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Abstract

The current trends for most fair-skinned populations are that the incidence of melanoma
and non-pigmented skin lesions is growing, and this growing trend will continue for the
upcoming years. The emergence of deep learning networks and their promising results
in solving real-world healthcare problems and improving diagnostic accuracy opens new
possibilities.

This thesis consists of the creation of a preliminary deep learning network to classify
non-pigmented skin lesions: Basal cell carcinoma, actinic keratosis, and squamous cell
carcinoma. This network could be used to provide feedback to the dermatologist regard-
ing the diagnosis of a lesion at Sk̊anes University Hospital in Lund.

We started studying publicly available data sets that could be used to reach our goal.
Once we had the data sets that would be used, we proceeded to train the different net-
works. The networks were trained using transfer learning technology, in which we used
existing pre-trained model architectures to train our model. The project was developed
in Python using the Keras library that runs under Tensorflow. The results for each of
the experiments were compared in terms of performance, and those that obtained the
best results were selected. Additionally, we studied the versatility of the models to be
used in other data sets that differed from the one used for training, and compared them
in terms of accuracy and bias towards certain classes. Finally, the Grad-CAM algorithm
was implemented to visualise the hot spot areas on which the model based its predictions
for each of the lesions.

The final conclusions of the project show promising results that open the possibility of
a future real-world implementation of using a deep learning network in a clinic.

Keywords: Melanoma; Skin cancer; Dermatoscopy; Image classification; Machine
learning; Artificial intelligence; Convolutional neural networks; Dermatology; Squamous
cell carcinoma; Basal cell carcinoma; Actinic keratosis; Computer-aided Diagnostics;
Digital dermatology
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Chapter 1

Introduction

1.1 Context

In most fair-skinned populations, such as Australia, Norway, Denmark and the Nether-
lands [5], the incidence rates of melanoma and non-melanoma skin cancers are rising.
In particular, in Sweden, non-melanoma skin cancer is one of the top five most com-
mon forms of cancer in 2020 by the WHO [6]. The incidence of this type of cancer
is estimated to continue to increase in the next 20 years, in particular, non-melanoma
types are predicted to have a higher increase with a clear difference between men and
women, Figure 1.1. Additional efforts are necessary in primary and secondary preven-
tion to contain and possibly reverse these trends. Healthcare systems face an increasing
pressure to meet the demands of constraint budgets, as well as the economic impacts of
skin cancer on society. The impact is influenced by both direct and indirect costs; direct
costs include resources related to the treatment of skin cancer, while indirect costs refer
to productivity costs associated with illness and premature mortality.

1.2 Motivation

With skin cancer being one of the cancers that continues to increase globally, the de-
mands for this type of diagnosis are also growing accordingly. The most common types
of skin cancer are Basal Cell Carcinoma (BCC) and Squamous Cell Carcinoma (SCC),
the last possibly starting with Actinic Keratosis (AK), all of which have in common
that they are non-pigmented lesions in contrast to melanoma. In Sweden, the number of
carcinoma diagnoses is estimated to grow in the next 20 years. Teledermatology adop-
tion soared during the COVID-19 pandemic, increasing the need for the development
of digital solutions to meet the demand. Machine learning algorithms can automate

1
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Figure 1.1: Estimated number of new cases from 2020 to 2040, Males & Females, age
[0-85+] in Sweden. Graph obtained from the WHO cancer of tomorrow estimator [1].

the identification of skin malignancies using digital image analysis, and their diagnos-
tic accuracy has been found to be comparable to, if not better than, dermatologists in
controlled experimental settings in the last five years. In particular, clinicians with the
least experience are those who benefit the most from AI-based support [7].
Even with highly experienced dermatologists and physicians, the average reported sen-
sitivity to the diagnosis of melanoma is generally less than 80% [7]. In addition, highly
qualified dermatologists are not readily available everywhere. As a result, in public
health, automatic skin lesion classification at the same level of accuracy as dermatolo-
gists, if not greater, is critical.

In this project, we intend to give a different approach to the traditional one, in which our
main focus will be on non-pigmented lesions rather than melanoma or pigmented lesions.
The problem will be approached with simple models, useful but with obvious limitations.
A machine learning model has been created to provide feedback to the dermatologist
on the diagnosis of the lesion. Thus, the technology of deep learning models is brought
closer to the dermatologist, leading to direct use of them in their clinics.
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1.3 Objectives

The objectives of this project can be broken down as follows:

• Research of the various data sets available for the classification of skin cancer.

• Design a neural network to solve the problem of identifying non-pigmented skin
lesions with dermatoscopic images.

• Analyse and validate experimentally the different results of deep learning models
to solve the problem of classification of non-pigmented skin lesions.

• Identify how training a network with samples from different skin types than Sweden
affects the validity of training for the Swedish skin type.

• Recognising the key elements in the image sample that lead to diagnosis.

1.4 Structure

The document is structured as follows:

• Chapter 1: sets the context of where we are in this project with the motivation
to carry out it, some basic concepts of neural networks, and the project objectives.

• Chapter 2: describes the current knowledge of the matter studied through the
analysis of similar or related published work, starting from a more abstract and
broad topic and ending in the specific one related to the project.

• Chapter 3: sets a medical background for the different concepts that will be
mentioned throughout the project.

• Chapter 4: sets a machine learning background with brief definitions of the
different concepts that will be used to explain the experiments in Chapter 6.

• Chapter 5: exposes the different resources and tools used for the development of
the project.

• Chapter 6: presents the steps followed in the development of deep learning models
and the results obtained.

• Chapter 7: finally, the conclusions of the project and its future work are pre-
sented.





Chapter 2

State of the art

2.1 Image classification based on deep learning

Classification is the methodical grouping of things into groups and categories based on
their characteristics. Image categorisation is accomplished by categorising the image
into the appropriate category depending on the vision’s content [8].

The ability to develop a computer system that resembles the human brain leads to re-
search on artificial neural networks and deep learning [9]. In the field of machine learning,
image classification plays an important role, and image processing is also widely used
for image recognition and segmentation [10]. As a result, improving the classification
methodology to obtain better classification accuracy is a very significant and challeng-
ing research topic. Image classification is used to close the gap between computer vision
and human vision, by using images to teach the computer to recognise data in the same
manner as humans do [8]. When using machine learning to solve an image classification
problem, the system is made up of two parts, a feature extraction module that extracts
significant features such as edges and textures, and a classification module that classifies
the data based on the extracted features. However, due to some of the limitations of
traditional machine learning, such as only extracting certain features and the need of
having human interaction for a previous feature extraction. The deep learning method-
ology is introduced, in which the algorithms learn to extract high-level features from the
images in an incremental manner, thanks to their architecture of hidden layers. This
eliminates the need for human interaction to extract features prior to training.

In image processing as well as natural language processing, one of the most frequently
used methods of deep learning is Convolution Neural Networks (CNNs) also called Con-
vNet. It can learn highly abstracted aspects of objects and can identify them more

5



State of the art 6

efficiently than other networks with fully connected layers (FC) because of the new ad-
dition of convolutional layers with shared weights. The initial layers learn and extract
the high-level features (with lower abstraction), and as the architecture grows towards
the end, the deeper layers extract the low-level features (with higher abstraction). Both
the classification layer and the extraction layers learn at the same time and together,
making it possible to optimise both parts simultaneously and producing the output of
the model more dependent on the extracted features.

Some of the major CNN architectures designed for image classification and their results
in the ImageNet data set [11] are:

1. ResNet: [12] its architecture is different for using residual mapping instead of
direct mapping [13]. The architecture is evaluated on the ImageNet data set with
a depth of 152 layers. ResNet was the winner of ImageNet Large Scale Visual
Recognition Challenge 2015 (ILSVRC-2015) with its great performance that could
reduce the top-5 error rate to 3.6% and the top-5 accuracy to 93.1%.

2. DenseNet: [14] the architecture extends the idea of ResNet of residual mapping,
using propagation to fully connect the layers forward and backward during train-
ing [13]. The main advantages are alleviation of the vanishing gradient problem,
strengthening feature propagation, encouraging feature reuse, and substantially re-
ducing the number of parameters. DenseNet was the winner of the ILSVRC-2016
with a top-5 accuracy of 93.6% obtaining a performance similar to ResNet.

3. Inception: [15] the architecture demonstrates that it is possible to train high-
quality networks on small data sets, thanks to a combination of lower param-
eter count and further regularisation with batch-normalised auxiliary classifiers
and label-smoothing. The architecture has been improved multiple times, finally
achieving an accuracy of 93.7% and 5.6% error top-5 in InceptionV3. A final ver-
sion called Inception-Resnet (Inceptionv4) [16], in which the residual connections
speed up the training process and outperforms the previous InceptionV3 by a thin
margin, obtaining an accuracy of 95.3% for the top-5.

