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Abstract
In camera production the image quality is of utter importance. Several tests during the production
ensure this high quality. In this thesis the possibility of creating a final test, that classifies the
image quality with the help of machine learning, specifically convolutional neural networks, was
investigated. The data used was made up of synthetic, simulated images with commonly observed
quality defects. Eight different network architectures were evaluated on four different types of
data sets; two data sets for binary classification, one for multi-class classification, and one data set
containing real, non-simulated images. The results were promising with a test accuracy of 0.999
for the binary case with a two-stream network with a DenseNet base. For the multi-class classifi-
cation the best test accuracy was 0.989 with the same network. The results showed that there is
a high potential for the use of convolutional neural networks for classifying image quality. For a
large enough data set a simple convolutional network would be sufficient, achieving similar results
as the best network. The networks could handle most of the investigated defects, but seemed
to have a problem with blemishes - dust/sensor defects, which is why it would be recommended
to have another test for this defect. It was also concluded that there is a need for gathering a
larger amount of real images for training since the results on the real data set were at best 0.594
for binary classification. This showed that the networks trained on the simulated images did not
translate well to real images.
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Popular Science Summary
Is machine learning the next big thing in camera production?
As the use of AI is increasing in all aspects of today’s society, camera production
companies are starting to take an interest in it as well. These companies go to great
lengths and apply multiple tests to ensure that the cameras shipped to their customers
are of the highest quality. We have looked into replacing some of these tests with
machine learning to make them more objective and standardized. Machine learning
is a subsection of AI where a computer algorithm can learn to make decisions based
on experience. Can this be used in production without compromising the quality?
Early tests performed on synthetically created data show promise as 99 out of 100
cameras were correctly categorized as approved or disapproved, even though some
quality defects were harder to detect than others.

After several tests have been performed, the last test in camera production is to examine the gen-
eral image quality by taking a picture and evaluating it. However, imagine that you have looked
at images all day, at one point you are bound to get tired and miss something. Additionally, two
different people can choose to evaluate images differently, resulting in subjective results. This is
a problem that could be solved by using machine learning, making the test objective and stan-
dardized. It will also ensure that the cameras that do go out to the customers are of the desired
quality.

This is where neural networks come in. A neural network is a machine learning algorithm that
aims to mimic the human brain. Using several connections via "neurons" the network learns from
experience by backtracking based on the results of its decisions. It can learn to recognize patterns
which then can be used to make decisions, for example, classification. Classification is when the
network can decide if an image belongs to one class or another depending on the contents of the
image. In our case that would mean that the network classifies the image as "passed" if the image
is of good quality or "failed" if it contains image quality defects. Moreover, the network could be
trained to say what type of defect the image contains.

We were able to train several different networks of various complexity, with the help of annotated
examples, to be able to recognize defects and classify whether an image was of good or bad quality
i.e. passed or failed. The results were indeed very promising for synthetic data, with accuracies of
up to 99.9%. The synthetic data was made up of good quality images from other tests that are
used in production, on these images the varying defects were simulated. The simulation algorithms
were created from scratch and the results were compared to a handful of real images. However, for
the small amount of real images available the results were not as good, reaching only an accuracy
of 54%, indicating that the synthetic data was not representative of the real data. It is clear that
more real, authentic images are needed before these networks can be put to practical use.

Is machine learning to be used in camera production then? Yes, there is a high potential for the
use, however, there is still work to be done. There are several possibilities of extending and further
developing the algorithms that we have created. Last but not least it is a matter of implementing
a functioning program for production.
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1 Introduction
For many companies that produce cameras or other visual systems, the image quality of the
products is of great importance. Tests that run during production secure high image quality
before the products are shipped out to the customers. In order to have a high reliability in these
tests they need to be standardised, repeatable and objective.

One of these companies currently employs a ”general image quality test” which aims to test the
final image quality of different products. They however wish to move towards a more objective
test method which does not solely rely on an operator and is also more consistent and repeatable.
One way to achieve this could be to take images of the same target/scene each time and make use
of a machine learning algorithm to decide whether or not an image, and therefore a camera, should
be classified as passed.

1.1 Related Work
With an increase in all things digital the inspection of digital image quality and detection of defects
have become large research areas to ensure the quality of image systems and products. There exists
several methods for detecting specific defects like blemishes (dust/sensor-defects), blur, dead pixels
and noise [31], [30], [7], [16]. However, for detection of more general defects and multiple defects
at a time, more complex models need to be considered.

The research field of more general errors is often called Image Quality Assessment (IQA). The
aim of this is usually to get a quantitative score, consistent with human visual assessment, which
describes the quality of the image. These methods are often used to find defects which occur when
images are converted and compressed in different ways, for example when converting an image
to the jpg format. The loss of information can be characterized by defects such as noise, blur
and dead pixels. These defects can be similar to the defects that occur when producing cameras
although these defects found in production are more complex. The field of IQA can be divided into
three different sub-fields: full-reference (FR-IQA), reduced-reference (RR-IQA) and no-reference
(NR-IQA).

FR-IQA refers to methods that have a reference image with good quality as well as the same
image with bad quality. The score is then decided based on a comparison between the reference
image and the bad quality image with the help of features extracted from, for example, pixel- and
structure information. Methods based on the mean square error, signal-to-noise ratio [5], structural
similarity [40] and others can then be applied. The RR-IQA methods use only partial information
from a reference image, for example the wavelet transform to get a natural image statistic model
which can be compared between the reference image and the distorted image [39].

NR-IQA has no reference image at all, but only derives information from the distorted image. This
is more similar to the problem presented in this report as no reference images exist for the images
taken during camera production. Since there is no reference to compare to, the research is largely
focused on different deep learning methods which can learn what features to look for themselves.
This approach allows the extraction of more complex image structures [42]. Since the problem is
contained to images, convolutional neural networks are especially useful. However, a big problem
is that there is often a lack of annotated images to use for training. To create more training data
several papers use the patch-method which means that they divide each image into a number of
patches which is fed into the network after which an average of the patch score is calculated to
obtain the quality score [19]. A problem could then be that there are no labels for the individual
patches, and if a serious defect is local, averaging may not give a representative score.

Since a blurry photo can be recognized with the gradient, one approach that is used is a two-stream
convolutional neural network that takes the image and its gradient as inputs [19], [41]. The outputs
of the two parallel networks are then concatenated and a quality score decided. Another common
approach is to make use of pre-trained networks, like AlexNet or Resnet50. These are networks
that have been pre-trained on the data set ImageNet which is used for object recognition. The
output from these can then be fine-tuned with a few additional layers [4], [20]. Other methods
include using a GAN (Generative Adversarial Network) to generate a reference image and then
make use of FR-IQA [32].
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1.2 Aim
In an attempt to solve the issues regarding objectivity and standardization in the production,
the aim of this thesis was to examine the possibility of replacing the human operator with a
classification algorithm based on machine learning. The focus was on implementing this software
using artificial neural networks (ANNs) and since the data examined solely consists of images,
specifically convolutional neural networks (CNNs) were used.

Though the above mentioned methods in section 1.1 work well for some defects, more defects are
present in the data for this thesis. This means that a new evaluation needs to be done for this
data. In the production of cameras any defect being present means that the camera needs to be
taken apart and remade which also means that a quality score is irrelevant but rather a ”passed”
or ”failed” label would be more suitable. Additionally, it could be of interest to classify the type
of defect.

