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Abstract

Robots and other machines utilised in industries are using servo motors that need precise, well
defined and controlled motions. Often are these motions to move to a precise point with an exact
velocity. Motion profiles provide the physical motion information for such a precise motion as well
as the graphical interpretation on how it would move in terms of position, velocity and acceleration.
The motion profile is used by the servo controller to determine which power level should be used
to drive the motor.

This Master Thesis project aims to improve an existing tool for calculating motion profiles for servo
motors used in the manufacturing industry by implementing features to calculate more advanced
motion profiles. These new features include motion profiles with non-zero jerk in the beginning
and end points, motion profiles focusing on velocity changes and motion profiles where the focus
is on position changes. The final step in this project is to show the strength of designing motion
profiles using this tool by comparing it to a motion profile created using Beckhoff motion profile
designer run on a setup resembling a real application.

All the goals of the project were achieved. The comparison with a motion profile from Beckhoff
showed that with our tool a smaller servo motor could drive a bigger load faster and still be within
its limits. This is beneficial since the motion profile can be adapt to the motor, and not the other
way around. This means one can get a bulk price of the servo motors and the machines will be
cheaper, since several different servo motors are not in need.
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Preface

During the summer of 2021, a summer worker developed a tool for calculating basic motion profiles
for servo applications. This Master Thesis project aims to improve this tool by making it able to
calculate more advanced motion profiles, where the acceleration behaviour is defined by a motion
profile designer. This project was carried out during the winter and spring of 2022 at Tetra Pak
in Lund, during an ongoing pandemic.

We would like to express our special thanks to our supervisor at Tetra Pak, Tobbe Bengtsson,
for all his help, openness and assistance provided during the project as well as all the colleagues
at Tetra Pak that made us feel welcomed and included. We would also express our thanks to
our academic supervisors Gunnar Lindstedt and Ulf Jeppsson for their assistance and guidance
throughout the project.

The authors have taken equal part in the project and thus the project can not say have been
divided in any way. We have done everything together, which is an advantage since we can ask
each other about everything within the project. We have had good discussions between each other
about how to implement different parts, which would not be possible if only one of us were familiar
with each part.
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Terms and Abbreviations

• CAM - Mechanical linkage to produce a motion out of a rotary motion.

• PLC - Programmable Logic Controller

• GUI - Graphical User Interface

• SCCA - Sine Constant Cosine Acceleration

• TwinCAT - The Windows Control and Automation Technology, which is Beckhoff’s PLC-
environment

• RPM - Revolutions Per Minute

• Beckhoff CAM Design Tool - Tool provided by Beckhoff for designing motion profiles

• CAMTool - The name of the applications (both Python and PLC) that is in focus of this
master thesis, which builds the motion profiles

• Jerk - the derivative of acceleration

• Knots - the points that bind two splines together

• Ducks - same as Knots

• Splines - the functions between the different knots

• Cubic splines - splines which are two times differentiable

• Antiderivative - is the function F(x) to its derivative f(x)

• Integral - the numerical value of the area under the graph of a function

• Acceleration Increase - the part of a motion profile where the acceleration gets bigger

• Acceleration Constant - the part of a motion profile where the acceleration is unchanged

• Acceleration Decrease - the part of a motion profile where the acceleration gets smaller

• Deceleration Increase - the part of a motion profile where the deceleration gets bigger

• Deceleration Constant - the part of a motion profile where the deceleration is unchanged

• Deceleration Decrease - the part of a motion profile where the deceleration gets smaller
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1 Introduction

This chapter will give a first insight of what to expect and what should be achieved during this
Master Thesis project. This is done through a section of context, which will give some background
to the project as well as some explanations to its purpose. The following section is about goals
and problem formulation, where these are stated. The last section is the disposition of the report,
which will tell more about what will be included and in which order.

1.1 Context

During the summer of 2021, another student developed a Python program including a graphical
interface for calculating motion profiles, which describes the motion in terms of position, velocity,
acceleration and jerk. The motion profiles consisted of Point to Point motion as well as Dwell
/ Cruise, but more about that later. The calculations of motion profiles were according to the
principle of the Sine Constant Cosine Acceleration method, SCCA, which will be described further
down in this section. The Python program was then used as a base to implement the corresponding
features in Beckhoff’s PLC-environment TwinCAT, which the same student also did, to be able
to calculate and run the motion profiles in a real-time environment. All the work the student did
has been evaluated and a need of further development is necessary to achieve the full potential of
the idea behind the software. The requested functionalities are non-zero jerk at different locations
of the motion profile as well as motion profiles for describing a velocity change or a position
change. The task of this Master Thesis is to implement the new functions both in Python and in
TwinCAT.

SCCA is originally a method for calculating motion profiles for mechanical CAMs, which is the
linkage to produce a motion out of a rotary motion. It uses a sinus function to calculate the
acceleration increase part, a constant function to derive the constant acceleration part and a
cosine function to derive the acceleration decrease part. Consequently, for the deceleration part of
the motion, a cosine function is used to calculate the deceleration increase part, a constant function
for the constant part of the deceleration motion and to calculate the deceleration decrease a sin
function is used. After that the functions for velocity and position can be derived by integration of
the acceleration function and velocity function, respectively. Jerk is the derivative of acceleration,
i.e. the rate of acceleration change over time and thus can the function for jerk be derived by
taking the derivative of the acceleration function. Non-zero jerk refers to a value of the jerk that
is non-zero at a given point in time. [1]

There are also other methods for calculating motion profiles that builds on the same principle as
SCCA. One of these uses polynomial functions to describe the motion. Continuous polynomial
functions for velocity, acceleration and jerk can then be derived from the position by derivation if
the degree of the polynomial function is high enough.[1] [2] [3] [4]

1.2 Overall Goals and Problem Formulation

The purpose of this Master Thesis is to introduce and implement new features to the CAMTool
software that already exists at Tetra Pak. All of the potential improvements listed below have
been requested from those who have used the software, mainly motion design engineers. The new
features should not affect the graphical user interface, GUI, in a negative way, but rather the
opposite. A simple GUI that is easy to use will make the application more attractive among the
engineers. This will have to be kept in mind while developing the application so that it would be
more usable among the motion profile designers.

The features that are to be implemented are the following:

1. A motion profile where the jerk is non-zero at the start of the acceleration increase, the end
of acceleration decrease, the beginning of deceleration increase and the end of deceleration
decrease.

2. A motion profile where the start and end velocity are defined by the user, including the
acceleration behaviour.

1



If times permits the following features should also be implemented:

3. Rewrite the PLC program to optimise the execution with a real time system in mind.

4. A motion profile where the start and end positions are defined by the user, including the
acceleration behaviour.

5. A motion profile where both the start and end velocities as well as the start and end positions
are defined by the user.

Feature number 3 is only meant to be applied to the TwinCAT program since it is a real time
environment. Likewise, feature 5 will only be implemented in Python since it is an advanced way
to design motion profiles. However, the rest of the features should be implemented both in the
Python program as well as in the TwinCAT. The goals will be further introduced in chapter 3 and
the order of implementation will be discussed in chapter 4.

The project will be evaluated in two perspectives, both theoretical and physical. The theoretical
evaluation will be used to determine if the new features are the ones required to improve the tool
according to the specifications. The reason why it has to be evaluated is because a feature might
sound good and necessary, but turns out to be useless when implemented. This means every new
feature will be evaluated one by one and if it is needed it will be kept, otherwise not. The physical
evaluation will include a servo motor with auxiliary equipment making it a scaled down replica
of a conveyor belt application with a gearbox provided by Tetra Pak. More exactly a comparison
will take place between the application CAMTool and the way motion profiles are designed using
Beckhoff motion design tool, to evaluate the benefits of the application and show the strength in
designing motion profiles this way.

The overall idea and goals of CAMTool are threefold. Firstly, it is supposed to aid in the design
of motion profiles and reducing the amount of different servo motors by adapting the movement
to the servo motor, instead of the other way around. Secondly, to become some type of reference
point between the automation engineers and the mechanical designer to aid in the design and
specification of large systems where there is both mechanical and electrical components. Lastly,
to streamline the process of designing motion profiles and hopefully move all the motion profile
design to one tool in the feature.

1.3 Disposition

This report is divided mainly into six different chapters. The introduction, which this section is
part of, introduces the topic of this project, the context of the existing programs, the overall goal
and problem formulation. The next chapter is the theory, which aims to describe the underlying
theory on which this work stands. It includes the basics of how a servo motor works, gearboxes
and backlash. It will also give an introduction into motion profiles and present the relevant maths
behind it as well as give an introduction into the software library used to construct the different
software as well as present the necessary theory about real time systems. The chapter following
on the theory is the background which will describe what has been done in the existing software
as well as further explanation of the overall goals and problem formulation. The methodology
chapter will describe the approach taken. More exactly, a more detailed description of what to do
and in which order. The last two chapters, the results as well as discussion and conclusions, aim
to describe the result of the project as well as a discussion about these results. At the end of the
report a reference list is included, which provides a detailed list of the sources referenced in this
project.

1.4 Limitations

The setup for the verification of CAMTool is quite small because of the order delay due to the
pandemic situation. This means the application verification will be limited. The only motion
profile that will be run and presented in this report is Point to Point. Another limitation for the
project is to continue where this tool left of. Since the work aims to enhance an existing tool, the
project already has a specific structure.
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2 Theory

In this chapter the theory behind the Master Thesis will be presented. Firstly, a section about
servo motors and a section on gearboxes and backlash to illustrate the physical side of the project,
followed by a section describing motion profiles. Next section will present the mathematics behind
the motion profiles, including equations and descriptions. Lastly, a section presenting the software
techniques used and a small introduction to the programming languages, Python and TwinCAT,
as well as the libraries used in the project.

2.1 Servo Motor

A servo motor is able to rotate in both directions where one is defined as positive and the other
as negative. This results in either a positive or a negative velocity. The torque of the servo motor
is defined as if it tries to work against the rotation its negative otherwise its positive. The power
of the motor is the product of torque and velocity as:

P = Tω (1)

where T is the torque (Nm) and ω is the angular velocity (rad/s). The servo motor that will be
used in this project is from Beckhoff, more specific a AM8041-0DG0 rotary servo motor. It has a
standstill torque of 2.37 Nm, a standstill current of 1.65 A, a rated velocity of 3000 rpm, a rated
torque of 2.29 Nm as well as a rated power of 0.72 kW.[5] Standstill torque is the torque the motor
produces at a velocity of less than 100 rpm. Corresponding standstill current is the current the
motor draws at a velocity of less than 100 rpm. [6] Rated torque and rated velocity are the torque
and velocity values at which the motor produces the rated power which is a value used to compare
different motors [7].

2.1.1 Characteristics

Any general, electrical motor has two operating modes, motoring and generating. Depending on
if the motor is rotating forward or backward, as well as if the torque is positive or negative, the
motor will end up in four different quadrants, shown in figure 1. In the first quadrant, where the
velocity and the torque of the motor are both positive, the motor is in a mode called forward
motoring, where it converts electrical energy to mechanical energy. The same operating mode can
be found in quadrant three, but this case is called reverse motoring since the motor is rotating
backwards. The common result in these two cases is the positive result of the power in equation
1 above. The two other quadrants are called reverse generating and forward generating, which
happens when the torque is positive while the velocity is negative and when the torque is negative
while the velocity is positive, respectively. The common result in these two cases is the negative
result in equation 1 of the power, since one of the factors is positive while the other one is negative.
The motor operates as a generator thus it converts mechanical energy to electrical energy. This
explains the letters M and G in figure 1, which stands for motoring and generation, respectively.
[8]

3



Figure 1: The servo motor characteristic in the four quadrants. M = motoring, G = generation

The velocity torque diagram in figure 1 shows the torque and velocity limits for the motor. To
avoid damaging the motor, it should not be used outside of these limits by for example running the
motor too fast or with a load that is too heavy. When no load is added the servo motor can reach
its maximum velocity. The same results holds for the torque, when it has no velocity the servo
motor can reach its maximum torque. See figure 2 of how velocity and torque are linked, with the
limitations in red. More advanced requirements comes into play when the servo motor operates for
a long time. In industry, the servo motors can be running for months, where an overheated servo
motor can stop the whole process or even cause damage on other components and machines. The
generated heat from the motor is in direct correlation with the velocity and torque the motor is
running at.