Some other architectures are LeNet-5 from 1998, being one of the earliest CNNs avail-
able [17], AlexNet [18] inspired on LeNet, by Krizhevky et al. in 2012, VGGNet [19]
is one of the most popular CNNs, introduced by Simonyan and Zisserman in 2014.
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2.2 Image based diagnosis in medicine

Medical imaging is used in a variety of clinical applications, including techniques for
early detection, monitoring, diagnosis, and therapy evaluation of a variety of medical
problems. Therefore, there has been an emerging research field for automating these
techniques with machine learning to distinguish between the presence and absence of
a disease, as well as to cover the shortage of medical professionals [20]. Radiography,
endoscopy, computed tomography (CT), mammography (MG), ultrasound images, mag-
netic resonance imaging (MRI), positron emission tomography (PET) and pathological
diagnostics are only a few of the most well-known services that use imaging in medicine.
The use of machine learning models in medical images can be divided into three cate-
gories, classification, segmentation, and detection. In classification, models are used to
classify images into different classes, some of the most typical use cases are the identifica-
tion of skin diseases in dermatology [21], the recognition of eye diseases in ophthalmology
[22], pathological images such as brain cancer [23] and breast cancer [24]. In segmen-
tation, the models attempt to contour the region of interest as an organ or anatomical
structure in the image for processing. In detection, the model generally tries to identify
and locate a tumour or organs in the image.

Even if the applications of machine learning to medical images are achieving promising
results, there are many challenges that researchers are facing and that are slowing the
progress [20]. The most relevant problems are:

1. Data quality is often lacking and it is inconsistent, such as resolution, contrast,
and the existence of noise on the images.

2. Data acquisition, there are many procedures to obtain the same data and they are
non-standardised, depending on the clinic.

3. Data validity, there is a need for comprehensive and valid medical notations on
the samples.

4. Data sharing is complicated and has to undergo ethical approvals before being
used.

Another problem is the data scarcity, which comes mainly from the sum of all the prob-
lems mentioned above, creating a bottleneck in the field. However, as said, thousands of
labelled data points are not available in the medical field [20]. The technique known as
transfer learning helps to solve this problem. Fixed feature extractors and fine-tuning
a pre-trained network are two prominent and commonly used transfer learning method-
ologies. Finally, the class imbalance is another problem in which the more rare diseases
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have a lower clinical incidence. Different studies have tried to solve this problem with
binary classification or with the use of a previous one-class modelling [25]. The method
focusses on learning models from samples belonging to a single class.

When talking about healthcare, the expected performance and accuracy of the results
achieved need to meet the standards since human lives are at stake. Due to the relevance
of this topic, a Healthcare workshop was held with the National Cancer Institute (NCI)
and the National Institute of Biomedical Imaging and Bioengineering (NIBIB) on 12
July 2019 [26]. The purpose of the meeting was to identify current issues and concerns
related to the incorporation of machine learning into healthcare, such as trustworthiness,
explainability, usability, transparency, and fairness. One of the main outcomes of the
meeting was that, in order to implement machine learning models in clinical settings, the
need for reliable data and methods is required but not sufficient [27]. Medical personnel
need to learn to understand when to rely on the results the system outputs and when
to reject them, by providing transparency of which population data the system was
trained with. As well as updating the systems when new data becomes available or if
the algorithm needs to be improved, necessitating of continuous monitoring.

2.3 Classification of skin images for benign and malignant
cutaneous tumours using deep learning algorithms

Convolutional neural networks have achieved expert-level accuracy, sometimes even bet-
ter results than experts in the case of pigmented lesions. However, in this project, we
are studying the non-pigmented lesions, and these ones are harder to diagnose. The
section will be divided into two parts, making a differentiation between pigmented and
non-pigmented.

It is worth mentioning that different types of skin play an important role in the per-
formance of a machine learning algorithm [28]. Algorithms used within a skin type
underperform in populations independent of the training one. This was first seen in
the case of the ASAM data set in which the images come mostly from East Asian skin
types, and even if the algorithm was trained and validated with a good performance, it
underperformed on skin lesions from white patients from the USA.

2.3.1 Pigmented

Pigmented lesions are those with melanin (which may be black, brown, grey or blue,
depending on the depth in the skin) [29]. Although melanoma is not the most common
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pigmented skin cancer, it is malignant and a deadly cancer. Melanoma is typically
detected by a visual examination that focusses on the cutaneous lesion’s area. However,
there is a lot of overlap between melanomas and other skin lesions, such as nevus, making
cancer categorisation and diagnosis more complex [30].

In studies [31] to detect pigmented lesions with machine learning, different types of
learning techniques have been used, Artificial Neural Network (ANN), Convolutional
Neural Network (CNN) and Generative Adversarial Network (GAN). Most of the stud-
ies conducted focus on classifying between benign and melanoma rather than a set of
different classes. Focussing our work on the results obtained using CNN, in which the
deep learning models have accomplished remarkable performance in classification and
segmentation. Kalouche [32] proposed a pre-trained CNN architecture that used CNN
VGG-16 as the base and trained on the ISIC data set, the model obtained a 78% ac-
curacy for melanoma lesions. Ali [33] using the LightNet architecture [34] to perform a
binary classification between malignant or benign obtained on ISIC 2016 with an accu-
racy of 81,6%. Hasan [35] trained their own CNN and used approximately 23907 images
from the ISIC archive, obtaining a total accuracy of 89.5%. Lequan [36] proposes dif-
ferent methods of CNN models to recognise melanoma from other benign lesions. It
proposes first to segment the skin lesions to use the lesion region rather than the whole
dermatoscopic image, and then classifying them between melanoma and non-melanoma.
The final accuracy obtained using this method is 94.9%.

The performance of the different literature presented is varied, and many factors affect
the validity of the results, such as the image types, the volume of images used, number
of classes for the different types of diagnosis, and techniques utilised.

2.3.2 Non-pigmented

Non-pigmented means lesions without melanin pigmentation [29]. A non-pigmented
lesion may still have pigment due to keratin (yellow or orange) or hemoglobin (red,
purple, blue, or black). Both melanin and hemoglobin can produce blue and black
pigmentation, which can occasionally cause confusion in the diagnosis. These lesions
can lead to a broad class of tumours, including BCC and SCC, and as a group, these
are the most frequent cancers that occur in light-skinned humans [37].

Similar to the pigmented studies, different types of techniques have been used. Although
the number of studies carried out for only non-pigmented classes is low and they are
normally included in models that classify both pigmented and non-pigmented skin le-
sions. For example, the case of Tschandl [21] in which they trained a CNN with multiple
pigmented and non-pigmented classes and compared the results obtained from the CNN
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with human experts. The accuracy of the predictions among the human raters depended
on the years of experience they had, obtaining with the CNN better results in the case
of beginners, but slightly worse in the case of experts. Despite the good results, the
model obtained was not suitable for clinical application, as the metrics to define the ac-
curacy do not define the accuracy in all medical settings. For example, misclassifying a
life-threatening disease, for another one that left untreated, is not dangerous. They con-
firmed that using dermatoscopic images was better for CNN and human raters compared
to clinical close-ups alone. On the other hand, Ulzii-Orshikh [38], classifies between the
3 most common non-pigmented classes (BCC, SCC and AK) and melanoma using a
combination of Error-Correcting Output Codes (ECOC) and Support Vector Macine
(SVM) with an existing pre-trained AlexNet leaded to a mean accuracy of 94%.

The different performances of the models of non-pigmented compared with the previ-
ous section of pigmented models can be explained knowing that the features of non-
pigmented lesions are less specific than pigmented lesions, which is reflected both in the
models and in the human expert raters’ low accuracy.



Chapter 3

Medical background

3.1 Fitzpatrick skin phototype

The Fitzpatrick skin type (or phototype) is a scale used to classify the skin according to
its reaction to exposure to sunlight [39]. The different categories depend on the amount
of melanin pigment in the skin. This is determined by constitutional colour (white,
brown, or black skin) and the effect of exposure to ultraviolet radiation (tanning). The
Table 3.1 summarises the characteristics of each of the phototypes with its features and
tanning abilities, and Figure 3.1 summarises its most characteristic colour. Skin colour
is relevant to our study, since the lesions are not equally presented in the different types
of skin, as non-pigmented skin carcinomas are more present in lighter skin.

