority class influence in the training process of

the ML method (Fernández et al., 2018).

20

Both XGBoost and Scikit-Learn libraries for Python programming language allow specifying this

weight ratio in the parameter "scale_pos_weight" in the former and the "class_weight" parameter

for the latter.

In XGBoost, the "scale_pos_weight" parameter is a way to control the balance of positive and

negative weights. The usual value to consider is the total number of negative instances divided by

the number of positive instances (XGBoost Parameters — xgboost 2.0.0-dev documentation,

2022). The negative instances refer to the majority class, which in our case is non-premium. So,

taking the imbalanced dataset, we tune this parameter as follows

𝑠𝑐𝑎𝑙𝑒_𝑝𝑜𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 =
∑ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

∑ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
=

10286

1420
= 7.2436

In LR, the "class_weight" parameter is used to assign the weights related to the classes, and by

default, it is specified that both classes have the same weight. The ratios are calculated through the

following formula:

𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 =
𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 × # 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠

𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
11706

2 × 1420
 = 4.1218

𝑐𝑙𝑎𝑠𝑠_𝑤𝑒𝑖𝑔ℎ𝑡 (𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) =
11706

2 × 10286
 = 0.5690

For the positive class (premium), the weight is 4.1218, while for the negative class (non-premium),

the weight is 0.5690.

4.4.3 Balancing Methods Results

We implement XGB (Table 2) and LR (Table 3) with five balanced training datasets (SMOTE,

SMOTETomek, SMOTEENN, Random Undersampling, and Weighted). Each dataset considers

147 parameters for predicting whether a product is premium or non-premium (1 or 0). A total of

3903 instances were used to test the models. The testing instances were obtained before applying

21

any balancing method. Additionally, we evaluated each model's performance on test data using

precision, recall, FPR, AUC, log-loss, and accuracy.

XGB metrics are available in Table 2. For this case, a training dataset balanced with SMOTE

provides the highest accuracy (88.1%), AUC (0.8575), and FPR (6.5%). XGB-SMOTETomek

ranks as the second-best model with an accuracy of 87.3%, an AUC of 0.8571, slightly below

XGB-SMOTE, and an FPR of 6.7%, lightly above XGB-SMOTE. On the other hand, XGB-

Undersampling registers the highest recall with 72.4%, followed by XGB-SMOTEENN with

69.4%. The remaining models present a ratio of less or equal to 50%. Regarding precision, XGB-

SMOTE has a ratio of 52.5%, while the other models are under 50%, especially XGB-

Undersampling, which registers the lowest precision with a value of 25.1%.

Table 2. XGBoost Metrics According to Balancing Method

According to Table 3, the results demonstrate that training the LR algorithm using a

SMOTETomek dataset provides the highest accuracy (84.6%) when evaluating it with the test

data, just slightly above LR-SMOTE (84.5%) and LR-SMOTEENN (81.3%). On the other hand,

undersampling and weighting the training dataset decrease the accuracy of LR on test data to less

than 70%.

LR-SMOTETomek reduces log-loss and FPR the most, with 0.3763 and 8.3%, respectively. LR-

SMOTE performs similarly with 0.3775 and 8.3% on the same metrics. The remaining models

present a log-loss over 0.40 and FPR above 14%. For AUC, LR-Weighted performs better with a

metric of 0.78. The rest of the models perform similarly, with an AUC around 0.77.

LR-SMOTEENN received the highest precision score with 49%, followed by LR-SMOTETomek

(37.4%) and LR-SMOTE (36.8%). The other model's score was below 25%. However, LR-

Metrics SMOTE SMOTETomek SMOTEENN Undersampling Weighted

accuracy 0.8811 0.8734 0.8175 0.6956 0.8642

precision 0.5247 0.4922 0.3751 0.2509 0.4573

recall 0.5010 0.4559 0.6940 0.7248 0.4723

FPR 0.0647 0.0670 0.1648 0.3085 0.0799

AUC 0.8575 0.8571 0.8446 0.7892 0.8405

log-loss 0.2895 0.2914 0.4109 0.6152 0.3177

22

Undersampling and LR-Weighted performed better in recall than LR with oversampling methods,

both with a ratio of 74.9% above the average of 34% of the oversampling models.

Table 3. Logistic Regression Metrics According to Balancing Method

Creating synthetic data in the training dataset through oversampling methods (SMOTE,

SMOTETomek and SMOTEENN) is relevant to preparing algorithms for addressing the

imbalance between classes, for this case, premium, and non-premium products. The

undersampling method is not the way to address this kind of problem. The results in either XGB

or LR are not satisfactory. The reason is the tremendous amount of lost data, which could be

relevant in the learning of the model. This is one of the disadvantages of this technique.

Regarding the weighted approach, it is a method that works best with XGB than LR. It provides

better accuracy, log-loss, FPR, and precision results than the XGB-SMOTEENN model. LR-

Weighted performs just slightly better than LR-Undersampling, and unlike XGB-Weighted, it

cannot provide superior results to oversampling methods.

Finally, considering the metrics detailed in Table 2 and 3, XGB-SMOTE and LR-SMOTETomek

are the top candidates for predicting premium and non-premium products.