A motor’s torque-velocity diagram has two zones where one is called continuous duty zone and
the other one is called intermittent duty zone. They refer to the lower and the upper area of
Trms−limit, respectively, in figure 2. The RMS of the torque, here denoted as Trms, is a way of
keeping track of the root mean square of the torque required during a full duty cycle of the servo
motor. If the servo motor only operates in the continuous duty zone, which means it never crosses
the Trms−limit, the Trms will be in the same zone and will never be working outside the limitations.
But the more interesting thing happens when the servo motor enters the intermittent duty zone,
as shown by the blue closed path in figure 2. Depending on how long time the servo motor keeps
each level of torque in the duty cycle the Trms is varying. If the motor keeps too high torque levels
for too long the Trms will cross the Trms−limit line and the servo motor might overheat. Using a
motor with the correct dimension for the application will keep the Trms point below the Trms−limit

in the velocity-torque diagram, thus ensuring that the motor will stay operational.
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Figure 2: Motor Velocity-Torque diagram including RMS of the torque. The red boundary constitutes the velocity
- torque limit of the motor, and the blue line is how a servo motor might operate with its RMS point in blue

2.2 Gearbox and Backlash

The purposes of the gearbox are several. Firstly to match the servo motor output with the
application, i.e for example low velocity, with a high torque or only high torque with a smaller
servo motor. Secondly and the most common one is to match the inertia from the application
with the one at the motor. This is to stabilise the application and minimising the effect the load
has on the behaviour of the motor. Using a gearbox allows the designer to more finely control the
end velocity since the gear ratio controls the output velocity. The gear ratio can either increase
the velocity on the secondary side compared to the primary or decrease it. [9] But introducing
additional gears does not always mean more accuracy when the servo motor is changing direction
all the time. This is due to the play between the teeth in the gears, which is called backlash. More
exactly backlash is the play between two mated gear teeth at the pitch circle, as illustrated in
figure 3. It is necessary to prevent heat generation, wear, noise, failure or overload between two
gears, and is achieved by cutting the teeth to one half of what the backlash should be stated in the
requirements for the application. Backlash is wanted when the operation is only forward drives or
with a load in one direction, but when the operation drives changes direction frequently and the
precision as well as timing are critical to the application, backlash is not tolerated. [10]

Figure 3: This figure shows two gears and where backlash exists. The picture is taken from [10]

5



2.3 Motion Profiles

If a servo motor gets connected to a constant power supply it starts to accelerate to a specific
velocity and keeps that velocity until the power supply changes level. If the power supply enters a
higher constant level the servo motor starts to accelerate again and reaches a new higher velocity.
The opposite holds if the power supply enters a lower constant level, the servo motor will decelerate
to a new lower constant velocity. One can not anticipate the behaviour of the acceleration in that
way. Instead motion profiles are used to define the behaviour of the motion in terms of position,
velocity, acceleration and jerk. This information can then be used to control the voltage to the servo
motor to achieve the correct velocity and position. To achieve good performance when utilising
the servo motor at high velocity, continuous derivatives are necessary when calculating the motion
profiles. Therefore, the position profile is defined with a polynomial of the fifth degree. This means
that the velocity is defined by a fourth degree polynomial, acceleration a third degree polynomial
and the jerk a second degree polynomial and thus ensuring continuous function for all derivatives.
[1]

Figure 4 shows how the position and velocity could look like in a motion profile and figure 5 shows
the jerk and acceleration profiles for the same motion. Those figures show an example of a motion
profile where the behaviour of position, velocity, acceleration and jerk are defined in the interval
of 0 to 100 of the Master Position, which also is the x-axle. This section will go deeper into details
of the figures and all parameters further down, but for now this is just an example.

Figure 4: This figure shows an example of the behaviour for the motion profiles of position (blue line) and velocity
(red line), created by the application CAMTool

Figure 5: This figure shows the same example as figure 4 but the behaviour for a motion profile of acceleration (blue
line) and jerk (red line), created by the application CAMTool

6



The conditions of the motion profile depend on the requirements of the application or decisions of
the designer. One such condition could for example be when the servo motor is standing still and
goes to another position ending up standing still, which is a case called Point to Point motion.
This correspond to path A in figure 6 (a). Another case is when the servo motor has an initial
velocity (can be zero) and wants to keep that velocity for a time, which is a case called Dwell /
Cruise. This corresponds to path B in figure 6 (a) and path A in figure 6 (b). A further condition
pair is when the engineer wants to increase the velocity, either from stand still or from another
initial velocity. This case is called Velocity Increase, and corresponds to path C in figure 6 (a)
and path B in figure 6 (b). The opposite, when the servo motor should decrease the velocity, is
called Velocity Decrease, which corresponds to path D in figure 6 (a) and path C in figure 6 (b).
In total there exists seven cases, see figure 6. Beyond these seven cases there are two additional
cases called Position Increase and Position Decrease. These cases makes it possible to start with
an initial velocity in a given start position and end in a given position but with an undefined
end velocity. Position Increase is when the start position is smaller than the end position and
consequently Position Decrease is when the start position is bigger than the end position. Figure
6 is not relevant for these additional cases as the start and end velocities are not the focus to the
software when doing these calculations.

Figure 4 can now be determined as a Point to Point motion, since the motion profile starts with
no velocity and a predetermined start position, and goes to another position ending up standing
still.

(a) (b)

Figure 6: This figure shows different conditions for the program, where the left hand side in (a) and (b) are initial
conditions and the right hand side are the end conditions

To create a motion profile the engineer enters a set of parameters. These parameters are what
kind of motion profile to create, how the acceleration behaviour should be, how the deceleration
behaviour should be, for how long time the motion profile should last etc. The input table from the
application can be seen in figure 7. A deeper explanation about the different parameters and what
they are doing are explained in the upcoming sections. From this table the application calculates
a motion profile for position, velocity, acceleration and jerk based on the given parameters, with
some built in constrains that the designer takes for granted. The constraints could be that the
motion should not overshoot, or behave in other strange ways.

Figure 7: This figure shows the graphical designer interface for writing the different parameters to the program
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2.3.1 Acceleration

The motion profile is defined by a set of acceleration points. The acceleration points are used to
define the acceleration behaviour in terms of acceleration increase, acceleration constant and accel-
eration decrease as well as deceleration increase, deceleration constant and deceleration decrease.
See figure 8 for how and where all three acceleration parameters as well as all three deceleration
parameters are defined in the motion profile. The acceleration and the deceleration parameters are
given as a percentage of the total acceleration or deceleration time. Figure 8 also gives a parameter
for the length of the motion called Master Position and can be a reference to an internal machine
position, machine degrees. The Master Position can be recalculated to time if that is preferred
instead. In this way, when the motion profile has one section of acceleration and one section for
deceleration, the velocity motion gets divided into two parts around the symmetry. The first one
is Velocity Increase and the second one is Velocity Decrease as can be seen in figure 9, which gives
the engineer freedom in terms of acceleration to design the overall motion behaviour.

Figure 8: This figure explains the use of the different parameters. S1 is Acceleration Increase, S2 is Acceleration
Constant, S3 is Acceleration Decrease, S4 is Constant Velocity, S5 is Deceleration Increase, S6 is Deceleration
Constant, S7 is Deceleration Decrease, S8 is Symmetry, S9 is Master Position

Figure 9: This figure explains the use of the parameters symmetry, Master Position, slave position
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The different parameters for acceleration increase and decrease as well as deceleration increase and
decrease can be defined in the range of 1 - 99, depending on how big part of the motion should
be either increase or decrease of either acceleration or deceleration. For example 99 acceleration
increase means that 99% of the acceleration part of the profile should be dedicated to increasing
the acceleration. The constant acceleration and constant deceleration parts can be defined in the
range of 0-98. The total of the acceleration part must be 100. This also applies to the deceleration
part.

An additional parameter used to define the acceleration behaviour is the symmetry of the profile,
defined in the range of 1 - 99. A symmetry of 50 means that the motion is divided in equal parts
acceleration and deceleration. This means that in motions where the forces acting upon the object
in motion is uneven, this can be compensated for. Examples of such motions are when moving
vertically, i.e. when moving downwards the gravitational force will help the motion and when
moving upwards the gravitational force will counteract the motion.

2.3.2 SCCA Method

SCCA stands for Sine-Constant-Cosine-Acceleration and is a set of functions used for defining
different types of acceleration behaviour. There are a few standard functions defined, e.g. mod-
ified sine, modified trapezoid and cycloidal profiles, simple harmonic acceleration and constant
acceleration. All theses different profiles can be obtained by changing the parameters presented in
equations 2 and 3, which changes the acceleration behaviour.[1]

Figure 10: This figure shows a modified sine motion profile constructed using SCCA. Part of the figure is taken
from Norton, 2009 [1]

Given a motion profile as shown in figure 10, the acceleration increase, acceleration constant and
acceleration decrease can be defined by the following functions, which corresponds to the first three
sectors in figure 10.

yaccelerationincrease = C1sin(
π

a
x)

yaccelerationconstant = C1

yaccelerationdecrease = C1cos(
π

c
(x− 1− c

2
))

(2)

where x is the independent variable, a and c are the periods of the motion. The use of π is to
normalise the period of the motion. C1 is a constant to get the correct amplitude. And similarly,
the equations for deceleration increase, deceleration constant and deceleration decrease are the
following. It corresponds to the final three sectors in figure 10.

ydecelerationincrease = C1cos(
π

c
(x− 1− c

2
))

ydecelerationconstant = −C1

ydecelerationdecrease = C1sin(
π

c
(x− 1))

(3)
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where, again, x is the independent variable, a and c are the periods of the motion. The use of π is
to normalise the period of the motion. C1 is a constant to get the correct amplitude.

The expression for the velocity in the different sectors is as follows. First is the velocity for the
increasing part of the motion and then the decreasing part of the motion. For the first three
velocity functions, shown in equation 4, the first is derived by taking the antiderivative of the
function for acceleration increase, the second velocity function is the antiderivative of the constant
acceleration function and finally the third function is the antiderivative of the acceleration decrease
function. All these acceleration functions can be seen in equation 2.

yvelocity = C2[
a

π
− a

π
cos(

π

a
x)]

yvelocity = C2[x+ a(
1

π
− 1

2
)]

yvelocity = C2(
a

π
+

b

2
+

π

c
sin[

π

c
(x− 1− c

2
)])

(4)

where, x is the independent variable. a, b and c are the periods of the motion. The use of π
is to normalise the period of the motion. C2 is a constant to adjust to the correct amplitude.
For the following three velocity functions, shown in equation 5, the first function is derived by
taking the antiderivative of the function for deceleration increase, the second velocity function
is the antiderivative of the constant deceleration function and finally the third function is the
antiderivative of the deceleration decrease function. All these deceleration functions can be seen
in equation 3.

yvelocity = C2(
a

π
− a

p
sin[

π

c
(x− 1− c

2
)])

yvelocity = C2(−x+
a

π
+ 1− a

2
)

yvelocity = C2[
a

π
− a

π
cos(

π

a
(x− 1))]

(5)

where, x is the independent variable. a, b and c are the periods of the motion. The use of π is
to normalise the period of the motion. C2 is a constant to adjust to the correct amplitude. And
then the following three functions, shown in equation 6, is for the position in the different sectors
in the acceleration part of the motion. The position equations are also split into two parts, one
for the acceleration part of the motion, which is shown first, and one for the deceleration part
of the motion. The first function is for the acceleration increase part of the motion, the second
function is for the constant acceleration part of the motion and the third and final function is for
the acceleration decrease part of the motion.

yposition = C3[
a

π
x− (

a

π
)2sin(

π

a
x)]

yposition = C3[
x2

2
+ a(

1

π
− 1

2
)x+ a2(

1

8
− 1

π2
)]

yposition = C3([
a

π
+

b

2
]x+ (

c

π
)2 + a2(

1

8
− 1

π2
)− (

c

π
)2cos[

π

c
(x− 1− c

2
)])

(6)

where, x is the independent variable. a, c and b are the periods of the motion. The use of π is
to normalise the period of the motion. C3 is a constant to adjust to the correct amplitude. And
then the expression shown below is for the different sectors of position for the deceleration part
of the motion. One for the acceleration part of the motion, which is shown first, and one for the
deceleration part of the motion.

yposition = C3([
a

π
+

b

2
]x+ (

c

π
)2 + a2(

1

8
− 1

π2
)− (

c

π
)2cos[

π

c
(x− 1− c

2
)])

yposition = C3[−
x2

2
+ (

a

π
+ 1− a

2
)x+ (2c2 − a2)(

1

π2
− 1

8
)− 1

4
]

yposition = C3[
a

pi
x+

2(c2 − a2)

π2
+

(1− a)2 − c2

4
− (

a

pi
)2sin(

π

a
x)]

(7)
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where, x is the independent variable. a, c and b are the periods of the motion. The use of π is
to normalise the period of the motion. C3 is a constant to adjust to the correct amplitude. The
expressions given in equations 2, 3, 4, 5, 6 and 7 are retrieved from Norton [1].

2.3.3 Splines

Splines are continuous mathematical functions that is a piece-wise polynomial with certain contin-
uous derivatives in the considered interval [11]. The polynomial functions will start at one point
and end in the other point. Spline fitting is the corresponding mathematical technique for fitting
functions between discrete points to match some data [12]. The points that bind two splines to-
gether are knots [1]. This means the knots corresponds to the x-marks numbered one to eight in
figures 11 and 12, while the splines corresponds to the line in between. The concept for splines
evolved from using weights and bamboo sticks to find a curve between several points with the least
tension. The weights corresponding to the points and would be called knots. The bamboo stick,
now matching the way between the knots with the least tension, would be the splines.[1]

Figure 11: This figure shows the knots of a motion profile of position (blue) and velocity (red) numbered one to
eight
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Figure 12: This figure shows the knots of a motion profile of acceleration (blue) and jerk (red) numbered one to
eight

The important thing when using splines is to make the function continuously differentiable across
the entire domain. This can be achieved by matching the boundary conditions for the different
splines at the knots thus matching the different end and beginning derivatives at the same knot with
each other [12]. Some common boundary conditions are for example to make the first derivative
zero, which is called to make the spline ”clamped” [1]. Another common boundary condition is to
make the second derivative zero. This called to make the spline ”natural” [12].

