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Abstract

We establish the theory of normal families of meromorphic func-
tions taking values in the extended complex plane, which can be re-
garded as a metric space equipped with the spherical metric. Using the
notion of spherical derivatives, we state and prove Marty’s theorem on
normal families of meromorphic functions. As a result, we deduce the
classical Montel’s theorem on relatively compact families of analytic
functions. With this knowledge, we obtain the fundamental normality
test - Montel’s three value theorem and prove it using the lemma of
Zalcman. Applying these results, the proof of the celebrated Picard’s
great theorem easily follows.

Throughout this work it has been my firm intention to give reference
to the stated results and credit to the work of others. All theorems,
propositions, lemmas and examples left unmarked are assumed to be
too well known for a reference to be given.
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Popular Scientific Summary

At the heart of the complex function theory lies the notion of a
normal family of meromorphic functions. The subject has permeated
through Picard’s theorems, the Riemann mapping theorem, and many
modern results such as the Bloch principle. This thesis deals with the
concept of convergence of sequences of meromorphic functions taking
values in the extended complex plane. A family of meromorphic func-
tions is said to be normal if each sequence in the family converges
uniformly in the chordal metric on each compact subset of the do-
main. This work culminates in proving different normality criteria
for families of meromorphic functions, such as Marty’s theorem (a
criterion that uses the notion of spherical derivatives); Montel’s three-
value theorem (fundamental normality test); and the great Picard’s
theorem.
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Chapter 1

Introduction

1.1 Historical Background

The beginning of a modern complex analysis dates back to 1907 when
P. Montel introduced concepts of compactness into complex analysis
[8]. In 1912, Montel presented the term normal families of analytic
functions in his thesis, describing that the locally uniformly bounded
family of analytic functions is normal [7]. Relying on the Arzelá-Ascoli
theorem that is valid for any compact metric space, Montel’s theorem
became one of the key ingredients of the proof of the Riemann mapping
theorem [2]. Here arises a question, what happens when we consider
functions taking values at the point at infinity? The answer to this
question was given by F. Marty in his dissertation in 1931 where he
considered a family of meromorphic functions on the extended com-
plex plane Ĉ [6]. Marty’s theorem became one of the commonly used
criteria for determining the normality of such families. It can also be
used for deriving some classical results in complex analysis such as
Picard’s theorems on omitted values.

1.2 General Notation

By a domain we mean an open and connected subset of the complex
plane.

R Real line

Rn Real coordinate space
of dimension n
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∥x∥ =
√

x21 + · · ·+ x2n Euclidean norm of x =
(x1, . . . , xn) in Rn

C = {x+ iy ; x, y ∈ R} Complex numbers

Ĉ = C ∪ {∞} Extended complex plane

D = {z ∈ C ; |z| < 1} Unit disc

∂D = {z ∈ C ; |z| = 1} Circle

Dδ(z0) = {z ∈ C ; |z − z0| < δ} for
z0 ∈ C, δ > 0

Disc with center at z0
and radius δ > 0

Ar,R = {z ; r < |z| < R} for 0 ≤ r < R ≤ ∞ Annulus

Bδ(x0) = {x ; ∥x− x0∥ < δ} n−dimensional open ball
with center x and ra-
dius δ > 0

K Compact Hausdorff space

C(K) Continuous complex-
valued functions onK

inf, sup Infimum, Supremum

∥f∥K = sup
z∈K

|f(z)| Supremum-norm

σ(z, w), z, w ∈ Ĉ Chordal metric

f ♯ Spherical derivative

2



Chapter 2

Compactness of Families of
Continuous Functions

In this chapter, we collect some preliminaries from real analysis which
are used throughout the thesis. As a general source on these matters,
we refer to Gamelin’s book [3].

The main result for our purposes is the Arzelá-Ascoli theorem,
which characterizes the space C(K,Rn) of Rn-valued continuous func-
tions on a compact set K with the metric of uniform convergence.

Preliminaries

We assume that the reader is familiar with the notion of a metric space
X = (X , d). In particular we assume some basic familiarity with the
notion of a compact subset of X , which can be defined either using
sequential compactness (each sequence has a convergent subsequence)
or by open coverings.

It is convenient to recall a few further basic definitions and basic
results that we take for granted (cf. [3]):

Definition 2.1. A sequence {fn}∞n=1 in (X , d) is said to be a Cauchy
sequence if

lim
n,m→∞

d(fn, fm) = 0,

that is, if for each ε > 0 there exists an N such that d(fn, fm) < ε for
all n,m > N.

Definition 2.2. X is said to be complete if every Cauchy sequence in
X converges.
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Theorem 2.3. (Heine-Borel Theorem). Let K be a subset of
C. Then K is compact if and only if at least one of the following
equivalent conditions hold:

(a) K is closed and bounded.

(b) Each sequence {zn}∞1 ⊂ K has a convergent subsequence whose
limit is also in K.

(c) Each open cover has a finite subcover.

Definition 2.4. Given a compact subsetK of C we denote by C(K,Rn)
the space of all continuous functions f : K → Rn equipped with the
sup-norm metric:

d(f, g) = sup
z∈K

∥f(z)− g(z)∥. (2.1)

Definition 2.5. A sequence of functions {fn(z)} on K is said to con-
verge uniformly to f(z) if and only if d(fn, f) → 0 as n → ∞.

Theorem 2.6. If K is compact then each continuous function f in
C(K,Rn) is uniformly continuous on K.

We now have the main tools that we need. As an illustration we
now prove the basic fact that the metric space C(K,Rn) is complete.

Theorem 2.7. C(K,Rn) with the metric (2.1) is a complete metric
space.

Proof. Let {fn}∞n=1 be a Cauchy sequence in C(K,Rn). Then for each
ε > 0, there exists N ∈ Z+ such that d(fn, fm) < ε for all n,m > N.

Thus for all z ∈ K, {fn(z)}∞n=1 is a Cauchy sequence in C. Since C
is complete, that is, every Cauchy sequence in C converges, we can
define f : K → C as the pointwise limit f(z) = limn→∞ fn(z).

We claim that in fact fn converges uniformly to f. Indeed if m >
n > N and z ∈ K then, since d(fm, fn) < ε,

∥f(z)−fn(z)∥ ≤ ∥f(z)−fm(z)∥+∥fm(z)−fn(z)∥ < ∥f(z)−fm(z)∥+ε.

Here m > n is completely arbitrary, so we may send m → ∞. Using
that fm(z) → f(z) as m → ∞ by the pointwise convergence we find
∥fn(z)−f(z)∥ ≤ ε. Since z ∈ K is arbitrary we have shown d(fn, f) ≤
ε when n > N. That is, fn → f uniformly.
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Next we want to show that f is continuous on K. To do this fix
n0 > N. Since fn0

is uniformly continuous, by Theorem 2.6 above,
there exists δ > 0 such that for all z, w ∈ K

|z − w| < δ =⇒ ∥fn0
(z)− fn0

(w)∥ < ε.