4.5 Feature Selection

Multiple factors may affect machine learning algorithms' performance. Some studies have shown

that algorithms can be adversely affected by irrelevant attributes. Therefore, selecting relevant

features is critical to feed the model with pertinent information to get better performance or reduce

dimensionality to allow a more straightforward interpretation (Hall, 1999). We compared three

Metrics SMOTE SMOTETomek SMOTEENN Undersampling Weighted

accuracy 0.8447 0.8460 0.8127 0.6777 0.6882

precision 0.3681 0.3744 0.4949 0.2432 0.2500

recall 0.3409 0.3491 0.332 0.7495 0.7495

FPR 0.0834 0.0831 0.1420 0.3326 0.3206

AUC 0.7715 0.7744 0.7774 0.7726 0.7812

log-loss 0.3775 0.3763 0.4099 0.5843 0.5677

23

different feature selection techniques, and we discussed the performance of each one of them in

both LR and XGB algorithms.

4.5.1 Filter Method: Correlation-Based

This technique uses statistical measures as a filter to generate a subset with the essential features.

Most of these statistical measures are univariate. In other words, they evaluate every feature on its

own. A critical difference between the filter model and the wrapper model is that it is low

computation demanding; however, its disadvantage is that we can lose relevant associations among

variables due to the selection of redundant features.

To apply the filter method is vital to recall two concepts, relevance and redundancy. The first

evaluates the predictor towards the class; the second evaluates the predictor against other

predictors (Cai, Luo, Wang and Yang, 2018; Xu, Tang, He and Man, 2017). One of these methods

is the Pearson correlation. The logic is to specify a threshold to remove the highly correlated

features among themselves and with a low correlation regarding the outcome variable, avoiding

collinearity problems. There is no specific threshold to argue whether a predictor is relevant

enough for the model (Kuhn and Johnson, 2013). However, most researchers consider a cutoff

greater than 0.9 as a strong relationship (Schober, Boer and Schwarte, 2018). In this research, we

consider a threshold of 0.8.

Figure 12. Correlation Matrix using Pearson’s R (Variables with a Coefficient > 0.8)

24

Table 4 summarizes the Pearson correlation coefficients above the established threshold (0.8), for

five variable interactions, at the same time, it shows which variable is discarded (not relevant) and

held (relevant). On that account, "column_63", "column_80", "column_24", "column_79",

"column_24" were removed. Conversely, "column_23", "column_40", "column_48",

"column_81", along with other variables (with correlation coefficients <0.8) were retained.

Table 4. Variables with a Correlation Coefficient > 0.8

4.5.2 Wrapper Method: Sequential Forward Selection (SFS)

Wrapper methods use classification error or accuracy as the performance metric to find a better

performance by adding or removing features. Compared to filter methods, wrapper methods tend

to have better performance. However, they imply poor generalization capacity and higher

computational cost (Cai, Luo, Wang and Yang, 2018).

4.5.3 Embedded Method: XGBoost

In XGBoost, a variable registers higher importance when it is used more frequently in tree splits.

Variable importance is calculated by the amount that each split improves the performance measure

weighted by the number of observations in the node (Brownlee, 2018).

4.5.4 Feature Selection Methods Results

We implemented three methods (Filter Method-Correlation, Sequential Forward Selection, and

Feature Importance) in our best models (XGB-SMOTE and LR-SMOTETomek) to obtain the

relevant features from the 147 independent variables.

Features Pearson Corr. Relevant Not Relevant

column_23 & column_63 1 column_23 column_63

column_40 & column_80 0.96 column_40 column_80

column_24 & column_48 0.94 column_48 column_24

column_48 & column_79 0.88 column_48 column_79

column_24 & column_81 0.85 column_81 column_24

25

For both algorithms XGB and LR, four features were irrelevant for the model in the filter method

(using Pearson Correlation); therefore, 143 features were selected. In the case of XGB with SFS,

the 146 best features were considered, and 141 features were chosen with feature importance. On

the other hand, 146 variables were deemed to be relevant for LR using SFS. Finally, with feature

importance, 141 parameters were chosen.

For the XGB model, as observed in Table 5, correlation, SFS, and feature selection slightly

increased the FPR, which is undesirable for our model, having the highest increase with SFS.

Precision, recall, AUC, and accuracy decrease with all feature selection methods. The log-loss

increased for the three methods. Therefore, we kept the XGB model without the feature selection

method since none of the methods improved the metrics.

Table 5. XGB-SMOTE Metrics According to Feature Selection Method

As specified in Table 6, for LR, SFS can remove the less important feature from the model while

maintaining similar metrics as the original one (LR-SMOTETomek). The Pearson correlation filter

is the second alternative with an accuracy of 84.4%, slightly below SFS. However, it reported the

lowest FPR (8.23%). The precision, recall, and AUC decreased for Pearson correlation, SFS, and

feature importance, while the log-loss increased in all methods. In particular, the feature

importance method metrics were the most affected.

Table 6. LR-SMOTETomek Metrics According to Feature Selection Method

Metrics SMOTE P. Correlation SFS F. Importance

accuracy 0.8811 0.8734 0.8352 0.8760

precision 0.5247 0.4922 0.3097 0.5032

recall 0.5010 0.4579 0.2607 0.4825

FPR 0.0647 0.0673 0.0828 0.0679

AUC 0.8575 0.8583 0.7374 0.8550

log-loss 0.2895 0.2920 0.3805 0.2964

Metrics SMOTETomek P. Correlation SFS F. Importance

accuracy 0.8460 0.8442 0.8458 0.8419

precision 0.3744 0.3628 0.3731 0.3587

recall 0.3491 0.3285 0.347 0.3388

FPR 0.0831 0.0823 0.0831 0.0864

AUC 0.7744 0.7716 0.7744 0.7688

log-loss 0.3763 0.378 0.3764 0.3805

26

We showed that relevant features were chosen using three methods for feature selection. However,

we did not observe an advantageous effect on the model’s performance in either of these cases.

