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Abstract 

The exposure to flooding in coastal Bangladesh is expected to increase throughout the century 
as a result of climate change-induced sea level rise and intensified monsoon precipitation. The 
current consequences of flooding include damage to infrastructure, economy, and health 
through inundation and saline intrusion, and are likely to affect a larger population in the future. 
Adequate flood modelling using updated climate projections on a sub-national scale is thereby 
crucial to understand the impacts of climate change-induced flooding compared to today. 

The change in flood extent and depth by 2080 relative to 2010 has been modelled and 
mapped using CMIP6 climate projections of sea level rise and precipitation for the intermediate 
radiative forcing scenario SSP2-4.5, high SSP3-7.0, and very high SSP5-8.5, using both mean 
end extreme projections for each scenario. Precipitation-induced flooding was simulated using 
the triangular form-based multiple flow algorithm TFM-DYN, and coastal inundation at high 
tide was generated through a passive flood modelling approach that incorporates sea level rise, 
land subsidence, and tidal influence. 

The results are presented for a rural area in central coastal Bangladesh and suggest that both 
flood extent and depth are likely to increase across all SSP scenarios. Whilst smaller changes 
were observed for mean scenarios, the extreme scenarios resulted in the highest increase in 
flood extent and depth, where depth increased with higher magnitudes compared to extent. The 
findings highlight how floods in central coastal Bangladesh could become affected in a future 
climate, and can be considered for identification of flood-exposed areas. 

 
 

Keywords: flood modelling, TFM-DYN, relative sea level rise, extreme precipitation, tidal 
inundation 
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1 Introduction 
Global sea levels are rising with high confidence and will continue to rise at an accelerating 
rate as global temperatures are increasing (IPCC, 2021). The increase in temperature leads to 
thermal expansion of the oceans and an increase in meltwater contribution from glaciers and 
ice sheets. Whilst climate models are improving at accurately modelling historical climate and 
projecting future climate with high confidence, even high sea level rise (SLR) scenarios of 2 m 
by 2100 and 5 m by 2150 cannot be ruled out due to large uncertainties in modelling of glaciers 
and ice-sheet dynamics (IPCC, 2021). SLR is regionally exacerbated by land subsidence, which 
has the potential to double projected SLR in coastal Bangladesh by the end of the century 
(Becker et al., 2020). It varies regionally between 1-18 mm/year across Bangladesh due to 
tectonic activity, sediment compaction and accumulation, groundwater extraction, and 
agricultural practices (Becker et al., 2020). The high uncertainties with future projections of 
SLR are hazardous for flood prone, low-lying countries such as Bangladesh, considering the 
combined effect of SLR and land subsidence and the already heavy monsoon precipitation is 
projected to increase in intensity and frequency (IPCC, 2021). 

Bangladesh is located in the low-lying floodplain of the world’s largest delta, Ganges-
Brahmaputra-Meghna (GBM), which transports runoff water from the Himalayas into the Bay 
of Bengal. It hosts one of the largest population densities in the world in an area where 10% is 
found less than 1 m above mean sea level (MSL), thereby being vulnerable to coastal flooding 
(Becker et al., 2020). The climate is highly influenced by monsoon patterns, and 80% of the 
annual precipitation is received in torrential rains during the monsoon, coinciding with the 
highest annual temperatures (Climate Change Knowledge Portal [CCKP], 2021). The highest 
amounts of rain are generally received in July, which additionally is the time when tropical 
cyclones often make landfall and high river discharge occurs in the rivers, resulting in high risks 
of flooding (CCKP, 2021). The fertile delta favours the large agricultural sector that contributes 
17.5% to the total GDP, provides about 50% of the population with employment, and occupies 
about 70% of the total area in Bangladesh (Food and Agriculture Organization of the United 
Nations [FAO], 2022). This economic asset is, however, threatened by waterlogging and saline 
intrusion from severe weather and climate events like extreme precipitation, SLR, and cyclones 
that result in yield loss and challenges food security and export (Bangladesh Bureau of Statistics 
[BBS], 2021).  

One third of the population live in coastal Bangladesh and is particularly exposed to the risks 
of SLR (Asian Development Bank, 2021). The direct effect of SLR is coastline retreat, which 
in turn results in loss of habitable areas and increased extent of saline intrusion and 
contamination of groundwater (Ministry of Foreign Affairs of the Netherlands, 2021). This 
impacts the vast population in terms of economic damage and health risks (Bricheno et al., 
2021; Dasgupta et al., 2018). Coastline retreat in turn increases the area prone to coastal 
flooding from daily tidal inundation, storm surge inundation, and tropical cyclones, and the 
consequences of SLR can thereby affect areas far inland. 

Not only is global warming likely to increase the frequency and severity of coastal flooding 
with relative SLR, but monsoon rainfall is also projected to increase in intensity and frequency, 
resulting in exposure to flooding induced by extreme precipitation events (IPCC, 2021). 
Extreme precipitation events already occur in Bangladesh and have inundated vast areas of the 
country and affected millions of people (Dastagir, 2015). These two consequences of the 
ongoing global change pose a large flood threat to coastal Bangladesh, and without relevant 
adaptation, large areas of coastal Bangladesh are at risk of becoming inundated. 

Most of the existing flood modelling studies in Bangladesh have been conducted on a 
national scale according to older climate projections, with the exception of regional studies 
focusing on riverine flooding in northern Bangladesh, coastal flooding in the Sundarbans, and 
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precipitation-induced flooding in Dhaka (Hasan et al., 2020; Murshed et al., 2011; Roy et al., 
2021). This leaves a research gap for regional flood modelling in central coastal Bangladesh to 
investigate how climate change could affect tidal and precipitation- induced flooding using 
updated future climate projections. 

1.1 Study aim and objectives 
The aim of the thesis is to investigate the change in flood extent and depth from precipitation-
induced flooding and coastal tidal flooding in coastal Bangladesh by 2080. The analysis will 
assess the change in July, which currently experiences a high occurrence of heavy rainfalls and 
flooding. This will be achieved using future IPCC projections of rainfall and relative SLR for 
mean and extreme events given the shared socioeconomic pathways (SSP) SSP2-4.5, SSP3-7.0, 
and SSP5-8.5. First, future areas flooded at high tide will be estimated through a passive flood 
modelling approach that incorporates SLR, land subsidence, and tide. Second, precipitation 
events will be simulated on the future landscapes using the multiple flow algorithm TFM-DYN 
to assess precipitation-induced flooding (Nilsson et al., 2021; Pilesjö & Hasan, 2014). 

1.2 Hypothesis 
i. The area of land inundated by relative SLR at high tide will increase across all scenarios 

and become greater with higher SSP scenarios. Change in flood extent is expected to be 
observed considering the flat landscape in coastal Bangladesh where small changes in 
elevation occur. 
 

ii. Precipitation-induced flood depth and extent will increase with higher SSP. Higher 
amounts of rain are expected to result in higher flood extent and area inundated with 
higher depths if the other landscape features, such as land cover, infiltration, and surface 
roughness, remain unchanged. 

 
iii. Precipitation-induced flood depths will change more than the spatial extent of the flood 

(Dasgupta et al., 2010).  
 

iv. Extreme scenarios will lead to greater change compared to mean scenarios (CCKP, 
2021). 

1.3 Delineations 
Some assumptions are made to limit the scope of the study. First, this thesis assumes no change 
in land use to occur by 2080 and thereby that agriculture will continue to occupy most of the 
rural landscape and be the main source of income in rural coastal regions. Second, the influence 
of high river discharge in the Meghna River, which is situated next to the study site, is not 
included in the study. It has, however, the potential to raise water levels up to 4 m in the delta 
which can expose the low coastline to flooding (Bricheno & Wolf, 2018). Third, the impact of 
coastal erosion on coastline retreat is additionally excluded from the scope.  

2 Background  

2.1 Historical precipitation-induced flooding 
Bangladesh frequently experiences extreme precipitation events that result in flooding during 
the monsoon. About 21% of Bangladesh is flooded annually during the monsoon and 60% is 
flooded every 5 years during severe floods (Dastagir, 2015). The impacts of flooding resulting 
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from long extreme precipitation events involve excessive damage to housing, infrastructure, 
agriculture, health, and economy for millions of people (Dastagir, 2015). 