Hence for all z, w ∈ K, if |z − w| < δ, it follows that (if n0 is large
enough)

∥f(z)−f(w)∥ ≤ ∥f(z)−fn0
(z)∥+∥fn0

(z)−fn0
(w)∥+∥fn0

(w)−f(w)∥ < 3ε.

This shows that f ∈ C(K,Rn) which completes the proof.

Families of Continuous Functions and Arzelá-Ascoli’s Theo-
rem

In the following we fix a compact subsetK of C, and let F ⊂ C(K,Rn)
be a family of continuous functions on K. We recall the following basic
definitions.

Definition 2.8. F is said to be equicontinuous if for each ε > 0, there
exists δ > 0 such that |z − w| < δ =⇒ ∥f(z) − f(w)∥ < ε for all
f ∈ F simultaneously.

Definition 2.9. F is said to be uniformly bounded if there is a con-
stant M > 0 such that |f(z)| ≤ M for all f ∈ F and all z ∈ K.

Definition 2.10. F is said to be relatively compact if each sequence
of functions {fn}∞n=1 ⊂ F has a uniformly convergent subsequence,
converging to some function f ∈ C(K,Rn). (We do not require that
the limit function f be in the class F .)

We are now ready to state and prove the main result of this section.

Theorem 2.11 (Arzelá-Ascoli Theorem). Let F ⊂ C(K,Rn) uni-
formly bounded. Then the following are equivalent.

(a) F is equicontinuous.

(b) Each sequence of functions in F has a subsequence that converges
uniformly on K, that is, F is relatively compact.
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To prepare for the proof, we recall the following definitions from
set-theory.

Definition 2.12. A setX is said to be countable if there is an enumer-
ation {xn}∞n=1 of its elements, that is, if we can write X = {xn ; n ∈
Z+}.

Lemma 2.13. The Cartesian product of two countable sets is count-
able.

Proof. Let X and Y be countable sets. Let X = {xj}∞j=1 and Y =
{yk}∞k=1 be enumerations of X and Y respectively. To prove that
there is an enumeration of all pairs (xj, yk), we list the pairs (xj, yk)
with j + k = 2, that is, (x1, y1), then the pairs with j + k = 3,
that is, (x1, y2), (x2, y1), then j + k = 4, (x1, y3), (x2, y2), (x3, y1), etc.
Eventually, each pair will be on the list.

It follows that the set of rational numbers Q = {a
b ; a ∈ Z, b ∈ Z+}

is countable, since it may be viewed as a subset of the set Z × Z+.

(And a subset of a countable set is countable.) Using countability of
Q and applying Lemma 2.13 (n− 1) times, it can be seen that Qn is
a countable set.

Definition 2.14. A subset X of a metric space (X , d) is said to be
dense if for each x ∈ X and each ε > 0, there is y ∈ X such that
d(x, y) < ε.

Definition 2.15. A metric space (X , d) is said to be separable if there
is a countable and dense subset.

Thus Rn is separable, since Qn is a countable and dense subset. In
particular, the complex plane C is separable, since C and R2 coincide
as metric spaces.

A subset K of a metric space (X , d) is a metric space itself if we
equip it with metric d of X . The metric space (K, d) is called a subspace
of (X , d). A subspace of a separable metric space is again separable.
In our case K ⊂ C so K is separable since C is. Thus we can be
assured that there exists a countable and dense subset {wj}∞j=1 of K.

Now we are equipped with the necessary material to prove the
Theorem 2.11.

6



Proof of Theorem 2.11. The proof that (b) implies (a) is proof by con-
tradiction. Assume that F is relatively compact. It is left to prove
that F is equicontinuous. If we assume the opposite, then there would
exists an ε > 0 such that for all δ > 0, there exist points z, w ∈ K
and f ∈ F so that

|z − w| < δ and ∥f(z)− f(w)∥ ≥ 2ε.

Pick δ = 1
n . Then for each n ∈ Z+, we can find points zn, wn ∈ K and

fn ∈ F so that

|zn − wn| <
1

n
and ∥fn(zn)− fn(wn)∥ ≥ 2ε.

To obtain a contradiction, we assume that fn → f uniformly on K,

where f ∈ C(K,Rn). Since f is uniformly continuous there is δ > 0
such that for all z, w ∈ K with |z−w| < δ we have ∥f(z)−f(w)∥ < ε

3 .

By the uniform convergence we can pick N large enough that
d(fn, f) < ε

3 whenever n ≥ N. Choosing N somewhat larger we can
assume that 1

N < δ. Then for n ≥ N ,

∥fn(zn)− fn(wn)∥ ≤ ∥fn(zn)− f(zn)∥
+ ∥f(zn)− f(wn)∥+ ∥f(wn)− fn(wn)∥ < ε.

We have reached a contradiction since ∥fn(zn) − fn(wn)∥ ≥ 2ε for
all n. The contradiction shows that the fn’s can’t converge uniformly.
In a similar way, we see that no subsequence of the fn’s can converge
uniformly. Hence if each sequence fn in F has a uniformly convergent
subsequence, then F must be equicontinuous.

We now prove that (a) implies (b). Let {fn} be an arbitrary se-
quence in F . Fix {wj}∞j=1 an arbitrary countable and dense subset of
K. By the assumption, F is uniformly bounded, so the sequence of
complex numbers {fn(w1)}∞n=1 is bounded. By the Bolzano-Weierstrass
theorem, we can find a convergent subsequence {fnk

(w1)}, which we
rename as {fn,1(w1)}. The sequence {fn,1(w2)} is bounded, and we
choose {fn,2(w2)} a convergent subsequence. Repeating the process,
form a diagonal subsequence {gn} = {fn,n} of the sequence {fn}. It
holds that {gn(wj)} converges as n → ∞ for each j.