Considering this, we remained with the original model XGB-SMOTE and LR-SMOTETomek.

4.6 Parameter Tuning

One way of improving the performance of an algorithm is through parameter tuning. Considering

that ML algorithms are parametrized, their performance can enhance using an optimal combination

of parameters for a specific problem. Finding this combination is an iterative process. It starts with

some random estimate aiming to land on a superior or optimum explanation for the problem (Yang,

Deb, Loomes and Karamanoglu, 2013).

4.6.1 Tuning Parameters in XGBoost

XGBoost has many parameters that can be configured. Most parameters are created to address the

bias and variance tradeoff. In other words, balancing model complexity and predictive power. A

complete explanation of the XGBoost parameters can be found on their documentation (XGBoost

Parameters — xgboost 2.0.0-dev documentation, 2022).

● objective: we selected “binary:logistic”, which is used for logistic regression for binary

classification.

● colsample_bytree: it represents the fraction of columns to be randomly sampled for each

tree. This parameter helps to reduce the influence of the columns and reduce variance. The

value must be between 0 and 1.

● gamma: it is a regularization parameter used to control model complexity. Formally, this

is the minimum loss reduction required to make a further partition on a leaf node of the

tree.

● max_depth: it refers to the maximum depth of a tree. A deeper tree might increase the

performance and make the model more complex and more likely to overfit. The value must

be an integer.

● learning_rate: it determines the step size at each iteration while your model optimizes

toward its objective. A low learning rate makes computation slower and requires more

27

rounds to achieve the same reduction in residual error as a model with a high learning rate.

However, it optimizes the chances of reaching the best optimum. The value must be

between 0 and 1.

● n_estimators: it represents the number of trees in our ensemble. Equivalent to the number

of boosting rounds. The value must be an integer.

● subsample: it refers to the fraction of observations to be sampled for each tree. Lower

values prevent overfitting but might lead to under-fitting. The value must be between 0 and

1.

We used Optuna optimization as the hyperparameter tuning method. This optimization method

allows the user to create the feature space dynamically. Compared to the most widely used

techniques, such as “Grid Search CV” and “Randomized Search CV”, Optuna is efficient

computationally and is scalable and versatile (Akiba et al., 2019).

In most of the literature, the objective of the Optuna optimization is to maximize accuracy.

However, for this paper, the objective is to maximize precision since this metric cares about the

prediction of premium products. In Table 7, we summarize the parameter values evaluated and the

optimal value that was found.

Table 7. XGB Hyperparameter Tuning Values

4.6.2 Tuning Parameters for Logistic Regression

In LR, there are no parameters that can be tuned. However, Scikit-learn allows to iterate LR using

"Randomized Search CV" or "Grid Search CV" with three arguments that can lead to an

enhancement of the model performance, solver, penalty, and penalty strength.

Parameter Default value Parameter values Best Value

max_depth 6 Range between [1, 9] 1

gamma 0 Range between [1e-8, 9] 4.0700

n_estimators 100 Range between [100, 1000] 642

learning_rate 0.3 Range between [1e-8, 1] 0.9300

colsample_bytree 1 Range between [0.3, 1] 0.3000

subsample 1 Range between [0.4, 1] 0.6100

28

● solver: it corresponds to the algorithm used for the optimization. There are five options:

○ "newton-cg": A Newton method that computes the inverse of Hessian matrix

explicitly, so, for large datasets, it can be high computational demanding (see more

at Royer, O’Neill and Wright, 2019).

○ "lbfgs": It stands for Limited-memory Broyden-Fletcher-Goldfarb-Shanno

algorithm. It computes an estimation of the inverse Hessian matrix (see more at Liu

and Nocedal, 1989)

○ "liblinear": It stands for Library for Large Linear Classification; it employs a

coordinate descent method to advance towards the minimum in every iteration (see

more at Fan et al. 2008).

○ "sag": SAG or Stochastic Average Gradient is a variant of gradient descent. It uses

an earlier gradient value to obtain a speedier convergence than the Stochastic

Gradient (SG) (see more at Schmidt, Le Roux and Bach, 2016).

○ "saga": It is derived from SAG. It allows more regularization method.

● penalty: It refers to the regularization methods, L1 (Lasso regularization), L2 (Ridge

regularization), Elastic-Net (combination of L1 and L2), and none. It is important to

reiterate that not all solver methods work with all the penalty options, see Table 8.

● C: It represents the inverse of penalty strength; lower values lead to more robust

regularization.

Table 8. Solver Options for LR and their Respective Penalizations

In Table 9, we summarized the parameter values evaluated with LR and the optimal value found.

Solver L1 penalty L2 penalty Elastic-Net None

newton-cg no yes no yes

lbfgs no yes no yes

liblinear yes yes no no

sag no yes no yes

saga yes yes yes yes

29

Table 9. LR Parameter Tuning Values

4.6.3 Parameter Tuning Results

Having implemented the feature selection methods for both algorithms, we proceeded with

parameter tuning for the top models so far (XGB-SMOTE and LR-SMOTETomek). The methods

used for tunning parameters were Optuna for XGB-SMOTE and Randomized Search CV for LR-

SMOTETomek.