Some historical precipitation-induced floods have been more extensive and caused more 
damage than others. In 2004, a long heavy precipitation event which inundated 39% of the 
country and left 30 million people homeless in Bangladesh culminated in 341 mm/day in 
Dhaka, which corresponds to a rain that statistically occurs once every 100 years (Dasgupta et 
al., 2015; Dastagir, 2015). A similar event in 2007 inundated 42% of Bangladesh and affected 
14 million people in total, and 408 mm/day of rain was reported in Chittagong that suffered 
from deadly landslides as a result (Dastagir, 2015; Murshed et al., 2011). In 2009, a new record 
was set in Dhaka when 333 mm was reported within 12 hours, of which 290 mm occurred 
within 6 hours. Two of the most extensive floods occurred in 1988 and 1998, where 63% and 
69% of Bangladesh was inundated respectively (Dastagir, 2015). In 1988, the floods damaged 
2.12 million ha of crops, and water depths up to 4.5 m were measured in Dhaka where 85% of 
the city was flooded. 

2.2 Consequences of sea level rise 
One of the major threats with SLR is the resulting saline intrusion which has large consequences 
for the population in coastal Bangladesh. Saline intrusion is currently increasing annually in the 
GBM delta, and this trend is projected to continue to increase with future SLR (Dasgupta et al., 
2018). Saline intrusion is a major issue for the agricultural sector that Bangladesh relies on since 
it restricts crop production and reduces soil fertility, resulting in reduced yields and economic 
consequences for local farmers (BBS, 2021; Dasgupta et al., 2018). This issue is exacerbated 
by the common use of river water for irrigation of cultivated areas, which also is contaminated 
by saline intrusion and in some areas have salt concentrations that even exceed the critical 
threshold for salt-resistant crop variants (Bricheno et al., 2021). The ongoing SLR is 
additionally leading to a reduction of suitable agricultural land in Bangladesh since coastline 
retreat allows for increased saline intrusion, and about 40% of coastal and offshore areas are 
already experiencing soil salinity (Ministry of Foreign Affairs of the Netherlands, 2018). 

Whilst the government is researching on and suggesting adaptation strategies to farmers, 
these are not always implemented locally due to knowledge gaps and communication barriers 
(Dasgupta et al., 2018). One adaptation strategy amongst farmers is the change into saltwater 
aquaculture, such as shrimp farming (Bricheno et al., 2021). This practice benefits from 
increasing saline intrusion and provides farmers with stable income yet it contributes to 
exacerbate saline intrusion. 

As relative SLR increases, saline ocean water will continue to expand inland and 
contaminate new areas and groundwater reserves. About 2.5 million ha of coastal Bangladesh 
already have groundwater salinity levels above the critical threshold for drinking water, and a 
continued depletion of groundwater reserves and consumption of saline drinking water has dire 
health consequences for the population (Bricheno et al., 2021). 

The shift in coastlines resulting from regional SLR could lead to extensive flooding when 
combined with compound effects such as tropical cyclones, tidal contribution, and storm surges. 
Historical large-scale inundation has left millions of people homeless and threatened their 
livelihoods, and this problem is projected to increase with future coastline retreat.  

2.3 Previous flood modelling studies 
Many of the existing studies on modelling flood extent and depth following projections of future 
SLR and changed precipitation patterns have been conducted using older IPCC scenarios of 
global warming or set values of SLR. 

A national-scale study by Hasan et al. (2020) has shown that a 1 m SLR by 2100 could 
inundate 4.9% of coastal Bangladesh. Brown et al. (2018) used IPCC’s previous socio-
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economic scenarios Special Report on Emissions Scenarios (SRES) for projections of various 
climate variables and SLR and reported that coastal Bangladesh would experience a doubling 
in flood extent for global warming of 3°C compared to 1.5°C. 

The research conducted on change in flood depth following projected changes in climate, 
including precipitation patterns, agree on the conclusion that an increase of flood depth is more 
hazardous than an increase in inundation extent. Brown et al. (2018) reports a 50% increase in 
flood depth for unprotected areas in coastal Bangladesh with global warming of 3°C compared 
to 1.5°C. Dasgupta et al. (2010) states that flood extent will not change significantly by 2050 
under the SRES A2 scenario, which resembles SSP3, however flood depths above 0.9 m could 
increase to occur in 40% of Bangladesh. This is supported by Roy et al. (2021) who state that 
flood depth will increase more than inundation extent and furthermore have more catastrophic 
effects. 

 

3 Data and Methodology 

3.1 Study site 
The study was conducted in a catchment in central coastal Bangladesh (Figure 1). It covers 936 
ha of which 57% is located below 7 m above MSL and 7% below 5 m. The catchment is located 
in the Lakshmipur district, which in turn is found in the division Chittagong, and it borders the 
Meghna River to the west. The district was chosen based on its vulnerability to ocean related 
hazards such as SLR and tidal flooding. Most of the coastal areas in central Bangladesh are 
furthermore unprotected to rising sea levels (Brown et al., 2018). The study site was chosen 
based on having the most low-lying landscape along the coastline, and furthermore for being 
representative of many rural coastal areas in Bangladesh. 85% of the study site is occupied by 
agriculture and is ranked as highly vulnerable to coastal flooding and SLR hazards (Asian 
Development Bank, 2021).  

Lakshmipur is mainly agricultural and largely occupied with rice plantations, with smaller 
areas occupied by aquaculture (BBS, 2021). The district is representative for rural coastal areas 
in central Bangladesh with its highly agricultural landscape and poor population with low 
literacy rates below 50%, that is highly exposed and vulnerable to SLR, cyclones, tidal surge, 
and increasing soil salinity (Asian Development Bank, 2021; BBS, 2021; World Bank, 2011).  

The division Chittagong receives on average 1500 mm of rainfall annually, and the highest 
monthly rainfall usually occur in July which receives on average 650 mm (CCKP, 2021). The 
highest amount of rainfall occurs during the monsoon from June-September. This coincides 
with the warmest months and mean daily temperatures above 27 °C are common from April - 
October (CCKP, 2021). 



 
5 

 

 
Figure 1. The study site in relation to some administrative areas in Bangladesh. The 

catchment is situated in the Lakshmipur district, located in south central Bangladesh. The 
catchment is situated across two upazilas, municipalities, Raipur and Lakshmipur Sadar. 

3.2 Shared socioeconomic pathways 
The first contribution of the 6th Assessment Report by the IPCC was issued in 2021 and it 
introduced the SSP framework for projecting future climate. The framework is based on the 
previous Representative Concentration Pathway (RCP) scenarios but additionally incorporates 
socioeconomic and political development for climate adaptation and mitigation (Riahi et al., 
2017). The scenarios SSP2-4.5, SSP3-7.0, and SSP5-8.5 represent the emission scenarios 
intermediate, high, and very high respectively, and they resemble the radiative forcing for the 
corresponding RCP scenarios. SSP2 represents a middle of the road scenario where historical 
socio-economic trends remain unchanged, SSP3 a rocky road scenario with increasing 
inequalities and nationalism, and SSP5 a highway scenario with rapid increase in energy use 
and economic growth. All socioeconomic narratives along with the corresponding radiative 
forcing and greenhouse emissions are outlined in Riahi et al. (2017). Climate projections were 
generated through the Coupled Model Intercomparison Project (CMIP) Phase 6, which 
combines results from various general circulation models (GCM) into one multi-model 
ensemble.  

3.3 Data acquisition and processing 
All data were clipped to the study area and projected into the coordinate system WGS 1984 
UTM Zone 46N with datum WGS 1984 and the projection Transverse Mercator. All raster data 
were harmonized into a horizontal resolution of 10 m and vertical resolution in decimetres. 

The data processing and analysis in section 3.6.2-3.6.5 and 3.7.2 and creation of maps were 
completed using ArcGIS Pro 2.7.0 software by Esri (Environmental Systems Research Institute, 
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2020), and Microsoft Excel 2019 version 16.3 was used for processing and analysis of the data 
in Sections 3.5, 3.6.1, and 3.7.1. Flood modelling was performed using the TFM-DYN 
algorithm (Nilsson et al., 2021; Pilesjö & Hasan, 2014). All downloaded data and variables with 
their corresponding sources are outlined in Table 1, and their geographical locations are shown 
in Figure 2. 
 

Table 1. Used data sets, the variable they were used to generate or represent, the section 
where processing and analysis of the variable is described, along with the corresponding 

sources. 