In order to do this, synthetic data consisting of images with defects in them were simulated and
several different neural networks were evaluated on this data. The questions investigated were if
there is a potential to use convolutional neural networks for both binary and multi-class classi-
fication of image quality, if there are specific networks that work particularly well for the data
and if there are defects that are easier or harder to classify. Moreover, the trained networks were
evaluated on real data to see if synthetic data can accurately represent the authentic data.

1.3 Delimitations
This thesis is delimited to training networks on only synthetic data with an image test target as
background, for binary and multi-class classification. Only one defect per image is considered. The
thesis does not explore the use of semantic segmentation.

1.4 Contribution
The workload has been evenly distributed, as both parts have been actively participating in all
aspects of the thesis.
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2 Background

2.1 Camera Defects
Several different defects with different causes can occur in images. Some defects are due to the
conditions of the environment the image has been taken in (relative motion, weather, lights etc.)
while others are due to errors in the manufacturing of the camera. Some of the more common
defects found when producing cameras are blemishes (dust/sensor defects), blurring, noise, dead
pixels, and pixel column or row errors. These mentioned defects are explained in the following
sections.

Blurring

Blurring is a defect where the focus of the image is off, see figure 1. It can be viewed as a bandwidth
reduction in an image which is the result of a non-ideal image process. The defect can be caused
by an optical system that is out of focus (out-of-focus blur), when the relative motion of the
camera and its environment is faster than the speed of the shutter (motion blur) or by atmospheric
turbulence [22]. The optical system can be out of focus due to its settings or even in the most
perfect conditions blurring can be caused by light diffraction, sensor resolution or lens aberration.
A model that describes the blur and resolution is the so called Point Spread Function (PSF). The
PSF can be viewed as a function that describes the distribution of light in the camera focal plane
for a point light source [9]. The blurring of an image can then be modeled as a convolution with
this PSF. In a camera with circular aperture the local PSF will be a small disk with an intensity
distribution within that disk. If there is no blurring, i.e. an ideal image, the intensity distribution
can be modeled as a Dirac delta function. If there is a considerable defocus then the intensity
distribution can be modeled uniformly. Motion blur can be modeled with a translation, rotation,
change of scale or combinations of the three. Atmospheric turbulence can however be described
well by a Gaussian intensity distribution [22]. Blurring can be identified by applying a laplacian
filter, i.e. second derivative, and examining the variance of the result [31].

Figure 1: Example of a blurred image.

Noise

Noise is a random variation in pixel intensities in an image which always, on different scales,
corrupts an image. An example of a noisy image can be seen in figure 2. It can be due to
different reasons such as random absorption, scatter, sensor noise, quantization of data or by other
limitations in the system [22]. There are different types of noise that can appear in an image;
examples are gaussian, poisson and salt and pepper noise. Gaussian noise is evenly distributed
over the image as the sum of the real pixel value and a gaussian distributed noise. Salt and pepper
noise appears as white or black pixels randomly distributed over the image [28]. In contrast,
Poisson noise is a multiplicative noise which depends on the true pixel value. Each pixel value is
a Poisson random variable with the mean value equal to the true pixel value [29]. An example of
a method used to detect noise is to calculate the differences in intensity between a pixel and its
neighbours, then taking the arithmetic mean and comparing it to a predetermined threshold [30].
This method may not give good results if there are a lot of details in the image.
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Figure 2: Example of an image with gaussian noise [2].

Dead Pixels

The ”dead pixels” defect refers to a local region of error in the image where the intensity of one or
several of the color channels have been severely reduced or set to zero, see figure 3. The sizes and
shapes of these regions can vary a lot and they can often be irregular. Dead pixels are caused by
specific pixels not receiving power to one or several color channels. The reason behind why there is
no power to that/those pixels can differ, it can be due to a software issue, it can be a failed power
connection or it can even be due to physical damage to the sensor. An example of detection of
isolated dead pixels is similar to that of noise; looking at the mean of the differences between one
pixel and its neighbours [7]. For regions of dead pixels this method can be insufficient.

Figure 3: Example of dead pixel regions.
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Faulty Pixel Row or Column Errors

Similar to the dead pixel regions discussed above, faulty pixel row or column errors are strips of
pixels where some error has occurred. This results in a horizontal or vertical line of pixels with
either dead color channels or erroneous channel intensities. An example can be seen in figure 4.

Figure 4: Example of a line of faulty pixels.

Blemishes

A blemish is some kind of dirt which causes a blurred spot in an image which is typically darker
than its surroundings. In contrast to dead pixels, the edges of a blemish are typically smooth and
therefore harder to detect. The size of the blemish can vary, depending on what it is. They can
be artifacts on the lens or sensor caused by dust, water spots or fingerprints. The blurred spot
due to blemishes can be more apparent in the center of the image as opposed to in the corners
where they may be hard to spot [23]. When examining a camera for blemishes, a photo of a light,
homogeneous background can be taken on which the blemishes can be seen, see figure 5. Algorithms
to automatically detect blemishes typically make use of a band pass filter which suppresses high
and low frequencies, i.e. enhances edges while reducing noise simultaneously. A threshold can then
be used to identify the blemishes [16]. This method is however not suitable for non-homogeneous
images with a lot of details since the blemishes can not be separated from the background.

Figure 5: Example of blemishes.
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2.2 Machine Learning and Convolutional Neural Networks
Machine learning is a subsection of artificial intelligence where an algorithm can learn for itself
from data and typically also improve when exposed to more data. It is based on the fact that
computers can learn pattern recognition from data with minimal interference from people. Based
on this learning the algorithms can make decisions. First, the algorithm needs to have some data
to learn from e.g. numbers or images. Generalising, there exists two branches of machine learning
- supervised and unsupervised. Supervised learning is machine learning with human input, e.g.
classification or regression, where the algorithm is told what the ground truth is. Unsupervised
learning is performed without human input e.g. clustering, here there is no ”right” or ”wrong”
answer, the algorithm tries to find patterns or underlying structure in the data. For supervised
machine learning methods the data thus has a ground truth to compare to, while an unsupervised
algorithm has no ground truth but has to learn how to interpret the data on its own. In machine
learning there is most often two phases: the training phase and the prediction phase. During
training the algorithm is learning and adapting to given data, and in the prediction phase it uses
the model from the training phase to make predictions about new data.

2.2.1 Classification

Classification is a supervised machine learning problem where the goal of the algorithm is to assign
the data into different pre-defined classes. For example, imagine a set of images containing cats and
dogs, and you want to be able to classify the images as containing a cat or a dog. The algorithm
would then train on images which are annotated and the aim would be to correctly classify an
image as one of the two classes. Classification algorithms can have binary outputs like in the case
with cats and dogs, or they can have multiple outputs as in the case of images containing single
digits between 0-9, as for the well known MNIST data set. Either way the output is discrete, most
often yielding ones and zeroes for the binary case and integers corresponding to the number of
classes in the multi-class case.

2.2.2 Artificial Neural Networks

An artificial neural network (ANN) is a machine learning algorithm which is an attempt to mimic
the nervous system of the brain. A very simple one layer network would consist of a single ”neuron”,
see figure 6. The neuron consists of a few basic elements. The first element is the input signals.
These are usually multiple and often normalized in order to enhance the computational efficiency.
The inputs are then weighted one by one to describe the individual input’s relevance before they
are summarized. Usually a bias is then added before the output is passed through an activation
function which will limit the output to a range of certain values. Finally the output is passed on.
The output can be described by

y = g

 
nX

i=1

wixi � ✓

!
= g (wx� ✓) , (1)

where g(·) is the activation function, wi the weights, xi the inputs and ✓ the bias [8].