On the one hand, for XGB-SMOTE there was no improvement in metrics after tuning parameters

using Optuna optimization. In fact, in Table 10, we noted that all the metrics performed worst. The

AUC decreased, same with precision and recall. The FPR increased, which is undesirable since

we care about the FP.

Table 10. XGB Metrics with Parameter Tuning

In the case of the LR-SMOTETomek model, there was an improvement in its metrics using

parameter tuning. The model was enhanced with newton-CG (solver), l2 (regularization or

penalty), and a value of 1438 (C: inverse of penalty strength). In Table 11, it is possible to analyze

a summary of their results.

After implementing SFS and parameter tuning in LR, we observed that accuracy, log-loss, and

FPR enhanced compared to the original model, while metrics such as precision, recall, and AUC

slightly declined.

Parameter Default value Parameter values Best Value

solver lbfgs lbfgs, newton-cg, liblinear, sag, saga newton-cg

penalty l2 l1, l2, elasticnet, none l2

C 1 np.logspace(-4, 4, 20) 1438.4498

XGB XGB - Tuned

SMOTE SMOTE

accuracy 0.8811 0.8178

precision 0.5247 0.3108

recall 0.5010 0.3778

FPR 0.0647 0.1194

AUC 0.8575 0.6797

log-loss 0.2895 0.6931

Metrics

30

Table 11. LR Metrics with Parameter Tuning

To conclude, after tunning parameters, LR-SMOTETomek was enhanced. We noticed some

improvement specifically in FPR, which is our primary goal for this classification problem. In the

case of XGB-SMOTE, there was no enhancement.

4.7 Models Comparison

We proceeded with three techniques for both algorithms: balancing methods, feature selection, and

tuning parameters. Here we summarized those findings and selected the best algorithm for this

paper.

We tried five balancing methods for each algorithm: SMOTE, SMOTEEN, SMOTETomek,

Random Undersampling, and Weighted Approach. For LR, we found that the balancing method

that performed best was SMOTETomek, and for XGB, it was SMOTE. In both XGB and LR, we

discovered that feature selection methods did not improve the model's performance. Therefore, the

models without feature selection were kept. Lastly, we tuned parameters for each algorithm,

finding that tunning did not improve XGB, but it did for LR.

We compared the best models for each algorithm: XGB-SMOTE and LR-SMOTETomek (Tuned).

In Figure 14, the ROC curve for both models can be observed. For the default threshold (red point

in the curve), XGB achieved a significantly higher true positive rate (TPR) than LR, having a

similar FPR. XGB is more aligned with the "perfect classifier curve" compared to LR. This is

closer to the coordinate (0,1), which is desirable for a classifier.

LR LR - Tuned

SMOTETomek SMOTETomek

accuracy 0.8460 0.8475

precision 0.3744 0.3714

recall 0.3491 0.3203

FPR 0.0831 0.0773

AUC 0.7744 0.7712

log-loss 0.3763 0.3737

Metrics

31

Figure 13. Confusion Matrix Comparison Between LR-SMOTETomek (Tuned) and XGB-SMOTE

Figure 14. ROC Curve Comparison Between LR-SMOTETomek (Tuned) and XGB-SMOTE

In Figure 15, the precision-recall curve for both models are shown. It can be observed that with

the default threshold (red point in the graph), XGB registered a higher recall and higher precision

compared to LR. Therefore, XGB showed the best tradeoff between quality (precision) and

quantity (recall).

32

Figure 15. PR Curve Comparison Between LR-SMOTETomek (Tuned) and XGB-SMOTE

Furthermore, Table 12 presents a summary of the metrics for both models. It is noticeable from

the metrics and the ROC curve itself that the AUC of XGB-SMOTE is greater than LR-

SMOTETomek. Additionally, XGB achieves higher precision and recall while maintaining the

lowest FPR possible.

Table 12. Metrics Comparison for Best Models in XGB and LR

As a result, we identified that the XGB-SMOTE classifier outperforms LR-SMOTETomek

(Tuned). Therefore, XGB was a better model for its accurate prediction of premium products,

reducing false positives (FP) and considering the prediction of the minority class (premium). In

essence, XGB-SMOTE can be viewed as a better model for predicting whether an item is a

premium or non-premium product.

XGB LR - Tuned

SMOTE SMOTETomek

accuracy 0.8811 0.8475

precision 0.5247 0.3714

recall 0.501 0.3203

FPR 0.0647 0.0773

AUC 0.8575 0.7712

log-loss 0.2895 0.3737

Metrics

33

4.8 Optimal Threshold

In this section, we used two methods to find the optimal threshold. First, mathematically with G-

mean and F1-Score, and second with Cost-Sensitive Analysis. We evaluated both methods for our

best model, which is XGB-SMOTE.

4.8.1 Mathematical Approach

We employed two approaches to finding the optimal threshold: G-mean and F1-Score. These are

plotted in the ROC and Precision-Recall Curve (Figure 16).