Data set  Variable Description Source 
Average largest 1-day 
precipitation 
Average monthly 
precipitation 
Historical daily rainfall 
 
Hourly tide gauge data 
SRTM 1-Arc Second 
Global V3 
Sentinel-2B L2A 
 
Google Earth imagery 
Infiltration rate 
Manning’s n values 
 
Sea level rise 
 
Regional subsidence rate 
Global Surface Water 
Coastal Aqueduct Flood 
Hazard Maps 

Extreme Precipitation 
 
Mean precipitation 
 
Mean precipitation 
 
Tidal contribution 
Topography  
 
Land cover 
 
Land cover 
Infiltration 
Surface roughness 
 
Sea level rise 
 
Land subsidence 
Evaluation 
Evaluation 

Section 3.5.2 
 
Section 3.5.2 
 
Section 3.5.2 
 
Section 3.6.1 
Section 3.6.2 
 
Section 3.6.3 
 
Section 3.6.3 
Section 3.6.4 
Section 3.6.5 
 
Section 3.7.1 
 
Section 3.7.1 
Section 5.1 
Section 5.1 

(CCKP, 2021) 
 
(CCKP, 2021) 
 
(Bangladesh Meteorological 
Department, 2016) 
(Caldwell et al., 2015) 
(NASA JPL, 2013) 
 
(European Space Agency, 
2020) 
(Google, 2022) 
(Brouwer et al., 1990) 
(Mattocks & Forbes, 2008; 
Papaioannou et al., 2018) 
(Gutiérrez et al., 2021; 
Iturbide et al., 2021) 
(Becker et al., 2020)  
(Pekel et al., 2016) 
(World Resources Institute 
[WRI], 2020) 
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Figure 2. Geographic location of stations and areas where data were retrieved. Precipitation 
data was retrieved for the division Chittagong, sea level rise for the Bay of Bengal, rain 

gauge data from three stations surrounding Lakshmipur, tide gauge data from Char Changa, 
and subsidence for the GBM floodplain. 

3.4 TFM-DYN  

3.4.1 TFM algorithm and model 
The triangular form-based multiple flow algorithm (TFM), created by Pilesjö & Hasan (2014), 
is an algorithm for accurately estimating overland flow and accumulation across a digital 
elevation model (DEM). It simulates flow distribution based on different hydrological 
processes and is a suitable approach since it provides an overall more accurate representation 
of water flow than other eight commonly used flow algorithms (Pilesjö & Hasan, 2014). One 
advantage of the algorithm is that flow direction is estimated by dividing each cell in a DEM 
into eight triangular facets, which allows water to flow into one or more neighbouring cells 
depending on the slope and aspect of each facet.  

The TFM algorithm has additionally been developed into a user-friendly model by Nilsson 
et al. (2021), where water depths, volumes, and velocities are simulated throughout and after a 
precipitation event. It allows for temporally and spatially varying precipitation intensity, 
infiltration rates, and surface roughness as input, together with a DEM and optional inlets and 
outlets. For each time step in the model, precipitation depth is first added to each cell, then 
distributed to neighbouring cells according to the TFM algorithm, and lastly the current water 
depth is reduced according to the infiltration rate. Outputs can be saved in different time steps, 
and processing of data and results can be done using GIS software. 
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3.4.2 Simulation setup 
Eight simulations were conducted using TFM-DYN and a detailed simulation setup is presented 
in Appendix B. One mean and one extreme event was simulated for each of the scenarios SSP2, 
SSP3, and SSP5, as well as for the 2010 baseline simulation. Each precipitation event was set 
to 12 hours with 30-minute intervals on the assumption that a total daily rainfall could occur in 
that time. The total simulated time was 13 hours to allow water to accumulate and infiltrate for 
an extra hour after the rainfall stops. 
 

3.5 Precipitation events 

3.5.1 Rainfall intensity-frequency-distribution (IDF) equations 
Since no sub-daily data on historical rainfall and future projections were available, spatially 
varying rainfalls events were created using rainfall IDF equations developed by Rasel & 
Chowdhury (2015). The use of rainfall IDF curves is a common approach in hydrological 
modelling for creating precipitation events (Dasgupta et al., 2015). IDF empirical equations 
(Equation 1) have been developed for precipitation events with different return periods using 
long-term precipitation data and are used to illustrate the relationship between rainfall intensity, 
duration of event, and the frequency of occurrence of a precipitation event (Rasel & 
Chowdhury, 2015). 
 

𝑖 = 𝑥 ∗ (𝑡𝑑))*   (1) 

 
Where i is rainfall intensity in mm/h, td is the duration of a rainfall in minutes, and x and y are 
fitted parameters that can be calculated based on analysis of long-term precipitation data for a 
specific region.  

IDF equations can be used to prepare rainfall hyetographs through the alternating block 
method, an approach where rainfall intensity for a chosen duration peaks in the middle of the 
precipitation event and the remaining rainfall intensities are arranged in decreasing order (Na 
& Yoo, 2018). This method results in a design storm hyetograph where precipitation varies 
temporally in intensity and duration, which is the required input to TFM-DYN. 

3.5.2 Estimating historical and future precipitation  
The total daily rainfall for mean and extreme precipitation events were estimated for each 
scenario using regionally downscaled CMIP6 projections. The precipitation index largest 1-day 
precipitation (MX1day) was used to simulate an extreme event since it is commonly used to 
represent heavy precipitation events and high values correspond to high flood risks (CCKP, 
2021). The available projections are averaged over the time period 2080-2099, where the largest 
1-day precipitation for each year is combined into an average. Both historical data and future 
projections for July were retrieved from CCKP (2021) for the division Chittagong (Table 2).  

Mean daily precipitation (MDP) was used to simulate the mean precipitation events. Since 
no daily projections were available from CMIP6, it was estimated by dividing mean monthly 
precipitation, which was available from CMIP6, for Chittagong in July with the average number 
of rainy days in July. Historical and future projections of monthly mean precipitation were 
retrieved from CCKP (2021) and daily rainfall data from Bangladesh Meteorological 
Department (2016). The average number of rainy days in July 1994-2014 was calculated using 
daily rainfall data for three neighbouring areas to Lakshmipur, where no data were available. 
The average of the three stations was used (Table 3), and a rainy day was defined by a minimum 
rainfall of 2.5 mm occurring in 24 hours (Nandargi & Mulye, 2012).  
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Table 2. Average largest 1-day precipitation (MX1day) and mean daily precipitation (MDP) 
in July in the region Chittagong. Units in mm per day. MX1day values were derived from 
CCKP (2021) and MDP estimated by dividing monthly average precipitation from CCKP 

(2021) with the average number of rainy days in July (Table 3). 

 Baseline  
(1995-2014) 

SSP2-4.5 
(2080-2099) 

SSP3-7.0 
(2080-2099) 

SSP5-8.5 
(2080-2099) 

MDP 
MX1day 

19 mm 
90 mm 

20 mm 
108 mm 

21 mm 
124 mm 

23 mm 
170 mm 

     
 

Table 3. Number of rainy days in July for three precipitation stations surrounding 
Lakshmipur. 

 Bhola Chandpur Majidee Court 
Average (1994-2013) 20 18 21 
    

3.5.3 Precipitation input setup 
Precipitation events for baseline and future scenarios were created using daily rainfall values 
(Table 2) and IDF parameters from Rasel & Chowdhury (2015). They constructed IDF 
parameters for each division of Bangladesh using daily precipitation data from 1974-2014 and 
by comparing two statistical approaches, of which the Gumbel probability distribution provided 
the highest correlation coefficient R. The Gumbel IDF parameters for the lowest return period 
of 2-years were derived for Chittagong. 

Design hyetographs for each scenario were created from the IDF equation using the 
alternating block method. First, the rainfall intensities for a 12-hour rain with 30-minute 
intervals were calculated using Equation 1 and the Rasel & Chowdhury parameters. Second, 
the rainfall intensity for all intervals were altered by a factor to fit the historical and projected 
total daily rainfall (Table 2). Finally, hyetographs were created for all scenarios using the 
alternating block method and by assuming spatially homogeneous precipitation across the entire 
study site. The same distribution of rainfall intensities was applied to all scenarios. The mean 
and extreme hyetographs for both historic and future scenarios are shown in Figure 3 and 4. 
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Figure 3. Design hyetographs for the mean scenarios showing rainfall intensities (y-axis) 

throughout the precipitation event in intervals of 30 min (x-axis). The 2010 baseline is 
presented in white and the SSP scenarios in blue, ranging from SSP2-4.5 in light blue, SSP3-

7.0 in medium blue, to SSP5-8.5 in dark blue. 