Table 3.1: Fitzpatrick skin type

Skin Type Features Tanning ability
I Pale skin Always burns, does not tan
II Fair skin Burns easily, tans with difficulty
III Darker white skin Sometimes mild burn, tan about average
IV Light-brown skin Rarely burns, tans easily.
V Brown skin Never burns, tans very easily.
VI Black skin Never burns, tans very easily.

Figure 3.1: Illustration of the different skin colors following the Fitzpatrick skin
phototype.

11
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3.2 Dermatoscopy

Dermatoscopy or dermoscopy is a non-invasive technique for diagnosing skin lesions that
refers to the examination of the skin using skin surface microscopy and is also called
‘epiluminoscopy’ and ‘epiluminescent microscopy’ [40]. Dermatoscopy requires a high-
quality magnifying lens and a powerful lighting system (a dermatoscope).

A dermatoscope (also known as a dermoscope) is a handheld instrument, equipped
with a magnification lens and a light source [41]. It enables viewing the subsurface
morphology of cutaneous lesions, down to the depth of the superficial dermis. It en-
hances the diagnostic accuracy and confidence of experienced users by revealing colours
and structures that are normally not visible to the unaided eye, for both pigmented
and non-pigmented skin lesions. There are 2 types of dermatoscope available, Polarized
(PD) and Non-polarized (NPD):

1. Non-polarized dermatoscope (NPD): have a magnification lens and light-
emitting diodes to provide illumination. They require direct contact of the glass
plate with the skin surface and the presence of a liquid interface with a refractive
index equal to or closely matching that of the skin. NPD allows visualisation of
subsurface structures located in the epidermis and the dermal-epidermal junction
(DEJ), but features deeper than the DEJ can hardly be visualised.

2. Polarized dermatoscope (PD): also contain light-emitting diodes and a magni-
fication lens to provide illumination like non-polarized dermatoscope. To produce
cross-polarization, PDs, on the other hand, utilise two polarized filters. As a result,
they do not need to come into direct contact with the skin or employ immersion liq-
uids since it is not required to reduce the reflection of the corneal layer of the skin.
PD enables visualisation of subsurface structures located at the dermal-epidermal
junction (DEJ) or superficial dermis, and they are almost ”blind” to the skin’s
surface and to structures in the superficial epidermis.

We can point out some differences between the two methods. The depth of seen struc-
tures is the fundamental difference between non-polarized dermatoscopy and polarized
dermatoscopy. Although NPD is better for evaluating structures in the shallow skin lay-
ers (e.g., the superficial epidermis down to the dermo-epidermal junction), PD is better
for evaluating structures in the deeper skin layers (e.g., DEJ and superficial dermis).
Blood vessels (especially those located in the dermis) and vascular blush are more ev-
ident under PD since it does not require direct skin contact (due to lack of pressure
effect). When compared to NPD, PD will show slightly darker brown and blue colours,
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as well as greater variability in pigmentation in pigmented lesions with melanin at the
DEJ or superficial dermis.
The “naked eye” evaluation alone is not enough to ensure the accurate diagnosis of skin
cancer, but is important in the assessment of the gross morphological characteristics of
the lesion, such as size, shape, colours, contours, and surface topography. Therefore,
experts rely on dermatoscopic images to make a diagnosis.

3.3 Skin lesions and carcinomas

We can classify the different lesions between benign and malignant (carcinoma) and
pigmented and not pigmented. In the following sections, the most representative types
of skin lesions present in the world are explained in terms of their dermatoscopical
characteristics to help us to learn how to differentiate them primarily.

3.3.1 Pigmented

The brown pigment, known as melanin, is commonly involved in pigmented lesions,
causing small or large patches of the skin to appear brown, black, or even blue in colour.

3.3.1.1 Benign

Seborrheic keratoses: is a benign lesion that can be present anywhere on the skin,
except mucous areas, palms and soles [42]. It normally starts to appear with ageing,
especially after the 50s. The appearance of the lesion changes as it evolves. It begins
as a light to dark brown oval, but as the lesion grows, it takes on the appearance of a
plaque with a waxy or stuck-on aspect. They are easy to diagnose except when they
are deeply pigmented and can be misjudged as melanoma and a further test must be
performed. Image examples from the above can be seen in Figure 3.2.

Melanocytic nevus: is a common benign lesion that usually appears in young children
and young adults and it is caused by sun exposure particularly during childhood [43].
They tend to be symmetrical and a with uniform structure, there are different types,
they can be flat, flat but with a central elevation or entirely elevated. When observed
under a dermatoscope they can have a cobblestone pattern, aggregated globules, network
pattern or strutureless amorphus pigmentation areas [44]. Examples of the above can
be found in Figure 3.3.
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(a) (b) (c)

Figure 3.2: (a) Seborrheic keratoses in the beginning with a brown oval (b) Seborrheic
keratoses evolved into the apperance of a plaque with light color (c) Seborrheic keratoses
evolved into the apperance of a plaque with dark color. Images were obtained from the

ISIC Archive [2].

(a) (b) (c)

Figure 3.3: (a) Melanocytic nevus entirely elevated with a vascular pattern (b)
Melanocytic nevus flat with a central elevation (c) Melanocytic nevus flat with an

amorphous pattern. Images were obtained from the ISIC Archive [2].

Dermatofibroma: is a benign lesion with no evidence of what is the cause of them, it
is thought to come from minor trauma, such as insect bites that are occasionally blamed
for their appearance. They are normally located in the legs, but they can also appear
in the arms and torso and are a bit depressed, like a pinch [45]. They have a different
appearance depending on the type of skin, for fair skin types, it can range from pink
to light brown, whereas in dark skin it can range from dark brown to black, with some
appearing paler in the centre. Examples from the above are in Figure 3.4.

(a) (b)

Figure 3.4: (a) Dermatofibroma with a pale-yellowish center (b) Dermatofibroma
where the pinch can be observed and with a pink color. Images were obtained from the

ISIC Archive [2].
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3.3.1.2 Malignant

Melanoma: is a cancerous pigmented lesion that is less common than other types of skin
carcinomas but widely known since it easily grows and spreads and for its pigmented
appearance [46]. It may arise from previous benign lesions, such as acquired naevi
beginning in cells known as melanocytes. It is more common for fair skin types. The
dermatoscopic characteristics are extremely diverse. The early stages of melanoma are
well organised, since they fall into the category from which the lesion is derived, but as
time passes, it gets more disorganised, which can be seen dermatoscopically. Melanomas
have dermatoscopical characteristics that indicate melanocytic origin, such as networks,
brown, or black globules clumped together. In terms of shape and structure, superficial
melanoma is asymmetrical and uneven and often diagnosed when they have <6mm of
diameter. Examples from the above are shown in Figure 3.5.

(a) (b) (c)

Figure 3.5: (a), (b) and (c) Melanomas with an irregular pigmented structure. Images
were obtained from the ISIC Archive [2].

3.3.2 Non-pigmented

Non-pigmented lesions are known for the absence of melanin, giving them light colors
such as red, pink, white, or skin-coloured.

3.3.2.1 Benign

Actinic keratosis (AK): is a benign lesion that commonly arises on sun-damaged
skin [47]. Although it is normally not serious, it can develop into a Squamous Cell
Carcinoma. The lesion appears in varying shapes depending on the part of the body it
arises. It has been reported to manifest with different patterns on the face and body. The
lesions found on the face dermatoscospically have what is described as the ’strawberry
pattern’. Characterized for having a pink structureless background with small white
areas in between that correspond to follicular openings of the skin. On the other hand,
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AK non-facial does not have a specific pattern being irregular and with a surface scale
typically white or yellow. Additionally, they present a rosette sign [3], that it can only
be seen under polarized light and consists of 4 white dots in a clover shape and always
oriented in the same angle. Examples of the above are shown in Figure 3.6

(a) (b) (c)

Figure 3.6: (a) AK facial with ’strawberry pattern’. Image from ISIC Archive [2] (b)
AK non-facial. Image from ISIC Archive [2] (c) AK rosettes can be observed. Image

from DermNet NZ [3].

3.3.2.2 Malignant

Basal cell carcinoma (BCC): is the most common skin cancer in the world. There are
multiple types of pathologies associated with BCC and they can be either pigmented or
non-pigmented. In this project, we are going to focus on the non-pigmented. BCCs fre-
quently show pigment during dermatoscopy, with up to 30% of clinically non-pigmented
BCCs displaying pigment [48]. For both pigmented and non-pigmented BCCs, the use
of dermatoscopy has greatly increased diagnostic accuracy and confidence in doctors.
The presence of arborizing vessels, enormous blue-gray ovoid nests, multiple blue-grey
globules, leaf-like areas, spoke wheel areas, and ulceration, are dermatoscopic criteria
linked with BCC [49]. Examples of the above are shown in Figure 3.7.