The ROC curve can be used to find the optimal balance between TPR (sensitivity) and FPR (1-

specificity). The geometric mean (G-mean) is a metric used for imbalanced classification. This

metric can be used to find the point in the ROC curve that maximizes both sensitivity and

specificity (Brownlee, 2022)

𝐺 − 𝑚𝑒𝑎𝑛 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

On the other hand, the F1-Score is a metric that integrates the precision and the recall index into

one criterion by using the Harmonic Mean (HM). F Measure overlooks the negative observations

and illustrates the tradeoff between quality (precision) and quantity (recall) when classifying

positive instances (Fernández et al., 2018, Larner, 2021). This metric can be used to find the point

in the precision-recall curve that better integrates both metrics. In algebraic notion:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Following the G-mean approach, we can see in Figure 16 that the optimal threshold for XGB is

0.255. The TPR and FPR rise from 50% and 6.7% to 74.5% and 18.5%, respectively. While FP

increases from 221 to 632 observations, FN decreases from 243 to 124 observations. This optimal

threshold obtained by G-mean caused precision to decrease from 52% to 36% in XGB.

In the F1-Score, the TPR and FPR rose from 50% and 6.7% to 63% and 10.7%, accordingly. FP

increases from 221 to 366 samples, whereas FN decreases from 243 to 180 samples. Additionally,

34

this optimum threshold obtained by F Measure induced precision to reduce from 52% to 45% in

XGB.

Even though we obtained the optimal threshold using G-mean and F1-Score, which are considered

suitable measures for imbalance classification, there is an increase in the recall or TPR but at the

same time an increase in FPR in both scenarios. Our test data was not processed (it is still

imbalanced between classes), so the increase is notorious when we analyzed FP.

Figure 16. ROC and PR Curve with Default, G-mean, and F1 Thresholds

4.8.2 Cost-Sensitive Analysis

In most classification problems, there is no difference in the cost associated with different

misclassification errors (He et al., 2021). However, as mentioned earlier, the deepest concern in

this classification problem is the FP. Therefore, we faced a situation in which misclassification

errors represent different costs. This can be addressed by using Cost-Sensitive Analysis.

The core idea is to assign different costs/benefits to the different misclassification errors. There

are more robust ways to specify the cost that each category should have, e.g., costs can be provided

by domain experts who asses the most accurate values. In our case, we used the imbalance ratio

obtained in Section 4.1, considering that we do not have more information about the opportunity

cost in each scenario (Fernández et al., 2018). As Table 13 illustrates, we assigned a cost of -7 to

35

classifying a product as premium when it is not (FP) because this is our main concern and a cost

of -1. Also, we assigned a benefit 8 to correctly classify products as premium when they are (TP).

Table 13. Confusion Matrix with Cost-Sensitive Analysis

We wanted to find the threshold that maximizes the earnings with these costs and benefits. For

that, we generated an earnings function for every possible threshold and then found the optimal

one. The earnings were calculated as follows

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 =
(2𝑇𝑁 + 8𝑇𝑃 − 1𝐹𝑁 − 7𝐹𝑃)

𝑁

The threshold values were taken from the ROC Curve of our best model (XGB-SMOTE), and for

each threshold, we considered the corresponding quadrants of the confusion matrix (TN, TP, FN,

FP) and calculated the corresponding earnings function. After this procedure, we observed the

earnings results against the threshold values in Figure 17. The optimal threshold is placed at the

point where the curve reaches its maximum, a threshold of 0.6612, as derived computationally.

This is the point that gives us the maximum earnings possible without unnecessarily increasing the

FPR.

The results are shown in Table 14 and the corresponding confusion matrix in Figure 18. There was

a significant reduction (-57%) in the number of FP compared to the XGB-SMOTE model. If we

observe the metrics there was also a remarkable improvement compared to the default threshold.

The FPR presents a reduction of 57%, recalled was reduced by 37%, whereas precision increased

by 17%.

Predicted Class

Negative Positive

Actual

Class

Negative TN (2) FP (-7)

Positive FN (-1) TP (8)

36

Figure 17. Cost-Sensitive Analysis: Earnings Curve and Thresholds

Figure 18. Confusion Matrix Comparison Between XGB-SMOTE and XGB-SMOTE (Cost-Sensitive)

37

Table 14. Metrics with Cost-Sensitive Analysis

Therefore, we concluded that our best model is XGB-SMOTE with an optimal threshold of 0.6612.

The reason for the metrics to improve drastically is that we are considering what our model should

care about, reducing FP, by penalizing those, and incentivizing the prediction of TP.

5. Conclusions

The current study provides the application of ML algorithms to predict whether a product is

premium or non-premium. We faced a high category imbalance and costly misclassification

(especially for premium products).

We introduced the Logistic Regression (LR) and XGBoost (XGB) models as machine learning

classifiers. We evaluated the performance of the classification using precision, recall, FPR, AUC,

log-loss, and accuracy. However, accuracy was the least relevant since it can be misleading for the

highly imbalanced dataset.

The dataset used for this paper had a relatively large amount of data compared to other studies in

the food and beverage industry. For building the algorithms, first, we split the dataset into 25% of

the data for testing and 75% for training. Then, we tried balancing methods, feature selection, and

tuning parameters to find the best possible model for each algorithm. We tested five balancing

methods: SMOTE, SMOTEEN, SMOTETomek, Random Undersampling, and Weighted

Approach. Afterward, we used three feature selection methods: Correlation Based, Sequential

Forward Selection (SFS), and XGB Feature Importance. After that, we tuned LR using

Randomized Search CV and XGB using Optuna optimization. We then chose the best model to

train and finally evaluated its performance.