Figure 6: A single artificial neuron [10].
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A larger network would usually consist of several connected layers of multiple neurons, changing
eq. 1 into

y = g (Wx�⇥) = g

0

@
mX

j=1

nX

i=1

wijxi � ✓j

1

A (2)

for each respective layer. If there are multiple layers between the input layer and the output layer
- usually denoted as hidden layers, then the network is called a deep neural network(DNN), see
figure 7. Classical machine learning requires manual pre-processing and feature selection, while
deep learning has the advantage of being able to learn for itself what features are relevant to the
problem [3]. Each layer will learn and extract different features from the input data.

Figure 7: A deep neural network [12].

In the training phase all the weights and biases are initialized to a starting value and the output
of each neuron calculated one layer at a time resulting in a final prediction. This process is called
forward propagation. The prediction is then compared to the true value, and a loss value based
on a loss function is calculated (see section 2.2.4). A small loss indicates a good prediction and a
large loss a bad prediction. Based on the loss, backpropagation is initiated by propagating from
the output to the input, layer by layer, and adjusting the weights and biases with the help of
the loss feedback i.e. the gradient of the loss function (see section 2.2.5). This means that the
weights and biases are all trainable parameters which will be adjusted to the specific problem as
the network learns what is important. This is repeated for all the training data. When the training
is completed the weights and biases are all fixed while doing predictions on new data [24].

2.2.3 Activation Functions

The activation function is an important part of the neural network as it allows the network to
become non-linear and therefore learn more complex patterns. It is also used to keep the output
bounded in order to prevent computational issues. The selection of activation function has an
important impact on how the system behaves.

One common activation function is the sigmoid function, see figure 8. The sigmoid function is a
continuous function which maps all values to the range between 0 and 1. The sigmoid function is
defined as

g(x) =
1

1 + e�x
. (3)

This function is useful when the output should be in the range between 0 and 1, as in the final
layer of a binary classification algorithm. However a disadvantage of using sigmoid as an activation
function in other layers is that it suffers from the vanishing gradient problem. The vanishing
gradient problem arises during backpropagation and the calculation of the loss function’s gradient.
The loss function’s gradient is connected to the gradients of the activation functions at each layer.
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If the gradients of the activation functions are too small, the weights of the network will only be
subject to small if any changes. This will cause the weights of the last layers (counting backwards
from the output layer) to not be able to learn properly. The sigmoid function is also not zero-
centered which is undesirable when training the network, due to efficiency issues [26].

Another function that can be used as the final layer in a classification task is the softmax layer. It
is usually used when there are several classes and is defined as

g(xi) =
exi

Pc
j=1 e

xj
(4)

where there are as many neurons in this layer as the number of classes. The softmax maps the
output to values between 0 and 1, and can be interpreted as a probability [26].

Another activation function is the tangent function defined as

g(x) =
ex � e�x

ex + e�x
, (5)

see figure 8. This function also suffers from the vanishing gradient problem since the output is
constricted to -1 and 1, however it is zero-centered.

Figure 8: The sigmoid and tangent functions [26]. Copyright © 2020, IEEE

In order to combat the vanishing gradient problem one can use the ReLu (Rectified Linear Unit)
function, see figure 9. It is defined as

g(x) =

(
0, x < 0

x, x � 0.
(6)

It has an easy gradient and does not have a vanishing gradient when performing backpropagation.
Some nodes can however ”die” since the output of negative values is zero. To avoid this problem
Leaky ReLu can be used which creates a small gradient for negative values [26]:

g(x) =

(
ax, x < 0

x, x � 0,
(7)

see figure 9.
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Figure 9: ReLu activation function to the left and LeakyReLu to the right.

Note that the ReLU activation function is not zero-centered and thus this will also lead to inefficient
training of the network, however it is still often opted for due to it being simple, fast to compute
and handles the vanishing gradient issue as stated above. The Leaky ReLU function does not have
as severe zero-centering issues.

2.2.4 Loss Function

In order to define the loss so that the weights can be updated, a loss function is needed. There are
different loss functions for different kinds of problems. When using neural networks these can be
divided into loss functions for regression problems and loss functions for classification problems.
In this thesis only loss functions suitable for classification problems were considered. One common
loss function for classification is the binary cross-entropy loss function which is defined by

l(y, p) = �ylog(p)� (1� y)log(1� p), (8)

where y is the true label and p is the probability for that label, which has been calculated by the
last layer. This means that predictions that are confident but wrong are highly penalized. The
binary cross-entropy should only be used for binary classification. With several classes categorical
cross-entropy could be used instead. Categorical cross-entropy is defined as

l(y, p) = �
cX

i=1

yilog(pi), (9)

where c is the number of classes and yi = 1 if it is the true label and 0 otherwise [25]. The
categorical cross entropy loss is the most common one when dealing with multiple classes, variants
of categorical cross-entropy exist but are not further discussed here.

2.2.5 Optimization

In order to properly minimize the loss function, an optimization algorithm is used. Just like loss
functions, there are many different optimization algorithms that work well in different situations.
One of the simplest methods is based on gradient descent. The idea is that the weights and
biases get updated iteratively in the direction of the negative gradient of the loss function. The
learning rate decides the step size for each update. Since the gradient descent uses all of the data
to calculate the gradient, the computational complexity is high. This makes way for stochastic
gradient descent (SGD). The idea of SGD is to estimate the gradient based on one sample for each
iteration instead of using all of the data. However, because of the random sample selection the
variance of the gradients will be large and the optimization may not always converge towards the
optimal value [35].

In order to improve upon SGD the concept of momentum can be used. Momentum means that the
direction is not only influenced by the current gradient, but by all the previous gradients as well
which can speed up the convergence. This can help to escape local minima since even though the
current gradient may be zero, the previous ones still have an impact. However, if the momentum
is too large the algorithm may completely miss the global minimum [35].
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It could also be of interest to change the learning rate as the search gets closer to the global
minimum. This can be done by using a decay factor that decreases the learning rate with time. A
method which uses this is RMSprop. RMSprop updates the learning rate by dividing it with the
square root of the exponential moving average of the squared gradients [35]. A combination of the
adaptive learning rate and momentum can be found in the optimizer Adaptive moment estimation
(Adam). This method is also one of the more popular methods [35]. To expand on Adam, ”Nadam”
can be used. Nadam uses the Nesterov momentum which looks at the next gradient as well.

2.2.6 Hyperparameters

While the weights and biases are updated during the training phase, there are some parameters that
cannot be trained by the network itself; these are called hyperparameters. The hyperparameters
need to be optimized using a validation set which the trained network can be tested on. Depending
on the result on the validation data the hyperparameters can be changed manually [13]. Examples
of hyperparameters are the optimizer, the learning rate, the dropout constant (see section 2.2.9),
the amount of steps between each decay in learning rate, training epochs (the number of times the
training data is traversed) and the number of layers in the model.

One of the more important hyperparameters is the learning rate. The learning rate controls how
big the steps are during optimization. Too small steps will result in the learning being slow, the
optimization may be unable to escape a local minimum and the chosen algorithm may fail to
converge. Too big of a learning rate and the optimization might completely miss or jump out of
the global minimum. The learning rate will therefore impact how the loss will develop [18], see
figure 10. In order to speed up the learning but still increase the chance to converge to the global
minimum one can use a decaying learning rate. That way the learning rate will decrease further
into the training. This is most commonly applied when using SGD, but it can be combined with
the ”built-in” decaying learning rates of RMSprop or Adam. One way of implementing a decaying
learning rate is to use an exponential decay that reduces the learning rate exponentially over time.
Another way is to use a piecewise constant decay of the learning rate at given intervals.