 

 
Figure 4. Design hyetographs for the extreme scenarios showing rainfall intensities (y-axis) 

throughout the precipitation event in intervals of 30 min (x-axis). The 2010 baseline is 
presented in white and the SSP scenarios in blue, ranging from SSP2-4.5 in light blue, SSP3-

7.0 in medium blue, to SSP5-8.5 in dark blue. 
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3.6 Estimation of baseline landscape in 2010 

3.6.1 Estimation of tidal contribution 
The tidal pattern in the northern Bay of Bengal is semidiurnal and varies spatially along the 
coast. It increases towards the east, varying from 3 - 6 m along the central coastline (Nicholls 
et al., 2018). Many unprotected coastlines are easily flooded at high tide and correct estimations 
of local tidal influence is therefore important for flood modelling (Nicholls et al., 2018).  

Hourly tide gauge data were used to estimate the difference in sea level between high tide 
and MSL. Hourly tide gauge data were retrieved from the University of Hawaii Sea Level 
Center, which offers research quality data of sea levels in millimetres for five stations in 
Bangladesh (Caldwell et al., 2015). The station Char Changa contains data from 1978-2000 
with a data completeness of 96% and is the only station in central coastal Bangladesh and was 
thus used for analysis. First, daily maximum and daily average sea level were computed for 
each day in July 1978-2000. Second, the difference between daily maximum and daily average 
were computed. Finally, the greatest difference between daily maximum and daily average for 
each year were combined into an average for the period 1978-2000 (Appendix A). 

3.6.2 Topography 
Accurate modelling of water flow and accumulation requires a high-resolution DEM that 
realistically represents elevation features of a landscape. The highest resolution available for 
free in Bangladesh is 1-arc second (~30 m), provided by ASTER and Shuttle Radar Topography 
Mission (SRTM). The latter was chosen due to its higher vertical and horizontal accuracy which 
locally has been confirmed to be even higher and more suitable for Bangladesh (Rabby et al., 
2020; Yao et al., 2020). The DEM was acquired in February 2000, has a vertical resolution of 
1 m, horizontal accuracy of 20 m, vertical accuracy of 16 m, and the vertical datum is MSL 
(Earth Resources Observation and Science Center, 2018; Elkhrachy, 2018; Smith-Konter & 
Sandwell, 2003). 

SRTM 1-Arc Second Global tiles covering the study area were retrieved from USGS Earth 
Explorer (NASA JPL, 2013). They were mosaiced into a new raster and sinks were filled as 
suggested in Shamsudduha et al. (2008), using tools available in ArcGIS. Even considering the 
limitations of the low resolution which is not a realistic representation of the true elevation, it 
was the best available elevation data and was thereby used in the analysis. The DEM was instead 
interpolated into a higher resolution by conversion from integer to float and interpolation into 
a horizontal resolution of 10 m using a bilinear algorithm (Esri, 2022). The bilinear algorithm 
calculates the value of each cell by averaging the values of the surrounding four cells which are 
weighted by distance, and it is recommended for continuous data. This allowed the DEM to 
store elevation in decimetres with higher resolution which fits the vertical resolution of relative 
SLR and tidal influence better. However, the accuracy and resolution of the DEM is still low, 
and results must be carefully assessed. 

The DEM was modified according to the high tide contribution to simulate the current 
coastline at high tide. No modifications were applied to account for coastline change between 
2000 and 2010 since relative SLR during that period is estimated to be less than one decimetre. 

3.6.3 Land cover 
Land cover data is required to estimate spatially varying infiltration and surface roughness 
values. Due to the low resolution of the available land cover data sets, land cover was digitized 
manually in ArcGIS Pro using a Sentinel-2 satellite image and a georeferenced Google Earth 
Pro image (Figure 5).  

A Sentinel-2 image with 10 m horizontal resolution was retrieved from the Copernicus Open 
Access Hub (European Space Agency, n.d.). The available satellite images of the study area 
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were sensed between 2018-2022 and few cloud-free images were available from May-October. 
An image captured on April 1, 2020, was downloaded since it contained no cloud cover and 
was sensed from the nearest possible date to July. A high-resolution Google Earth Pro image 
was additionally downloaded and georeferenced to the Sentinel-2 image using 31 ground 
control points and a 2nd order polynomial transformation which provided the best root mean 
square error (RMSE), 4.57 m, even considering the possible extrapolation error (Google, n.d.). 
The image was provided by Airbus, who offer multispectral satellite data with horizontal 
resolutions between 2-6 m (Sentinel Hub, n.d.). The image was captured on November 21, 2017 
and was the best available image considering no cloud cover to occur, time of capture to be 
close to July, and it being easy to distinguish features in the landscape. 

 
Figure 5. Satellite imagery from Sentinel-2 covering the study area to the left, and a detailed area 

in the central study site according to satellite imagery from Sentinel-2 (above) and Google Earth Pro 
(below) to the right. The horizontal resolution of Sentinel-2 is 10 m, and the Google Earth Pro image 
has a horizontal resolution between 2-6 m. The landscape is highly agricultural with the exception of 

smaller areas occupied by trees and shrubs. Water is visualised in blue and land in white. 

3.6.4 Infiltration 
Soil infiltration capacity varies depending on soil characteristics such as texture and grain size 
distribution, the hydrological condition of the soil as well as vegetation cover (Pingping et al., 
2013). The soils in central coastal Bangladesh are extensively influenced by weathered alluvial 
deposits in the delta, are loamy in texture and contain 40-45% clay that is constant with depth 
(Huq & Shoaib, 2013). The dominant soils in Lakshmipur are ferric acrisols (FAO, 2003).  

The infiltration rate of 10 mm/h for clay loams was retrieved from an FAO report by Brouwer 
et al. (1990). Soil infiltration decreases with increasing vegetation cover as a result of 
interception evaporation and changes in physical and chemical soil properties with the 
accumulation of organic matter in the soil (Pingping et al., 2013). The bare soil infiltration rate 
was used for croplands since rice harvesting and replanting of crops occur in July and August, 
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and very little vegetation cover is expected to occur to influence canopy interception (Shelley 
et al., 2016). Previous studies present rainfall interception rates of 20-60% for deciduous tree 
species, which are likely to be overestimated, and the resulting decrease in soil infiltration 
generally is higher than the interception rate (Wang et al., 2017; Yang et al., 2019). To account 
for the uncertainties, the infiltration rate for bare soil was decreased by 20% for deciduous tree 
cover and 10% for mosaic tree and shrub. A raster with spatially distributed infiltration rates 
according to land cover (Table 4) was created. 

 
Table 4. Soil infiltration rate for each land cover class in the study area derived based on 

data from Brouwer et al. (1990) and information from Shelley et al. (2016), Yang et al. (2019) 
and Wang et al. (2017). 

Land cover class Infiltration rate (mm/h) 
Cropland 
Deciduous tree cover 
Mosaic tree and shrub 
Water bodies 

10 
8 
9 
0 

  

3.6.5 Surface roughness 
Surface roughness represents the resistance to water flow and varies spatially across a landscape 
due to differences in factors such as land cover and vegetation (Mattocks & Forbes, 2008). The 
Manning’s roughness coefficient is a commonly used variable for assigning surface roughness 
to land use classes and can either be calculated using the Manning’s formula or retrieved from 
various look-up tables (Mattocks & Forbes, 2008; Nilsson et al., 2021). Manning’s coefficients 
for each land cover class were retrieved from look-up tables in Mattocks & Forbes (2008) and 
Papaioannou et al. (2018) and some Manning’s coefficients were modified to adjust to the land 
cover in the study area. A raster with spatially distributed surface roughness according to land 
cover was created (Table 5). 
 

Table 5. Manning’s surface roughness coefficient for each land cover category in the study 
area derived from look-up tables in Mattocks & Forbes (2008) and Papaionnaou et al. 

(2018). The Manning’s coefficient for mosaic tree and shrub was generated by combining 
deciduous tree cover and shrub into an average. 