XGB-SMOTE XGB-SMOTE

Default-Threshold CS-Threshold

accuracy 0.8811 0.8898

precision 0.5247 0.6154

recall 0.5010 0.3121

FPR 0.0647 0.0278

AUC 0.8575 0.8575

log-loss 0.2895 0.2895

Metrics

38

Overall, feature selection did not improve the performance of the algorithms, and tuning

parameters only improved LR. For LR, the best possible model was found using SMOTETomek

as the balancing method, with tuning parameters but without feature selection. For XGB, the best

viable model was found with SMOTE as a balancing method, without tuning parameters and using

all the variables.

The reduction of incorrectly classified premium products (False Positives) was the critical feature

in this study. XGB-SMOTE classifier outperformed LR-SMOTETomek. XGB predicted premium

products with higher precision and lower FPR compared to LR.

This study applied the Cost-Sensitive Analysis in XGB to find a model that minimized the False

Positives despite the significant class imbalance. Cost-Sensitive XGB was inspired by similar

research in other industries, with suitable modifications for the application in this paper's food and

beverage problem. This method remarkably improved the results, achieving a precision, recall, and

FPR of 61.5%, 31.2%, and 2.7%, respectively.

For future studies, a Cost-Sensitive Analysis could be done by modifying the loss function inside

the XGB algorithm itself as a more effective way to address the imbalance of the dataset

accurately. Furthermore, one can explore a more robust way to assign the costs for the Cost-

Sensitive Analysis.

39

6. References

Abdulghani, A., UCAN, O. and Alheeti, K., 2021. Credit Card Fraud Detection Using XGBoost

Algorithm. 2021 14th International Conference on Developments in eSystems Engineering

(DeSE).

Akiba, T., Sano, S., Yanase, T., Ohta, T. and Koyama, M., 2019. Optuna. Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

Batista, G., Prati, R. and Monard, M., 2004. A study of the behavior of several methods for

balancing machine learning training data. ACM SIGKDD Explorations Newsletter, 6(1),

pp.20-29.

Beleites, C., Neugebauer, U., Bocklitz, T., Krafft, C. and Popp, J., 2013. Sample size planning for

classification models. Analytica Chimica Acta, 760, pp.25-33.

Bhardwaj, P., Tiwari, P., Olejar, K., Parr, W. and Kulasiri, D., 2022. A machine learning

application in wine quality prediction. Machine Learning with Applications, 8, p.100261.

Brownlee, J., 2018. Xgboost with python. Gradient boosted trees with xgboost and scikit-learn. 1st

ed.

Brownlee, J., 2022. Imbalanced Classification with Python: Better Metrics, Balance Skewed

classes, and apply cost-sensitive learning. 1st ed.

Cai, J., Luo, J., Wang, S. and Yang, S., 2018. Feature selection in machine learning: A new

perspective. Neurocomputing, 300, pp.70-79. Available online:

https://www.sciencedirect.com/science/article/pii/S092523121830291

Chawla, N., Bowyer, K., Hall, L. and Kegelmeyer, W., 2002. SMOTE: Synthetic Minority Over-

sampling Technique. Journal of Artificial Intelligence Research, 16, pp.321-357.

Cook, J. and Ramadas, V., 2020. When to consult precision-recall curves. The Stata Journal:

Promoting communications on statistics and Stata, 20(1), pp.131-148.

De Andrade, B., Margalho, L., Batista, D., Lucena, I., Kamimura, B., Balthazar, C., Brexó, R.,

Pia, A., Costa, R., Cruz, A., Granato, D., Sant’Ana, A., Luna, A. and de Gois, J., 2022.

Chemometric classification of Brazilian artisanal cheeses from different regions according

to major and trace elements by ICP-OES. Journal of Food Composition and Analysis, 109,

p.104519.

https://www.sciencedirect.com/science/article/pii/S092523121830291

40

Dong, C., Qiao, Y., Shang, C., Liao, X., Yuan, X., Cheng, Q., Li, Y., Zhang, J., Wang, Y., Chen,

Y., Ge, Q. and Bao, Y., 2022. Non-contact screening system based for COVID-19 on

XGBoost and logistic regression. Computers in Biology and Medicine, 141, p.105003.

Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C., 2008 LIBLINEAR: A library for large linear

classification Journal of Machine Learning Research 9, 1871-1874.

FernándezA., GarcíaS., Galar, M., Prati, R.C., Bartosz Krawczyk and Herrera, F. (2018). Learning

from Imbalanced Data Sets. Cham Springer International Publishing.

Gómez-Meire, S., Campos, C., Falqué, E., Díaz, F. and Fdez-Riverola, F., 2014. Assuring the

authenticity of northwest Spain white wine varieties using machine learning techniques.

Food Research International, 60, pp.230-240.

Granato, D., de Araújo Calado, V. and Jarvis, B., 2014. Observations on the use of statistical

methods in Food Science and Technology. Food Research International, 55, pp.137-149.

Hajmeer, M. and Basheer, I., 2003. Comparison of logistic regression and neural network-based

classifiers for bacterial growth. Food Microbiology, 20(1), pp.43-55.

Hall, M., 1999. Correlation-based Feature Selection for Machine Learning. Doctor of Philosophy.

University of Waikato.

Hastie, T., Tibshirani, R. and Friedman, J., 2017. The elements of statistical learning. 2nd ed.

Springer.