Some different polynomial functions can be used and some are better fitted for different purposes
[12]. For use in CAM profiles a polynomial of the fifth degree for the position function is preferred
since velocity, acceleration and jerk will be continuous functions and thus the motion will be smooth
[1]. A spline of the fifth degree is called a quintic spline [12]. A spline of the third degree is called
a cubic spline [1].

In this project cubic splines will be used to define the acceleration behaviour. Cubic splines are
splines which are two times differentiable [13]. Since velocity is the antiderivative of acceleration,
it will be defined by a quartic spline. The position is the antiderivative of velocity, which means it
will be defined by a quintic spline. Jerk will be a second degree polynomial since it is the derivation
of acceleration. Equation 8 shows the polynomial functions for acceleration, velocity, position and
jerk.

facceleration(x) = ax3 + bx2 + cx+ d

fvelocity(x) =
a

4
x4 +

b

3
x3 +

c

2
x2 + dx+ e

fposition(x) =
a

20
x5 +

b

12
x4 +

c

6
cx3 +

d

2
x2 + ex+ f

fjerk(x) = 3ax2 + 2bx+ c

(8)

where x is the independent variable and a, b, c, d, e and f are the individual coefficients to the
polynomials.
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2.4 Mechanics

This section aims to give a brief overview on the laws of motions. It will also give an attempt to
describe how these are relevant to our Master Thesis. The reason for the order of acceleration,
jerk, velocity and position is to first introduce the acceleration since that is the main focus of
this way of designing motion profiles. Then introduce the different topics as they are mentioned
in the requirements. The first requirement was to introduce a non-zero jerk at the beginning of
acceleration increase, at the end of acceleration decrease, at the beginning of deceleration increase
and at the end of deceleration of decrease. The main reason for this was to have a faster acceleration
and deceleration behaviour. The second requirement was to introduce a motion profile designed
with a specific end velocity in mind. The third requirement was to introduce a motion profile with
a specific end position. The reasons for the two last requirements were to make the tool more
flexible with more motion types.

2.4.1 Acceleration

Acceleration is defined by a third degree polynomial interpolated between the different knots [1].
The splines, which are the functions between the different knots, are calculated by using the SciPy
library, which will be described more in depth in the section about the software. The acceleration
functions are by definition two times differentiable [13]. This property gives a smooth profile to
work with and as will be discussed later, a second degree polynomial function for the jerk of the
motion, which can be manipulated for different cases.

facceleration(x) = ax3 + bx2 + cx+ d (9)

This results in four unknowns, a, b, c and d, as can be seen in equation 9. Since we have four
unknown variables we need four equations to solve for the values of a, b, c and d. This can be
derived from the boundary conditions of the acceleration motion and thus gives us two additional
conditions and the remaining two are derived from either the jerk end points or the end points of
the derivative of the jerk, as will be presented in the next subsection.

2.4.2 Jerk

Jerk is the derivative of acceleration and defines how the acceleration changes over time [1] [14].
In this project, motion profiles where the jerk is non-zero at the beginning of acceleration increase,
at the end of deceleration decrease, at the beginning of deceleration increase and at the end of
deceleration decrease have been investigated. The jerk is defined by a polynomial of the second
order and is derived by differentiating the acceleration profile once, as can be seen in equation
10.

f ′
acceleration(x) = fjerk(x) = 3ax2 + 2bx+ c (10)

where x is the independent variable and a, b and c are polynomial coefficients. Notice that this
is the same coefficients as in the acceleration equation mentioned in equation 9. If the motion
profile should not have non-zero jerk at the beginning or at the end of a spline, equations 11 or 12
hold.

fjerk(x0) = 0 (11)

fjerk(xn) = 0 (12)

If the motion profile should have non-zero jerk at the beginning or at the end of a spline, equations
13 or 14 hold instead.

f ′
jerk(x0) = 0 (13)

f ′
jerk(xn) = 0 (14)
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Using the equations in 11, 12, 13 and 14, shown above, in different combinations results in a jerk
profile similar to those shown in figures 23, 24, 25, 26 and where the jerk value is either non-zero
or zero in the beginning of acceleration increase, the end of acceleration decrease, the beginning of
deceleration increase and at the end of deceleration decrease.

2.4.3 Velocity

As mentioned earlier, velocity is defined by a fourth degree polynomial and is derived by getting
the antiderivative of the acceleration profile. The constant term is derived either by the start
condition of the motion or the end position of the previous spline to achieve a continuous velocity
profile over the entire motion.

fvelocity(x) =

∫
facceleration(x)dx =

a

4
x4 +

b

3
x3 +

c

2
x2 + dx+ e

e = fvelocity(x0)

(15)

2.4.4 Position

Position is the two time antiderivative of the acceleration profile. It is defined as mentioned earlier
as a fifth degree polynomial. The constant term of the integral is either defined by the starting
position or the end position of the previous spline to maintain a continues position profile. The
constant term is derived by the initial condition of the motion or the end position of the previous
spline to achieve a continuous velocity profile over the entire motion.

fposition(x) =

∫∫
facceleration(x)dx

2 =
a

20
x5 +

b

12
x4 +

c

6
x3 +

d

2
x2 + ex+ f

f = fposition(x0)

(16)

2.5 Python

Python is designed to be used for building software in a wide variety of application domains,
which makes it a general-purpose programming language. It is also a high level, object oriented
interpreted programming language. [15]

It is developed under open source license, which means that everyone can contribute to it and
develop it. [16]

2.5.1 Graphical User Interface

Qt Designer is a tool to design graphical user interface (GUI), which then can be used in different
applications [17]. It is based on ”drag and drop” and a ”what you see is what you get” type of
approach [18]. The implementation of the GUI is built around the QObject to provide runtime
efficiency and the flexibility for creating a user interface. For adding elements to the user interface
Qt designer uses the Qt widget object. [19] The widgets works well with the underlying platform
and provide the native look and feel of any other program running on Windows, Linux and macOS.
However, they are quite static in their implementation and thus only suitable for desktop centred
user interfaces and for applications only running on desktops. [18]

Qt Designer is built around some main concepts to ease the development process and integration of
GUI. The main concepts are: the application main window, desktop integration, dialog windows,
layout management, model/view programming, rich text processing, drag and drop, international-
isation. [18] The main window of the interface is the feature which holds the entire GUI together.
It also provides implementations for menus and toolbars as well as a status bar and more. [20]
Desktop integration adds features to integrate the application with the system it is running on,
such as the ability to open external resources, adding system tray icons and support for running
the application on more than one screen [21].
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Layout management orders the applications widget and their child widgets in a simple and powerful
way within the application to use the available space to the max. Child widgets are widgets within
another widget, for example a drop down menu inside a popup window. The layout management
comes with a set of classes used to describe the specific layout. These classes also describes the
size of the window, handles resizing and automatic updates of the layout and its child widgets.
[22]

Dialog windows offer the user the ability to give input to the software [23]. Rich text processing
provides a framework for handling text within the user interface [24]. Similarly, drag and drop
offers the ability for the user to drag and drop files within an application [25]. Internationalisation
makes the process of changing languages easier [26].

Model view controller is a design pattern used for implementing user interfaces and as such it is
used by Qt designer. The design pattern aims to separate the data, from the view and as such
simplifies the implementation of the user interface and gives the designer more freedom in how to
create the user interface. [27]

2.5.2 Numerical Calculations

Two special libraries of functions were used to do all advanced numerical calculations, NumPy
and SciPy. NumPy is a Python library designed to simplify scientific calculations that require to
store and handle large amounts of data [28]. It is the foundation on which a lot of other scientific
libraries are built that are used within many research fields, such as astrology, materials science,
engineering and finance [29]. One of these libraries that utilises NumPy is SciPy, which adds
functions for solving and modelling different scientific problems.

NumPy provides the NumPy array as a layer of abstraction to be able to handle the computation
of scientific data more easily. The NumPy array is a data structure, similar to an array, which sim-
plifies the handeling of large amount of data.[28] It also introduces features to support calculations
on these arrays as if they were vectors as well as support for calculations on each vector element
individually [30]. The new data structure significantly speeds up the calculations and computer
programs by utilising the underlying hardware more efficiently [29].

SciPy supplies more advanced mathematical algorithms for optimisation, integration, interpola-
tion and more [31]. In this project, interpolation and integration functions were used, especially in
regards to spline interpolation and subsequent spline integration, spline derivation and spline an-
tiderivation to retrieve the values and functions for acceleration, velocity, position and jerk. Other
more specialised software, such as skictlearn which provides the engineer with more advanced
machine learning algorithms for example uses SciPy [29].

NumPy and SciPy was originally built on a Python library called Numeric developed during the
90’s for use in scientific calculations. In the middle of 2000’s standardisation work and upgrading
work was done and the result is NumPy and SciPy. [30]

SciPy includes a package for interpolating a third degree polynomial, a cubic spline, between
two points. As additional constraints the value of the first derivative or the second derivative in
those two points has to be provided. [32] SciPy also includes a package, called make interp spline,
for deriving polynomial for higher degree polynomials between two points, thus a five degree
polynomial could be derived. To be able to construct this function the method needs the end and
start position, as well as the start and end velocity and start and end acceleration. [33]

The cubic spline package, as well as make interp spline package, provides methods for deriving the
derivative and the antiderivative of the interpolated function [32] [33]. The packages also provide a
method for numerical integration for calculating the finite integral of a function between two points
[32] [33]. Numerical integration is based on an old FORTRAN routine which sums the product of
a function value and weight at multiple instances [34].
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2.6 TwinCAT

TwinCAT is a control software solution offered by Beckhoff that is used in PC-based automation
system. It features a rich software library specially suited for automation and controlling industrial
processes. The development of PC-based machine control started in 1986 and the first version of
TwinCAT was released 10 years later. Now TwinCAT 3 is the third generation automation support
software, which is meant to work as a comprehensive automation solution with support for both
C/C++ and MATLAB/Simulink as well as an open support for third party solutions. It also
supports version control, which is integrated in to the development environment to facilitate easy
development in a team. [35]

TwinCAT comes in many different forms and modules. For this Master Thesis the TwinCAT
XAE and TwinCAT XAR were used. XAE stands for Extended Automation Engineering and
offers support for programming according to the IEC-61131-3 standard, as well as C/C++ and
MATLAB/Simulink. It also features debugging and diagnostics functionalities for both code and
hardware. [35] TwinCAT XAR stands for extended automation runtime. The module offers
runtime capabilities to run the developed applications on real machines. The runtime capabilities
enables control over the machine on field level. But since the PC-based operating system is always
running in the background customer specific software and software for visualising the current effects
of the running software can run at the same time as the control platform. This makes it a very
versatile environment to develop automation platforms in. TwinCAT XAE software is available as
a free to use software where the basic components are included. [35]

An additional feature that was used was the module CAM Design Tool from Beckhoff. This tool
offers support for designing motion profiles. It also offers many different features such as different
motion functions and set boundary conditions for derivatives. [36]

For this project the real time environment and PLC component of TwinCAT were utilised. Since
TwinCAT is an integral part of the mechanical systems at Tetra Pak, development in TwinCAT
was of uttermost importance.

2.7 Real Time Software

Real time software is a domain of software where there are usually harder constraints on the system
in focus since it interacts with the real world [37]. According to the DIN 44300 standard real time
is defined as: Real-time operation is an operating mode of a computer system in which programs
for the processing of data are continuously operational in such a way that the processing results
are available within a specified period of time. In other words this means that the output value of
an application program, which is derived based on the inner states and input values, are available
within a defined guaranteed time. This defined time is called cycle time. [38]

Cycle time is the time the program should execute its tasks in. If a task exceeds the cycle time in
execution the processor keeps executing that task into to the next cycle and an exceed counter is
raised. If then the following cycle is exceeded, the current task is completed and the program is
halted until the next possible cycle start. The exceed counter is increased accordingly. This means
that many cycles can be lost if a task or process runs too long. [38]

Timing is really important in a real time system. Timing describes the need for a result of a
computation to be delivered at a specified time. This is a consequence of the cycle time, harder
constraints on real time system compared to a non-real time system as well as the inputs and
outputs of the system. For instance if a result is delivered too late the response to an activity
outside the system might be too late and not effective. Even a result delivered too early might be
harmful since the system might react too soon to an activity outside the system and thus damage
the application. [37]
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Another consequence of the DIN 44300 standard is the use of run time scheduling [38]. Run time
scheduling means that the operations of the microprocessor are not predetermined and thus the
schedule is determined as the program runs [37]. In TwinCAT this is achieved with the double
tick method where the real time operations are executing first after the first tick. After the second
tick the underlying operating system is running its tasks until the cycle time finishes. [38] The
order of the execution of the different tasks are decided by a priority system where the task with
the highest priority is done first. [38]

2.7.1 State Machines

An important concept in real time programming is the use of state machines. They are used to
model and describe the real world seen from the computers perspective which can then be used to
analyse the system [37]. For example the state machine of a door would be the states open and
close. The transitions would then be open and closed. The open transition would go from the
closed state to the open state and the close transition would then go from the open state to the
closed state.