(a) (b) (c)

Figure 3.7: (a) BCC showing the presence of arborizing vessels (b) BCC with blue-
gray ovoid nest present in the lesion (c) BCC showing arborizing vessels and ulceration.

Images were obtained from the ISIC Archive [2].

Squamous cell carcinoma (SCC): after Basal Cell Carcinoma, it is the second most
common cutaneous cancer, with a rising frequency worldwide. Actinic keratosis can
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often develop into an invasive SCC. It most commonly appears on sun-exposed skin
areas such as the scalp, face, neck, forearms, and dorsal hands [50]. Keratin/scales,
blood spots, white circles, white structureless patches, hairpin vessels, linear irregular
arteries, perivascular white halos, and ulceration are all dermatoscopic criteria for SCC
[49]. Examples of the above are shown in Figure 3.8.

(a) (b) (c)

Figure 3.8: (a) SCC with a white structureless area and central keratin (b) SCC with
white circles (c) SCC with loop vessels. Images were obtained from the ISIC Archive

[2].





Chapter 4

Deep learning background

Deep learning is a subfield of Machine learning (ML) which in turn is a subset of Artificial
Intelligence (AI), born from the biological neural networks of the human brain. It also
present a series of characteristics similar to those of the human brain, the possibility of
learning through repetition of examples, generalising the new examples to the past ones
through the realisation of an abstraction of these [51]. In machine learning, there are two
big categories: supervised and unsupervised learning. In supervised learning, the data
used to train the model will have labelled tags, whereas in unsupervised learning the
model will try to infer a behaviour in the data and look for similarities and differences in
the data set. A deep learning algorithm is formed by connecting different layers. Each
of the layers is composed of a certain number of neurones in which simple computations
are performed, and as a whole, they form a complex algorithm.

Figure 4.1: Neural network architecture. Image from IBM Cloud Education [4].
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4.1 Deep learning concepts

In this section, we define some of the concepts used in deep machine learning models
that will be mentioned throughout the document.

• Convolutional neural network, explained in chapter 2.1 is a neural network
that uses at least one convolutional layer [52]. Used mainly for image processing,
classification, segmentation.

• Sample, is an element of our data set. In our case, since we work with images,
we refer to a single image [53].

• Batch size, is a hyperparameter that defines the number of samples that the
network is going to work on within each iteration before updating the internal
parameters of the model. The most popular sizes for this parameter are 16, 32,
64, and 128. By definition, the larger the value, the better the approximation
and the training results, but it will take more time to be processed and require
more memory usage. Therefore, it is recommended to use a size value as large as
possible but without losing memory [53, 54].

• Epoch, is a hyperparameter that defines the number of times the learning algo-
rithm will look at all the images once. Each epoch is made up of one or more
batches. There is no predefined number, the value of this parameter will depend
on the needs of our network [53, 54].

• Weight, is the coefficient for an attribute in a linear model or a connection in a
deep network. The purpose of training linear models is to find the best weight for
each feature. If the weight of a feature is zero, the feature does not contribute to
the model [52].

• Learning rate, is a fundamental hyperparameter that determines how large the
update of the network weights is at the end of each iteration. This determines the
model’s training speed and optimality; a greater rate causes the model to learn
faster at the expense of achieving a set of non-optimal weights. On the other hand,
a small rate will cause the model to learn more slowly but will allow it to reach a
more optimal set of weights unless it reaches a local minima [55].

• Decay, is a hyperparameter that is responsible for adjusting the learning rate
during training depending on the decay function elected. Some decay functions
can be exponential, stepwise, or dependent on time [56].
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• Optimizer, is an algorithm that modifies the parameters of the network, such
as the learning rate and the weights, to reduce the losses produced while training
[52]. There are different types of algorithms, each with their advantages and
disadvantages.

• Stochastic Gradient Descent (SGD) optimizer, is an algorithm to update
the parameters of the network. It is an iterative algorithm that starts from a
random point and goes down the slope until it finds the lowest point of the function
[52]. At each step of the training, the algorithm calculates the gradient for one
observation picked at random, until the gradient converges. While the gradient
has not converged the gradient will continue to be updated, the problem occurs
when the function is not convex and it is possible to have reached a local minimum
instead of absolute minimum [57].

• Adam optimizer, (Adaptive Moment Estimation) is different from the classical
SGD, it combines the benefits from other two optimization methods, Adaptive
Gradient Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp)
[58]. Adam uses the average of the second moments of the gradients to adjust the
parameter learning rates. It is a popular algorithm in machine learning since it
has achieved good results in most cases.

• Activation function, function that defines how the weighted sum of all inputs
from the previous layer is transformed into an output value for the next layer [52].

• Sigmoid, is an activation function, ranging between 0 and 1, normalising the
output of each of the neurones, Figure 4.2, [59, 60].

Figure 4.2: Plot of the sigmoid activation function, with the mathematical equation
that defines it.
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• Softmax, is an activation function, perfect for use when there is a classification
between multiple classes. The function normalises the output for each class be-
tween 0 and 1 and divides it by the total sum, generating a final probability out of
1 that the input sample is from a specific class [60]. The equation 4.1 represents
the function in which Xi is the k different input values.

f(Xi) = eXi∑k
j=0 eXj

for i = 1....k (4.1)

• ReLu, Rectified Linear Unit, is an activation function, is the most common for
hidden layers. In which negative values are transformed to 0.0 and if positive the
value is returned for the output [52].

• Loss function, method to evaluate the performance of the algorithm. When train-
ing a network, we will aim the minimisation of the loss function using optimizers.
In case of a deviation of the obtained results from the correct one, the resulting
value of the function will increase, decreasing the success rate of the model [61].

• Categorical cross entropy, is a loss function, used in the training of models were
there is multiple classes, using one-hot encode in which only one class will be active
at the output. In our case, this translates to that when classifying the different
non-pigmented carcinomas each image will only have one class associated to it. It
is normally used together with softmax, together they output the probability of
belonging to each class in total [62]. The function is defined in equation 4.2 where
ti is the corresponding target value, is the f(Xi) is the i-th scalar value in the
model output.

CE = −
k∑

i=1
tilog(f(Xi)) (4.2)

• Accuracy, is the fraction of predictions that the model got right. In our case that
the classification is multiclass, the prediction is calculated as in the equation [52].

Accuracy = Correct predictions
Total number of samples (4.3)

• Precision, is the ratio of correctly predicted positive observations to the total
predicted positive observations [52, 63]. If the precision is high, there will be a low
number of false positives.

Precision = True positives
True positives + False positives (4.4)
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• Recall, is the ratio of correctly predicted positive observations to all observations
in the actual class [52, 63].

Precision = True positives
True positives + False negatives (4.5)

• F-1 value, is the weighted average of precision and recall. It is a very useful
metric for unbalanced datasets [63].

F1 Score = 2 ∗ Recall ∗ Precision
Recall + Precision (4.6)

• Confusion matrix, a table that summarizes how successful a model has been
in the predictions in the test set [52]. A confusion matrix has two axes: one for
the predicted label and the other for the actual label. The matrix has a size of
NxN, where N is the number of classes. It is a useful tool that can help find
mistake patterns, for example, one class being mostly confused by another one in
particular.

4.2 Pre-trained models

With transfer learning, thanks to the existence of pretrained models that have been
proven to perform well in a similar task, it is possible to start training our model from a
pre-existing one and not from scratch [64]. In the process, it is possible to leave frozen
a number of layers, in particular the deepest ones, which are also the most specific and
with a higher discriminative capacity. In addition, there is the possibility to add more
layers if necessary. The choice of the model that we want to re-train to solve our need
lies the compromise of the size and accuracy of the predictions. The Keras library has
a wide variety of models from which we can choose. In our project, we will make use of
Inception, Mobilenet, InceptionResNetV2, DenseNet for further comparison in terms of
accuracies of the results [65].





Chapter 5

Resources and tools used

The project was carried out on one of the departments computers with a GPU, Nvidia
Corporation GP102, Titan X. To be able to access the computer from home, an SSH
connection was used.

5.1 Keras

Keras is an application programming interface (API) implemented as an open source
Python library to allow the implementation of deep neural networks [66]. One of its
advantages is that it is capable of running on top of Tensorflow, CNTK and Theano
apart from offering support to multiple types of GPU. The API is designed to be of
rapid prototyping, it is intuitive and allows high-level abstractions independent of the
back-end, making it easy to understand by the user by using modular construction.