Land cover class Manning’s coefficient  
Cropland 
Deciduous tree cover 
Mosaic tree and shrub 
Water bodies 

0.037 
0.100 
0.075 
0.02 

  
 

3.7 Estimation of future landscape by 2080 

3.7.1 Projected relative sea level rise 
Future projections of land subsidence and regional SLR were combined into relative SLR 
projections by 2080 for each scenario. Future regional SLR projections for the Bay of Bengal 
were derived from the IPCC WG1 Interactive Atlas (Gutiérrez et al., 2021; Iturbide et al., 2021). 
50th percentile projections for 2081-2100 relative to 1995-2014 were used for the mean scenario 
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and 90th percentile projections for the extreme scenario. They were considered suitable to 
represent the change in 2080 due to the uncertainties in SLR projections. The regional land 
subsidence rate of 5.2 mm/year for central coastal Bangladesh presented by Becker et al. (2020) 
was used to project the total subsidence by 2080 relative to 2010. 

3.7.2 Data modification according to coastline change 
The DEM was modified according to projected relative SLR to simulate the resulting coastline 
change for each scenario at high tide. The coastline modification was achieved by a general 
GIS-based approach outlined in Anderson et al. (2018) and WRI (2020) where constant or 
spatially varying variables such as relative SLR and tidal influence can be incorporated to map 
coastal inundation extent using a passive flood mapping approach. First, the projected relative 
SLR was subtracted from the DEM for each scenario. Second, coastal areas with elevation 
below or equal to 0 were considered being submerged and new coastlines were extracted at 
these locations. Third, surface roughness and infiltration layers were clipped to the new 
coastlines.  
 

4 Results 

4.1 Tidal flooding 
To assess future coastal areas flooded at high tide, a passive flood mapping approach was used 
to identify new coastlines considering the relative SLR in Table 6 and high tide to differ by 1.8 
m from MSL. 

 
Table 6. Total relative sea level rise and the contribution from SLR and land subsidence for 

each scenario. Sea level rise values were derived from the IPCC WG1 Interactive Atlas 
(Gutiérrez et al., 2021; Iturbide et al., 2021) and land subsidence calculated using data from 

Becker et al. (2020). 

Scenario Relative SLR (m) Contribution from 
SLR (m) 

Contribution from 
land subsidence (m) 

SSP2-4.5 Mean 
SSP3-7.0 Mean 
SSP5-8.5 Mean 
SSP2-4.5 Extreme 

0.9  
1.0 
1.1 
1.3 

0.5  
0.6 
0.7 
0.9 

0.4 
0.4 
0.4 
0.4 

SSP3-7.0 Extreme 
SSP5-8.5 Extreme 

1.4  
1.5 

1.0 
1.1 

0.4 
0.4 

 
Figure 6 shows the coastlines for the baseline and future SSP scenarios at high tide. Coastline 
changes were observed in the south-eastern part of the catchment, whilst the eastern coastline 
was unaffected. Around 1% of the study area is seen to be inundated at high tide following the 
most extreme future relative SLR (Table 7). The greatest change in inundated area occurred for 
SSP5-8.5 for both mean and extreme scenarios, increasing by 25% and 48% respectively 
compared to the 2010 baseline (Table 7). The extreme scenarios resulted in a greater inundated 
area compared to the mean scenarios, and a larger difference between SSP scenarios was 
additionally observed. The inundated area ranged from 8.6-8.9 ha for the mean scenarios while 
ranging from 9.9-1.5 ha for the extreme scenarios, representing a change of 21-25% and 39-
48% respectively (Table 7). 
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Figure 6. Tidal flooding for the 2010 baseline scenario (light grey), 2080 given SSP2-4.5 
(medium grey), SSP3-7.0 (dark grey) and SSP8.5 (black) for mean scenario and extreme 

scenarios. Land is visualised in green, and water in blue. 
 

Table 7. Area inundated at high tide by future relative sea level rise. 

Scenario Inundated area at high 
tide (ha) 

Percentage of 
catchment (%) 

Change from 
baseline (%) 

Baseline 
SSP2-4.5 Mean 
SSP3-7.0 Mean 
SSP5-8.5 Mean 
SSP2-4.5 Extreme 
SSP3-7.0 Extreme 

7.1 
8.6 
8.7 
8.9 
9.9 
10.1 

0.76 
0.92 
0.93 
0.95 
1.05 
1.08 

- 
+ 21 
+ 23 
+ 25 
+ 39 
+ 42 

SSP5-8.5 Extreme 10.5 1.12 + 48 
 

4.2 Precipitation-induced flooding 
The second set of analyses examined the change in flood extent and depth with future 
precipitation events using TFM-DYN. A flooded area is defined as flood depths above 0.1 m 
as suggested by previous flood studies conducted in Bangladesh (Dasgupta et al., 2010; 
Dasgupta et al., 2015). 

Table 8 presents the flood extent for the 2010 baseline scenarios. There is a trend of 
increasing flood extent throughout and after the rainfall for both mean and extreme scenarios, 
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and greater flood extent was observed for the extreme scenario (Table 8). Figure 7 compares 
the change in flood extent by 2080 across mean and extreme scenarios. Although a higher 
magnitude of change is observed for the extreme scenarios (Figure 7b), both follow a similar 
trend of increasing flood extent across all SSP scenarios that gradually decreases with time. 
Almost no change in flood extent is observed after the rainfall for the mean scenarios (< 1%). 
The greatest change in flood extent occurs at mid rainfall across both mean and extreme 
scenarios. Change in flood extent remains constant between end of rainfall and one hour after 
rainfall for mean SSP2-4.5 and SSP3-7.0 (Figure 7a), whilst it decreases across the extreme 
scenarios. The trend of flood extent increasing with time that was observed for the baseline 
scenarios (Table 8) remains across all future scenarios.  
 

Table 8. Flood extent throughout the precipitation events for 2010 baseline scenario. Flood 
extent includes areas with water depths greater than 0.1 m. The flood extent for mid rainfall 

(6 hours), end of rainfall (12 hours), and one hour after rainfall (13 hours). 

Time Mean scenario 
(ha) 

Percentage of 
catchment (%) 

Extreme scenario 
(ha) 

Percentage of 
catchment (%) 

6h 
12h 
13h 

286.4 
348.8 
354.7 

30.6 
37.3 
37.9 

337.6 
392.9 
396.2 

36.1 
42.0 
42.3 

     
 

 
Figure 7. Change in flood extent throughout the precipitation by 2080 relative to 2010 for a) 

mean scenarios and b) extreme scenarios. The change in percent (y-axis) is visualized for 
each SSP scenario for mid rainfall (6 hours), end of rainfall (12 hours), and one hour after 

rainfall (13 hours). 
 
Figures 8 and 9 show flood depths for selected areas according to the lower and upper SSP 
scenario one hour after rainfall. It can be observed how water extent and depth changes 
depending on the scenario applied, compared to baseline scenarios. The map shows areas where 
the highest water depths are found, the northwest and central (Figure 8) and central east (Figure 
9). The highest water depths are observed for SSP5-8.5, which is followed by the extreme 
baseline scenario. Interestingly, little change is observed between the flood depth pattern for 
mean baseline and mean SSP2-4.5. 
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Figure 8. Flooded areas for baseline scenarios (above) and the highest and lowest SSP 

scenarios (below) one hour after rainfall (13 hours). The lowest SSP scenario refers to mean 
SSP2-4.5, and the highest scenario refers to extreme SSP5-8.5. Flood depths are visualized on 

top of a DEM, ranging from low elevations (green) to high elevations (red) and the white 
areas are located outside of the study area. 
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Figure 9. Flooded areas for baseline scenarios (above) and the highest and lowest SSP 

scenarios (below) one hour after rainfall (13 hours). The lowest SSP scenario refers to mean 
SSP2-4.5, and the highest scenario refers to extreme SSP5-8.5. Food depths are visualized on 

top of a DEM, ranging from low elevations (green) to high elevations (red), and the white 
areas are located outside of the study area. 
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Figure 10 shows the change in inundated area per flood depth one hour after rainfall relative to 
2010. From the baseline data in Table 9, greater areas are occupied with higher flood depths 
above 0.5 m for the extreme scenarios compared to the mean. A decrease of inundated areas 
with low depths and increase of areas with high depths can be observed for the future scenarios, 
with higher decrease occurring for the extreme scenarios (Figure 10). Whilst water depths up 
to 0.3 m decrease in area for the mean scenarios (Figure 10a), depths up to 0.5 m decrease for 
the extreme scenarios (Figure 10b). Interestingly, the higher the SSP scenario, the higher the 
magnitude of change in both reduction and increase. Even though the mean and extreme events 
follow a similar pattern, the magnitude of change is much larger for the extreme events, which 
also reach higher absolute depths. 
 