The transitions between the states are instantaneous but it is also here that the interaction with
the real world happens. The transitions should be triggered by some event, for example a sensor
trigger or a switch turning on or off. Since the state transitions are event triggered, the time spent
in one state is unknown and therefore not a good transition trigger [37].

One way to implement the state machine is to use the switch case program statement. Then the
different states would be the different cases and the transitions would be when going from one
state to another. [37]
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3 Background

In this chapter the background for this thesis will be presented. As mentioned in the intro-
duction some work regarding the CAMTool had already been done, which this section aims to
describe.

Firstly, the Python variant of the CAMTool will be introduced. This section is divided into two
smaller parts, one for the GUI and one for the application. Secondly, the TwinCAT application
will be described, followed by the goals of this project including illustrations to show what should
be achieved.

3.1 Python Implementation

As mentioned above the Python application is divided into two parts. First the GUI will be
described and how it relates to the theory previously presented. Next the application itself will be
presented including how it works.

3.1.1 Graphical User Interface

If a new application should be appreciated and used in the future, the GUI has to be user friendly
and nice looking. It should be easy to understand what every button does, as well as finding the
functionalities fast. The GUI in the starting point of this thesis work can be found in figure 13 and
figure 14, where the first one is for the input table and the second one is for the initial settings.
Both figures are divided into smaller sections or boxes, numbered one to seven. Notice, box number
three and four is the same for both.

Box number one is the input table, where the engineers can enter the parameters of the desired
motion profile. The second box is where the user can add a new motion type which is added to the
input table, or delete an existing row in the input table. In this box the motion profile can change
between Master Position or Time at the x-axis. The next box is where the result is plotted in the
first two tabs, named Position/Velocity and Acceleration/Jerk, while the last tab is the data of the
plots, named CAM Table. The fourth and last box in figure 13 contains different functionalities as
the explanation of the GUI and the ability to save the current CAM as well as load an old saved
one. In figure 14 box five is where the user enters the starting values for the motion profile. The
next box is where the variable name of the generated Beckhoff file is decided, while the last box
includes some short instructions.
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Figure 13: This figure shows the starting point for the GUI interface, under the tab Input Table

Figure 14: Figure showing the starting point for the GUI interface, under the tab Initial Settings

As mentioned above there is a tab called CAM Table, which can be seen in figure 15. To generate
the data, which will be shown in box number eight, the user must first create a motion profile.
Thereafter the button called Generate Table in box nine can be pressed. This generated table,
which can be seen in box ten in figure 16, can be saved for later use by the button Save Table in
box number eleven.
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Figure 15: This figure shows the starting point for the GUI interface, under the tab CAM Table

Figure 16: Figure showing the starting point for the GUI interface, under the tab CAM Table with the generated
data

One function that is not shown in figures 13 and 14 but still exists, is to change the colour of the
motion profiles. This can be done by right clicking at the plot, corresponds to box three in figure
13, which will make a pop-up window with colour settings appear as shown in figure 17 (a). The
user och operator can choose between ten different, predefined colours individually for each motion
profile as shown in figure 17 (b).
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(a) (b)

Figure 17: This figure shows the starting point for how to change colour in the GUI with the default in (a) and an
extended drop down in (b). Colour is spelt the American way in this picture. This is changed in all other pictures
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3.1.2 Application

Figure 18 is a flow graph which shows the overall control flow of the Python application. The
application starts executing in the Mainwindow module. Following the arrows yields the following
execution order: Controller, InputHandler, SplineCalculator and lastly the GUI which shows the
finished motion profiles.

Figure 18: This figure shows the structure of the Python program

From the Mainwindow module, the application is run. It is also here all the code that connects
the buttons with the functionality is located.

The Controller acts as the link, within the CAMTool application, between the InputHandler and
SplineCalculator. It imports the data from the Mainwindow and sends it to the InputHandler.
When the data have been processed by the InputHandler it gets passed to the SplineCalculator.
This connection can be seen in figure 18 and it is also here that the motion functions get evaluated
and the values are passed to the GUI where they are plotted in the graph. The Controller can also
generate code that can be used to run a newly generated motion profile in TwinCAT. The code
is generated when pressing the button Generate Beckhoff, which can be seen in box four in figure
13. The generated code consists of the knots that tie all the individual splines together.

The InputHandler handles the input and coverts it to the right format so that the SplineCalculator
can calculate the splines. The acceleration percentages and deceleration percentages get converted
to corresponding y- and x-values. Verification is implemented to ensure that the user inputs
the correct form of inputs and that the numbers add up. For example, the sum of acceleration
increase, acceleration constant and acceleration decrease has to be 100, while acceleration increase
and acceleration decrease has to be bigger than or equal to one when calculating a motion profile
for a Point to Point motion.

22



The SplineCalculator calculates the coefficients of the polynomial function, which will pass through
the required points using the equations presented in subsection 2.3.1 and the Python packages pre-
sented in subsection 2.5.2. Since acceleration behaviour is user defined the polynomial coefficients
for the acceleration profile are calculated first. The coefficients for the velocity polynomial and po-
sition polynomial are then derived by antiderivation. The jerk polynomial coefficients are derived
by derivation of the acceleration splines.

The polynomial coefficients for jerk, acceleration, velocity and position are returned to the Con-
troller along with x-values representing the Master Position. The Controller calculates the corre-
sponding y-value for jerk, acceleration, velocity and position given a certain x-value.

The last arrow in figure 18 between the Controller and the GUI, represents sending the jerk-,
acceleration-, velocity- and position values and the matching x-values to the GUI, which draws up
the graphs of the jerk, acceleration, velocity and position of the motion.

As mentioned in section 1.1, Point to Point motion and Dwell / Cruise were the only types of motion
able to design and calculate with the old version of CAMTool. An example of a Point to Point
motion can be seen in figures 19 and 20, where the parameters are as followed: acceleration decrease
60 %, acceleration constant 20 %, acceleration decrease 20 %, constant velocity 0 %, deceleration
increase 40 %, deceleration constant 40 %, deceleration decrease 20 % and the symmetry 50%. The
motion of Dwell / Cruise can be found in figure 21, which have the following parameters: constant
velocity 100 %, the rest are zero. Since the position and velocity are both zero all the time, the
acceleration and jerk behaviour will be the same and are not included in the report.

Figure 19: Shows an example of a Point to Point motion, where position is in blue and velocity in red

Figure 20: Shows the acceleration (blue) and jerk (red) behaviour of figure 19
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Figure 21: Shows an example of a Dwell / Cruise where position is in blue and velocity is in red

3.2 TwinCAT Implementation

The TwinCAT application tries to follow the same architecture as the Python implementation,
where the FB Inputhandler calculates the acceleration amplitude given the input parameters. The
spline calculator function block, FB SplineCalculator then calculates the acceleration function
given the acceleration amplitude and the jerk, velocity and position functions given by the accel-
eration function. The functions are then passed to FB BuildCamPoints, which calculates discrete
points which are used to plot the motion profiles. A control flow graph can be seen in figure 22,
which shows the overall control flow of the TwinCAT application.

Figure 22: This figure shows the structure of the PLC program
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3.3 Goals

This section aims to describe the different requirements that were stated in chapter 1 and is divided
in the same way. The non-zero jerk motion profile will be described first followed by a description
of Velocity Increase and Velocity Decrease. After that Position Increase and Position Decrease as
well as Rendezvous will be described and finally the real time performance of the application will
be discussed.

3.3.1 Non-Zero Jerk

This subsection will describe how goal number one that was setup in section 1.2 will be fulfilled.
The implementation for that goal will from here on be called non-zero jerk and will build on the
equations presented in the subsection 2.4.2.

The non-zero jerk function is only applicable at four points in the motion. At the beginning of
the acceleration part, at the end of acceleration part, at the beginning of the deceleration part
and at the end of deceleration part. At the beginning and end of the constant acceleration and
constant deceleration motions the jerk value is always zero as can be seen in the graphs below.
In figure 23 the first case where the difference between non-zero and zero jerk is in the beginning
of the acceleration motion can be seen. The second case, where the difference between non-zero
and zero jerk is in the end of the acceleration motion, can be seen in figure 24. The non-zero
jerk at the beginning and end of the deceleration motion can be seen in figure 25 and figure 26,
respectively.

Figure 23: This figure illustrates the difference between non-zero jerk and zero jerk at the beginning of the increasing
acceleration motion. Notice also the difference in acceleration behaviour. Acceleration is in blue with the non-zero
jerk behaviour in dashed blue and zero jerk behaviour in straight blue. Jerk is in red, with non-zero jerk in dotted
red
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Figure 24: This figure illustrates the difference between non-zero jerk and zero jerk at the end of the decreasing
acceleration motion. Notice also the difference in acceleration behaviour. Acceleration is in blue with the non-zero
jerk behaviour in dashed blue and zero jerk behaviour in straight blue. Jerk is in red, with non-zero jerk in dotted
red

Figure 25: This figure illustrates the difference between non-zero jerk and zero jerk at the beginning of the increasing
deceleration motion. Notice also the difference in acceleration behaviour. Acceleration is in blue with the non-zero
jerk behaviour in dashed blue and zero jerk behaviour in straight blue. Jerk is in red, with non-zero jerk in dotted
red

Figure 26: This figure illustrates the difference between non-zero jerk and zero jerk at the end of the decreasing
deceleration motion. Also, notice the difference in acceleration behaviour. Acceleration is in blue with the non-zero
jerk behaviour in dashed blue and zero jerk behaviour in straight blue. Jerk is in red, with non-zero jerk in dotted
red
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3.3.2 Velocity Increase and Velocity Decrease

Velocity is the first antiderivative of acceleration. In this project, a motion profile with a predefined
initial velocity and position as well as a predefined end velocity will be investigated. This means
that the initial velocity and end velocity can be any value. Depending on if the end velocity is
bigger or smaller than the initial velocity it is defined as a Velocity Increase or Velocity Decrease,
respectively. The aim is to achieve something like in figure 27 for Velocity Increase and figure 29
for Velocity Decrease. Along with these new velocity profiles the aim is to achieve an acceleration
behaviour and thus a jerk behaviour as shown in figure 28 for Velocity Increase and figure 30 for
Velocity Decrease, respectively. Please note that the figures shown below are not the actual motion
profiles but more a representation of the behaviour hoped to be achieved.

The figures 27, 28, 29, 30 mentioned above aim to describe the fulfilment of goal number two setup
in section 1.2. The implementation for that goal will from here on be called Velocity Increase or
Velocity Decrease depending on if the initial velocity is smaller or bigger than the end velocity and
will build on the theory presented in subsection 2.4.3, 2.4.1 as well as 2.4.2.

Figure 27: This figure tries to illustrate the difference between a Point to Point motion and a Velocity Increase in
terms of position and velocity. Velocity is in red, with the targeted behaviour dotted. Position is in blue with the
targeted behaviour dashed

Figure 28: This figure shows the expected acceleration and jerk behaviour corresponding to figure 27. Acceleration
is in blue, and jerk is in red

27



Figure 29: This figure tries to illustrate the difference between a Point to Point motion and a Velocity Decrease in
terms of position and velocity. Velocity is in red, with the targeted behaviour dotted. Position in blue with the
targeted behaviour dashed

Figure 30: Shows the expected acceleration and jerk behaviour corresponding to figure 29. Acceleration is in blue,
and jerk is in red
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3.3.3 Position Increase and Position Decrease

This subsection will describe how goal number four in section 1.2 is achieved. That goal will from
here on be called Position Increase or Position Decrease depending on if the initial position is
smaller or bigger than the end position. The implementation will build on the theory presented in
subsection 2.4.1 and 2.4.4 as well as 2.4.2.

Position is derived by taking the second antiderivative of the acceleration. During this project,
a motion profile with a predefined initial start velocity and start position and a predefined end
position will be investigated. Figures 31 and 32 below aims to show how the motion profile is
supposed to look like when doing a Position Increase. With the new profile represented by the
dotted line.

Figure 31: This figure shows the aim of the Position Increase motion compered to a Point to Point motion. The
dashed blue line is supposed to represent the new position and the dotted red line is supposed to represent the new
velocity

Figure 32: This figure shows how the acceleration and jerk behaviour is supposed to look when doing a Position
Increase motion. The dotted line and the dashed line are supposed to represent the new motion. Blue is for
acceleration and red is for jerk
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Figures 33 and 34 below aim to show how a motion profile is supposed to look like when doing a
Position Decrease. The new profile is represented by the dotted and dashed lines.