Claim: {gn} converges uniformly on K, that is, {gn} is a uniform
Cauchy sequence. To prove the claim, using the equicontinuity of F ,
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it is possible to fix ε > 0 and pick δ > 0 such that

|z − w| < δ =⇒ ∥g(z)− g(w)∥ <
ε

3
(2.2)

for each n, and each g ∈ F .
Secondly, consider discs Dδ(wj), for j = 1, 2, . . . forming an open

cover of K. Since K is compact, by the Heine-Borel theorem and
renumbering the indices, we can pick a finite subcoverDδ(w1), . . . , Dδ(wN).
Furthermore, fix n0 such that

m,n ≥ n0 =⇒ ∥gn(wj)− gm(wj)∥ <
ε

3
(2.3)

for j = 1, 2, . . . , N.
Take arbitrary z ∈ K. Then z ∈ Dδ(wj) for some j ≤ N. Hence if

m,n ≥ n0, it follows that

∥gn(z)−gm(z)∥ ≤ ∥gn(z)−gn(wj)∥+∥gn(wj)−gm(wj)∥+∥gm(wj)−gm(z)∥ < ε,

by (2.2) and (2.3).
This proves that d(gn, gm) < ε when m,n ≥ n0, that is, the se-

quence {gn} is uniformly Cauchy. Thus, {gn} is uniformly convergent
sequence to some continuous function g ∈ C(K,Rn).
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Chapter 3

Stereographic Projection; The
Spherical and Chordal Metrics on
Ĉ

A meromorphic function can naturally be regarded as taking values
in the extended plane Ĉ. When working with such functions, it is
desirable to turn Ĉ into a metric space.

In this chapter, we will describe two equivalent metrics on Ĉ called
the spherical metric and the chordal metric. For our future purposes,
we could work with either of those metrics, but the chordal metric
is more convenient, i.e. leads to shorter proofs. However, because of
its geometrical appeal, we have chosen to include a discussion of the
spherical metric as well.

Consider the sphere

S =

{
x ∈ R3 ; x21 + x22 +

(
x3 −

1

2

)2

=
1

4

}

in R3 also called the Riemann sphere.

Let N = (0, 0, 1) be the north pole, and P = (x1, x2, x3) ̸= N any
point on the sphere. The straight line segment NP intersects the com-
plex x1x2-plane at some point z ∈ C via one-to-one correspondence
P ↔ z between the points of S − {N} and C. This mapping of the
sphere S onto the plane C (and vice-versa) is conformal, and is known
under then name stereographic projection. We extend this correspon-
dence to one between the sphere S and the extended complex plane Ĉ
by identifying N with ∞.
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Let P = (x1, x2, x3), Q = (x′1, x
′
2, x

′
3) ∈ S and their corresponding

stereographic projections z, w ∈ C. The Euclidean distance between
P and Q is given by

∥P −Q∥ =
√
(x1 − x′1)

2 + (x2 − x′2)
2 + (x3 − x′3)

2.

Definition 3.1. The chordal distance σ(z, w) between two points
z, w ∈ Ĉ is the length of the straight line segment joining the points
P,Q ∈ S whose stereographic projections are z, w ∈ C respectively.
It is given by

σ(z, w) =


|w−z|√

1+|z|2
√

1+|w|2
, z, w ∈ C

1√
1+|z|2

, z ∈ C, w = ∞

0, z = w = ∞.

(3.1)

We will soon verify that σ is a metric on Ĉ.
Consider the following map: Q : Ĉ → R3 given by

Q(z) =

{(
Re z
|z|2+1 ,

Im z
|z|2+1 ,

|z|2
|z|2+1

)
, z ∈ C

(0, 0, 1), z = ∞.
(3.2)

Proposition 3.2. (a)

∥Q(z)− (0, 0, 1/2) ∥2 = 1

4
. (3.3)

(b) Q is a one-to-one map of Ĉ onto S with (for P = (x1, x2, x3) ̸= N)

Q−1(x1, x2, x3) =
x1 + ix2
1− x3

. (3.4)

(c)
∥Q(z)−Q(w)∥ = σ(z, w). (3.5)

(d) σ(z, w) satisfies the triangle inequality, that is, for z1, z2, z3 ∈ C,

σ(z1, z3) ≤ σ(z1, z2) + σ(z2, z3).

(e) Define two maps πθ and π̃ from the sphere S to itself by

πθ(x1, x2, x3) = (x1 cos θ − x2 sin θ, x2 cos θ + x1 sin θ, x3),
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and

π̃(x1, x2, x3) = (x1,−x2, 1− x3).

Geometrically, πθ means rotation and π̃ means a kind of inversion.

Then

Q(eiθz) = πθ(Q(z))

Q(1/z) = π̃(Q(z)).

(f) The chordal metric σ is invariant under the inversion z 7→ 1
z , for

all z, w ∈ Ĉ, it follows that

σ(z, w) = σ(z−1, w−1). (3.6)

(g) The chordal metric is equivalent to the Euclidean metric on any
fixed compact subset of C,

|z|, |w| ≤ R =⇒ |z − w|
1 +R2

≤ σ(z, w) ≤ |z − w|. (3.7)

(h) The chordal distance from z to w is equivalent to the Euclidean
distance between the inverse points 1

z and 1
w on any compact

subset of C \ {0},

|z|, |w| ≥ R−1 =⇒ |z−1 − w−1|
1 +R2

≤ σ(z, w) ≤ |z−1 − w−1|. (3.8)

Proof. (a) The sphere centered at
(
0, 0, 12

)
of radius 1

2 is given by

x21 + x22 +

(
x3 −

1

2

)2

=
1

4
⇐⇒ x21 + x22 + x23 = x3.

Any point on the sphere satisfies this equation and so (3.3) is

|z|2

(|z|2 + 1)2
+

|z|4

(|z|2 + 1)2
=

|z|2

|z|2 + 1
,

which completes the proof.

(b) If (3.4) holds, then Q ◦ Q−1(x) = x. Clearly Q−1 ◦ Q(z) = z for
every z ∈ Ĉ, and thus Q is a bijection.
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(c) Pick any two points z = x+ iy, w = u+ iv ∈ C. To compute their
distance, take the three-dimensional Euclidean distance between
Q(z) and Q(w). From

∥Q(z)∥2+∥Q(w)∥2 = |z|2

1 + |z|2
+

|w|2

1 + |w|2
=

|z|2 + 2|z|2|w|2 + |w|2

(1 + |z|2) (1 + |w|2)
,

and

Q(z) ·Q(w) =
Re(z̄w) + |z|2|w|2

(|z|2 + 1) (|w|2 + 1)
,

it follows that

∥Q(z)−Q(w)∥2 = |w − z|2

(1 + |z|2)(1 + |w|2)
.

which is (3.5).

(d) follows from (3.5). If z1, z2, z3 are distinct, the inequality is strict.

(e) Write z = x+ iy and (x1, x2, x3) = Q(z) = 1
1+|z|2 (x, y, |z|

2).

Since eiθ = cos θ + i sin θ we have

Q(eiθz) =
1

1 + |z|2
(
Re(eiθz), Im(eiθz), |z|2

)
=

1

1 + |z|2
(
cos θ · x− sin θ · y, cos θ · y + sin θ · x, |z|2

)
= (cos θ · x1 − sin θ · x2, cos θ · x2 + sin θ · x1, x3)
= πθ(x1, x2, x3) = πθ(Q(z)).