Figure 10: How loss is affected by learning rate, adapted from [27].

2.2.7 Overfitting and Underfitting

When it comes to training a machine learning algorithm, two major challenges are overfitting and
underfitting [13]. Underfitting occurs when an oversimplified model, or neural network in this
case, is used to describe the problem or perform classification. In the underfitting case, the neural
network fails to capture the underlying structure of the data and it fails to minimize the loss
function sufficiently. Underfitting leads to poor results for all input data. Overfitting on the other
hand is when the model gets too specific. The neural network excels at classifying the training
data samples but fails to achieve good results for the validation and test data - the network fails
to generalize. In the overfitting case the loss of the training data is very small, however for the
validation and test data it is big. This gap between loss values means that the network has learnt
properties of the training data that do not benefit the classification of new unseen data [13]. In
figure 11 the two cases of under- and overfitting are shown using a binary classification problem. In
the rightmost image the ”balanced” case is displayed, here the classification algorithm has derived
a complex enough decision boundary while still maintaining a desired level of generalization.
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Figure 11: Demonstration of over- and underfitting [3].

2.2.8 Convolutional Neural Networks and Convolutional Layers

Convolutional neural networks (CNN) are a type of neural networks that work especially well for
images. It uses the mathematical operation convolution to process, in the case of images, a 2D-grid
of pixels. The convolution simply replaces the matrix multiplication (eq. 1) in the specified layers.
Discrete 2D-convolution is defined as

S(i, j) = (I ⇤K)(i, j) =
X

m

X

n

I(m,n)K(i�m, j � n), (10)

where I(i, j) is the input and K(i, j) is a 2D-kernel [13]. The output S(i, j) of the convolution can
be referred to as a feature map. The features vary depending on the kernel. Examples of these
features can be edges, vertical or horziontal lines, or something entirely different. In a convolutional
layer the kernel, which could be smaller than the size of the image, is sliding along the image and
the convolution is calculated for each pixel, see figure 12. The size of the kernel and the steps that
are taken while sliding, known as "stride", is decided beforehand [13]. A stride of one would mean
moving the kernel one pixel for each calculation, as seen in figure 12.

Figure 12: Example of a convolutional operation on pixels [21].

The parameters of the kernel are trained by the network to learn relevant features. The kernel is
then shared among all pixels thus reducing the amount of parameters compared to a layer that
uses matrix multiplication where each pixel has its own weight and bias [13]. A convolutional layer
is usually made up of several filters that work in parallel, each one with its own kernel, allowing it
to learn several features at a time.
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2.2.9 Other Layers and Operations

Fully Connected Layers

Fully connected layers or ”dense” layers are relatively simple. Each input contributes to all outputs,
meaning that every input neuron will be connected to every output neuron, resulting in a vast
amount of connections/parameters to be trained. Neural networks that are used for classification
will always have a fully connected layer as its final layer with a number of outputs equal to the
number of classes used for the classification task at hand. As opposed to convolutional layers
discussed above, there is no parameter sharing in a fully connected layer [13]. An image depicting
3 fully connected layers is shown in figure 13 below.

Figure 13: Fully-connected layers [3].

Pooling Layers

In a local pooling operation, a subregion of the inputs to the layer is examined and depending on the
nature of the pooling, different operations are performed. In a similar fashion as for convolutional
layers, the whole input is traversed using a filter. A max pooling layer looks at a subregion, eg.
using a 2x2 or 3x3 filter, and outputs the maximum value of that region, see figure 14. An average
pooling layer also looks at a subregion of some given size but outputs the average value instead
of the maximum [3]. When using pooling layers it is most common to not access the same inputs
more than one time, thus taking a large enough stride each time. There are also global pooling
operations where the whole input is evaluated and a single output is produced, global average
pooling is exemplified in figure 14.

Figure 14: Example of different pooling operations [3].

Dropout

As more and more layers are added to a neural network the number of trainable parameters increase
and so does the complexity of the network. As discussed in section 2.2.7 the increase in complexity
tends to cause overfitting issues. In order to combat this, a ”dropout” is introduced. Dropout,
which is done in every epoch, randomly selects a number of neurons based on a dropout rate in a
specific layer and hides/disables them during training. The dropout rate decides the probability
p that a neuron will be dropped and the probability 1 � p that it will be kept [34]. Since the
neurons that are active during training changes between epochs, this forces the layer to generalize
better and become more robust. After the training has been completed and the network is used
for predictions, all neurons are active and there is no dropout.
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Normalization

Normalization or more specifically batch normalization is a method often used when constructing
neural networks. Batch normalization scales the values to the range [0� 1], stabilizing the compu-
tations performed when calculating the gradients of the network during backpropagation. Batch
normalization can reduce the training time, allow a higher learning rate and has regularizing effects
which can reduce the need for other regularizing operations, such as dropout discussed above [17].

2.2.10 Models

There exists a lot of different models for CNNs. A typical example of a simple CNN is seen in
figure 15. Here, a convolutional layer is followed by a ReLu-layer (note that a ReLu-layer is the
same as having ReLu as an activation function in the convolutional layer), a pooling layer and
finally a fully connected layer before a classification is made. Most CNNs are made up of different
blocks with a similar structure as this network.

Figure 15: Example of a convolutional neural network for classification [3].

Transfer Learning

Transfer learning is an approach where a model which is originally trained for another purpose is
re-used in a new machine learning problem. For example, a CNN trained for object recognition can
first be used as a feature extractor in a new classification problem. By only replacing the last fully
connected layers in the model it can be tuned to a new problem. This is especially useful when the
available data is sparse, since the pre-trained network already has been trained on a large data set.
For object classification it is common that the networks are trained on the data set ”ImageNet”.
ImageNet contains millions of images for the purpose of improving object recognition tasks.

Inception V3

Inception V3 is a CNN which is pre-trained on the ImageNet data set. It is constructed to
be computationally efficient. It extracts features on multiple levels and uses several blocks of
convolutions. The architecture can be seen in figure 16. It includes convolutional layers, max- and
average pooling, dropout layers, concatenations and finally fully connected layers [6].

Figure 16: The Inception V3 architecture [6]. Copyright © 2019, IEEE
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ResNet

One way to make neural networks better is to make them deeper, thus adding more parameters.
When doing so there is however the risk of running into the vanishing gradient problem as the
gradient may get smaller the deeper the network is. The vanishing gradient negatively affects the
performance of the network. To surpass this problem the Residual Neural Networks was introduced.
They make use of ”skip-connections” where an input can skip several layers before being added to
the output of another layer, see figure 17. A network can then fit a residual mapping instead of
the desired underlying mapping. By repeatedly using skip-connections the network can be built
deeper, gaining accuracy. This method has shown great results, outperforming many shallower
networks [14].

Figure 17: A ResNet block [3].

DenseNet

DenseNet, or Densely Connected Neural Network, builds on the idea from ResNet. The idea is
to maximize the flow of information between each layer by connecting all convolutional blocks
with each other with skip-connections, see figure 18. In contrast to ResNet, the features are not
summarized, but concatenated. This results in blocks containing all features from the previous
blocks. The large flow of information and gradients makes the network easy to train. It has also
been observed that the network architecture has a regularizing effect, reducing overfitting [15].

Figure 18: The architecture of DenseNet [15]. Copyright © 2017, IEEE
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EfficientNet

The two previous network architectures, DenseNet and ResNet, have achieved good results but
at the cost of having a large amount of parameters. Due to the large amount of parameters the
networks are costly to train and require a significant amount of computer memory. EfficientNet
aims to be more efficient with the amount of parameters while still achieving good results. The
architecture is modular and scalable and uses a baseline model - EfficientNetB0, which can then be
scaled up to and including EfficientNetB7 with higher model numbers signifying a larger network
[36]. This baseline model can be seen in figure 19 below.