He, W., He, H., Wang, F., Wang, S., Li, R., Chang, J. and Li, C., 2021a. Rapid and Uninvasive

Characterization of Bananas by Hyperspectral Imaging with Extreme Gradient Boosting

(XGBoost). Analytical Letters, 55(4), pp.620-633.

He, S., Li, B., Peng, H., Xin, J. and Zhang, E., 2021b. An Effective Cost-Sensitive XGBoost

Method for Malicious URLs Detection in Imbalanced Dataset. IEEE Access, 9, pp.93089-

93096.

Hosmer, D., Lemeshow, S. and Sturdivant, R. 2013. Applied Logistic Regression. [online] New

York, Etc.: John Wiley And Sons, Cop. Available at: https://www.wiley.com/en-

us/Applied+Logistic+Regression%2C+3rd+Edition-p-9780470582473.

Jiang, Y., Bian, B., Wang, X., Chen, S., Li, Y. and Sun, Y., 2020. Identification of tomato maturity

based on multinomial logistic regression with kernel clustering by integrating color

moments and physicochemical indices. Journal of Food Process Engineering, 43(10).

41

Matthews, 1995. Quantification and the quest for medical certainty. Princeton, N.J.: Princeton

Univ. Press, Cop.

J. Tan, J. Yang, S. Wu, G. Chen, J. Zhao, 2021. A critical look at the current train/test split in

machine learning. arXiv -Artificial Intelligence. https://doi.org/arxiv-2106.04525

Krzanowski, W. and Hand, D., 2009. ROC Curves for Continuous Data. CRC Press.

Kumar, S., Agrawal, K. and Mandan, N., 2020. Red Wine Quality Prediction Using Machine

Learning Techniques. 2020 International Conference on Computer Communication and

Informatics (ICCCI).

Kuhn, M & Johnson, K 2016, Applied predictive modeling, Springer, New York.

Koranga, M., Pandey, R., Joshi, M. and Kumar, M., 2021. Analysis of white wine using machine

learning algorithms. Materials Today: Proceedings, 46, pp.11087-11093.

Larner, A. 2021. 2X2 MATRIX : contingency, confusion and the metrics of binary classification.

S.L.: Springer Nature.

Liu, D. and Nocedal, J., 1989. On the limited memory BFGS method for large scale optimization.

Mathematical Programming, 45(1-3), pp.503-528.

Ma, P., Li, A., Yu, N., Li, Y., Bahadur, R., Wang, Q. and Ahuja, J., 2021. Application of machine

learning for estimating label nutrients using USDA Global Branded Food Products

Database, (BFPD). Journal of Food Composition and Analysis, 100, p.103857.

Mahima, Gupta, U., Patidar, Y., Agarwal, A. and Singh, K., 2020. Wine Quality Analysis Using

Machine Learning Algorithms. Micro-Electronics and Telecommunication Engineering,

pp.11-18.

Monforte, A., Martins, S. and Silva Ferreira, A., 2021. Discrimination of white wine ageing based

on untarget peak picking approach with multi-class target coupled with machine learning

algorithms. Food Chemistry, 352, p.129288.

Mu, F., Gu, Y., Zhang, J. and Zhang, L., 2020. Milk Source Identification and Milk Quality

Estimation Using an Electronic Nose and Machine Learning Techniques. Sensors, 20(15),

p.4238.

Oliveira Chaves, L., Gomes Domingos, A., Louzada Fernandes, D., Ribeiro Cerqueira, F.,

Siqueira-Batista, R. and Bressan, J., 2021. Applicability of machine learning techniques in

https://doi.org/arxiv-2106.04525

42

food intake assessment: A systematic review. Critical Reviews in Food Science and

Nutrition, pp.1-18.

Ozenne, B., Subtil, F. and Maucort-Boulch, D., 2015. The precision–recall curve overcame the

optimism of the receiver operating characteristic curve in rare diseases. Journal of Clinical

Epidemiology, 68(8), pp.855-859.

Quelch, J., 1987. Marketing the premium product. Business Horizons, 30(3), pp.38-45. Available

online:https://www.sciencedirect.com/science/article/pii/0007681387900358

Ratkowsky, D. and Ross, T., 1995. Modelling the bacterial growth/no growth interface. Letters in

Applied Microbiology, 20(1), pp.29-33.

Rodríguez-Saavedra, M., Pérez-Revelo, K., Valero, A., Moreno-Arribas, M. and González de

Llano, D., 2021. A Binary Logistic Regression Model as a Tool to Predict Craft Beer

Susceptibility to Microbial Spoilage. Foods, 10(8), p.1926.

Royer, C., O’Neill, M. and Wright, S., 2019. A Newton-CG algorithm with complexity guarantees

for smooth unconstrained optimization. Mathematical Programming, 180(1-2), pp.451-

488.

Saberioon, M., Císař, P., Labbé, L., Souček, P., Pelissier, P. and Kerneis, T., 2018. Comparative

Performance Analysis of Support Vector Machine, Random Forest, Logistic Regression

and k-Nearest Neighbours in Rainbow Trout (Oncorhynchus Mykiss) Classification Using

Image-Based Features. Sensors, 18(4), p.1027.

Saito, T. and Rehmsmeier, M. 2015. The Precision-Recall Plot Is More Informative than the ROC

Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE, 10(3),

p.e0118432. doi:10.1371/journal.pone.0118432

Schapire, R. and Freund, Y., 2014. Boosting: foundations and algorithms. Cambridge: The MIT

Press.