5.2 Jupyter notebook

Jupyter notebook [67] is an open source web application that allows users to create
documents that contain live code, visualisations, and narrative text with the structure
of runable cells. These cells can be run individually and not necessarily in sequence,
this being one of its main advantages that makes it suitable for this project, since the
cells can be re-runned individually, making it easy to experiment with small parts of the
whole program.
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5.3 Anaconda

Anaconda is an open source distribution for Python and R [68]. It was built for data
scientists, and it is widely used for machine learning. Its structure of different environ-
ments allows to deploy and manage the different packages within the environment. It
makes it possible to reduce the possible issues that several libraries have when working
together, and also allowing the user to have different versions of a library in different en-
vironments. In this way, the project can be isolated in an environment with the preferred
Python version and different versions of packages.

5.4 Dermicus

Dermicus is a CE-certified digital teledermatology platform that allows a quick and se-
cure diagnosis of skin cancer and wounds and allows remote diagnosis [69]. Dermicus is
composed of both a mobile application in which cases are created and a web platform
that is used for the assessment of cases. The platform was used at Sk̊anes University
Hospital in Lund and could be accessed from both the web portal and the iOS app. The
Iphone SE, was the mobile device used to collect images from patients, the phone could
be coupled with a high-quality dermatoscope, the Heine iC1 [70]. When registering a
new case, 4 images were obtained, 2 macroscopic and 2 dermatoscopic: the general area
surrounding the lesion, a close look up to the lesion, a polarized dermatoscopic and a
non-polarized dermatoscopic. Additionally, patient metadata was collected, such as age,
sex, location of the lesion, time since the lesion appeared, symptoms and diagnosis. Fur-
thermore, the web portal was used to manage the notations of the planned management
of the lesion.



Chapter 6

Training and validation of the
deep learning models

This chapter presents the data sets used to train the deep learning models, the methodol-
ogy used, and the series of experiments carried out to test the results for the completion
of the project.

6.1 Data sets

This section describes the data sets that will be used for the training and validation of
the various networks. A summary of their composition is given in Table 6.1. Research
into publicly available data sets was done prior to the selection of the following and can
be found in the Appendix A. The following was selected based on the inclusion of the
lesions in the study case, the use of dermatoscopic images, the size of the data set, and
the possible similarity of skin types to Sweden.

Table 6.1: Number of images per class in each data set.

Class
Data set HAM10000 BCN20000 HAM10000 &

BCN20000 LU200

Actinic keratosis 327 737 1064 36
Basal Cell Carcinoma 514 3052 3566 116

Squamous Cell Carcinoma 197 431 628 22

6.1.1 HAM10000

The Human Against the Machine, HAM10000 [71], the data set is a collection of der-
matoscopic images collected over a period of 20 years from different sites, the Department
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of Dermatology at the Medical University of Vienna, Austria, and the skin cancer prac-
tice of Cliff Rosendahl in Queensland, Australia. The data set consists of 10015 images
divided into the following categories: basal cell carcinoma, dermatofibroma, melanoma,
pigmented benign keratosis, melanocytic nevus, vascular lesion, actinic keratosis, and
squamous cell carcinoma in which the diagnoses are 53.3% of biopsy-proven samples. In
our particular case, only the non-pigmented classes were used, BCC, SCC and AK.

The data set is publicly available in the ISIC Archive [2] and has been part of the ISIC-
2018 [72] and 2019 [73] challenge. All data contained in the HAM10000 data set has
received the institutional ethical approval (CC BY-NCND 4.0).

6.1.2 BCN20000

The BCN20000 data set [74] was created by Hospital Cĺınic in Barcelona from lesions
captured between 2010 and 2016. The data set consists of 19424 dermatoscopic images
from 5583 lesions, including lesions that are difficult to diagnose, such as those found
in the nails and mucosa. The data set was divided into the following categories: nevus,
melanoma, basal cell carcinoma, seborrheic keratosis, actinic keratosis, squamous cell
carcinoma, dermatofibroma, vascular lesion and ’other’ (lesions not contained in any
other category). Furthermore, each image was paired with metadata on the lesion loca-
tion, age and sex of the patient. In our particular case, only the non-pigmented classes,
BCC, SCC, and AK, were used.

The data set was part of the ISIC-2019 challenge [73] and is publicly available in the ISIC
Archive [2]. All data contained in the BCN20000 data set has received the necessary
institutional ethics approval (HCB/2019/0413).

6.1.3 LU200

The LU200 data set was created by the Lund Univesity Hospital from lesions captured
during 2 weeks in March 2022. The data set is composed by 348 dermatoscopic and
macroscopic images from 87 lesions. For each lesion there are two macroscopic images,
one of the general area and another with a close-up, then two dermatoscopic images
polarized and non-polarized. The data set is divided into basal cell carcinoma, squamous
cell carcinoma, and actinic keratosis. Each image has metadata associated with the
location of the lesion, the age, sex of the patient, the time of the lesion, and the procedure
that was followed.

The data is not publicly available, and the use of it was granted for research purposes
to Lund University.
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6.2 Experiments and results

The experiments can be divided according to the data set used and the architecture
from which the model will be trained. The model architectures used are DenseNet201,
Mobilenet and InceptionResNetV2 and using the technology of transfer learning, we can
retrain them to solve our problem. The complete architecture for each experiment is
given in the Appendix B. The experiments were based on the following configuration in
which the hyperparameters have been defined as those used by the Adam optimiser [58]
and a batch size of 16 or 32, we vary the learning rate in the different experiments and in
addition for the last layer we will use softmax as the activation function and categorical
cross-entropy as the loss function. We use Keras callbacks and as a stopping criterion
(EarlyStopping) to avoid overfitting the model and class weight balance to compensate
for the different amounts of images in each class. The images are resized to 224x224
pixels and divided between 70% for train and 15% each for test and validation. Since the
total number of images was not sufficient for training, two types of image augmentations
were implemented. First, we tried the built-in image augmentation from Keras, which
provides real-time data augmentation ensuring that the model receives new input data
in every epoch. Secondly, a previous manual augmentation in which all classes were
manually assigned the same fixed number of images for training, validation, and testing.
The modifications applied to the images were chosen based on the fact that the lesion
was not deformed or cut out of the image. We applied rotation up to 260 degrees and
both vertical and horizontal flipping and minor shifting. A complete summary of the
experiments and the parameters that were characterised in their training can be found
in Table 6.2. Furthermore, we will use the Zero rate, it is the accuracy that the model
would obtain if classifying always to the most frequent class. We will use this rate to
demostrate that the model is learning and that it is skilled in solving the problem rather
than just going with the most probable class.

6.2.1 HAM10000 training

In the HAM10000 data set only using the three non-pigmented classes available, the total
number of images per class were 514 BCC, 327 AK and 197 SCC. Therefore, the Zero
rate classifier of this data set will be 49% if we do not use our previous augmentation in
which the classes are balanced. We present the most relevant models and the parameters
that characterise them. Additionally, a summary of each of the experiment results is
presented in Table 6.3.

• Experiment 1: Transfer learning from the InceptionResNetV2 model in which
all imported layers were trainable. After the imported model the following layers
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Table 6.2: Summary of experiments and the parameters used for training.

Architecture Layers
trainable

Image
augmentation Batch Epochs Early

Stopping

HAM10000

Exp. 1 InceptionRes-
NetV2 All Built-in 16 20 -

Exp. 2 DenseNet201 All Own 32 40 -
Exp. 3 Mobilenet All Built-in 32 40 -

BCN20000
Exp. 1 DenseNet201 Last 10 Own 32 30 17
Exp. 2 DenseNet201 All frozen Own 32 40 18
Exp. 3 Mobilenet All frozen Own 32 40 -

HAM &
BCN
Exp. 1 DenseNet201 Last 20 Built-in 32 30 -
Exp. 2 DenseNet201 Last 10 Built-in 32 40 23
Exp. 3 DenseNet201 All frozen Built-in 32 40 -

Table 6.3: HAM10000 Summary Table of results.