Figure 19: The baseline model for EfficentNet - EfficientNetB0 [1].

Two-stream Network

A two-stream network is a network which takes two inputs and then runs them parallel through
one channel each before the respective outputs are concatenated. An example of a two-stream
network which is used for image quality assessment is seen in figure 20 [41].

Figure 20: Example of a two-stream network for image quality classification. The inputs are the image and its
gradient, divided into patches [41]. Copyright © 2019, IEEE

2.2.11 Evaluation

There are several metrics one can look at when evaluating a machine learning algorithm. When
doing so the following definitions are commonly used: true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN). The true positives describe how many of the positive
samples that were correctly classified as positive, and false positives how many of the negative
samples that were falsely classified as positive. True negatives and false negatives are the corre-
sponding definitions for negative samples. With these four definitions it is possible to construct
several measures to evaluate the performance.
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Confusion Matrix

The confusion matrix shows what predictions where made for the different classes in terms of
number of TP, TN, FP and TN. If the rows represent the predicted class and the columns the true
class, the perfect algorithm would give a diagonal matrix, see figure 21. Sometimes the transpose of
this confusion matrix is used, but the interpretation is the same. If there are incorrect classifications
then the pattern will be ”confused” and the matrix is no longer diagonal.

Figure 21: The confusion matrix for binary classification.

Accuracy

The accuracy describes how much of the data that was correctly classified i.e.

Accuracy =
TP + TN

TP + TN + FN + FP
. (11)

However, imagine a data set where 90% of the images are of one class and 10% of the other.
Classifying all images as the first class would then give an accuracy of 90%, but the algorithm is
clearly not good. Therefore the accuracy often needs to be considered together with additional
metrics [13].

Sensitivity and Specificity

The sensitivity (or true positive rate) measures the ability to correctly classify a positive sample
as positive [3] i.e.

Sensitivity =
TP

TP + FN
. (12)

The specificity (or true negative rate) measures the ability to correctly classify a negative sample
as negative [3] i.e.

Specificity =
TN

TN + FP
. (13)

Depending on the requirements on the algorithm, different values of sensitivity and specificity
can be accepted. To view how the sensitivity and specificity are connected, and evaluate what
hyperparameters to use one can look at the ROC-curve (Receiver Operating Charactaristics). The
ROC-curve has the sensitivity on the y-axis and the false positive rate (1-specificity) on the x-
axis. The principle of the ROC-curve can be seen in figure 22. This approach is straightforward
on binary classification, but the interpretation gets more complex when there are more than two
classes.
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Figure 22: The principle of a ROC-curve. Adapted from [37]

Cross-validation

There is always a risk that the network could be overfitting to the data, and to properly test the
network it has to be evaluated on new, unseen data. One way to get a better understanding of
how well the network generalizes is to use cross-validation. Cross-validation is a technique where
the training data is split into K pieces. During K iterations one piece is used as validation data
and the rest as training data, see figure 23. The performance is then evaluated based on the
mean of the results of each validation set. The method is a good evaluation technique, however
computationally expensive [18].

Figure 23: The concept of cross-validation [33].

2.2.12 Network Performance Improvement Techniques

Augmentation

When there is not enough data, augmentation is an easy way to synthetically increase the amount
of data and also avoid overfitting. Augmentation is when more data is created by modifying copies
of the existing data. For images this could be in the form of random rotation, flipping of the image
or change of illumination. That way the network will see more varying data and often be able to
perform better [18].

Grid Search

The choice of hyperparameters can drastically impact the performance of the model. Choosing
the hyperparameters can take a lot of time and effort. One way to do this is with a so called grid
search. Grid search is a method which goes through a list of different parameters and evaluates
the results of the model in order to find the best ones. It is possible to go through several different
hyperparameters at a time and it can also be combined with cross-validation [11].
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3 Method

3.1 Data
As neural networks require a lot of data to train on in order to achieve good results, the amount
of data available is crucial. The already existing data did not have enough examples containing
the defects that were to be examined. In order to acquire a large enough data set to work with
the decision was made to create synthetic data.

Due to the lack of pre-existing defect images, ”passed” images of image test targets that originated
from other tests where used, see figure 24, and defects were simulated onto these images. These
images consisted of samples from two types of cameras, 4000 from one and 14 000 from the other.
The only apparent difference between the cameras being a slight difference in white balance. In
total around 18 000 passed images were available. By simulating the defects in these images it
was possible to create a much more standardized data set. In order to mimic images taken during
production, and not use any reference images as discussed in section 1.1, all images used were
unique.

Based on the expertise of our supervisors the defects, appearing in the image samples from the
general image quality test, could be divided into 5 different categories. The simulations were then
coded by hand and visually evaluated for all the different defects. This is all described in more
detail in the following sections.

Figure 24: Example of a "passed" image which the data sets were based on.

Blurring

As discussed in section 2.1, the blurring of an image can be represented as a convolution with
a PSF. If there is considerable blurring then the PSF can be described as a small disk with a
uniform intensity distribution. Such a filter was created and applied to an image. However, when
comparing the filtered image to authentic blurred images this approach did not give a similar
result. Therefore the simulation of blurring was done with three different types of built-in blurring
methods with different PSFs, as these visually gave a more similar result.

The three filters are "blur", "box blur" and "gaussian blur" that are all part of the Pillow module
for Python [38]. Blur creates a blurring effect with a kernel that ignores the middle pixels and
takes the average of the surrounding pixels. Box blur uses a kernel that takes the average of all
the pixels in the kernel. The gaussian filter uses a gaussian kernel to create the blurring. Box blur
and gaussian blur can vary the amount of blurring by taking an input that decides the size of the
kernel. Gaussian blurring is more like blurring due to atmospheric turbulence according to the
theory. When simulating the images, the type of filter was randomly selected, as was the amount
of blurring.
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Noise

Noise was generated using three different algorithms. The first one generates noise in every pixel
for each color channel, the value of the noise is drawn from a uniform distribution of only positive
numbers. All values were then scaled using a random constant which range was decided through
visual evaluation, and the noise was added to the image. The second algorithm is very much like
the first one except that it draws its values from a normal distribution instead. The third one also
draws its values from a normal distribution but they are added to the image in a multiplicative
way. This results in that the brighter part of the image recieve more noise than the darker parts.
Which algorithm used for an image was selected randomly.

Dead Pixels

The generation of dead pixel regions was based on a random walk algorithm with a few regularizing
parameters. First a random starting pixel in the image was selected, then one of three different
shapes where chosen as a boundary for the algorithm: a circle, a rectangle, or an ellipse. The
size of the shape was also set randomly from a predefined range of values depending on the shape
selected. The amount of steps for the random walk was made proportional to the size of the
bounding shape, the proportions were decided through trial and error.

In order to allow some irregularities similar to those spotted in the original data, the random walk
could sometimes escape the bounding shape. The choices made and the parameters chosen for the
simulation algorithm of the dead pixel regions were based solely on visual evaluation and through
discussion with our supervisors.