 

 
Figure 10. Change in inundated area per depth one hour after rainfall by 2080 relative to 

2010 for a) mean events and b) extreme events. 
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Table 9. Inundated area per flood depth for 2010 baseline scenarios one hour after rainfall. 
The total catchment area is 936 ha. 

Inundation depth (m) Mean scenario (ha) Extreme scenario (ha) 
0.1 - 0.3 
0.3 - 0.5 
0.5 - 0.7 
0.7 - 0.9 
0.9 - 1.1 
1-1 - 1.3 

143.9 
176.5 
30.7 
3.4 
0.3 
0.0 

82.7 
171.2 
115.4 
23.2 
3.5 
0.3 

   
 
Figure 11 compares the inundated area per flood depth by 2080 to the 2010 baseline given 
extreme SSP scenarios one hour after rainfall when the highest flood extent occurs. Not only 
does the SSP5-8.5 scenarios result in the highest magnitude of change, but it also results in 
water depths that cannot be observed for other scenarios. Table 10 presents the inundated area 
per flood depth at the end of rainfall. By comparing it with Figure 11, it is apparent that water 
depths below 0.5 m occupy a larger area by the end of rainfall, and that water depths above 0.5 
m occupy a larger area one hour after the rainfall. This is visualized in Figure 12, where flood 
depth throughout the extreme SSP5-8.5 rain is visualized on topography data. Water is seen 
accumulating at lower elevations, and the areas with high water depths are increasing 
throughout and after the rain (Figure 12). 

Flood depth maps for all means and extreme scenarios are available in Appendix C. As 
previously stated, little change in flood depth and extent can be observed for mean SSP 
scenarios. Tables with values for flood extent and flood depth are additionally available in 
Appendix D. 
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Figure 11. Inundated area per flood depths at end of rainfall (13 hours) for all extreme 
scenarios. The bar chart above shows the area (y-axis) inundated per flood depth (x-axis). 

The table below compares the inundated area for each depth. 
 
 

Table 10. Inundated area per flood depth in ha at end of rainfall (12h) for all extreme 
scenarios. 

 0.1-0.3 
(m) 

0.3-0.5 
(m) 

0.5-0.7 
(m) 

0.7-0.9 
(m) 

0.9-1.1 
(m) 

1.1-1.3 
(m) 

1.3-1.5 
(m) 

Baseline (ha) 
SSP2-4.5 (ha) 
SSP3-7.0 (ha) 
SSP5-8.5 (ha) 

85.1 
81.5 
79.9 
75.9 

187.1 
163.4 
141.9 
92.9 

99.4 
122.9 
141.2 
173.9 

18.3 
28.9 
40.4 
72.7 

2.9 
4.1 
5.6 
15.9 

0.1 
0.4 
0.8 
2.2 

0.0 
0.0 
0.0 
0.1 
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Baseline 2010 (ha) 82.7 171.2 115.4 23.2 3.5 0.3 0.0
SSP2-4.5 (ha) 79.9 146.1 135.9 36.8 5.0 0.6 0.0
SSP3-7.0 (ha) 78.4 122.7 154.0 48.8 7.3 1.1 0.0
SSP5-8.5 (ha) 74.3 86.7 170.3 81.7 19.0 2.7 0.2
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Figure 12. Flood depths and extent throughout and after the extreme SSP5-8.5 rainfall. Water 
depths are visualized ranging from light blue to dark blue on top of elevation data from low 

elevations (green) to high elevation (red). Areas in white are outside of the study site.  
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5 Discussion 

5.1 Tidal flood analysis 
One objective of the study was to assess the change in coastal flood extent by 2080 at high tide 
following future projections of relative SLR. One interesting finding is how change in flood 
extent ranges from 21-48 % between the lower and upper scenario, mean SSP2-4.5 and extreme 
SSP5-8.5. Even though all scenarios resulted in an increase in flood extent, these results 
highlight how the uncertainties with SLR translates to how the area exposed flooding could 
increase up to 50% with extreme SSP5-8.5 compared to 2010. The study found the flood extent 
to increase by 39-48% for extreme scenarios and 21-25% for mean scenarios, however the 
extreme scenarios of SLR, the 90th percentile projections, are more unlikely to occur compared 
to the mean, 50th percentile projections. That being said, extreme scenarios should not be ruled 
out considering the uncertainties with glaciers and ice-sheet dynamics in GCMs and possible 
compound effects such as storm surge, tropical cyclones, and waves (IPCC, 2021). 
Surprisingly, little change in inundation extent occurred between each SSP scenario for mean 
and extreme events, respectively. This is however likely considering the relative SLR differed 
by 0.1 m between each SSP scenario. Additionally, it could be because the increments of 
relative SLR being too small to have an impact on the elevation data, originally having coarse 
vertical resolution. Again, considering the uncertainties with SLR projections, the range of 
increase in inundation extent across all projections is more relevant than scenario specific 
results.  

The results can be compared with the water occurrence and water recurrence data sets from 
Global Surface Water, which are based on satellite observations of surface water presence 
during a certain period (Pekel et al., 2016). In short, occurrence represents annual water 
occurrence between 1984-2020 and recurrence the seasonal behaviour of water and the 
frequency with which water returns every year. The recurrence data set confirms that the 
mapped inundated area at high tide for the baseline scenario regularly is inundated seasonally, 
which confirms the findings for the baseline scenario. The occurrence and recurrence data sets 
both map the areas subject to become inundated by 2080 (Figure 4) as historically inundated at 
time, which is likely considering occasional inundation by high river discharge, extreme tides, 
storm surge, and tropical cyclones. This confirms that these areas are vulnerable to ocean-
related hazards, and that the extent of inundation from ocean-related hazards additionally is 
likely to move further inland with future coastline change.  

The results can additionally be compared with 1-year flooding depths for historical 2010 and 
future 2080 from the Global Aqueduct Coastal Flooding data set (WRI, 2020). WRI provides 
projected global coastal inundation given SSP2-4.5 and SSP3-7.0 for various return periods and 
incorporates mean and extreme SLR (50th percentile and 95th percentile), land subsidence, storm 
surge, and tide. The inundation depths across all scenarios are higher compared to the findings 
in this study, which is expected considering it incorporates storm surges from tropical cyclones. 
Flood depth increases with higher SSP scenarios and extreme SLR, with depths ranging 
between 0.6-1.1 m in 2010, 1.2-3.4 m by 2080 with SSP2-4.5, and 1.3-3.6 m by 2080 for SSP3-
7.0. The tidal inundation of 1.8 m used in this study falls into the range for all future scenarios 
and can thereby be considered sound, however it is not possible to confirm whether the tidal 
inundation depth is underestimated or overestimated. 

5.2 Precipitation-induced flood analysis 
The study additionally assessed the change in flood extent and depth of precipitation-induced 
floods. For all scenarios, the findings show that flood extent increases throughout the rainfall 
and culminates one hour after the rain stops. The highest change in flood extent for the extreme 
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scenarios is however observed at mid rainfall, indicating that higher flood extent could occur 
earlier in a rainfall in the future. Flood extent increases up to 9.8% for the extreme scenarios, 
which could result in a greater population being exposed to flooding. The low change in flood 
extent observed for mean scenarios (< 1%) is however unlikely to have any significant impact 
on the population. These results are supported by the findings in Dasgupta et al. (2010), where 
a small increase of 4% in flood extent was observed on a national scale for Bangladesh by 2050 
under SRES A2, which resembles SSP3-7.0. 

Flood depths are shown to increase in magnitude with higher rainfall, and observations of 
water depths up to 1.5 m were found for the extreme SSP5.8.5. Furthermore, higher amounts 
of rain results in greater areas occupied with deep water and less areas occupied with shallow 
water. These results support evidence from previous observations (Brown et al., 2018; Dasgupta 
et al., 2010). The highest water depths were additionally observed one hour after rainfall, which 
allows water to accumulate into higher water depths in the low-lying areas of the landscape. 
These results were especially noticeable for the extreme rainfalls, which aligns with historical 
observations of extreme rains posing a greater threat to the population (Dastagir, 2015). On the 
contrary, no noticeable change in flood depth was observed for daily mean rainfalls.  