A similar computation shows π̃(Q(z)) = Q(1/z).

(f) σ(z−1, w−1) = |1/w−1/z|√
1+1/|z|2

√
1+1/|w|2

= |z−w|√
1+|z|2

√
1+|w|2

.

(g) If |z| ≤ R, then 1 ≤
√

1 + |z|2 ≤
√
1 +R2 which means 1√

1+R2
≤

1√
1+|z|2

≤ 1. So if |z|, |w| ≤ R, then |z−w|
1+R2 ≤ |z−w|√

1+|z|2
√

1+|w|2
≤

|z − w|.

(h) (3.8) follows from (3.7) and (3.6).
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Theorem 3.3. The arc-distance θ(z, w), that is, the shortest length of
the arc of the great circle in the sphere connecting z with w is explicitly
given by

θ(z, w) = arctan

∣∣∣∣ w − z

1 + zw̄

∣∣∣∣ . (3.9)

Proof. Let S be a sphere of radius 1
2 centered at a point p0 ∈ R3, that

is,
S = {x ∈ R3 ; ∥x − p0∥ = 1

2}, where ∥x∥ =
√
x21 + x22 + x23. Pick two

points x, y ∈ S and let θ̃(x, y) be the angle between them (as seen
from the center p0). We can choose θ̃ between 0 and π.

Let x̃ = x − p0 and ỹ = y − p0. Then x̃ and ỹ are on the sphere
S̃ = {x ∈ R3 ; ∥x∥ = 1

2} centered at the origin. The angle between

x̃ and ỹ is the same as the angle θ̃(x, y) between x and y. Thus we
compute

∥x− y∥2 = ∥x̃− ỹ∥2 = (x̃− ỹ) · (x̃− ỹ) = ∥x̃∥2 − 2∥x̃∥∥ỹ∥ cos θ̃ + ∥ỹ∥2

=
1

4
− 1

2
cos θ̃ +

1

4
=

1

2
(1− cos θ̃(x, y)).

Next for two points x, y on the sphere S, we let θ(x, y) be the
arclength-distance between x and y on the sphere. We claim that
θ(x, y) = 1

2 θ̃(x, y).

To see this we can translate and rotate the sphere S so that it
is centered at the origin and x =

(
1
2 , 0, 0

)
, y = (y1, y2, 0) , for some

y1, y2. Since θ̃ is the angle between x and y, we must have y =
1
2(cos θ̃, sin θ̃, 0). Thus a curve on the sphere S which connects x with
y is

γ(t) =
1

2
(cos t, sin t, 0), (0 ≤ t ≤ θ̃).

A geometric consideration shows that γ(t) must be the shortest path
between x and y on the sphere. Thus

θ(x, y) =

∫ θ̃

0

∥γ′(t)∥dt.

But γ′(t) = 1
2(− sin t, cos t, 0) which has ∥γ′(t)∥ = 1

2 so indeed

θ(x, y) =
1

2
θ̃(x, y).
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It now follows that

∥x− y∥2 = 1

2
(1− cos(2θ(x, y))). (3.10)

Now let S be the sphere centered at p0 = (12 , 0, 0) and set x =
Q(z), y = Q(w) and use the formula (3.5). In the following we change
notation and write θ(z, w) for θ(Q(z), Q(w)).

Using (3.10) and the double angle formula we can write

∥Q(z)−Q(w)∥2 = sin2(θ(z, w))

and also
∥Q(z)−Q(w)∥2 = 1− cos2(θ(z, w)).

It follows that

tan(θ(z, w)) =
sin θ

cos θ
=

σ(z, w)√
1− σ(z, w)2

.

A computation shows that (in case neither of the points is ∞)

1− σ(z, w)2 =
|1 + zw̄|2

(1 + |z|2)(1 + |w|2)
,

so using (3.1) we find that

tan(θ(z, w)) =

∣∣∣∣ w − z

1 + zw̄

∣∣∣∣
as desired. (The case when one of z and w are ∞ is omitted.)

Note that

θ(z, w) = arctan

∣∣∣∣ w − z

1 + zw̄

∣∣∣∣
is always between 0 and π/2, and the maximal distance is attained
when z = −1/w̄. In this case we say that the points z and w are
antipodal on the Riemann sphere.

It is useful to have the infinitesimal form of the spherical metric.

Theorem 3.4. Let θ(z, w) be the spherical metric defined explicitly as
in (3.9). The infinitesimal form of this metric is given by

|dz|
(1 + |z|2)

.
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Proof. Let h be a small complex number. We have that

θ(z, z + h) = arctan

(
|h|

|1 + |z|2 + zh̄|

)
.

Let f(t) = 1/(1 + |z|2 + t), where t = zh̄. Using Taylor series
expansions of arctan about t = 0, it follows that

arctan |hf(t)| = |f(t)h|+O(|hf(t)|3) as hf(t) → 0

and so the right-hand side clearly equals to

f(0)|h|+O(|h|2) as h → 0,

that is,

θ(z, z + h) =
|h|

(1 + |z|2)
+O(|h|2).

If we replace h by dz and think of dz as being a very small complex
number, we obtain the approximation

θ(z, z + dz) =
|dz|

(1 + |z|2)
(1 +O(dz)).

If γ(t), a ≤ t ≤ b is a curve on the sphere S, we define its spherical
length to be

L(γ) =

∫
γ

|dz|
(1 + |z|2)

.

The spherical distance between two points z, w on the Riemann sphere
S is defined to be the infimum taken over all paths on S joining z and
w, that is,

θ(z, w) = inf{L(γ)}.
And this coincides precisely with the θ(z, w) computed in the Theorem
3.3.

θ(z, w) represents the Euclidean length of the shortest arc of any
great circle on the sphere joining z and w. It defines a metric on the
sphere known as the spehrical metric. Since 2θ/π ≤ 2 sin(θ/2) ≤ θ,
we have that

2

π
θ(z, w) ≤ σ(z, w) ≤ θ(z, w).

Hence, θ and σ are uniformly equivalent metrics.
Having defined the spherical metric on the Riemann sphere, in the

next section, we study spherical derivative and normal convergence of
a sequence of meromorphic functions in this metric.
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Chapter 4

Normal Families

We shall now introduce the notion of a normal family. This is a
very broad and useful concept, which characterizes compact sets of
analytic or meromorphic functions. As all meromorphic functions are
continuous when regarded as functions into the Riemann sphere Ĉ,
the Arzelá-Ascoli theorem can be applied to families of meromorphic
functions. However, since meromorphic functions are typically defined
on domains (which are open), it is not suitable to use a simple sup-
norm metric. We have the following definitions.

In the following we fix an open subset Ω ⊂ C.