Faulty Pixel Row or Column Defects

To begin with, the location, width and orientation of the row or column defects were randomly
selected. The color palettes used to create the lines were also randomly chosen from a selection of
palettes based on the colors that had been observed in the real images. There were four palettes:
an orange, a grey, a pink, and a yellow and green one. The number of palettes used varied between
1 and 4. Each color palette contained several different color shades. When these different variables
had been chosen, the pixels within the chosen area were traversed. When a pixel was accessed
the probability of keeping the same color as the last pixel was the highest, then there was a lower
probability to change color within the palette, and an even lower probability of changing the color
palette. This led to a line containing several randomly distributed colors, similar to the real images.
Since some of the real images contained homogeneous, thin lines in red, some of the images were
simulated with only a thin red line with a randomly selected location and orientation.

Blemishes

The simulation of blemishes was accomplished by creating a mask consisting of a random number
of 1-10 small ellipses. The mask was created by having a black image of the same size as the image
to perform the simulation on and then drawing white ellipses in that black image. The number of
ellipses, the size of the ellipses as well as their position in the image were randomly chosen. The
mask was then filtered using a gaussian filter to create soft edges around the ellipses. Finally the
mask was used to put a grey image on top of the test target image. The mask defines where to use
the test target image and where to use the grey image. This resulted in small grey areas similar
to blemishes appearing in the image.

The Complete Data Sets

Four different types of data sets were created. The first data set, the small data set, was made up
of 1200 images. These images consisted of 600 passed images from the available data, 300 from
each camera, and 600 simulated failed images with defects, also with 300 images from each camera.
The different defects described in section 2.1 were equally represented among the failed images.
This data set was created to perform binary classification, passed or failed. It was also created to
investigate network models.

The next data set, the big data set, was also made for binary classification but contained many
more images; a total of 17859 images. 8929 of these were passed and 8930 were failed, with all
defects equally distributed. However, since fewer images were accessible from one of the cameras
there were in total 4239 from that one and 13620 from the other one.
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The third data set, the multi-class data set, consisted of 17859 images: 2976 each of passed, noise,
and dead pixel images and 2977 each of lines, blur, and blemish images. This data set contained
the same split between the cameras as the big data set. The multi-class data set was constructed
for multi-class classification.

The data sets were randomly split into three subsets, one training set, one validation set used
for evaluating the hyperparameters, and one test set for the final evaluation of the models. The
training set consisted of 60% of the data, the validation set of 20% and the test set of 20%.

The fourth data set, the real data set, consisted of 134 real blurred images, 46 real images with
other defects, and 31 real passed images, making a total of 211 images. The real passed images
were images that had been passed but were not of the image test target. The real images with
other defects than blurring consisted of images with dead pixels, lines, noise and other defects that
were previously unseen. The latter consisted of distorted images, a black image and different types
of faulty pixels.

3.2 Networks
Starting off, the small data set was as previously mentioned used to try different types of networks.
From the many networks that were tested, the ones with the best accuracy were chosen to continue
with. These networks were then evaluated on the small data set and the big data set. For the
multi-class data set the same networks were used but with the final dense layer adjusted to the
number of classes. The networks that were ultimately used are described in the following sections.
The networks are described in table format with the different layers, the number of filters used for
the layers, the kernel size for the layer, the size of the stride, the activation function, the output
shape and the number of trainable parameters.

3.2.1 Single-input Networks

Single-input networks are straightforward. The images in the data sets were used as input and the
architecture for the different networks can be seen in the following sections.

The Small Convolutional Network (SCN)

The small convolutional network was constructed from scratch and consisted of four convolutional
layers, each followed by a ReLu activation function and a max pooling layer, and finally two fully
connected layers, the last one with a softmax activation function. The full architecture is seen in
table 1.

Table 1: The architecture of the small convolutional network.

Layer type # filters Kernel size Stride Activation
function Output shape # parameters

Input images - - - - 270 x 480 x 3 -
Rescaling 1/255 - - - - –||– -
Convolutional 32 3 x 3 1 ReLu 268 x 487 x 32 896
Max Pooling - 2 x 2 1 - 134 x 239 x 32 -
Convolutional 68 3 x 3 1 ReLu 132 x 237 x 64 18496
Max Pooling - 2 x 2 1 - 66 x 118 x 62 -
Convolutional 128 3 x 3 1 ReLu 64 x 116 x 128 73856
Max Pooling - 2 x 2 1 - 32 x 58 x 128 -
Convolutional 128 3 x 3 1 ReLu 30 x 56 x 128 147584
Max Pooling - 2 x 2 1 - 15 x 28 x 128 -
Flatten - - - - 1 x 53760 -
Fully Connected - - - ReLU 1 x 512 27525632
Fully Connected
(Binary/Multi-class) - - - Softmax 1 x 2 / 6 1026 / 3078
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The InceptionV3 Network (IV3)

The network consisted of the InceptionV3 base, see section 2.2.10, two fully connected layers and
a dropout layer. See the full architecture in table 2.

Table 2: The architecture of the inceptionV3-based network.

Layer type # filters Kernel size Stride Activation
function Output shape # parameters

Input images - - - - 270 x 480 x 3 -
InceptionV3 base - - - - 7 x 13 x 2048 -
Flatten - - - - 1 x 186368 -
Fully Connected - - - ReLU 1 x 256 47710464
Dropout - - - - –||– -
Fully Connected
(Binary/Multi-class) - - - Softmax 1 x 2 / 6 514 / 1542

The ResNet Network (RN)

The network consisted of the ResNet50 base, see section 2.2.10, two fully connected layers and a
dropout layer. See the full architecture in table 3.

Table 3: The architecture of the ResNet50-based network.

Layer type # filters Kernel size Stride Activation
function Output shape # parameters

Input images - - - - 270 x 480 x 3 -
ResNet50 base - - - - 9 x 15 x 2048 -
Flatten - - - - 1 x 276480 -
Fully Connected - - - ReLU 1 x 256 70779136
Dropout - - - - –||– -
Fully Connected
(Binary/Multi-class) - - - Softmax 1 x 2 / 6 514 / 1542

The DenseNet Network (DN)

The DenseNet network consisted of a DenseNet201 base, see section 2.2.10, two fully connected
layers and a dropout layer. See the full architecture in table 4.

Table 4: The achitecture of the DenseNet201-based network.

Layer type # filters Kernel size Stride Activation
Function Output shape # parameters

Input images - - - - 270 x 480 x 3 -
DenseNet201 base - - - - 8 x 15 x 1920 -
Flatten - - - - 1 x 230400 -
Fully Connected - - - ReLU 1 x 256 58982656
Dropout - - - - –||– -
Fully Connected
(Binary/Multi-class) - - - Softmax 1 x 2 / 6 514 / 1542

The EfficientNet Network (EN)

The EfficientNet network consisted of an EfficientNetB2 base, see section 2.2.10, two fully connected
layers and a dropout layer. See the full architecture in table 5.

Table 5: The architecture of the EfficientNetB2-based network.

Layer type # filters Kernel size Stride Activation
Function Output shape # parameters

Input images - - - - 270 x 480 x 3 -
EfficientNetB2 base - - - - 9 x 15 x 1408 -
Flatten - - - - 1 x 190080 -
Fully Connected - - - ReLU 1 x 256 48660736
Dropout - - - - –||– -
Fully Connected
(Binary/Multi-class) - - - Softmax 1 x 2 / 6 514 / 1542

22



3.2.2 Dual-input Networks

As mentioned in section 1.1 and 2.2.10, networks can benefit from using a two-stream architecture
where one of the inputs has other properties than the original image; one such input is the Lapla-
cian - the second derivative. Using two-stream networks allows the two channels to train their
parameters independently and the channels may thus learn different features that when combined
can improve the results. The Laplacian of the input image was chosen as the second input due to
it having visual properties that were believed to benefit the networks.