Figure 33: This figure shows the aim of the Position Decrease motion. The dashed blue line are supposed to
represent the new position behaviour and the dotted red line is supposed to represent the new velocity behaviour

Figure 34: This figure shows how the acceleration and jerk behaviour is supposed to look when doing a Position
Decrease motion. Blue is for acceleration and red is for jerk

3.3.4 Rendezvous

Rendezvous is a term that we use to describe a motion profile, which has a predefined start position
and start velocity and reaches a predefined end position with a predefined end velocity. In this
case the acceleration behaviour is left undefined and will thus be defined by the method used to
calculate the motion profile. This is also referenced as goal number six in section 1.2 of this thesis.
The implementation of this goal will from here on be called Rendezvous.

Revisiting equation 16 we see that there are six unknowns, a, b, c, d, e and f thus we need six
equations to be able to solve for the unknowns. Two equations can be derived from the end and
start positions. Two equations can be derived from the start and end velocities of the motion using
equation 15. The final two equations can be derived from the acceleration equation of the motion,
using equation 9. In our project, we have assumed that the acceleration will always be zero at
the end points since the points defined are at the end and beginning of a motion. The following
system of equations is thus obtained.
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fposition(xstart) = ax5
start + bx4

start + cx3
start + dx2

start + exstart + f

fposition(xend) = ax5
end + bx4

end + cx3
end + dx2

end + exend + f
(17)

fvelocity(xstart) = 5ax4
start + 4bx3

start + 3cx2
start + 2dxstart + e

fvelocity(xend) = 5ax4
end + 4bx3

end + 3cx2
end + 2dxend + e

(18)

facceleration(xend) = 20ax3
end + 12bx2

end + 6cxend + 2d = 0

facceleration(xstart) = 20ax3
start + 12bx2

start + 6cxstart + 2d = 0
(19)

And thus the coefficients a, b, c, d, e and f can be solved and the motion profile can be calcu-
lated.

3.3.5 Real Time Implementation

The PLC program was poorly implemented with respect to real time properties. The main issue
was that the program occupied too much of the CPU and thus other routines and programs could
not run within a cycle time and therefore there was not enough CPU time for other functions
such as output and input actions or similar. Hence, as stated in section 1.2, this is goal number
three of this project. The implementation of this goal will from here on be called Real Time
Implementation.

In TwinCAT one can decide how long the cycle time should be. A short cycle time, where the
minimum in TwinCAT is one millisecond, means the program can only occupy the CPU for a
short time. The aim regarding the real time implementation for this project was to eliminate the
number of times the program exceeded the cycle time when having a cycle time of one millisecond.
As can be seen in figure 35 below, the application exceeds the cycle time twice. Although one
millisecond is a rather short time it ensures that the program will run on all kinds of applications
with different amount of cycle times without any problem.

Figure 35: This figure shows the exceed counter when running the old version of PLC version of CAMTool
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4 Method

This chapter is meant to introduce the methodology of this project, which changes were imple-
mented and in what order they were done. First the Python changes will be introduced, where the
first changes were done to the GUI and then the changes to the CAM tool application. Then the
changes to TwinCAT were implemented.

4.1 Python Implementation

The changes made to the Python implementation were done both in the GUI and in the application
itself. The GUI changes were done first since they were estimated to be the easiest and offer a
better introduction to how the application worked.

After the GUI changes were done the work on the application itself started. The functionalities
that were to be implemented are shown in subsection 4.1.2 and correspond to the requirements
determined in the introduction.

4.1.1 Graphical User Interface

Regarding the GUI, an application called QT Designer was used to design the layout of the in-
terface, which is described in subsection 2.5.1. By ticking off each improvement in the list, the
GUI started look as desired by our supervisor at Tetra Pak. When some of the changes had been
implemented, the GUI was shown to our supervisor to get feedback directly. After another set
of changes had been implemented, it was shown again. In this way the GUI took the best shape
possible.

The first set of changes for improving the GUI is shown down below, numbered 1 to 8. It was
decided to start with some simple changes to get to know the code and application better. These
changes did not require too much code to be changed but some changes to the interface design in
Qt Designer.

1. Change ”Explanation” button text to ”Help”

2. Change ”Generate Beckhoff” button text to ”Generate TwinCAT PLC Code”

3. Change ”Load CAM” button text to ”Open CAM”

4. Change the text ”Insert number of points” to ”Minimum number of points” under CAM
Table tab

5. Move the Position/Velocity tab to be the most left tab

6. Make it consistent so that all values are floats (decimal numbers) as default

7. Centre all values in the Input Table

8. Change the order of the button to the right: Calculate CAM, Generate Beckhoff, Save CAM,
Load CAM, Explanation
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The second set of changes to improve the GUI is shown below, numbered 9 to 16. After the minor
changes, as seen in the list above, it was time to do the changes that required more insight into the
application. The reason why the changes below required more from the developer is because one
had to deal with both the Qt Designer as well as to connect the new design with new functionality
using code.

9. Add a button to change colour and a palette

10. Add a button to show or hide the knots in the graphs

11. Make it possible to delete a certain row in the input table

12. Make it possible to insert a row in the input table

13. Time-limits in the graph shall follow the times of the CAM, not exceed

14. Drop down menu to decide type of motion (Point to Point, Dwell and then future possibilities)
instead of doing if through the parameters

15. Add text box to define the name of MC CAM REF variable under Initial-settings tab

16. Possible to introduce some kind of tool tip to display the values in a specific point in the
CAM-diagram. It shall be the value of the CAM, not the value of the mouse pointer position
in the graph

4.1.2 Application

After the changes to the GUI, as stated in subsection 4.1.1, were implemented, work on the actual
goal of the Master Thesis was started. Those are listed below and were done in the following
order.

1. A motion profile where the jerk is non-zero at the beginning of acceleration increase, end of
acceleration decrease, beginning of deceleration increase and end of deceleration decrease

2. A motion profile where the start and end velocities are defined by the user, including the
acceleration behaviour

3. A motion profile where the start and end position are defined by the user, including the
acceleration behaviour

4. A motion profile where both start and end velocities as well as start and end positions are
defined by the user

4.2 TwinCAT Implementation

The similar changes done to the Python code was also implemented in TwinCAT. In addition
to that there was also a requirement to adapt the software to work in a real time context. The
following things were done.

1. A motion profile where the jerk is non-zero at the beginning of acceleration increase, end of
acceleration decrease, beginning of deceleration increase and end of deceleration decrease

2. A motion profile where the start and end velocities are defined by the user, including the
acceleration behaviour

3. Rewrite the software so that its execution time does not occupy the processor for longer than
a fraction of a cycle period

4. A motion profile where the start and end position are defined by the user, including the
acceleration behaviour

5. A motion profile where both start and end velocities as well as start and end positions are
defined by the user

The decision to take the TwinCAT application after the Python application was that the latter
offered a better chance to learn how the code worked and understand its purpose. Since the
idea of the Python and TwinCAT software are the same this offered the best way to understand
both.
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4.3 Verification

It is not possible to say anything about the new CAMTool without comparing it with Beckhoffs
CAM Design Tool for creating motion profiles, which will be the way to preform the verification of
the new version of CAMTool. The speed-torque diagram was introduced in subsection 2.1.1 and
will be used to make sure the new version of CAMTool will make a better operate-path for the
servo motor compared to Beckhoffs CAM Design Tool. Since the older version of CAMTool only is
able to do the motion type Point to Point except Dwell, this is what is going to be compared. The
rest of the motion types the new version of CAMTool is able to calculate are they are all based
on the same principle, which means they do not have to be verified since the same behaviour and
functionality are expected.

To produce a speed-torque diagram, both motion profiles are going to be run at a setup emulating
a real life application, more exactly the setup in figure 36 and figure 37. The dark grey part is the
servo motor, the blue part is the gearbox and the grey box with the belt is the conveyor belt rig.
On the belt a rectangular piece of aluminium is mounted to have a better view of how the belt is
moving.

Figure 36: This figure shows the setup for the verification from the belt side

Figure 37: This figure shows the setup for the verification from the servo motor side
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5 Results

In this chapter the result of the work done during this project will be presented. First out is how
the Python software turned out and its different parts, followed by the result of the TwinCAT
software. In addition to that the result of adapting the software to real time is described. This
chapter ends with a section about the results when a motion profile from the new version CAMTool
was compared with a motion profile from Beckhoff’s own CAM design tool.

5.1 Python Implementation

This section is divided in a similar way as the requirement chapters, 1 and 3. First out is the GUI,
more exactly how the user interface and the colour palette turned out. This section is followed
by the result of the non-zero jerk, Velocity Increase and Decrease as well as Position Increase and
Decrease. The last section shows how the implementation of Rendezvous turned out.

5.1.1 Graphical User Interface

The new GUI of the software can be seen in figures 38, 39 and 40, where the first one shows the tab
Input Table, the second one shows the tab Initial Settings and the third one shows the tab CAM
Table. As can be seen in the input table there are already some motion types added. This is not
the default, but to be able to show the result of how the input interface of some different motion
types look when added. It is here that the engineer will input the acceleration and deceleration
parameters when designing a new motion profile.

Figure 38: This figure shows the new GUI of Input table in the software
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Figure 39: This figure shows the new GUI Initial Settings tab

Figure 40: This figure shows the new GUI CAM Table tab

Both the Add Row and Insert Row buttons will make a pop-up window appear where the motion
profile designer can choose which motion type to use. This pop-up window is shown in figure 41.
Figure 41 (a) shows the pop-up window as it is when it first shows up, with Point to Point motion
as the default motion type, while figure 41 (b) shows then the extended drop down list with the
other motion types.
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(a) (b)

Figure 41: This figure is showing the Motion Type Window as default in (a) and when the drop down list is extended
(b)

The button Colours in figures 38 and 39 will make a pop-up window appear where the designer
can choose which colour position, velocity, acceleration and jerk will have. This pop up window
can be seen in figure 42.

Figure 42: This figure shows the colour palette of the new GUI

5.1.2 Application

The overall architecture of the Python application was not in need of any big changes to be able
to produce the new motion profiles. This means that the picture of the architecture in figure 18
still stands. However, some features in the application have been added to be able to calculate the
new motion profiles.

One of these features is to be able to calculate a motion profile with non-zero jerk at the beginning
of acceleration increase, end of acceleration increase, start of deceleration increase and end of
deceleration increase. This was done by adding additional constrains to the function that calculated
the acceleration splines, as described in the subsection 2.4.2 about jerk The constraints consisted
of limitations on the derivative of jerk, it had to be zero which meant that the jerk could be a
positive or negative value instead of just zero. If the constraint is that the derivative of the jerk
is to be zero, then the jerk will have its maximum or minimum value at that point. However, if
instead the jerk has to be zero, then the acceleration will have it is minimum or maximum value
at that point. More about this in subsection 5.1.3.

Two other features that were added are Velocity Increase and Velocity Decrease, which were
derived by firstly deriving an acceleration profile with the correct specifications according to the
input parameters regarding acceleration or deceleration but with acceleration amplitude at one.
Secondly, the correct amplitude were found by finding the quotient between the integral of the
generated acceleration profile and the actual velocity change, see equation 20 and equation 21,
respectively. The summation in the denominator is for summing the integral of the splines between
the acceleration points, as can be seen in figure 44 for the acceleration and jerk points and in figure
43 for the corresponding points for position and velocity.
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Figure 43: This figure shows the velocity (red) and position (blue) of a motion profile with acceleration points and
deceleration points

Figure 44: This figure shows the acceleration (blue) and jerk (red) of a motion profile with acceleration points and
deceleration points

acceleration amplitude =
fvelocity(xstart)− fvelocity(xend)∑∫

facceleration(x)dx
(20)

deceleration amplitude =
fvelocity(xstart)− fvelocity(xend)∑∫

facceleration(x)dx
(21)
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Two other features that were added are Position Increase and Position Decrease. The motion
profile for these two motion types were calculated almost the same way as for Velocity Increase
and Velocity Decrease. The difference is how to calculate the correct integral of the position that
should be covered, since the motion profile can begin with an initial velocity not equal zero and
thus the acceleration part has to be bigger or smaller than the actual distance specified in the input
table. The acceleration and deceleration amplitudes for Position Increase and Position Decrease
can be seen in equation 22 and equation 23, respectively.

acceleration amplitude =
fposition(xstart)− fposition(xend)− fvelocity(xstart) ∗ (xend − xstart)∑∫∫

facceleration(x)dx2

(22)

deceleration amplitude =
fposition(xstart)− fposition(xend) + fvelocity(xstart) ∗ (xend − xstart)∑∫∫

facceleration(x)dx2

(23)

5.1.3 Non-Zero Jerk

One of the criteria for this project was to have a non-zero jerk value in four different positions
of the motion profile. The first position is at the beginning of the acceleration increase, the
second position is at the end of acceleration decrease, the third position is at the beginning of the
deceleration increase and the fourth and final position is at the end of deceleration decrease. This
was introduced in subsection 3.3.1, in figures 23, 24, 25 and 26. It turned out to be solvable where
the designer can choose in the GUI where the jerk should be non-zero by checking the correct check
boxes in the input table and using the equations stated in 2.4.2. The four positions where it is
possible to define different jerk values corresponds to the same position in the input table, i.e. the
position at the start of the increasing part of the acceleration motion corresponds to the checkbox
in acceleration increase box and the position at the end of the decreasing part of the acceleration
motion corresponds to the checkbox in the acceleration decrease box. Consequently, the same for
the deceleration part of the motion.