Definition 4.1. A sequence of compact subsets {Kl}∞l=1 is called a
compact exhaustion of Ω if

(a) Kl is contained in the interior of Kl+1, that is, Kl ⊂ K int
l+1 for each

l;

(b)
∞⋃
l=1

Kl = Ω.

We remark that compact exhaustions always exist. For example we
may take Kl = {z ∈ Ω ; dist(z, ∂Ω) ≥ 1/l, |z| ≤ l}.

In the following we fix an arbitrary exhaustion K1, K2, . . . of Ω.

Definition 4.2. We denote by A(Ω) is the space of analytic functions
Ω → C with metric

d(f, g) =
∞∑
k=1

min{2−k, ∥f − g∥Kk
}

where ∥h∥K = sup
z∈K

|h(z)|.

17



Definition 4.3. If d(fn, f) → 0 we say that fn converges locally uni-
formly on Ω to f . Equivalently, d(fn, f) → 0 means that fn converges
to f uniformly on any given compact subset of Ω.

Definition 4.4. A family F ⊂ A(Ω) is called relatively compact if each
sequence {fn} in F has a locally uniformly convergent subsequence.

Definition 4.5. We denote by M(Ω) the space of meromorphic func-
tions on Ω → Ĉ (adjoined by the constant function ∞) with metric

ρ(f, g) =
∞∑
k=1

min{2−k, σKk
(f, g)} (4.1)

where σK(f, g) = sup
z∈K

σ(f(z), g(z)).

We say that fn → f normally on Ω if ρ(fn, f) → 0. It’s easy to see
that this happens if and only if σKm

(fn, f) → 0 as n → ∞ for each
fixed m = 1, 2, . . .

Definition 4.6. A family F ⊂ M(Ω) is called normal if each sequence
{fn} in F has a uniformly convergent subsequence with respect to the
chordal metric on compact subsets of Ω.

4.1 Completeness of the Spaces M(Ω) and A(Ω)

We now prove that the above spaces are complete. The proof uses
Morera’s and Hurwitz’s theorems from complex analysis, plus some
elementary facts about uniform convergence of continuous functions
from Chapter 2.

We first prove that M(Ω) is complete in the metric (4.1).

Theorem 4.7. (a) If {fn}∞n=1 ⊂ M(Ω) and fn → f normally, then
f ∈ M(Ω).

(b) (M(Ω), ρ) is a complete metric space.

Proof. Recall that ∥Q(fn(z))−Q(f(z))∥ = σ(fn(z), f(z)). So for each
m,

∥Q ◦ fn −Q ◦ f∥Km
= σKm

(fn, f) → 0 as n → ∞.

18



Hence Q◦fn → Q◦f uniformly on each compact subset of Ω. As each
Q ◦ fn : Ω → S is continuous, it follows that Q ◦ f is continuous as
well.

(a) Now pick z0 ∈ Ω. Two cases emerge.
Case (i): Assume f(z0) ̸= ∞, i.e. Q ◦ f(z0) ̸= N = (0, 0, 1). By
continuity there are then ε > 0 and δ > 0 such that

∥Q ◦ f(z)−N∥ > 3ε when |z − z0| ≤ δ. (4.2)

If δ > 0 is small enough, then Q ◦ fn → Q ◦ f uniformly on the
disc |z − z0| ≤ δ so we can find n0 such that

∥Q ◦ fn −Q ◦ f∥Dδ(z0)
< ε, n ≥ n0. (4.3)

It follows from (4.2) and (4.3) that

∥Q ◦ fn(z)−N∥ > 2ε when n ≥ n0, z ∈ Dδ(z0).

Applying stereographic projection Q−1, we see that there must
be some large radius C such that

|fn(z)| ≤ C, |f(z)| ≤ C when n ≥ n0, z ∈ Dδ(z0). (4.4)

By (4.4) and (3.7), we thus have

∥fn(z)− f(z)∥ ≤ (1 + C2)σ(fn(z), f(z)),
(
n ≥ n0, z ∈ Dδ(z0)

)
≤ (1 + C2)σDδ(z0)

(fn, f) → 0.

Thus fn → f uniformly on Dδ(z0).

It now follows from Morera’s theorem that f is analytic in Dδ(z0).

Indeed, if R ⊂ Dδ(z0) is a closed rectangle∫
∂R

f(z)dz = lim
n→∞

∫
∂R

fn(z)dz = 0.

Thus f is analytic on Dδ(z0) by Morera.

Case (ii): If f(z0) = ∞ we use (3.6) and conclude as above that
1/f is analytic in a neighbourhood Dδ(z0).

If 1/f ≡ 0, we have f ≡ ∞. Otherwise the zero is isolated and
we can write 1/f(z) = (z − z0)

mh(z), h(z0) ̸= 0.
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(b) Suppose {fn} is a Cauchy sequence with respect to the metric ρ,
i.e. σKm

(fi, fj) → 0 as i, j → ∞ for each fixed m. In other words,

∥Q ◦ fi −Q ◦ fj∥Km
→ 0 as i, j → ∞.

We know that the space C(Km,R3) is complete, so Q ◦ fi must
converge uniformly on Km to some continuous function Fm.

Clearly, m1 < m2 =⇒ Fm1
= Fm2

on Km1
so the Fm’s piece

together to a continuous function F : Ω → R3 and Q ◦ fn → F
uniformly on compact subsets. Since each Q ◦ fn has values in
the sphere S we see easily that F takes values in S as well.

Putting f = Q−1◦F we have that Q◦fn → Q◦f locally uniformly,
i.e. ρ(fn, f) → 0. By (a) we obtain f ∈ M(Ω).

The following lemma is a variant of the Hurwitz’s theorem.

Lemma 4.8. Suppose {fn} ⊂ A(Ω) and f ∈ M(Ω) and ρ(fn, f) → 0.
If each fn is nonvanishing, then either f never vanishes or f ≡ 0.

Proof. Suppose there is some point z0 ∈ Ω with f(z0) = 0. We will
prove that f ≡ 0.

Indeed, as in the proof above, we can find a disc Dδ(z0) in which f

is analytic and fn → f uniformly on Dδ(z0).

If f ̸≡ 0, then the zero at z0 is isolated and we can write f(z) =
(z − z0)

mh(z) where h(z0) ̸= 0 and m ≥ 1. Choosing δ > 0 somewhat
smaller, we can assume that |h(z)| ≥ |h(z0)|/2 in Dδ(z0).

Then 1/fn → 1/f uniformly on the circle |z−z0| = δ/2 and likewise
f ′
n → f ′ uniformly on that circle. So

f ′
n

fn
→ f ′

f
uniformly on |z − z0| =

δ

2
.