The Dual Convolutional Network (DCN)

In the dual convolutional network a two-stream network was used where the two parallel channels
were identical and the input was the same for both of the channels. As such it used a single input
but with a parallel channel structure. See the architecture of the channels that run in parallel
in table 6. The output of the two channels were then concatenated and followed by a few fully
connected layers, dropout and batch normalization, see table 7.

Table 6: The architecture of the two channels that run parallel in the self-made dual convolutional network.

Layer type # filters Kernel size Stride Activation
function Output shape # parameters

Input images - - - - 270 x 480 x 3 -
Rescaling 1/255 - - - - –||– -
Convolutional 8 3 x 3 1 ReLU 268 x 478 x 8 224
Dropout - - - - –||– -
Batch normalization - - - - –||– 32
Convolutional 16 3 x 3 1 ReLU 266 x 476 x 16 1168
Dropout - - - - –||– -
Batch normalization - - - - –||– 64
Convolutional 16 5 x 5 1 ReLU 262 x 472 x 16 6416
Dropout - - - - –||– -
Batch normalization - - - - –||– 64
Convolutional 32 5 x 5 1 ReLU 258 x 468 x 32 12832
Dropout - - - - –||– -
Batch normalization - - - - –||– 128
Convolutional 64 5 x 5 1 ReLU 254 x 464 x 64 51264
Batch normalization - - - - –||– 256
Max Pooling - 2 x 2 1 - 127 x 232 x 64 -

Table 7: The two parallel channels are concatenated and then run through these final layers.

Layer type # filters Kernel size Stride Activation
function Output shape # parameters

Concatenate channel 1+2 - - - - 127 x 232 x 128 -
Flatten - - - - 1 x 3771392 -
Fully Connected - - - ReLU 1 x 32 120684576
Dropout - - - - –||– -
Batch normalization - - - - –||– 128
Fully Connected - - - ReLU 1x32 1056
Dropout - - - - –||– -
Fully Connected
(Binary/Multi-class) - - - Sigmoid 1 x 2 / 6 66 / 198
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The Dual DenseNet Network (DDN)

The dual DenseNet network also made use of a two-stream architecture. The two parallel channels
were again identical but made up of a DenseNet base, see section 2.2.10, and can be seen in table 8.
The inputs were, however, not the same. The input to one of the parallel channels was the original
image and the input to the other was the Laplacian of the image. The output of the two channels
were then concatenated and followed by fully connected layers, dropout and batch normalization,
see table 9.

Table 8: Architecture of the two channels before concatenating in the dual DenseNet network.

Layer type # filters Kernel size Stride Activation
function Output shape # parameters

Input image or
Laplacian - - - - 270 x 480 x 3 -

DenseNet201 base - - - - 8 x 15 x 1920 -
Batch normalization - - - - –||– 7680

Table 9: Architecture of the dual DenseNet network after concatenating channel 1 and 2.

Layer type # filters Kernel size Stride Activation
function Output shape # parameters

Concatenate channel 1+2 - - - - 8 x 15 x 3840 -
Flatten - - - - 1 x 460800 -
Fully Connected - - - ReLU 1 x 128 58982528
Batch normalization - - - - –||– 512
Dropout - - - - –||– -
Fully Connected
(Binary/Multi-class) - - - Sigmoid 1 x 2 / 6 258 / 774

The Dual EfficientNet Network (DEN)

The dual EfficientNet had an identical architecture as the dual DenseNet, but with EfficientNet,
see section 2.2.10, as a base instead. This network also used the image and its Laplacian as inputs,
see table 10 and table 11.

Table 10: Architecture of the two channels before concatenating in the dual EfficientNet network.

Layer type # filters Kernel size Stride Activation
function Output shape # parameters

Input image or
Laplacian - - - - 270 x 480 x 3 -

EfficientNetB2 base - - - - 9 x 15 x 1408 -
Batch normalization - - - - –||– 5632

Table 11: Architecture of the dual EfficientNet network after concatenating channel 1 and 2.

Layer type # filters Kernel size Stride Activation
function Output shape # parameters

Concatenate channel 1+2 - - - - 9 x 15 x 2816 -
Flatten - - - - 1 x 380160 -
Fully Connected - - - ReLU 1 x 128 48660608
Batch normalization - - - - –||– 512
Dropout - - - - –||– -
Fully Connected
(Binary/Multi-class) - - - Sigmoid 1 x 2 / 6 258 / 774
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3.3 Training and Testing the Networks
During the training phase a grid search of hyperparameters was performed for all of the models
and data sets. The grid search was combined with a 5-fold cross-validation. Each different pre-
determined value of a hyperparameter was evaluated. The mean of the results was used for finding
the best choice. The hyperparameters that were examined were the optimizer and the learning
rate as well as the decay steps, the dropout and the momentum where these were relevant. The
decay steps decides the number of updates made for the weights for a specific learning rate when a
decaying learning rate is used in training. In the case of a decaying learning rate the given learning
rate is instead the initial learning rate. This could be used with all optimizers but Nadam. The
dropout rate was evaluated only for the models containing a dropout layer, and the momentum
could only be applied to the SGD and RMSprop optimizer. The grid search was done one parameter
at a time, starting with optimizer, then learning rate, decay steps, momentum and finally dropout.
Once the grid search for one parameter was completed, the next grid search was adjusted such
that the result of the last was used. The values which were evaluated for the different parameters
are presented in table 12.

Table 12: The hyperparameters and their values used in the grid search.

Optimizer SGD RMSprop Adam Nadam
Learning rate 0.1 0.01 0.001 0.0001
Decay steps 100 200 500 1000
Momentum 0 0.1 0.4 0.8
Dropout 0 0.1 0.3 0.5 0.8

When the grid search was complete the best values were chosen and the networks were re-trained
on the full training set and finally evaluated on the test set.

The different networks were trained on the three data sets that contained simulated images. The
fourth data set containing the real images was never used for training but only used for evaluating
the performance of the networks trained on the large synthetic data sets. The real data set was
primarily evaluated on the networks for binary classification, though the images with blurring and
the passed images were also evaluated on the networks for multi-class classification.

3.4 Evaluation
The evaluation of the results was done in different ways in different parts of the thesis. The evalu-
ation of the simulated images was done by human visual assessment by comparing the simulations
with the few real images with defects that were accessible. When they were visually similar the
simulation was considered complete.

When training the networks and performing the grid searches to select suitable hyperparameters
the accuracy and loss of the validation data were evaluated. The validation loss was typically
the metric evaluated when doing parameter selections, though the accuracy was still taken into
account when the difference in loss between two choices was small but the difference in accuracy
was more considerable.

When training a network for binary classification, the model, with the values of the hyperparam-
eters obtained during the grid search, that gave the lowest validation loss was saved. That model
was evaluated on the test data based on the accuracy, sensitivity and specificity. Sensitivity in
this case corresponds to how well the networks could classify failed images as failed i.e. how it
responded to something that was out of the ordinary. Specificity describes how well the network
could classify passed images as passed.

When training a network for multi-class classification the final model - the model obtained from the
grid search, was evaluated based on the accuracy as well as the confusion matrix, since sensitivity
and specificity are not well defined for more than two classes.
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4 Results

4.1 Simulated Images
Examples of target images with simulated defects are seen in figure 25. The thin line and the bold
line, seen in figures 25d-e belong to the same defect class, but they are not constructed in the same
way, see section 3.1.

(a) Blur. (b) Noise.

(c) Dead pixel regions. (d) A thin red line.

(e) A bold line. (f) Blemishes.