The result can be seen in figures 45, 46, 47 and 48 which are exactly the same motion profile as in
figures 23, 24, 25 and 26 but with the sought after jerk and acceleration behaviour. More than at
one position for the jerk can be non-zero at a time and actually all four can be non-zero at once
if the designer wants to, see figure 49. It is also possible to mix the jerk options in any possible
combination between the four different positions, for example only the two first, or the last two
even though those options are not shown in the pictures.

In figure 45 the derivative of jerk is zero at the beginning of the acceleration increase motion and
the jerk is zero at the end of acceleration decrease, at the beginning of deceleration increase and
at the end of deceleration decrease.

Figure 45: This figure shows the motion profile for acceleration (in blue) and jerk (in red) with a non-zero jerk value
at the beginning of acceleration increase
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In figure 46 the derivative of the jerk is zero at the end of the acceleration decrease motion and
the jerk is zero at the beginning of acceleration increase, at the beginning of deceleration increase
and at the end of deceleration decrease.

Figure 46: This figure shows the motion profile for acceleration (in blue) and jerk (in red) with a non-zero jerk value
at the end of acceleration decrease

In figure 47 the derivative of the jerk is zero at the beginning of deceleration increase and the jerk
is zero at the beginning of acceleration increase, at the end of the acceleration decrease motion
and at the end of deceleration decrease.

Figure 47: This figure shows the motion profile for acceleration (in blue) and jerk (in red) with a non-zero jerk value
at the start of deceleration increase
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In figure 48 the derivative of the jerk is zero at the end of the deceleration decrease motion and
the jerk is zero at the beginning of acceleration increase, at the end of acceleration increase and at
the beginning of deceleration increase.

Figure 48: This figure shows the motion profile for acceleration (in blue) and jerk (in red) with a non-zero jerk value
at the end of deceleration decrease

In figure 49 the derivative of the jerk is zero at the beginning of acceleration increase, at the end
of the acceleration decrease motion, at the beginning of deceleration increase and at the end of
deceleration decrease.

Figure 49: This figure shows the motion profile for acceleration (in blue) and jerk (in red) with a non-zero jerk value
at all four possible places

5.1.4 Velocity Increase and Velocity Decrease

Another criteria for this thesis was to be able to change the velocity independent of the slave
position. This means to increase the velocity from one value to another value or decrease the
velocity from one value to another value. Those velocities can all be non-zero, both the initial
velocity of the motion profile as well as the end velocity. This type of motion function, which
we have decided to call Velocity Increase and Velocity Decrease respectively, was introduced in
subsection 3.3.1 in figures 27 and 29 with its corresponding acceleration and jerk behaviour in
figures 28 and 30. In the final version of the software the designer can choose via the GUI which
velocity to start with and what the end velocity should be. The result can be seen in figures 50,
51, 52 and 53, which are exactly the same motion profiles as in figures 27, 28, 29 and 30 but with
the sought after behaviour presented in subsection 3.3.1.
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In figure 50 the Velocity Increases from 0 to 2, while the position goes from 0 to 100 and in figure
52 the Velocity Decreases from 0 to 2 and the position goes from 0 to 100.

Figure 50: This figure shows a motion profile for position (in blue) and velocity (in red) of a Velocity Increase
motion type

Figure 51: This figure shows a motion profile for acceleration (in blue) and jerk (in red) of figure 50

Figure 52: This figure shows a motion profile for position (in blue) and velocity (in red) of a Velocity Decrease
motion type
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Figure 53: This figure shows a motion profile for acceleration (in blue) and jerk (in red) of figure 52
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5.1.5 Position Increase and Position Decrease

An additional requirement added later during this project was to let the designer change the
position by defining the start velocity, the start position, the end position and the acceleration
behaviour. The start position has to be smaller than the end position when a Position Increase is
created, and the opposite has to be true for Position Decrease. The software would then calculate
the acceleration amplitude so the end position would be achieved, without any constraints on
the end velocity, as can be seen in figure 54 where the motion starts in position zero and ends
in position 180 with a start velocity of zero and an end velocity of over three. The acceleration
behaviour as well as the jerk can be seen in figure 55.

Figure 54: This figure shows a motion profile for position (in blue) and velocity (in red) of a Position Increase
motion type

Figure 55: This figure shows a motion profile for acceleration (in blue) and jerk (in red) of figure 54
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The opposite behaviour from Position Increase holds for Position Decrease regarding the start
and end positions. The end position has to be smaller than the start position for a Position
Decrease motion type. Like Position Increase the designer should define the start velocity, the
start position, the end position and the acceleration behaviour. The software would then calculate
the acceleration amplitude so the end position would be achieved without any constraints on the
end velocity. As can be seen in figure 56 where the motion starts in position 180 and ends in
position zero with a start velocity of zero and an end velocity of smaller than negative three. The
acceleration behaviour as well as the jerk behaviour can be seen in figure 57.

Figure 56: This figure shows a motion profile for position (in blue) and velocity (in red) for a Position Decrease
motion type

Figure 57: This figure shows a motion profile for acceleration (in blue) and jerk (in red) for figure 56
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5.1.6 Rendezvous

Figure 58 shows the motion profile when moving from 0 to 180 with an initial velocity of zero and
an end velocity of two. Master Position is from 0 to 100. Figure 59 shows the acceleration and
jerk motion required to achieve the motion in figure 58 and are not derived from the parameters
in the CAMTool.

The result, presented in the figures 58 and 59 is derived by using equations 17, 18 and 19 presented
in subsection 3.3.4 and the Python function make interp spline presented in subsection 2.5.2.

Figure 58: This figure shows a motion profile for position (in blue) and velocity (in red) for a Rendezvous motion
type

Figure 59: This figure shows a motion profile for acceleration (in blue) and jerk (in red) for figure 58
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5.1.7 Dwell and Cruise

Figure 60 shows a motion profile for Dwell where the initial velocity and end velocity is zero. Since
the velocity is constant the acceleration and jerk values are also zero. Figure 61 shows an example
of a motion profile for Cruise where the initial velocity and the end velocity is the same value, in
this case 2. Since the velocity is constant here as well the acceleration and jerk values are also zero.
Figure 62 shows the acceleration and jerk behaviour for both Dwell and Cruise since the velocity
is constant in both cases.

Figure 60: This figure shows a motion profile for Dwell. The velocity and position has the same value, 0, and are
in red and blue

Figure 61: This figure shows a motion profile for Cruise. The velocity is in red and the position is in blue
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Figure 62: This figure shows the acceleration and jerk behaviour for Dwell and Cruise. Both are zero. Acceleration
is in blue and jerk is in red
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5.2 TwinCAT Implementation

In this section the result of the TwinCAT version of CAMTool will be presented. Firstly the ap-
plication, where the new architecture is shown. The next subsection will go through the non-zero
jerk results, followed by a subsection with the result of the velocity changes. This is followed by
the position change result. The last subsection will show the result of the real time implementa-
tion.

5.2.1 Application

To introduce the new features, the architecture of the TwinCAT implementation had to be updated
due to inaccuracy both in the numerical calculations of the integral of the acceleration and in the
integral of the velocity. New function blocks were introduced, which either increased or decreased
the acceleration points whether the end result was too large or too small in relation to the expected
result. Figure 63, shows graphically what is happening to the acceleration points when moving
the acceleration points. The function blocks adjust the acceleration points up and down. This
will either decrease or increase the velocity of the motion and in turn increase or decrease the end
position depending on the expected end result.

Figure 63: This figure illustrates what the algorithms does to the acceleration points when moving them up or down

The new function blocks can be seen in figure 64 and are FB Recalculate, FB Recalculate VelIncDec
and FB Recalculate PosIncDec. FB Recalculate is used for adjusting the acceleration points for
a Point to Point motion. FB Recalculate VelIncDec is used for adjusting the acceleration points
for a Velocity Increase or a Velocity Decrease motion profile and Recalculate PosIncDec is used
for adjusting the acceleration points for a Position Increase and Position Decrease motion type.
Depending on what motion type the motion is one of the parallel function blocks will be executed,
which is shown in figure 64.
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Figure 64: This figure shows the new architecture for the TwinCAT version of CAMTool

The algorithm for FB Recalculate VelIncDec and FB Recalculate PosIncDec is shown below. First
the end value is calculated and compared with the predefined end value, here defined as slave
position.

Algorithm 1 Algorithm for recalculate with focus on position

endV alue← fposition(xend)

iterStep← abs(endV alue−slavePosition)
(xend−xstart)2

k = 0

while abs(endV alue− slavePosition) > 10−8 ∧ k ≤ 1000 do
if endV alue ≤ slaveposition then

accelerationpoints = acccelerationpoints+ iterstep
else

accelerationpoints = acccelerationpoints− iterstep
end if
recalculate the new motion profile
endV alue← fposition(xend)

iterStep← abs(endV alue−slavePosition)
(xend−xstart)

k ++
end while
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Algorithm two focuses on minimising the difference between the required velocity and the current
velocity.

Algorithm 2 Algorithm for recalculate with focus on velocity

endV alue← fvelocity(xend)

iterStep← abs(endV alue−slaveV elocity)
(xend−xstart)

k = 0

while abs(endV alue− slaveV elocity) > 10−8 ∧ k ≤ 1000 do
if endV alue ≤ slaveposition then

accelerationpoints = acccelerationpoints+ iterstep
else

accelerationpoints = acccelerationpoints− iterstep
end if
recalculate the new motion profile
endV alue← fvelocity(xend)

iterStep← abs(endV alue−slaveV elocity)
(xend−xstart)

k ++
end while

For FB Recalculate the algorithm is slightly different since the end value of the position is always
calculated by the CAMTool. Instead, the focus is on minimising the integral value. The following
algorithm was used for that.

Algorithm 3 Algorithm for recalculate with focus of the integral of acceleration

endV alue←
∫
facceleration(x)dx

iterStep← abs(endV alue)
(xend−xstart)

k = 0

while abs(endV alue) > 10−8 ∧ k ≤ 1000 do
if endV alue < 0 then

accelerationpoints = acccelerationpoints+ iterstep
else

accelerationpoints = acccelerationpoints− iterstep
end if
recalculate the new motion profile
endV alue←

∫
facceleration(x)dx

iterStep← abs(E
∫
facceleration(x)dx)

(xend−xstart)

k ++
end while

However, due to the accuracy of the input handler to calculate the correct acceleration amplitude
(steps 1, 2 and 3 in figure 64) these function blocks do not need to iterate more than 10 times for
Position Increase and Position Decrease and for the other motion types it is not necessary at all,
which improves the performance of the program.
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5.2.2 Non-Zero Jerk

One goal of this work was to implement motion profiles with non-zero jerk at four different positions
in TwinCAT, which was presented in subsection 3.3.1 figures 23, 24, 25 and 26. The positions
are at the beginning of acceleration increase, the end of acceleration decrease, the beginning of
deceleration increase and the end at deceleration decrease. This is shown in figures 65, 66, 67, 68
and 69.

In figure 65 the derivative of the jerk is zero at the beginning of the acceleration increase motion
and the jerk is zero at the end of acceleration decrease, at the beginning of deceleration increase
and at the end of deceleration decrease.

Figure 65: This figure shows a motion profile where the jerk is non-zero at the start of the acceleration increase
motion in TwinCAT. The acceleration is in red, and jerk is in pink
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In figure 66 the derivative of the jerk is zero at the end of the acceleration decrease motion and
the jerk is zero at the beginning of acceleration increase, at the beginning of deceleration increase
and at the end of deceleration decrease.

Figure 66: This figure shows a motion profile where the jerk is non-zero at the end of acceleration decrease motion
in TwinCAT. The acceleration is in red, and jerk is in pink

In figure 67 the derivative of the jerk is zero at the beginning of deceleration increase and the jerk
is zero at the beginning of acceleration increase, at the end of the acceleration decrease motion
and at the end of deceleration decrease.

Figure 67: This figure shows a motion profile where the jerk is non-zero at the start of the deceleration increase
motion in TwinCAT. The acceleration is in red, and the jerk is in pink
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In figure 68 the derivative of jerk is zero at the end of the deceleration decrease motion and the
jerk is zero at the beginning of acceleration increase, at the end of acceleration increase and at the
beginning of deceleration increase.

Figure 68: This figure shows a motion profile where the jerk is non-zero at the end of the deceleration decrease
motion in TwinCAT. The acceleration is in red, and jerk is in pink

In figure 69 the derivative of the jerk is zero at the beginning of the acceleration increase, at the
end of the acceleration decrease motion, at the beginning of deceleration increase and at the end
of deceleration decrease.