But by the argument principle,

1

2πi

∫
|z−z0|= δ

2

f ′
n

fn
dz = 0 and

1

2πi

∫
|z−z0|= δ

2

f ′

f
dz = m

so we get the contradiction m = 0.
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Theorem 4.9. Suppose {fn}∞n=1 ∈ A(Ω) and f ∈ M(Ω) and ρ(fn, f) →
0 as n → ∞. Then either f ∈ A(Ω) or f ≡ ∞. Moreover, if f ∈ A(Ω)
then d(fn, f) → 0 as n → ∞.

Proof. Set gn = 1/fn, g = 1/f. Then gn ∈ M(Ω) are nonvanishing,
and ρ(gn, g) = ρ(fn, f) → 0. By the Lemma 4.8, either g ≡ 0 or g
never vanishes.

Assume g never vanishes, so that f ∈ A(Ω). We must shows that
d(fn, f) → 0. But if f ∈ A(Ω), then |f | attains its maximum value on
each Km, i.e. there is some constant Cm such that |f(z)| ≤ Cm for all
z ∈ Km.

Hence there is δm > 0 such that σ(f(z),∞) ≥ δm for all z ∈ Km.
Now fix n0 such that σKm

(fn, f) ≤ δm/2 when n ≥ n0.

For n ≥ n0 we have that

σ(fn(z),∞) ≥ δm/2 for all z ∈ Km.

It follows that there is another constant C ′ = C ′(n0,m) such that
|fn(z)| ≤ C ′ for all n ≥ n0, z ∈ Km, and also |f(z)| ≤ C ′ for all
n ≥ n0, z ∈ Km.

By (3.7) we have

sup
z∈Km

∥fn(z)− f(z)∥ ≤
(
1 + (C ′)2

)
σKm

(fn, f) → 0 as n → ∞,

i.e. fn → f uniformly on Km. Since m is arbitrary, we conclude
d(fn, f) → 0 as n → ∞.

4.2 Spherical Derivatives and Marty’s Theorem

In this section, we state and prove the fundamental Marty’s theorem,
which gives a convenient criterion for normality of a subfamily F of
M(Ω). The criterion uses the notion of spherical derivatives. As a
consequence we will deduce the classical Montel’s theorem on rela-
tively compact subfamilies of A(Ω).

Let us note first that assuming that the family F of meromorphic
functions is normal does not imply that their derivatives constitute a
normal family. Consider the following example.
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Example 4.10. Let fn = n(z2 − n) be a sequence of functions in
the whole plane. Since fn → ∞ uniformly on each compact set, F is
normal. The derivatives f ′

n = 2nz tend to ∞ for z ̸= 0 and to 0 for
z = 0. Therefore, these derivatives do not form a normal family.

Now that we are working with the family F ⊂ M(Ω), functions
in F take values on the Riemann sphere, that is, in the extended
complex plane Ĉ equipped with the spherical metric. We may raise
the question about a derivative of such functions.

Definition 4.11. The spherical derivative of a function in M(Ω) is
defined by

f ♯(z) = lim
z→z0
z ̸=z0

σ(f(z), f(z0))

|z − z0|
. (4.5)

Proposition 4.12. Let f(z) ∈ M(Ω).

(a) If f(z0) ∈ C, then

f ♯(z0) =
|f ′(z0)|

1 + |f(z0)|2
. (4.6)

(b) (Chain rule)
(g ◦ f)♯(z) = g♯(f(z))|f ′(z)|.

(c) The spherical derivative is invariant under the inversion,

(1/f)♯ = f ♯. (4.7)

(d) If f ∈ M(Ω) and γ is a curve in Ω, then

σ(f(γ(0)), f(γ(1))) ≤
∫ 1

0

f ♯(γ(s))|dγ(s)|. (4.8)

Proof. (a) Since f(z)−f(z0)
z−z0

→ f ′(z0) as z → z0, it follows that

σ(f(z), f(z0))

|z − z0|
=

1√
1 + |f(z)|2

√
1 + |f(z0)|2

|f(z)− f(z0)|
|z − z0|

→ |f ′(z0)|
1 + |f(z0)|2

as z → z0.

(b) (g ◦ f)♯(z) = |(g ◦ f)′(z)|/(1 + |g(f(z))|2) = |g′(f(z))f ′(z)|/(1 +
|g(f(z))|2) = g♯(f(z))|f ′(z)|.
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(c) The spherical metric is invariant under the inversion z 7→ 1
z , so

the result immediately follows from (3.6) and (4.5).

(d) Assume γ piecewise C1 and f ◦ γ(s) finite image curve for all s.
Let j = 1, . . . , n and j/n → s as n → ∞. Then uniformly in s,

σ
(
f
(
γ
(
j
n

))
, f

(
γ
(
j−1
n

)))
|γ

(
j
n

)
− γ

(
j−1
n

)
|

→ f ♯(γ(s)).

Using the the triangle inequality,

σ(f(γ(0)), f(γ(1))) ≤
n∑

j=1

f ♯

(
γ

(
j

n

)) ∣∣∣∣γ ( j

n

)
− γ

(
j − 1

n

)∣∣∣∣ (1 +O
(
1

n

))
.

Passing the limit as n → ∞, we obtain (4.8) which holds for all
rectifiable curves.

Since σ and f ♯ are invariant under the inversion, we perform the
same computations for the finite 1/f(γ(s)) for all s.

Lemma 4.13. If a sequence {fn}∞n=1 ∈ M(Ω) converges normally to
f, then the spherical derivatives f ♯

n converge locally uniformly to f ♯.

Proof. We must show for each compact subset K ⊂ Ω that

∥f ♯
n − f ♯∥ → 0 as n → ∞. (4.9)

Fix a small δ > 0. By Heine-Borel Theorem 2.3, we can find finitely

many points z1, . . . , zw ∈ K such that K ⊂
N⋃
j=1

D2δ(zj).

Choosing δ > 0 smaller we can also assume that D4δ(zj) ⊂ Ω. This
shows that it suffices to show (4.9) when K is a small closed disc, say
K = D2δ(z0). Similar to earlier proofs, two cases emerge.

Case (i): If f(z0) ̸= ∞, then by the proof of the Theorem 4.7 (a),
we can find δ > 0 and n0 such that all fn with n ≥ n0 are analytic in
D3δ(z0) and fn → f uniformly on D2δ(z0) as n → ∞.

So f is analytic in D2δ(z0) by Morera and continuous up to the
boundary.

If z ∈ Dδ(z0), then

f ′
n(z)− f ′(z) =

1

2πi

∫
|w−z|=δ

fn(w)− f(w)

(w − z)2
dw
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so

|f ′
n(z)− f ′(z)| ≤ 1

δ
∥fn − f∥D2δ(z0)

→ 0 as n → ∞.