Experiment Training Validation Testing
Accuracy Loss Accuracy Loss Accuracy Loss

1 0.88 0.29 0.83 0.51 0.76 0.62
2 0.98 0.04 0.54 1.08 0.78 0.75
3 0.67 0.74 0.64 0.78 0.62 0.84

were added: average pooling, 3 fully connected layers with their respective dropout
layer with a value of 0.5 to prevent overfitting and the flattening layer before the
final prediction layer. This experiment used Keras built-in augmentation, learning
rate 0.0001, batch size of 16, and a total of 20 epochs. After training, we obtained a
training loss of 0.29 and an accuracy of 0.88, validation loss of 0.51 and an accuracy
of 0.83, and a testing loss of 0.62 and an accuracy of 0.76. The model has improved
the baseline set by the Zero rate by 27%. In Figure 6.1 on the left it can be seen
that training and validation accuracy and loss are both increasing and decreasing
at a similar pace. On the top right of the figure, we have the classification report
in which we can see that for the SCC class the precision is low while on the other
hand its recall is high, remembering the equation from chapter 4 we can say that
the model is incorrectly classifying samples from other classes into the SCC class.
For the AK class, we have high precision but low recall, meaning that the model
does not correctly classify AK samples and incorrectly classifies them into another
class. In this case, as can be seen in the confusion matrix below, they are classified
as SCC.

• Experiment 2: Transfer learning from the DenseNet201 model in which all im-
ported layers were trainable. After the imported model, the following layers were
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Figure 6.1: HAM10000, experiment 1: Left: Training and validation accuracy and
loss graphs per epoch. Top right: Testing classification report. Bottom right: Testing

confusion matrix.

added: average pooling, 2 fully connected layers with their respective dropout layer
with a value of 0.5 to prevent overfitting, and the flattening layer before the final
prediction layer. This experiment used our own previous image augmentation,
learning rate 0.0001, batch size of 32, and a total of 40 epochs. After training, we
obtained a training loss of 0.04 and an accuracy of 0.98, a validation loss of 1.08
and an accuracy of 0.54, and a testing loss of 0.75 and an accuracy of 0.78. In
Figure 6.2 on the left, we can see that the model is overfitted and has reached al-
most maximum accuracy during training, but when validated, the model abruptly
varies its accuracy between consecutive epochs. In the confusion matrix, it can be
seen that most of the classification errors are made for class AK, with a low recall
score, this model confuses this class with the other 2 in 40% of the cases.

• Experiment 3: Transfer learning from the Mobilenet model in which all imported
layers were trainable. After the imported model the following layers were added:
average pooling, 3 fully connected layers with their respective dropout layer with a
value of 0.5 to prevent overfitting and the flattening layer before the final prediction
layer. This experiment used Keras built-in augmentation, learning rate 0.0001,
batch size of 32, and a total of 40 epochs. After training, we obtained a training
loss of 0.74 and an accuracy of 0.67, validation loss of 0.78 and an accuracy of
0.64, and a testing loss of 0.84 and an accuracy of 0.62. The model has improved
the baseline set by the Zero rate by 13%. In Figure 6.3 on the left, the accuracy
and loss graphs are very spiky for both training and validation, which could mean
that the weights in that particular epoch are in a bad local minima, this could be
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Figure 6.2: HAM10000, experiment 2: Left: Training and validation accuracy and
loss graphs per epoch. Top right: Testing classification report. Bottom right: Testing

confusion matrix.

solved by lowering the learning rate or changing the optimiser. The same problem
defined for experiment 1 is present for this one, low precision for SCC class and
low recall for AK class.

Figure 6.3: HAM10000, experiment 3: Left: Training and validation accuracy and
loss graphs per epoch. Top right: Testing classification report. Bottom right: Testing

confusion matrix.
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6.2.2 BCN20000 training

In the BCN20000 data set only using the three non-pigmented classes available, the total
number of images per class was 3052 BCC, 737 AK and 431 SCC. The Zero rate classifier
of this model is 72% if we do not use our previous augmentation in which the classes are
balanced. We present the most relevant models and the parameters that characterise
them. In addition, a summary of each of the experiment results is presented in Table
6.4.

Table 6.4: BCN20000 Summary Table of results.

Experiment Training Validation Testing
Accuracy Loss Accuracy Loss Accuracy Loss

1 0.99 0.01 0.83 0.47 0.86 0.36
2 0.90 0.24 0.78 0.64 0.79 0.48
3 0.84 0.42 0.74 0.62 0.76 0.58

• Experiment 1: Transfer learning from the DenseNet201 model in which the 10
last imported layers were trainable. After the imported model the following layers
were added: average pooling and the flattening layer before the final prediction
layer. This experiment used our own previous image augmentation, learning rate
0.0001, batch size of 32, a total of 30 epochs with EarlyStopping in epoch 17. After
training, we obtained a training loss of 0.01 and accuracy of 0.99, validation loss of
0.47 and accuracy of 0.83, and testing loss of 0.36 and accuracy of 0.86. In Figure
6.4 on the left it can be seen that the model is clearly overfitting, reaching an
almost perfect score and plateu in training from an early epoch with a difference
of 15% with validation before the model was early stopped. In the classification
report we can see that for the AK class the precision is low when compared to the
other two, we can say that the model is incorrectly classifying samples from other
classes into the AK class, in particular the SCC as can be seen in the confusion
matrix. For the SCC class, we have high precision but low recall, meaning that
the model does not correctly classify SCC samples and incorrectly classifies them
into another class, in particular AK.

• Experiment 2: Transfer learning from the DenseNet201 model in which all im-
ported layers are frozen. After the imported model, the following layers were
added: average pooling, 3 fully connected layers with their respective dropout
layer with a value of 0.5 to prevent overfitting, and the flattening layer before the
final prediction layer. This experiment used our own previous image augmenta-
tion, learning rate 0.0001, batch size 32, a total of 40 epochs with EarlyStopping in
epoch 18. After training we obtained a training loss of 0.24 and accuracy of 0.90,
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Figure 6.4: BCN20000, experiment 1: Left: Training and validation accuracy and
loss graphs per epoch. Top right: Testing classification report. Bottom right: Testing

confusion matrix.

validation loss of 0.64 and accuracy of 0.78, and testing loss of 0.48 and accuracy of
0.79. In Figure 6.5 on the left it can be seen that the model is overfitting, reaching
an almost perfect score in training with a difference of 10% with validation. For
the AK and SCC classes in the classification report, they have the same value for
precision and recall, in which both classes are incorrectly classified as belonging to
another one.

• Experiment 3: Transfer learning from the Mobilenet model, in which all im-
ported layers are frozen. After the imported model the following layers were added:
average pooling and the flattening layer before the final prediction layer. This ex-
periment used our own previous image augmentation, learning rate 0.0001, batch
size of 32, a total of 40 epochs. After training we obtained a training loss of 0.42
and accuracy of 0.84, validation loss of 0.62 and accuracy of 0.74, and testing loss
of 0.58 and accuracy of 0.76. In Figure 6.6 on the left it can be seen that the model
is clearly overfitting, reaching an almost perfect score in training with a difference
of 10% with validation. In the confusion matrix, it can be seen that most of the
classification errors are made for class SCC, in which this one is confused with AK
in 26% of the cases.
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Figure 6.5: BCN20000, experiment 2: Left: Training and validation accuracy and
loss graphs per epoch. Top right: Testing classification report. Bottom right: Testing

confusion matrix.

Figure 6.6: BCN20000, experiment 3: Left: Training and validation accuracy and
loss graphs per epoch. Top right: Testing classification report. Bottom right: Testing

confusion matrix.

6.2.3 HAM10000 and BCN20000 training

In this case, a new data set was created with the combination of HAM and BCN. With
a total images per class of 3566 BCC, 1064 AK and 628 SCC. The Zero rate classifier of
this model is 67% if we do not use our previous augmentation in which the classes are
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balanced. We present the most relevant models and the parameters that characterise
them. In addition, a summary of each of the experiment results is presented in Table
6.5.

Table 6.5: HAM10000 and BCN20000 Summary Table of results.

Experiment Training Validation Testing
Accuracy Loss Accuracy Loss Accuracy Loss

1 0.93 0.19 0.79 0.55 0.82 0.53
2 0.89 0.31 0.71 0.66 0.79 0.54
3 0.65 0.75 0.65 0.72 0.67 0.70

• Experiment 1: Transfer learning from the DenseNet201 model in which the 20
last imported layers were trainable. After the imported model the following layers
were added: average pooling and the flattening layer before the final prediction
layer. This experiment used Keras built-in augmentation, learning rate 0.0001,
batch size of 32, and a total of 30 epochs. After training, we obtained a training
loss of 0.19 and an accuracy of 0.93, a validation loss of 0.55 and an accuracy of
0.79, and a testing loss of 0.53 and an accuracy of 0.82. The model has improved
the baseline set by the Zero rate by 15%. In Figure 6.7 on the left it can be seen
that the model is clearly overfitting, reaching an almost perfect score in training
with a difference of 14% with validation. In the classification report, we can see
that for the SCC class the precision is low, we can say that the model is incorrectly
classifying samples from other classes into the SCC class, in particular the AK as
can be seen in the confusion matrix. For the AK class, we have high precision but
low recall, meaning that the model does not correctly classify AK samples and
incorrectly classifies them into another class, in particular SCC.