Figure 69: This figure shows a motion profile where all the four possible positions for jerk is non-zero. The
acceleration is in red, and jerk is in pink
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5.2.3 Velocity Increase and Decrease

Another aim was to implement a feature in the software that could calculate a motion profile which
had a defined start velocity, start position and a defined end velocity. The results are shown in
figures 70 and 71, where figure 70 shows the motion profile Velocity Increase and figure 71 shows
the Velocity Decrease. For Velocity Increase the initial velocity has to be smaller than the final
velocity and the opposite, initial velocity must be bigger than the final Velocity, is true for Velocity
Decrease.

Figure 70 shows a motion profile where the velocity goes from 0 to 2 and figure 71 shows a motion
profile where the velocity goes from 2 to 0.

Figure 70: This figure shows a motion profile for position (in blue), velocity (in green), acceleration (in red) and
jerk (in pink) for a Velocity Increase motion type in TwinCAT

Figure 71: This figure shows a motion profile for position (in blue), velocity (in green), acceleration (in red) and
jerk (in pink) for a Velocity Decrease motion type in TwinCAT
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5.2.4 Position Increase and Decrease

An additional requirement was to calculate a motion profile, Position Increase, with a predefined
start position, start velocity, end position and an acceleration behaviour. For Position Increase
the end position must be larger than the start position. The result of this can be seen in figure 72,
where the position has been increased from 0 to 180.

Figure 72: This figure shows a motion profile for position (in blue), velocity (in green), acceleration(in red) and jerk
(in pink) for a Position Increase motion type in TwinCAT

Another additional requirement was to calculate a motion profile, Position Decrease, with a pre-
defined start position, start velocity, end position and an acceleration behaviour. For Position
Decrease the end position must be smaller than the start position. The result of this can be seen
in figure 73. In this figure the position has been decreased from 180 to 0.

Figure 73: This figure shows a motion profile for position (in blue), velocity (in green), acceleration(in red) and jerk
(in pink) for a Position Decrease motion type in TwinCAT
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5.2.5 Dwell and Cruise

Figure 74 shows a motion profile for Dwell where the initial velocity and end velocity is zero. Since
the velocity is constant the acceleration and jerk values are also zero. Figure 75 shows an example
of a motion profile for Cruise where the initial velocity and the end velocity is the same value, in
this case 2. Since the velocity is constant here as well the acceleration and jerk values are also
zero.

Figure 74: This figure shows a motion profile for position (in blue), velocity (in green), acceleration(in red) and jerk
(in pink) for a Dwell motion type

Figure 75: This figure shows a motion profile for position (in blue), velocity (in green), acceleration(in red) and jerk
(in pink) for a Cruise motion type
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5.2.6 Real Time Implementation

Figure 76 shows the result of running the new version of TwinCAT version of CAMTool. The
program has been rewritten to reduce the amounts of exceeds to zero as can be seen in the exceed
counter in the bottom of figure 76. As stated in chapter 3, the exceed counter ticks when the
program occupies too much of the CPU, hence other routines as input and output actions can not
take place. That is the reason why it is important to make sure the exceed counter stays at zero.

Figure 76: This figure shows the exceed counter when running the new version of CAMTool in TwinCAT
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5.3 Verification with Servo Motor

Is it not possible to verify if CAMTool turned out to be better than Beckhoff’s CAM Design
Tool without comparing the outcome of the two, as stated in section 4.3. The first part of the
result is shown in figure 77, which shows one possible operate path created with the new version
of CAMTool. The parameters for this motion profile can be seen in figure 78. The second part
of the result is shown in figure 79, which shows the operate path created with Beckhoff’s CAM
Design Tool for creating motion profiles. If one compare the operating-paths the advantage of
using CAMTool is shown since the operating path is inside the limits of the servo motor, which
is not the case when Beckhoff’s CAM Design Tool is used. The third part of the result is shown
in figure 80, which has the same input parameters as figure 77 but with another symmetry. The
input parameters can be seen in figure 81. This is used for instance when a system has a lot of
friction or if a system working against gravity.

The overall motion of the servo motor in all three cases is to go from one point to another, and
then back again. Both the forward motion and the reverse motion takes the exact same time to
run, and the distance is also exactly the same. The only thing that differs in each case is how the
servo motor is accelerating and decelerating.

Figure 77: This figure shows one possible operating path, in green, created by the CAMTool. The limit for the
servo motor is in blue, and the Trms−limit is coloured red. It is no danger to operate outside of the Trms−limit a
short time of period, as the figure shows. Y-axis is the torque in Nm, while x-axis is the speed in rpm

Figure 78: In this figure the input parameters for figure 77 are shown
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Figure 79: This figure shows the operating path, in green, created by Beckhoffs CAM Design Tool. The limit for
the servo motor is in blue, and the Trms−limit is in red. It is no danger to operate outside of the Trms−limit a
short time of period, as the figure shows. Y-axis is the torque in Nm, while x-axis is the speed in rpm

Figure 80: This figure shows one possible operating path, in green, created by the CAMTool. It is the same as in
figure 77 but with another symmetry. The limit for the servo motor is in blue, and the Trms−limit is coloured red.
It is no danger to operate outside of the Trms−limit a short time of period, as the figure shows. Y-axis is the torque
in Nm, while x-axis is the speed in rpm

Figure 81: This figure shows the input parameters for figure 80
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6 Discussion and Conclusions

This chapter discusses the results of this thesis. In the first section, Enhancement, the updated
version is compared with the old one. There is also a discussion if the requirements have been
fulfilled. The next section, Verification, features a discussion around the verification of our results.
After that a discussion regarding the use of polynomial functions for describing the motion in
the implementation instead of sine, constant and cosine functions like in SCCA will follow in the
section Polynomial Motion Functions. The conclusions drawn from this project is then presented
and lastly a section describing future work is presented, introducing new possible ways to improve
the tool further and what new features to implement.

6.1 Enhancement

Since the tool has been developed in many aspects, each one will be discussed in this section to
determine if it was a good change or not. Firstly, the GUI changes will be described, followed by
the motion types. This section ends with a discussion on if the goals were achieved and if they
were, how successful were they.

6.1.1 Graphical User Interface

The first observation one can make when one opens the application is the new graphical interface.
Compared to figure 13 all boxes in figure 82 have one or more changes. Firstly, the input table
in box one has been extended with two columns. One of them is motion type, which is necessary
to display when the application now has several motion types. The other column is slave velocity,
which the operator uses to specify when the design of a Velocity Decrease, Velocity Increase or
Rendezvous type of motion profile takes place. Box number two has also got a minor upgrade in
terms of text instead of a sign. The reason why is Insert, which is an additional button. This
makes it possible for the designer to insert a row above the selected one in the input table wherever,
which was not possible with the old version. The Add button can also be used wherever in the
input table, but adds a row below the selected one. To keep these two buttons apart text was a
better way to go instead of signs. Box two has also got a new location due to the extended input
table and the aim to keep the application window not too wide.

Boxes three and four have also got some changes in figure 82 compared with figure 13. Box three
has got a very requested update, namely the value of the graph where the mouse pointer points.
This feature includes both x and y value, and are displayed in the top left corner. When the mouse
pointer is not in the graph, or when no graph has been calculated, the values are none, which one
can see in the figure. The last and final box in figure 82, box number four, has been extended
from five to seven buttons. Some has got new names, but some functions are added. Instead of
left click in the graph to be able to change colour of the graph, there is now a button. In that way
the user knows there is a function to change the colour, instead of having been told or to figure
it out on his/her own. This button creates a pop-up window, as shown in figure 42. Compared
to the old colour palette, shown in figure 17, the user has less different colours, but more shades.
This is a good feature for those who are colourblind. The second added button is to display the
acceleration knots, and the corresponding position, velocity and jerk knots. This is a useful feature
since the user will have a good overview of the motion profile in terms of non-zero jerk and where
each motion profile sections starts and ends.

Under the Initial Settings tab there is also some updates. Since the Slave Velocity is taken into
account in some motion types as mentioned earlier, the initial value of it should be able to be
edited by the designer. Therefore there is a new cell under Starting Values where one can enter
the starting value of Slave Velocity, which corresponds to box five in figure 83. The middle section
of the Initial Settings has got a new input line, where the designer can enter the name of the
reference of the CAM when it is generated. This feature is located in box six in figure 83. This
middle section has also got a title as well as subtitles to the input lines.

As can be seen in the input table in figure 82 there are already some motion types added. This
is not default, but to be able to discuss the result of how different motion types are implemented
when added. When the user adds a Point to Point motion to the input table, the Slave Velocity
should not be included in the calculations and therefore it is not able to write anything in that
cell. When adding a Dwell/Cruise motion, nothing but Master Position should be able to be filled
in. The next motion type in figure 82 is Position Increase, where the user should fill in Master
Position, Slave Position and all acceleration cells. The same is valid for Position Decrease, but for
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all deceleration cells. One motion type that is not shown in the input table is Velocity Increase,
which will have the same cells available as Position Increase but with one difference, Slave Velocity
will be available instead of Slave Position. The other motion type that is not shown in the input
table is Velocity Decrease, but it will have the same cells available to fill in as Position Decrease
but instead of Slave Position it will have Slave Velocity available. The last motion type in the
input table in figure 82 is Rendezvous, which should only have the three first cells available to fill
in for the engineer.

Figure 82: This figure shows the new GUI including the Input Table tab. The picture is divided into smaller parts,
numbered one to four

Figure 83: This figure shows the new GUI including the Initial Settings tab. The picture is divided into smaller
parts, numbered five to seven
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To generate a table with the motion profile values, the user will enter the tab CAM Table. Under
this tab there is a small but requested update, as can be seen in figures 84 and 85. Boxes numbered
eight and ten in the figures have no change compared to the same boxes in figure 15 and 16. But
the updates have been made in boxes numbered nine and eleven in figure 84 and 85, respectively.
The button that was called Save Table in the old GUI is now named Save CAM Table, and a new
button is added called Save Motion Designer CAM. The difference between the buttons is what
they are saving from the generated table. The first one saves everything while the second one just
saves the first and third columns of the generated table as the name tells.

Figure 84: This figure shows the new GUI including the CAM Table tab. The picture is divided into smaller parts,
numbered eight to nine

Figure 85: This figure shows the new GUI including the CAM Table tab. The picture is divided into smaller parts,
numbered ten to eleven
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One big advantage with the GUI of the Python version of CAMTool is the transparency between
the TwinCAT version of CAMTool. To move from working in Python with designing CAMs to do
the same work in TwinCAT have to be easy, which it is. The same holds for moving in the other
direction as well. If one compare the input table in figures 78 and 38, it is observed they have the
exact same input parameters.

6.1.2 Application

The overall software architecture was kept intact during the development of the CAMTool, and the
new features were implemented on top of the existing ones. This could be done since all motion
types are based on the same mathematical expressions and ideas with polynomial functions.

The main difference in the TwinCAT version of the application and the Python version is the use
of Recalculate. The need of Recalculate came from the integral calculation of the acceleration, that
turned out not to be accurate enough to calculate a correct amplitude of the motion profile. This
will be discussed more in depth in section 6.6. The recalculate algorithm is iterative, which means
it iterates by moving the acceleration points up or down until the motion reaches the end goal,
whether it is an end velocity or an end position, as can be seen in the algorithms 1, 2 and 3. The
condition for running the algorithm can be seen in the while statements in the algorithms presented
as algorithms 1, 2 and 3, and breaks the while loop when the difference between the current value
and the end value is smaller than 10−8 or when the algorithm has run for 1000 iterations. Running
for 1000 iterations should indicate that an error with the code has occurred.

The calculation of the new acceleration or deceleration amplitudes is done by calculating the ampli-
tude needed to reach the required position, see equations 20, 21, 22 and 23. First a unit acceleration
motion is calculated where the max amplitude of the acceleration is one. The total distance or
velocity change is then divided by either the double integral or integral of this acceleration motion.
The quota is then multiplied by the starting acceleration amplitude to gain the correct acceleration
amplitude. This way, a motion profile with an initial velocity can be calculated since it can not
be scaled to reach the target. The initial velocity is accounted for when calculating the position
distance, which can be seen in the equations 22 and 23.

Compared to what was presented in subsection 3.3.1 about non-zero jerk and what was presented
in subsection 5.1.3, the application can calculate motion profiles with non-zero jerk in the four
specified positions that fulfils the requirements presented in the beginning of this thesis project.
The motion profiles presented in the results, figures 45, 46, 47 and 48 as well as figures 65, 66, 67
and 68 are similar to those presented in the background as well as the goal of the application, figures
23, 24, 25 and 26. This means that both the Python application and the TwinCAT application
achieved their goals.

Doing a similar comparison between the requirements stated in subsection 3.3.2 about Velocity
Increase and Velocity Decrease and shown in the figures 27, 28, 29 and 30 and the figures presented
in subsection 5.1.4 of the result, figures 50, 51, 52 and 53. Likewise the same comparison can be
made between the requirements presented previously and the result in TwinCAT, figures 70 and
71. It is possible to see that the requirements have been fulfilled and the motion profiles behaves
as expected and it is possible to achieve a predetermined velocity assuming a specified acceleration
behaviour, both in the TwinCAT and in the Python application.