Schober, P., Boer, C. and Schwarte, L., 2018. Correlation Coefficients. Anesthesia &

Analgesia, 126(5), pp.1763-1768.

Schmidt, M., Le Roux, N. and Bach, F., 2016. Minimizing finite sums with the stochastic average

gradient. Mathematical Programming, 162(1-2), pp.83-112.

Stigler, S., 2002. The missing early history of contingency tables. Annales de la faculté des

sciences de Toulouse Mathématiques, 11(4), pp.563-573.

https://www.sciencedirect.com/science/article/pii/0007681387900358

43

Teye, E., Amuah, C., McGrath, T. and Elliott, C., 2019. Innovative and rapid analysis for rice

authenticity using hand-held NIR spectrometry and chemometrics. Spectrochimica Acta

Part A: Molecular and Biomolecular Spectroscopy, 217, pp.147-154.

Trivedi, A. and Sehrawat, R., 2018. Wine Quality Detection through Machine Learning

Algorithms. 2018 International Conference on Recent Innovations in Electrical,

Electronics & Communication Engineering (ICRIEECE).

Wang, X., Bouzembrak, Y., Lansink, A. and Fels‐Klerx, H., 2021a. Application of machine

learning to the monitoring and prediction of food safety: A review. Comprehensive Reviews

in Food Science and Food Safety, 21(1), pp.416-434.

Wang, Z., He, Y., Zhang, A., Zhang, J., Liu, H., Shi, P. and Han, R., 2021b. Product Key

Reliability Characteristics Identification Method Based on XGBoost in Manufacturing

Process. 2021 Global Reliability and Prognostics and Health Management (PHM-

Nanjing).

Wade, C. and Glynn, K., 2020. Hands-On Gradient Boosting with XGBoost and scikit-learn. Packt

publishing, pp.221-241.

Xgboost.readthedocs.io. 2022. XGBoost Parameters — xgboost 2.0.0-dev documentation. [online]

Available at: <https://xgboost.readthedocs.io/en/latest/parameter.html> [Accessed 24 May

2022].

Xu, J., Tang, B., He, H. and Man, H., 2017. Semisupervised Feature Selection Based on Relevance

and Redundancy Criteria. IEEE Transactions on Neural Networks and Learning Systems,

28(9), pp.1974-1984.

Yao, K., Sun, J., Chen, C., Xu, M., Zhou, X., Cao, Y. and Tian, Y., 2022. Non-destructive detection

of egg qualities based on hyperspectral imaging. Journal of Food Engineering, 325,

p.111024.

Yang, X., Deb, S., Loomes, M. and Karamanoglu, M., 2013. A framework for self-tuning

optimization algorithm. Neural Computing and Applications, 23(7-8), pp.2051-2057.

44

7. Appendices

Appendix 1. Confusion Matrix, ROC, and PR Curve for XGB-SMOTE.

45

Appendix 2. Confusion Matrix, ROC, and PR Curve for XGB-SMOTEENN

46

Appendix 3. Confusion Matrix, ROC, and PR Curve for XGB-SMOTETomek.

47

Appendix 4. Confusion Matrix, ROC, and PR Curve for XGB-Undersampling.

48

Appendix 5. Confusion Matrix, ROC, and PR Curve for XGB-Weighted.

49

Appendix 6. Confusion Matrix, ROC, and PR Curve for LR-SMOTE.

50

Appendix 7. Confusion Matrix, ROC, and PR Curve for LR-SMOTEENN.

51

Appendix 8. Confusion Matrix, ROC, and PR Curve for LR-SMOTETomek.

52

Appendix 10. Confusion Matrix, ROC, and PR Curve for LR-Undersampling.

53

Appendix 10. Confusion Matrix, ROC, and PR Curve for LR-Weighted.

	1. Introduction
	2. Literature Review
	3. Theoretical Analysis
	3.1 Machine Learning for Classification
	3.2 Boosting
	3.2.1 XGBoost

	3.3 Logistic Regression
	3.4 Confusion Matrix
	3.5 ROC Curve
	3.6 Precision-Recall Curve

	4. Empirical Analysis
	4.1 Dataset Description
	4.2 Data Cleaning
	4.2.1 Encoding Variables: One Hot Encoder

	4.3 Train and Test Datasets
	4.4 Balancing Data
	4.4.1 Data-Level Solution
	4.4.1.1 SMOTE (Synthetic Minority Oversampling Technique)
	4.4.1.2 SMOTETomek (SMOTE and Tomek Links)
	4.4.1.2 SMOTEENN (SMOTE and Edited Nearest Neighbors)
	4.4.1.3 Random Undersampling

	4.4.2 Algorithm-Level Solution
	4.4.2.1 Weighted Approach

	4.4.3 Balancing Methods Results

	4.5 Feature Selection
	4.5.1 Filter Method: Correlation-Based
	4.5.2 Wrapper Method: Sequential Forward Selection (SFS)
	4.5.3 Embedded Method: XGBoost
	4.5.4 Feature Selection Methods Results

	4.6 Parameter Tuning
	4.6.1 Tuning Parameters in XGBoost
	4.6.2 Tuning Parameters for Logistic Regression
	4.6.3 Parameter Tuning Results

	4.7 Models Comparison
	4.8 Optimal Threshold
	4.8.1 Mathematical Approach
	4.8.2 Cost-Sensitive Analysis

	5. Conclusions
	6. References
	7. Appendices