• Experiment 2: Transfer learning from DenseNet201 model in which the 10 last
imported layers were trainable. After the imported model the following layers
were added: average pooling and the flattening layer before the final prediction
layer. This experiment used Keras built-in augmentation, learning rate 0.0001,
batch size of 32, and a total of 40 epochs with EarlyStopping in 23 epochs. After
training, we obtained a training loss of 0.31 and accuracy of 0.89, validation loss
of 0.66 and accuracy of 0.71, and testing loss of 0.53 and accuracy of 0.79. The
model has improved the baseline set by the Zero rate by 12%. In Figure 6.8 on the
left it can be seen that the model is clearly overfitting, reaching an almost perfect
score in training with a difference of 18% with validation. Although the model
continues to learn in each epoch the validation is stable with little spikes in the
accuracy. In the classification report, we can see that we have the same problem
of low precision and recall as described on experiment 1 in the same classes.
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Figure 6.7: HAM10000 and BCN20000, experiment 1: Left: Training and validation
accuracy and loss graphs per epoch. Top right: Testing classification report. Bottom

right: Testing confusion matrix.

Figure 6.8: HAM10000 and BCN20000, experiment 2: Left: Training and validation
accuracy and loss graphs per epoch. Top right: Testing classification report. Bottom

right: Testing confusion matrix.

• Experiment 3: Transfer learning from DenseNet201 model in which all imported
layers were froze. After the imported model, the following layers were added: av-
erage pooling, 3 fully connected layers with their respective dropout layer with a
value of 0.5 to prevent overfitting, and the flattening layer before the final pre-
diction layer. This experiment used Keras built-in augmentation, learning rate
0.0001, batch size of 32, and a total of 40 epochs. After training, we obtained
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a training loss of 0.75 and an accuracy of 0.65, a validation loss of 0.72 and an
accuracy of 0.65, and a testing loss of 0.70 and an accuracy of 0.67. The model has
not improved the baseline set by the Zero rate. However, as can be seen in Figure
6.9 on the left, this model has fixed the previous problem that other models had
with overfitting. However, the accuracy is reduced, and the classification worsens
for all classes.

Figure 6.9: HAM10000 and BCN20000, experiment 3: Left: Training and validation
accuracy and loss graphs per epoch. Top right: Testing classification report. Bottom

right: Testing confusion matrix.

6.3 Networks versatility

The most significant trained networks were tested with the other data sets, the model
chosen was selected based on the accuracy and consistency of their results. For the
HAM10000 data set the model selected is from experiment 1. For the BCN20000 data
set, the model from experiment 2. For the HAM10000 and BCN20000 data set, the
model from experiment 1. The results of the validations are shown in Table 6.6, and
Figures 6.10, 6.11 and 6.12 represent the different confusion matrices.

• HAM10000: when the model is tested with the other data sets, it performs
poorly, obtaining low accuracies and high losses with a clear tendency to classify
the samples as belonging to the SCC class as seen in Figure 6.10.

• BCN20000: when the model is tested with the HAM10000 data set the accuracy
is 32% worse than a random classifier and classifies the samples as belonging to
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BCC the most probable class, as seen in (a) of Figure 6.11. For the LU200 data
set, the accuracy obtained is 40% and the predictions are mainly for the BCC and
SCC classes.

• HAM10000 BCN20000: when the model is tested with the HAM10000 data
set, the class BCC is correctly classified but for AK and SCC, the predictions are
equally divided for all classes. When tested for BCN20000 the results are not far
from the original model since the BCN20000 was the data set that contributed
more to this model, but there is a strong preference to predict as BCC, which can
also be seen for the LU200 data set, Figure 6.12.

Table 6.6: Summary of validation results.

Model
Dataset HAM10000 BCN20000 LU200

Accuracy Loss Accuracy Loss Accuracy Loss
HAM10000 0.78 0.76 0.34 8.45 0.18 9.08
BCN20000 0.32 2.92 0.79 0.48 0.40 1.40

HAM10000 & BCN20000 0.65 1.07 0.73 0.81 0.66 1.63

(a) (b) (c)

Figure 6.10: Confusion matrices of the testing of HAM10000 in the following data
sets: (a) HAM10000 (b) BCN20000 (c) LU200.

(a) (b) (c)

Figure 6.11: Confusion matrices of the testing of BCN20000 in the following data
sets: (a) HAM10000 (b) BCN20000 (c) LU200.
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(a) (b) (c)

Figure 6.12: Confusion matrices of the testing of HAM10000 and BCN20000 in the
following data sets: (a) HAM10000 (b) BCN20000 (c) LU200.

6.4 Grad-CAM

The Grad-CAM algorithm is an additional experiment carried out to determine what
the neural network was focusing on to make a prediction, whether the area was correct
or not. This method includes the production of heat maps that represent activation
classes in the received input image. The activation class is associated with a particular
output class. These classes can be used to show the importance of each pixel in relation
to the class concerned by increasing or reducing the intensity of the pixel. The heatmap
is created from the last convolutional layer in which the final prediction is made, and
the algorithm will output the corresponding heatmap and the superimposed map on the
original image [75].

The model used for Grad-CAM testing is the model from experiment 1 with the mix data
set of HAM10000 and BCN20000. Grad-CAM was applied for each own testing data set
and also for LU200. On the first one, some examples are presented in Figures 6.13 and
6.14 for correct classification and incorrect one respectively. From the images it can be
seen that the model is not focussing directly on the lesion and more on the surrounding
skin. These could be the ”white clues” that are present and that dermatologists also
use to base their diagnosis. The set of images in Figure 6.15 are taken from the LU200
data set and were correctly classified by the model in which the focus of the model in
all images is mainly on the lesion. In contrast, in Figure 6.16 the images presented
were incorrectly classified by the model, in this case the images taken with the NP
dermatoscope had a glare that confused the model for (b) and (d) and focused on them
instead of on the lesion. (a) and (c) are incorrect classifications from the model, which
(c) can be explained as most of the crust lesions in the BCN20000 data set belonged
to SCC, a crust lesion is often defined as SCC by the model. Images (b), (c) and (d)
have in common that the model is looking at the black border from the image, to make
a decision. These borders lack information about the type of lesion, indicating that the
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model is not adapting to the new form of the data set and that possibly adding image
preprocessing to eliminate the border would remove the bias.

To test the constancy of the model, we carried out a test in which parts of the images were
occluded leaving only visible those parts in which the model based the decision when
having the full picture. Then the Grad-CAM algorithm was run in the new occluded
images to compare. In Figure 6.17, the image on (a) is the complete image used for the
test in which the lesion is at the centre of the image and the model has focused on the
outer borders of the lesion. When the image is cut in (b) the lesion is on the bottom
left corner and the model has again focused on the border of the lesion to make the
prediction, in this case again the correct one. In Figure 6.18, the image on (a) is the
complete image with the lesion in the centre that belongs to the AK class, is correctly
classified, and the model is focused below the white area of the lesion. However, when
the lesion is cut in (b), the model concentrates directly on the white area of the lesion,
leading it to miss classify it as BCC class.

6.5 Discussion

The study has shown that a CNN is capable of classifying non-pigmented lesions from
dermatoscopic images. In our experimental setting, we did not use important metadata,
such as age, location of the lesion, and patient history, deviating from the experiments of
a real clinic diagnosis, in which dermatologists have access to these data when making a
diagnosis. Our data suffer from class imbalance in which some lesions are more common,
such as BCC, being over-represented. While AK and SCC had a lower number of samples
for all data sets used, as seen in Table 6.1. This caused bias in the predictions, towards
BCC, the problem was mitigated when applying image augmentation prior to training.
The majority of the models presented from the experiments had similar problems when
classifying the AK and SCC classes. This makes sense since AK is a premalignant
condition that can lead if untreated to SCC. Although the data sets were one of the
largest available for non pigmented dermatoscopic lesions, it is a small data set compared
to others in the world of deep learning. After researching the publicly available data
sets, the two data sets used for the project were HAM10000 and BCN20000. Each of
them different in terms of the method of obtaining the images having clear differences
in how the image was presented (e.g. black circle on the borders of the image or not,
size of the circle, etc.) and the skin type surrounding the lesion. HAM10000 with
more representation of Central Europe and BCN20000 of Southern Europe skin types.
Therefore, when testing the versatility of the model with another data set than that
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Figure 6.13: Visual explanations of correct classifications of the HAM10000 and
BCN20000 data set via gradient based localization. First column is the original image,
second column represents the heatmap and third column is the superimposed heatmap

on the image. (a) AK. (b) AK. (c) BCC. (d) BCC. (e) SCC.

used for training, in Section 6.3. The models performed poorly for the reasons stated
above, being unclear which one plays a larger role.
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Figure 6.14: Visual explanations of incorrect classifications of the HAM10000 and
BCN20000 data set via gradient based localization. First column is the original image,
second column represents the heatmap and third column is the superimposed heatmap
on the image. (a) AK classified as SCC. (b) AK classified as BCC. (c) AK classified as

BCC. (d) SCC classified as BCC.