Similarly, the same comparison can be made between the requirements stated in subsection 3.3.3
about Position Increase and Position Decrease and shown in figure 31, 32, 33 and 34 and the figures
presented in subsection 5.1.5, figures 54, 55, 56 and 57. Likewise doing the same comparison with
the figures presented in the TwinCAT section, figure 72 and 73. From this comparison it shows
that the results fulfil the requirements and behaves as expected and it is possible to achieve a
set position assuming a specified acceleration behaviour, both in the Python application and in
TwinCAT.

Another important aspect to consider is the similarities in the results between the Python version
of CAMTool and the TwinCAT version of CAMTool. When comparing the figures for non-zero
jerk between the Python version, figures 45, 46, 47, 48 and 49 with the corresponding figures for
TwinCAT, figures 65, 66, 67, 68 and 69, one can see that the profiles have the same shape and
amplitude. This is important since the transition between the two version should be smooth and
one should be able to move between the two without any obstacle.
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The same comparison can be made between the figures for Velocity Increase and Velocity Decrease.
Comparing figures 50, 51, 52 and 53 for the Python version and for the TwinCAT version which
is the figures 70 and 71 show that the motion profiles produced are similar, which means that the
transition between the two versions are smooth.

A similar comparison can be made for the position figures in Python, figures 54, 55, 56 and 57
and for TwinCAT, figures 72 and 73. This shows that the motion types Position Increase and
Position Decrease produce the same acceleration behaviour and amplitude in both versions which
make transition between the two seamless.

Two subsections that are presented in the results, even though they were not a goal with the
project, are subsections 5.1.7 and 5.2.5. To make a Dwell or Cruise is important in motion control,
since one might want the servo motor to have a constant speed or to stand still a longer time of
period. Those two motion types fell out in a naturally way of the calculations, hence they are
presented in the result as well.

6.1.3 Rendezvous

The Rendezvous function was decided not to be implemented in TwinCAT because it lacked the
control of the acceleration behaviour in contrast with the other motion types and thus losing some
of the strength with this application. However, it was decided to keep this feature in the Python
software since it enables more advanced motion profiles to be designed.

However, it would require to implement the calculations of the coefficients for a fifth-degree polyno-
mial. But much of this work builds on the same principle as the calculations used for calculating the
coefficients for a third-degree polynomial, presented in subsections 2.4.1 and 2.4.2. The equations
necessary are also presented in subsection 3.3.4.

6.1.4 Real-Time Implementation

The real-time implementation was done by converting the code from purely sequential to state
machine based with support from the theory presented in subsection 2.7.1. The advantage of
this is that the software may be interrupted in a state and other parts of the machine software
can continue running, for example any safety functions or similar. The importance of making it
real-time compatible is to ensure that it can run on the same PLC as the servo motor so that the
operator can update the motion profile on site and not have to go back to the Python program to
adjust the motion profiles.

6.1.5 Goals

All the goals that were set up during the planning and the ones added during the project have been
achieved, except that of implementing a motion profile where the start velocity and start position
were predetermined and there was an end velocity and end position to achieve in TwinCAT.
The reason for this has been discussed in previous subsections. The motion profiles that were
implemented reached the specific target set in the requirements. The motion profiles implemented
does also work both in Python and in the TwinCAT environment which was essential for this thesis
project.

Some of the goals, however, were adjusted as the work progressed since the original plan did not
fit into the implementation at that stage of the CAMTool or the result was not satisfactory. For
instance the decision to not implement Rendezvous in TwinCAT because the lack of control of
the acceleration behaviour as that is the primary purpose of this tool, to be able to design motion
profiles with a determined acceleration behaviour.

The Point to Point motion profile was verified against a motion profile made with Motion Profile
Designer provided by Beckhoff and the results showed that it is possible to more freely design a
motion profile and being able to adapt the motion profile to the application. The result that we
present in figures 77 and 80 shows that we are able to use the current servo motor to perform the
motion compared to figure 79 where the motion is outside the motor servo specification.
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6.2 Verification

It is quite easy to observe that the CAMTool is able to adapt the motion profile better to the
application compared to Beckhoffs CAM Design Tool for making motion profiles. As can be seen
in figure 77 the operating path decided by the motion profile of the CAMTool is inside the servo
motor limit, and even has some margins to it. If one takes a look at figure 79 instead, the operating
path decided by the motion profile of Beckhoffs CAM Design Tool is at some points outside the
limits for the servo motor. In this way, the opportunity for the design engineer to create a motion
profile, which will make an operating path inside the servo motor limit, is important and necessary.
Without CAMTool the user is not able to move to one point and back again at a specific time as
in section 5.3, which verifies the application.

Further, the symmetry of the motion profile has a big impact on the operating path. As can be
seen in figures 78 and 81 the symmetry is not equal, which means the corresponding operating
path in figures 77 and 80 differ. The accelerating peak value of the forward motion is around six
and seven, respectively, while the deceleration peak value of the forward motion is around negative
seven and negative five, respectively. The same can be observed for the reverse motion, and both
directions of the motion is concluded in tables 1 and 2. By changing the symmetry, one can observe
the operating path will be moved up or down depending of how the symmetry is changing. This
means the user can give either acceleration or deceleration motion more or less time, which is
important when the application works against gravity or has significant mechanical friction. The
belt and pulley application that was used to test the motion profiles is such an example. When
the servo motor gets more time to works against gravity or mechanical friction, the it do not need
to work as hard and may be inside the limits of its operation. This functionality is complicated to
achieve in the Beckhoffs CAM Design Tool.

Table 1: The approximate torque peak values of the operating path for figure 77

Approximate Torque Peak Values Forward Motion Reverse Motion
Acceleration 6 -6
Deceleration -7 7

Table 2: The approximate torque peak values of the operating path for figure 80

Approximate Torque Peak Values Forward Motion Reverse Motion
Acceleration 7 -5
Deceleration -5 8

One undesired behaviour of the operating path exists in the result figures of the verification in
section 5.3. It emerges when the torque is almost zero close to stand still. This flat area of the
operating path is not desired, and this behaviour is due to several factors including non-rigidness
in the mechanical drive train, not optimal tuning of the servo system as well as friction. As stated
in section 2.2 backlash in the gearbox is necessary in many applications, but when the servo motor
is changing direction frequently it creates the unwanted behaviour seen in the figures. Further
testing when tightening the belt reduced the flat area. Tightening the belt reduced the friction
when driving the belt and thus reducing the friction in the overall application.

6.3 Polynomial Motion Functions

In this section the use of a polynomial motion function will be discussed. In chapter 2 two types of
models for describing motion profiles were introduced, the SCCA model and the polynomial model.
In this software we chose to work with polynomial functions for modelling of jerk, acceleration,
velocity and position. Polynomial functions have two big advantages over the SCCA-method.
Firstly, they introduce a more intuitive way of modelling and describing the motion functions.
If one were to look at the function for acceleration and the function for position in equations 9
and 16 the first three coefficients are the same. Thus the polynomial equations give an intuitive
way of understanding how the motion profiles and different functions depend on each other. One
additional aspect to notice is how the position is solely dependent on the acceleration behaviour,
starting velocity and starting position. This is easy to spot when looking at the position equation
16 but could be rather confusing when looking at the corresponding motion equations in the SCCA
model, equations 2, 3, 4, 5, 6 and 7.
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Second, as shown in subsection 2.5.2 is that there is extensive library support for spline interpo-
lation built on cubic splines. This is not the case for the SCCA model and not only does the
libraries support the development of applications with polynomial functions, it actually hinders
the development with another functions, as for example the SCCA. However this is not necessarily
a problem since the SCCA functions can be approximated using polynomial functions.

However, one advantage when using the SCCA motion functions is that the cosine and sine func-
tions have infinite continuous derivatives. Polynomial functions does not have this property since
the exponent is reduced by one every time the function is differentiate, as can be seen when go-
ing from velocity to acceleration in equation, 8. This means that if the position is defined by a
third-degree polynomial, then the jerk value will be constant and not continuous between different
splines, which may lead to worse performance. But since the cosine and sine functions have infinite
continuous derivatives this performance issue will never occur.

6.4 Special Case in Position Increase and Position Decrease

This application builds on the concept of defining a motion by defining its acceleration or decel-
eration behaviour. However, when defining a motion with a high initial velocity, whether positive
or negative, when moving a short distance in a relative long time the acceleration will be opposite
to what is defined.

For example, a motion where the application is supposed to move from position zero to five when
the Master Position goes from zero to five and the initial velocity is four. Then with no acceleration
the end position would be 20 and thus the software presents a deceleration profile instead of an
acceleration profile as one might expect when looking at the GUI. This is not wrong per say, since
the end position is correct, and since the initial velocity is more than enough to reach the end
velocity the motion has to be of deceleration movement to reach the correct end position. But it
can be confusing when you enter the parameters for an acceleration behaviour.

The same phenomenon happens when defining a Position Decrease with a high initial backwards
velocity. The software will produce a motion with acceleration although the user have defined a
deceleration through the GUI. This could be confusing, but it is not wrong.

To limit the Position Increase or Position Decrease motion profile and exclude these cases is not an
option since it would limit the tool too much, especially since there is no fault in the application.
One should instead take extra caution when designing motion profiles for motions with a high
initial velocity.

6.5 Conclusions

By using splines and polynomial functions for acceleration, jerk, velocity and position more ad-
vanced motion profiles can be designed and then used to drive servo motors in real-world appli-
cations. As can be seen in figure 45, 46, 47, 48 and 49 which shows motion profile with non-zero
jerk, at all the possible points points. Figure 49 shows the acceleration behaviour when the option
for non-zero jerk is applied at all possible points.

The motion profiles for Velocity Increase, Velocity Decrease, Position Increase and Position De-
crease builds on the same concept as a Point to Point and can be just as flexible which, is a strength
with this tool.

As can be seen in figures 77 and 80, compared with figure 79 these more advanced motion profiles
can use smaller motors to achieve the same end result, which is to be art a specific position at
a specific time. There is also a flexibility to design the motion profile according to the motor
performance and not the opposite.

All the goals that were set up during the planning and then added during this project have been
achieved, except that of implementing a motion profile where the start velocity and start position
were predetermined and there was an end velocity and end position to achieve in TwinCAT.

6.6 Future Work

This tool will now be evaluated and hopefully used at Tetra Pak and as the use increases, more
cases will be explored. Hopefully, the features that we have implemented will be enough for now
but there are a few areas where this tool could be improved and more features could be added.
This section aims to outline those areas.
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6.6.1 Rendezvous in TwinCAT

As mentioned previously, this feature was deemed unnecessary to implement in TwinCAT since
there is no possibility to control the acceleration behaviour and thus not relevant for this applica-
tion. However, it was left in the Python application and depending on how it is used in the future
it can be relevant to implement it in TwinCAT.

How that implementation will look is difficult to say but it would probably not be built on the
previous implementation since the position builds on quintic splines and not cubic splines. However,
the rest of the calculations should follow the implementation in the Python program thus that can
be used as a guide for the overall application as has been done for the other features. Additionally,
the same ideas for getting the constraints as is implemented for the acceleration curves can be
utilised when implementing the calculations for the quintic splines. Instead of using the jerk
constraints the velocity constraints would be used and instead of the acceleration constraints the
position constraints would be used, as is presented in the equations 17, 18 and 19 in subsection
3.3.4.

6.6.2 Numerical Integration in Real Time Environment

Due to the inaccuracy of the position integration the function block recalculate is necessary other-
wise the end result would not be correct. This inaccuracy leads to extra execution time compared
to for example a Point to Point calculation and thus the program becomes slower.

The difficulty here is in implementing a fast but at the same time resource effective algorithm
that ensures the necessary accuracy. Since the algorithm in the Python version of CAMTool uses
recursion and this function is to be implemented on a PLC where memory and computing power
is limited this would not be a good way to do it.

Here are opportunities for future work. Investigate relevant algorithms for calculating an integral
numerically and compare the result with the current way to do it.

6.6.3 Other features

Other features that could be implemented is to use superposition of one motion profile on top of
another or to be able to add points on an already calculated motion point to change the behaviour
in that segment. This is to introduce minor changes to an otherwise suitable motion profile or
manipulate the acceleration behaviour in a small section.

There is also a request for a function where it is possible to compare two CAM profiles. In this
feature one CAM could be a continuous line and the other CAM profile could be a dashed line.
This to be able to show other people who are not so familiar with the concept and theory behind
the different CAM profiles the difference between two CAM profiles and be able to easily reason
why the one is better than the other.

Another possible feature to be implemented in the future is to make support for motions not
based around a fifth-degree polynomial for position. The version of CAMTool as it is now is
made specifically to support TwinCAT’s fifth degree polynomial when describing the position in
a motion. But there might be other manufactures that uses third- or seven-degree polynomials.
Support for those could be a possible way to further develop this tool.

There could also be a need for other motion profiles not mentioned in this thesis. The authors
hope that the applications is built in such a way that it will be easy to implement those on top of
those motion profile options already implemented.
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