We have shown f ′
n → f ′ uniformly on K = Dδ(z0).

It follows that |fn| → |f | and |f ′
n| → |f ′| uniformly onK, so f ♯

n(z) =
|f ′

n(z)|
|fn(z)|2+1 →

|f ′(z)|
|f(z)|2+1 = f ♯(z) uniformly on K.

Case (ii): If f(z0) = ∞ we apply Case (i) to the function gn = 1/fn
and g = 1/f, and recall that g♯n = f ♯

n and g♯ = f ♯.

Theorem 4.14 (Marty’s Theorem). Let F ⊂ M(Ω). Then F is a
normal family on Ω if and only if the spherical derivatives {f ♯(z) : f ∈
F} are uniformly bounded on each compact subset of Ω.

Proof. As always, let S be the sphere ∥x−
(
0, 0, 12

)
∥ = 1

2 in R3.

Assume the spherical derivatives are bounded near some point z0 ∈
Ω, that is, f ♯(z) ≤ C for all z ∈ Dδ(z0) and for all f ∈ F . Then for all
w ∈ Dδ(z0), and all f ∈ F , by (4.8) follows

σ(f(w), f(z)) = ∥(Q ◦ f)(w)− (Q ◦ f)(z)∥ ≤
∫
γ

f ♯(z)|dz| ≤ C|z −w|,

where γ is the shortest path between z and w. Hence, the family G =
{Q ◦ f : Ω → S ; f ∈ F} is locally uniformly equicontinuous. By the
Arzelá-Ascoli Theorem 2.11, each sequence gj = Q◦fj of functions in G
has a further subsequence (relabeled as gj for convenience) converging
locally uniformly on Ω to a continuous function g : Ω → S.

Now define a function f : Ω → Ĉ by f(z) = Q−1(g(z)). f is contin-
uous, since both Q−1 and g are so.
Note that for each z (by Proposition 3.2)

∥gn(z)− g(z)∥ = ∥Q ◦ fn(z)−Q ◦ f(z)∥ = σ(fn(z), f(z)).

For each compact set Kj in the exhaustion we thus have

∥gn − g∥Kj
= σKj

(fn, f). (4.10)

Since gn → g locally uniformly, we know that d(gn, g) → 0 where
d(gn, g) =

∑∞
j=1min{2−j, ∥gn − g∥Kj

}.
By (4.10) this is equivalent to ρ(fn, f) → 0, i.e. fn → f normally.
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We have shown that each sequence fj in F has a further subse-
quence converging normally to a limit f ∈ M(Ω).
In other words, F is a normal family.

Now assume that f ♯ are not uniformly bounded on compacts of Ω.
Then there exist fn ∈ F and some compact subset K such that

lim
n→∞

sup
z∈K

f ♯
n = ∞.

By the Lemma 4.13, fn cannot have a normally convergent subse-
quence implying that F is not normal.

Let us finally deduce the classical Montel’s theorem, which histor-
ically preceded Marty’s theorem.

Theorem 4.15 (Montel’s Theorem). Suppose that F is a locally uni-
formly bounded family of analytic functions defined on an open set
Ω ⊂ C. Then F is relatively compact.

Proof. By the assumption, F is locally uniformly bounded on Ω. Pick
z0 ∈ Ω. Then there is some δ > 0 such that Dδ(z0) ⊂ Ω, and there
exists some constant C = C(z0) such that |f(z)| ≤ C for all f ∈ F
and all z ∈ Dδ(z0).

If z ∈ Dδ/2(z0), then

|f ′(z)| ≤ 1

2π

∫
|w−z|= δ

2

|f(w)|
|w − z|2

|dw| < 4C

δ
for all f ∈ F and all z ∈ Dδ/2(z0).

Hence, the family F ′ = {f ′ ; f ∈ F} is locally uniformly bounded.

Since f ♯(z) = |f ′(z)|
|f(z)|2+1 , it follows that

|f ♯(z)| < 4C

δ
for all f ∈ F and all z ∈ Dδ/2(z0).

We conclude that the family F ♯ = {f ♯ ; f ∈ F} is locally uniformly
bounded, so by Marty’s Theorem 4.14, F is a normal family.

Since F ⊂ A(Ω), it follows from Theorem 4.9 that each sequence in
F has a locally convergent subsequence, i.e., F is relatively compact
in A(Ω).
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Chapter 5

Montel’s Three-Value Theorem
and Picard’s Great Theorem

In this chapter, we will see that the theory of normal families can
be used to prove the famous Picard’s theorem, which says that in
an arbitrarily small deleted neighborhood of an essential singularity,
an analytic function assumes all complex values with one possible
exception. (Note that f(z) = e1/z has an essential singularity at z = 0
and omits the value 0.)

So, what does normal families have to do with this? As we shall see,
Picard’s theorem follows quite easily from a theorem of Montel, which
says that a family F ⊂ M(Ω) of functions omitting three values (say
0, 1 and ∞) is necessarily a normal family. The proof of this Montel’s
Three-Value Theorem is a main goal in this chapter.

We now turn to some details. We shall follow an approach discov-
ered by Larry Zalcman [8], based on a clever lemma on non-normal
families. The following discussion is based on several textbooks, for
example [2, 4, 7].

5.1 Zalcman’s Lemma

One of the most important results in the theory of normal families
is the Fundamental Normality Test, also called Montel’s Three-Value
Theorem, introduced by Paul Montel in 1912 [6]. The proof of this
theorem almost immediately follows from Zalcman’s Lemma, which
gives characterization of non-normality.

Proposition 5.1 (Zalcman’s Lemma). Let F be a family of meromor-
phic functions on a region Ω ⊂ C, which is not normal. Then there
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exist {fn}∞n=1 ⊂ F , points zn ∈ Ω, zn → z∞ ∈ Ω, and nonnegative
numbers ρn → 0 so that if

gn(ζ) = fn(zn + ρnζ)

then for some entire meromorphic function g∞, we have

(a) gn → g∞ normally on each DR with R < ∞.

(b) g♯∞(0) = 1.

(c) g♯∞(ζ) ≤ 1 for all ζ ∈ C.

Proof. Assume F not normal. By Marty’s Theorem there exists a
compact K ⊂ Ω such that

sup
f∈F ,z∈K

∥f ♯(z)∥ = ∞.

There exists a sequence (wn) ∈ K, wn → w∞ ∈ K and fn ∈ F so that

f ♯
n(wn) ≥ n. (5.1)

For simplicity take w∞ = 0 and D ⊂ Ω.
Define

Mn = sup
|z|≤1

(1− |z|2)f ♯
n(z).