Water was mainly seen to accumulate in the depressions of the landscape, and no pattern 
was observed in terms of land cover due to the homogeneous nature of the study site. However, 
flooded areas are found throughout the landscape since the elevation is relatively homogenous. 
A high percentage of the area being flooded consequently results in damage to housing, crop 
yield, and infrastructure. These findings confirm that extreme rainfall events are a threat to the 
population in rural Bangladesh in the future, and that even higher water depths cannot be ruled 
out considering the historical daily extremes that have occurred. 

According to the dataset Gridded Population of the World, the population density of 
Lakshmipur is above 1000/km2 which corresponds to the highest population density class 
available in the dataset (Center for International Earth Science Information Network, 2018). By 
considering the population in Lakshmipur being greater than 1.7 million in 2011, which has 
increased since, and the size of the district being around 1440 km2, the population density of 
the district is closer to 1200/km2 (BBS, 2021). Considering both population densities, this 
indicates that the population exposed to flooding in the study area is estimated to 9000-11000 
people. Given that the study site is representative of the neighbouring areas in central coastal 
Bangladesh, which also are mapped according to the same population density class, future 
extreme rainfall events has the potential to affect even a larger population. 

5.3 Evaluation 
Accurate high-quality ground data on flood extent and depth are rare and were not available for 
Bangladesh to use for the evaluation of the study results. The scarce information that exists on 
flood depth or extent from historical rainfalls are often the result of long seasonal monsoon 
rainfalls culminating in extreme daily rainfalls, and the flooding is additionally influenced by 
high river discharge from the heavy rainfall season. This data was not used due to time 
constraints of simulating long seasonal rainfalls and finding models to simulate riverine 
flooding. Additionally, the use of satellite imagery for detecting surface water in July was 
limited due to heavy cloud cover, which is persistent during July when the heaviest monsoon 
rainfalls occur. Cloud free satellite data or aerial photographs with high resolution would be 
required to identify local or regional flooding in detail to use for evaluation. A sensitivity 
analysis with the TFM-DYN input variables surface roughness, infiltration, and land cover 
could additionally have been performed to gain an understanding on the model performance in 
rural landscape in Bangladesh, but this was restricted due to time constraints. The evaluation of 
results was consequently limited to comparison with existing data sets. However, by 
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investigating the change between baseline and future flooding instead of absolute values, the 
lack of evaluation is not a strong limiting factor. 

5.4 Errors and uncertainties 

5.4.1 Method uncertainties 
The passive flood mapping approach used for assessing coastal inundation is a simplified 
approach that does not fully incorporate all relevant processes for estimating coastline change. 
Although it is used for mapping and predicting future inundated areas in various reports and 
data sets, it has been proven to ignore some areas exposed to ocean-related inundation, such as 
tidal inundation with SLR projections, compared to complex hydrological models (Anderson 
et al., 2018). The level of uncertainty in the study site is however unclear, yet the missing effect 
of erosion and waves clearly underestimates the inundated area. To fully investigate coastline 
change, the use of complex models that include ocean and river dynamics should be used. The 
access to such models was however limited due to time constraints, and the extensive use of 
passive flood approaches was still considered sound to outline the vulnerable areas, even if 
underestimated. 

Previous evaluation of the TFM-DYN algorithm should be highlighted in order to 
understand the accuracy of the resulting precipitation-induced flooding. The TFM algorithm 
was evaluated on four mathematical surfaces and the resulting flow direction and accumulation 
was compared with 8 commonly used flow algorithms (Pilesjö & Hasan, 2014). In terms of 
RMSE, it outperformed the others on three out of four surfaces, and was outcompeted by two 
algorithms on the plane surface. Additionally, no systematic bias was detected, and the flow 
accumulation can thereby be considered a sound approach to simulate flow in the study site. 
Subsurface water flow is not incorporated into the algorithm, and it is thereby not possible to 
quantify its impact on the results. The application of TFM-DYN to simulate precipitation-
induced flooding was not evaluated to ground data due to the limited availability, yet a 
sensitivity analysis was performed using varying surface roughness (Nilsson et al., 2021). 
Nilsson et al. (2021) concluded that a decrease in surface roughness corresponds to a decrease 
in water depth and volume and increase in velocity. This implies that the precipitation-induced 
flooding could result in higher water depths if the surface roughness is underestimated. 

5.4.2 Data uncertainties 
The main uncertainties with the data revolve around the lack of regional high-quality data. Tidal 
contribution was assumed to be realistic by comparison with mean high tidal levels of 1.7 m 
south of the study site presented by Uddin Komol (2011) and considering the tidal range of 
central coastal Bangladesh. The use of Manning’s roughness coefficients derived from look-up 
tables in research papers is additionally widely accepted in research and should thereby be 
sound for this study (Mattocks & Forbes, 2008; Nilsson et al., 2021; Papaioannou et al., 2018). 

The resulting flood depth and extent will change depending on the chosen infiltration rates. 
The relatively low bare soil infiltration rate was derived from a general look-up table, however 
local infiltration rates would be required for accurately capturing the infiltration that varies with 
soil condition and texture. A similar conclusion can be drawn regarding the effect of canopy 
interception on soil infiltration, where regional studies would provide more accurate estimates 
to be used for analysis. However, waterlogging following long monsoon rainfalls or coastal 
flooding saturates the soils in coastal Bangladesh, which results in low infiltration rates 
occurring at times. The main uncertainty thereby regards the spatial variation between the land 
cover classes, and a possible underestimation. As the spatial variation in infiltration and surface 
roughness is based on land cover and soil data, high-resolution availability of these is 
additionally required for accurate parameterization, which was a limitation for Bangladesh.  
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One of the main limitations was the restricted availability of high resolution DEMs, which 
are crucial for accurate mapping of surface flow. Even by interpolating the DEM into a higher 
resolution, the precipitation-induced flood was still generated on a coarse DEM that does not 
capture the realistic flow accumulation perfectly. Assessing coastline change on global DEMs 
with vertical resolutions of 1 m additionally limits the accuracy of the results. There is a demand 
for improved elevation data sets with higher vertical and horizontal resolution for high 
confidence mapping of exposure to SLR and subsidence, especially for the low-lying areas of 
coastal Bangladesh that currently experience minor differences in elevation (Brown et al., 2018; 
Gesch, 2018). Whilst the demand remains, the currently accessible DEMs are still useful for 
general delineation of low future coastlines (Gesch, 2018). 

Furthermore, future climate projections derived from global GCMs contain levels of 
uncertainty. First, the CMIP6 projections are downscaled results from combined global GCMs. 
Even though the CMIP project has the advantage of incorporating multiple models to account 
for differences in sensitivity and results, they might not capture the regional climate as well as 
regional climate models. As weather also varies locally, the regionally downscaled projections 
might even not be representative for smaller areas. Secondly, the future projections of 
precipitation patterns and SLR are some of the most difficult variables to simulate in future 
projections and are thereby influenced by large uncertainties (IPCC, 2021). Until GCMs can 
model glacier and ice sheet dynamics with higher confidence, SLR projections are uncertain.  

Lastly, the difference in sea level between high tide and MSL is assumed constant up to 
2080. This tidal contribution could however change in the future, for example with coastline 
alterations. 

 

6 Conclusion 
The aim of the study was to assess change in flood extent and depth from precipitation-induced 
flood and coastal tidal flooding by 2080 using future projections of rainfall and relative SLR. 
The four hypotheses were evaluated against the results.  
 

i. The area inundated at high tide with future relative SLR increased across all scenarios 
compared to baseline. The greatest change was observed for SSP5-8.5 and the smallest 
for SSP2.4.5. 

ii. Precipitation-induced flood extent and depth increased with higher SSP scenario. 
Higher water depths were observed, and the area inundated by high depths increased. 
The highest change was observed for SSP5-8.5 and the smallest for SSP2-4.5 for both 
the mean and extreme scenario.  

iii. A higher magnitude of change was observed for flood depths compared to the spatial 
extent of the flood. The area inundated with water depths above 0.3 m increased with a 
higher magnitude for the mean events, and the area inundated with water depths above 
0.5 m increased with a higher magnitude for the extreme events.  

iv. Extreme SSP scenarios resulted in greater magnitude of change in flood extent and 
depth than the mean scenarios for both precipitation-induced flood and coastal flooding. 
 