The accuracy of diagnosis with the HAM10000 data set was lower than that with the
BCN20000 data set, possibly due to differences in the size of the data set, patient
ethnicity, and general contrast variations in the images. A bigger data set was created
with a combination of the two, and used for training, which obtained better results than
the two alone, 82% in testing compared to 76% and 79% respectively. However, in all
the experiments presented, there is a common point, as can be seen in the summary
Tables 6.3, 6.4 and 6.5 there is overfitting in most cases. Models are learning to fit the
data only to the training set, which would explain the low versatility of the models to
be used with another data set. When tested with other data sets, the most versatile
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Figure 6.15: Visual explanations of correct classifications of the LU200 data set
via gradient based localization. First column is the original image, second column
represents the heatmap and third column is the superimposed heatmap on the image.

(a) BCC. (b) BCC. (c) BCC. (d) SCC.

model was the one trained with HAM10000 and BCN20000 combined, which obtained
65% and 73% respectively and 66% accuracy in a completely new data set as LU200.
However for LU200, despite the good accuracy obtained, when looking at the confusion
matrix, the model classified most cases as BCC and since the LU200 is unbalanced with
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Figure 6.16: Visual explanations of wrong classifications of the LU200 data set via
gradient based localization. First column is the original image, second column repre-
sents the heatmap and third column is the superimposed heatmap on the image. (a)
AK classified as BCC. (b) AK classified as BCC (c) BCC classified as SCC. (d) SCC

classified as BCC.

more BCC cases the accuracy turns high when in reality only 20% of the AK and 13%
of the SCC cases were correctly classified.

To train our models in the experiments we used transfer learning, the models used were
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Figure 6.17: Visual explanations of correct classifications of the HAM10000 and
BCN20000 data set via gradient based localization (a) BCC classified as BCC. (b)

BCC classified as BCC.

Figure 6.18: Visual explanations of wrong classifications of the HAM10000 and
BCN20000 data set via gradient based localization (a) AK classified as AK. (b) AK

classified as BCC.

InceptionResNetV2, DenseNet and Mobilenet. The best models were obtained from
DenseNet which have proven to be good for image classification and can effectively
solve the gradient vanishing problem, improve feature map propagation, and minimise
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some parameters. Although Mobilenet introduces blocks similar to DenseNet, its small
architecture and size, perfect for an on-device application, does not achieve as good
accuracy as larger models.





Chapter 7

Conclusions

In this chapter, the conclusions of this master thesis project are presented, as well as
the completion of the objectives and the future work of the project.

7.1 Conclusions

The objective of this project was to develop a deep learning algorithm to help derma-
tologists classify non-pigmented skin lesions from dermatocopical images. The results of
the development are the following:

• Research of skin cancer data sets available. A thorough analysis was carried
out to find the most available online data sets with their corresponding character-
istics, the full analysis is presented in the Appendix A. The decision of which data
sets to use was made based on the skin type, if it could be similar to the Swedish
type, if the images were dermatoscopic, if our target non-pigmented lesions were
included, and the amount of pictures. The data sets that met this criteria were
the HAM10000 and BCN20000 data sets.

• Analysis and evaluation of different deep learning model architectures.
The experiments in the project were carried out using the transfer learning tech-
nique. It was found that the best approach was to retrain an existing network
with a similar task of image classification to solve our problem of a small data set.
The models used were InceptionResNetV2, DenseNet and Mobilenet. In the ex-
periments carried out through the project, DenseNet was the network from which
the best results were obtained. Although Mobilenet did not achieve as good scores
as DenseNet, its compact architecture and size make it perfect for an on-device

49
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application, thus it is a good consideration depending where the model will be
running once it is deployed.

• Analysis and experimental validation of the proposed solution. The ex-
periments were carried out using the architectures proposed and available in Keras
for transfer learning. For training, we used the data sets previously selected and
although they were unbalanced with a higher number of BCC images and with-
out a preprocessing step applied to them in this project, the experimental results
are promising and give hope for a possible future solution with good predictive
capabilities that will improve the quality of the diagnosis made in dermatological
clinics. The results obtained are different for each of the data sets used, HAM10000
with a test accuracy of 76%, BCN20000 with 79% and both together 82%. It is
important to consider that we are in a medical environment in which the precision
of the predictions need to meet the standards since there are lives at stake.

• Analysis whether the type of skin affects the classification. The versatility
of trained networks was tested with another data set different from the training one.
The models performed poorly when used in another data set, due to differences in
the images from one to another, such as image device and the skin type surrounding
the lesion. Whether it is the type of image or the type of skin, it is not possible
to tell from the tests performed. It is necessary to remove the bias in the image
(e.g. black circle, glares, etc.) to focus on the skin type. Although the way the
lesions present themselves is different depending on the skin type, it has been
demonstrated in other publications that it is a conditioning factor when testing
the versatility of a network [28, 76].

• Analysis of the key elements on the image that lead to diagnosis. The
Grad-Cam algorithm was implemented and explained in Section 6.4 to determine
in which area of the image the model was focussing to base its predictions. The
model used was the combination of HAM10000 and BCN20000, which revealed
that the model focused on the lesion but in most cases it was also focussing on
the “white clues” (such as white circles, white lines, white structureless areas), in
which also dermatologists focus when making a diagnosis for non-pigmented skin
lesions.

Finally, we can conclude that the objectives specified at the beginning of the project
have been met at the end of the project.
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7.2 Future work

In this section, we present the possible future lines of the project:

• Correction of image prior to training. Add a correction before inserting the
image into the model, perform filtering and cropping to normalise the images, such
as removing the black border of the camera or correcting present reflections.

• Optimization of the model for better performance. A further study and
more experiments that include a more variety of images and modify more hyper-
parameters will allow us to obtain more robust models, in terms of prediction
accuracy and possible reducing the current overfitting.

• Adding prediction for the following procedure to treat the lesion. In the
new Lund hospital, LU200 data set, information is collected about the procedure
selected to treat the lesion. Using this information for training, the model could
provide feedback to the doctor after the prediction with the procedure preferred for
that lesion. Furthermore, more information could be added, such as the certainty
of prediction and the hot spots of the lesion to look at.

• Expand the databases. Continue with the data collection at the Sk̊ane Univer-
sity Hospital in Lund, to allow for a better model prediction with consistent data
taken with the same device and skin type.

• Add corrective capability. It would be desirable to incorporate the ability to
correct the model decisions by a doctor to automatically gather feedback that can
allow us to refine the behaviour of the model.

• Re-training model while it is deployed. Once the model is deployed for
production and in use, how the lesions appear could evolve. Monitoring the new
data and using these one would allow the model to be adapted for the current
necessities.
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Appendix A

Publicly available data sets

In this chapter the research on publicly available data sets is presented in the form of a
table.
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Appendix B

Architectures from the deep
learning experiments

In this chapter, the different architectures used to train the various experiments from
section 6.2 are presented, following the same previous order.

Figure B.1: Architecture from experiment 1 in the HAM10000 model.
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Figure B.2: Architecture from experiment 2 in the HAM10000 model.

Figure B.3: Architecture from experiment 3 in the HAM10000 model.
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Figure B.4: Architecture from experiment 1 in the BCN20000 model.

Figure B.5: Architecture from experiment 2 in the BCN20000 model.

Figure B.6: Architecture from experiment 3 in the BCN20000 model.



Architectures from the deep learning experiments 66

Figure B.7: Architecture from experiment 1 in the HAM10000 and BCN20000 model.

Figure B.8: Architecture from experiment 2 in the HAM10000 and BCN20000 model.

Figure B.9: Architecture from experiment 3 in the HAM10000 and BCN20000 model.
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