Then by (5.1), Mn ≥ (1 − |wn|2)n → ∞ since wn → 0. Since (1 −
|z|2)f ♯

n(z) is continuous and vanishing on ∂D, it attains its maximum
at some point zn ∈ D so Mn = (1−|zn|2)f ♯

n(zn) and zn → z∞ ∈ D ⊂ Ω.
Define

ρn = [f ♯
n(zn)]

−1 = (1− |zn|2)M−1
n ≤ M−1

n → 0 as n → ∞, (5.2)

so that
(1− |zn|)−1ρn = M−1

n (1 + |zn|) ≤ 2M−1
n . (5.3)

For R > 0 fixed and n large enough with |ζ| ≤ R < Rn = 1
2Mn, we

have |zn + ρnζ| < 1.
On the set where |zn + ρnζ| < 1, define

gn(ζ) = fn(zn + ρnζ).

Note that gn is defined on D. Then by (5.2)

|g♯n(0)| = ρnf
♯
n(zn) = 1 for each n, (5.4)
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and

|g♯n(ζ)| = ρnf
♯
n(zn + ρnζ)

≤ ρnMn(1− |zn + ρnζ|2)−1

=
1− |zn|2

1− |zn + ρnζ|2
(5.5)

≤ 1 + |zn|
1 + |zn|+ ρn|ζ|

1− |zn|
1− |zn| − ρn|ζ|

(5.6)

≤ 1

1− 2|ζ|M−1
n

. (5.7)

In the above, we obtain (5.6) from (5.5) using that |zn + ρnζ|2 ≤
(|zn|+ ρn|ζ|)2 and (1−a2) = (1−a)(1+a). Then from (5.6) we obtain
(5.7) since the first term is bounded by 1 and by (5.3) we have that
ρn|ζ|(1− |zn|)−1 ≤ 2|ζ|M−1

n .

Hence for each fixed R,

lim
n→∞

sup
|ζ|≤R

g♯n(ζ) = 1. (5.8)

By Marty’s Theorem, {gn} is normal on C and there exists g∞
meromorphic on C and a subsequence, also denoted as gn, such that
gn → g∞ uniformly on each compact subset of C. Furthermore, (b)
and (c) hold by (5.4) and (5.8).

Since

g♯∞(0) = lim
n→∞

g♯n(0) = 1

by Lemma 4.13, g∞ is a nonconstant entire meromorphic function.

5.2 Montel’s Three Value Theorem and Picard’s

Theorem

We now state and prove Montel’s Three-Value Theorem and Picard’s
Great Theorem.

In order to simplify, we shall only prove these theorems for functions
defined on simply connected subsets of the plane. This assumption is
convenient, for if the domain Ω is simply connected, and if f : Ω →
C omits the value zero, then we can define an analytic branch of
log f on Ω, and hence also analytic branches of the power functions
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f(z)α = eα log f(z). (Indeed, simple connectivity of Ω is equivalent to
the possibility of forming such analytic branches of the logarithm, see
for example Chapter 8 of Gamelin [2].)

Definition 5.2. Assume that function f is meromorphic on some
punctured disk 0 < |z − z0| < r. A value w0 ∈ Ĉ is said to be an
omitted value of f at z0 if there exists δ > 0 such that f(z) ̸= w0 for
0 < |z − z0| < δ. So w0 is not an omitted value of f at z0 if and only
if there exists a sequence zn → z0, zn ̸= z0, so that f(zn) = w0.

Theorem 5.3 (Montel’s Three-Value Theorem). A family F of mero-
morphic functions on a simply connected domain Ω which omits three
distinct values α, β, γ in Ĉ is normal.

Proof. Let α, β, γ ∈ Ĉ be distinct omitted values. Composing each
element of a family F with a fractional linear transformation, without
a loss, we take α = 0, β = 1, γ = ∞. Since such elements of F are
analytic and nonvanishing functions on Ω, they have roots of all orders.

Fix k and define

Fk = {f 1/2k : f ∈ F}

the family consisting of all 2k-th roots of functions in F . Clearly Fk

is normal if and only if F is normal. The functions in Fk omit the
values 0, 1,∞ and all 2k-th roots of unity.

To obtain a contradiction, we assume that F is not normal. So for
each k,Fk is not normal. Then by Zalcman’s lemma, there exist entire
functions g

(k)
∞ such that (g

(k)
∞ )♯(0) = 1, (g

(k)
∞ )♯(z) ≤ 1, for all k and all

z, and (g
(k)
∞ ) is a limit of restrictions of functions in Fk. As functions

in Fk omit the 2k-th roots of unity so do their translations, dilations
and restrictions, and by Hurwitz’s theorem (see Simon [7]), so does

any nonconstant normal limit. Hence, g
(k)
∞ omits the values which are

the 2k-th roots of unity.

By Marty’s theorem, family {g(k)∞ } is normal so there exists a con-
verging subsequence to an entire function g∞ satisfying g♯∞(0) = 1 so
that g∞ is nonconstant and g♯∞(z) ≤ 1 for all z. Again, by Hurwitz’s
theorem, g∞ omits all 2k-th roots of unity for all k. Since g∞ is an
open mapping, and roots of unity are dense in the circle, it omits the
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unit circle, that is, |g∞(z)| < 1 or |g∞(z)−1| < 1 for all z. By Liou-
ville’s theorem (see Chapter 4 of Gamelin [2]), g∞ is constant which
contradicts that g♯∞(0) = 1. Thus, F is normal.

As a consequence of the above theorem, we obtain the following
Picard’s theorem.

Theorem 5.4 (Picard’s Great Theorem). In any neighborhood of an
isolated essential singularity, a function f takes every value with at
most one exception infinitely often.

Proof. Assume that the function f has an essential singularity at z0 =
0 and that it omits two distinct complex values.

Let gn(z) = f(4−nρz) be defined on the annulus A 1
2 ,2

= {1
2 < |z| <

2}, where ρ is chosen so that f is analytic in a punctured disc around
the origin D 1

2ρ
(0) \ {0}. By Theorem 5.3, {gn} is a normal family.

Thus, there exists a subsequence gnk
converging uniformly to some

function g on compact subsets of A 1
2 ,2
, where g is either an analytic

function or ≡ ∞.
If g is analytic, then f is uniformly bounded on a sequence of con-

centric circles of radius 4−nkρ converging to the origin. By the max-
imum principle, on each annulus A4−nk−1ρ,4−nkρ maximum appears on
one of these circles. Hence f is bounded around 0. Therefore, by
the Riemann’s theorem on removable singularities (see Chapter 6 of
Gamelin [2]), f has a removable singularity at 0 and not an essential
singularity.

If g ≡ ∞, we apply the same argument to 1/f to conclude that 1/f
extends analytically to 0. Thus, f has a pole at 0.
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