Despite current uncertainties about SLR projections, the area currently submerged at high tide 
is very likely to increase by 2080. This implies that new areas will become exposed to land loss, 
saline intrusion, and coastal flooding from compound effects. The study also showed that areas 
inundated with water depths above 0.5 m will become more frequent with future extreme 
rainfalls, and that water depths could increase to values that are not observed today. These 
findings suggest an increased exposure to flood related hazards and damage to housing, health, 
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and economy for the coastal population, along with increased socioeconomic and economic 
consequences on a country level. 

More research that incorporates the effects of coastal erosion is needed to estimate the 
inundated areas more accurately at high tide. Further studies could additionally assess flooding 
in central coastal Bangladesh while including additional hydrological components such as river 
dynamics, storm surge, and wave interaction. A sensitivity analysis, which was restricted due 
to time constraints, could additionally be performed on this rural landscape using the TFM-
DYN input variables. One of the major issues with accurate flood modelling is the availability 
of high-resolution elevation data, which was one of the greatest limitations in this study. The 
demand for a freely available DEM with high vertical and horizontal resolution remains and is 
crucial for mapping overland flow and accumulation and coastal flooding in flat landscapes 
such as coastal Bangladesh. 
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Appendix A  

Estimation of high tide 
 

The maximum difference in sea level between high tide and mean sea level in July 1980 – 
2000. The years 1986 and 1993 are excluded due to missing data in July (9 and 11 days 

respectively), and the remaining years are combined into a mean that is used in the analysis. 

Year Contribution of high tide (m) 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 

     2000 

1.797 
1.599 
1.686 
1.703 
2.026 
1.768 
- 
2.041 
1.875 
1.686 
1.577 
1.706 
2.051 
- 
1.984 
2.100 
1.979 
1.674 
1.979 
1.776 
1.694 

     Mean (1980-2000)      1.826 
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Appendix B 

Simulation setup 
 

Values for precipitation and coastline change used in each simulation. Change in coastline 
incorporates the influence of high tide and relative sea level rise. 

Scenario Total precipitation (mm) Change in coastline (m) 
Baseline Mean 
SSP2-4.5 Mean 
SSP3-7.0 Mean 
SSP5-8.5 Mean 
Baseline Extreme 
SSP2-4.5 Extreme 
SSP3-7.0 Extreme 
SSP5-8.5 Extreme 

19 
20 
21 
23 
90 
108 
124 
170 

     1.8 
     2.7 
     2.8 
     2.9 
     1.8 
     3.1 
     3.2 
     3.3 
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Appendix C 

Flood maps 

 
Figure C1. Flood depth and extent one hour after rainfall (13 hours) for all mean scenarios. 

Water depths are visualized ranging from low (light blue) to high (dark blue) on top of 
elevation data from low elevations (green) to high elevation (red). 
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Figure C2. Flood depth and extent one hour after rainfall (13 hours) for all extreme 

scenarios. Water depths are visualized ranging from low (light blue) to high (dark blue) on 
top of elevation data from low elevations (green) to high elevation (red). 
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Appendix D 

Precipitation-induced flood depth and extent 
 

Table D1. Area inundated per flood depth at mid rainfall (6 hours) for mean events. 

Inundation 
depth (m) 

Baseline scenario 
(ha) 

SSP2-4.5 (ha) SSP3-7.0 (ha) SSP5-8.5 (ha) 

0.1 - 0.3 
0.3 - 0.5 
0.5 - 0.7 
0.7 - 0.9 

264.6 
20.5 
1.3 
0.1 

265.2 
21.2 
1.3 
0.1 

265.6 
21.6 
1.4 
0.1 

267.0 
22.7 
1.5 
0.1 

     
 
 

Table D2. Area inundated per flood depth at mid rainfall (6 hours) for extreme events. 

Inundation 
depth (m) 

Baseline scenario 
(ha) 

SSP2-4.5 (ha) SSP3-7.0 (ha) SSP5-8.5 (ha) 

0.1 - 0.3 
0.3 - 0.5 
0.5 - 0.7 
0.7 - 0.9 
0.9 - 1.1 

251.1 
77.1 
8.6 
0.8 
0.0 

236.6 
97.2 
11.6 
1.0 
0.0 

220.3 
117.5 
15.0 
1.7 
0.1 

172.0 
167.5 
30.7 
3.9 
0.5 

     
 
 

Table D3. Area inundated per flood depth at end of rainfall (12 hours) for mean events. 

Inundation 
depth (m) 

Baseline scenario 
(ha) 

SSP2-4.5 (ha) SSP3-7.0 (ha) SSP5-8.5 (ha) 

0.1 - 0.3 
0.3 - 0.5 
0.5 - 0.7 
0.7 - 0.9 
0.9 - 1.1 

167.1 
157.5 
21.6 
2.6 
0.1 

164.7 
159.8 
22.3 
2.6 
0.1 

163.4 
160.9 
23.1 
2.8 
0.1 

158.6 
165.0 
24.9 
3.0 
0.2 

     
 

Table D4. Area inundated per flood depth at end of rainfall (12 hours) for extreme events. 

Inundation 
depth (m) 

Baseline scenario 
(ha) 

SSP2-4.5 (ha) SSP3-7.0 (ha) SSP5-8.5 (ha) 

0.1 - 0.3 
0.3 - 0.5 
0.5 - 0.7 
0.7 - 0.9 
0.9 - 1.1 
1.1 - 1.3 
1.3 - 1.5 

85.1 
187.1 
99.4 
18.3 
2.9 
0.1 
0.0 

81.5 
163.4 
122.9 
28.9 
4.1 
0.4 
0.0 

79.9 
141.9 
141.2 
40.4 
5.6 
0.8 
0.0 

75.9 
92.9 
173.9 
72.7 
15.9 
2.2 
0.1 
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Table D5. Area inundated per flood depth one hour after rainfall (13 hours) for mean events. 

Inundation 
depth (m) 

Baseline scenario 
(ha) 

SSP2-4.5 (ha) SSP3-7.0 (ha) SSP5-8.5 (ha) 

0.1 - 0.3 
0.3 - 0.5 
0.5 - 0.7 
0.7 - 0.9 
0.9 - 1.1 

143.9 
176.5 
30.7 
3.4 
0.3 

141.9 
178.0 
31.7 
3.5 
0.3 

139.0 
179.4 
32.8 
3.6 
0.3 

135.6 
182.7 
34.7 
3.7 
0.4 

     
 
 

Table D6. Area inundated per flood depth one hour after rainfall (13 hours) for extreme 
events. 

Inundation 
depth (m) 

Baseline scenario (ha) SSP2-4.5 (ha) SSP3-7.0 (ha) SSP5-8.5 (ha) 

0.1 - 0.3 
0.3 - 0.5 
0.5 - 0.7 
0.7 - 0.9 
0.9 - 1.1 
1.1 - 1.3 
1.3 - 1.5 

82.7 
171.2 
115.4 
23.2 
3.5 
0.3 
0.0 

79.9 
146.1 
135.9 
36.8 
5.0 
0.6 
0.0 

78.4 
122.7 
154.0 
48.8 
7.3 
1.1 
0.0 

74.3 
86.7 
170.3 
81.7 
19.0 
2.7 
0.2 

     
 
 

Table D7. Flood extent (depths > 0.1) throughout and after mean rainfall events. Mid rainfall 
occurs at 6 hours, end of rainfall at 12 hours, and one after rainfall at 13 hours. 

Time 
(hours) 

Baseline scenario (ha) SSP2-4.5 (ha) SSP3-7.0 (ha) SSP5-8.5 (ha) 

6 
12 
13 

286.4 
348.8 
354.7 

0.5 
0.2 
0.2 

0.8 
0.4 
0.4 

1.7 
0.8 
0.7 

     
 
 

Table D8. Flood extent (depths > 0.1) throughout and after extreme rainfall events. Mid 
rainfall occurs at 6 hours, end of rainfall at 12 hours, and one after rainfall at 13 hours. 

Time 
(hours) 

Baseline scenario (ha) SSP2-4.5 (ha) SSP3-7.0 (ha) SSP5-8.5 (ha) 

6 
12 
13 

337.6 
392.9 
396.2 

2.6 
2.1 
2.0 

5.0 
4.3 
4.1 

11.0 
10.4 
9.8 

      
  