Figure 25: Examples of images with simulated defects in.
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4.2 The Small Data Set
The results of the grid searches on the small data set for the different networks can be seen
in table 34 in Appendix A. The results from training and evaluating these networks using the
hyperparameters from the grid searches can be seen in table 13.

Table 13: Results of the different networks when trained on the small data set for binary classification. The best
results are highlighted.

Network: Training acc.: Validation acc.: Test acc.: Specificity: Sensitivity:
SCN 0.944 0.771 0.838 0.803 0.870
IV3 0.929 0.792 0.842 0.959 0.718
RN 0.996 0.846 0.904 0.911 0.897
DN 1.000 0.913 0.946 0.967 0.923
EN 0.989 0.871 0.904 0.935 0.872
DCN 0.554 0.525 0.488 0.431 0.547
DDN 1.000 0.954 0.992 0.992 0.991
DEN 0.996 0.883 0.933 0.927 0.940

As seen in table 13, DDN had the best performance overall.

4.3 The Big Data Set
The results of the grid searches on the big data set for the different networks can be seen in table 35
in Appendix A. The results from training and evaluating these networks using the hyperparameters
from the grid searches can be seen in table 14.

Table 14: Results of the different networks when trained on the big data set for binary classification. The best
results are highlighted.

Network: Training acc.: Validation acc.: Test acc.: Specificity: Sensitivity:
SCN 0.999 0.993 0.991 0.992 0.990
IV3 0.998 0.958 0.957 0.971 0.943
RN 1.000 0.989 0.985 0.985 0.985
DN 1.000 0.996 0.993 0.993 0.994
EN 0.996 0.980 0.981 0.983 0.979
DCN 0.999 0.998 0.997 0.994 1.000
DDN 1.000 0.999 0.999 0.999 1.000
DEN 1.000 0.996 0.995 0.997 0.994

As seen in table 13, DDN again had the best overall performance but all networks still performed
very well.

4.4 The Multi-class Data Set
The results of the grid searches on the multi-class data set for the different networks can be seen
in table 36 in Appendix A. The resulting accuracies from training and evaluating these networks
using the hyperparameters from the grid searches can be seen in table 15. The confusion matrices
for the different networks can be seen in tables 16-23.
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Table 15: Results of the different networks when trained on the multi-class data set for multi-class classification.
The best results are highlighted.

Network: Training acc.: Validation acc.: Test acc.:
SCN 0.995 0.966 0.961
IV3 0.999 0.944 0.942
RN 1.000 0.974 0.974
DN 0.999 0.985 0.984
EN 0.996 0.977 0.981
DCN 0.966 0.931 0.939
DDN 0.999 0.987 0.989
DEN 0.998 0.990 0.989

Table 16: The confusion matrix for the SCN network on multi-class classification.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blemish 599 1 0 4 15 30
Blur 0 612 1 1 0 0

Dead Pixels 1 0 566 4 0 0
Lines 21 0 1 585 2 2
Noise 23 0 0 0 564 2
Passed 21 1 0 4 6 546

Table 17: The confusion matrix for the IV3 network on multi-class classification.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blemish 521 0 5 28 3 52
Blur 0 614 0 0 0 0

Dead Pixels 7 0 550 11 1 2
Lines 51 0 3 547 0 10
Noise 3 0 0 2 584 0
Passed 21 1 1 6 0 549

Table 18: The confusion matrix for the RN network on multi-class classification.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blemish 584 0 2 8 2 13
Blur 0 614 0 0 0 0

Dead Pixels 6 0 558 6 0 1
Lines 31 0 0 579 0 1
Noise 2 0 0 0 587 0
Passed 15 2 0 4 0 557

Table 19: The confusion matrix for the DN network on multi-class classification.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blemish 594 0 0 1 1 13
Blur 0 614 0 0 0 0

Dead Pixels 7 0 561 2 0 1
Lines 17 0 2 589 0 3
Noise 0 0 0 1 588 0
Passed 7 2 0 2 0 567
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Table 20: The confusion matrix for the EN network on multi-class classification.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blemish 588 0 0 6 1 14
Blur 0 614 0 0 0 0

Dead Pixels 5 0 561 4 1 0
Lines 22 0 0 586 0 3
Noise 2 0 0 0 587 0
Passed 7 2 0 2 0 567

Table 21: The confusion matrix for the DCN network on multi-class classification.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blemish 596 5 0 0 0 8
Blur 0 614 0 0 0 0

Dead Pixels 37 0 518 0 0 16
Lines 58 0 0 543 0 10
Noise 44 0 0 0 543 2
Passed 37 2 0 0 0 539

Table 22: The confusion matrix for the DDN network on multi-class classification.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blemish 603 0 0 2 0 4
Blur 0 614 0 0 0 0

Dead Pixels 9 0 561 1 0 0
Lines 9 0 0 601 0 1
Noise 7 0 0 1 581 0
Passed 2 3 0 1 0 572

Table 23: The confusion matrix for the DEN network on multi-class classification.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blemish 601 0 0 3 0 5
Blur 0 613 0 0 0 1

Dead Pixels 3 0 566 2 0 0
Lines 15 0 0 595 0 1
Noise 2 0 0 0 587 0
Passed 2 3 0 3 0 570

In summary, the networks all performed well achieving test accuracies of 0.939 and higher, yet
again DDN but also DEN had the best performance - both reaching a test accuracy of 0.989.
A closer look at the confusion matrices in tables 16-23 show that all networks displayed similar
difficulties , to varying degrees, as they predicted several defects as blemishes.
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4.5 The Real Data Set
The results when testing the networks for binary classification on the real data set can be seen in
table 24. The resulting accuracies for testing on the real passed images and the real blurred images
can be seen in table 25 and the respective confusion matrices in tables 26-33.

Table 24: Results of the different networks for binary classification when tested on the real data set. The best
results are highlighted.

Network: Accuracy: Specificity: Sensitivity:
SCN 0.540 0.220 0.590
IV3 0.493 0 0.578
RN 0.507 0 0.594
DN 0.502 0 0.580
EN 0.474 0 0.555
DCN 0.209 0.740 0.116
DDN 0.370 1.000 0.267
DEN 0.483 0.419 0.494

Table 25: Results of the different networks for multi-class classification when tested only on the real passed images
and real blurred images. The best result is highlighted.

Network: Accuracy:
SCN 0.406
IV3 0.339
RN 0.309
DN 0.364
EN 0.364
DCN 0.412
DDN 0.358
DEN 0.394

Table 26: The confusion matrix for the SCN network on multi-class classification on the real passed images and real
real blurred images.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blur 25 67 0 7 0 35
Passed 0 2 2 27 0 0

Table 27: The confusion matrix for the IV3 network on multi-class classification on the real passed images and real
real blurred images.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blur 18 56 3 17 0 40
Passed 0 0 0 31 0 0
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Table 28: The confusion matrix for the RN network on multi-class classification on the real passed images and real
real blurred images.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blur 26 51 12 5 0 40
Passed 0 0 11 20 0 0

Table 29: The confusion matrix for the DN network on multi-class classification on the real passed images and real
real blurred images.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blur 25 60 3 3 0 43
Passed 0 0 0 31 0 0

Table 30: The confusion matrix for the EN network on multi-class classification on the real passed images and real
real blurred images.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blur 22 60 4 3 0 45
Passed 3 0 10 18 0 0

Table 31: The confusion matrix for the DCN network on multi-class classification on the real passed images and
real real blurred images.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blur 41 67 1 1 1 23
Passed 0 1 4 20 5 1

Table 32: The confusion matrix for the DDN network on multi-class classification on the real passed images and
real real blurred images.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blur 7 55 0 6 0 66
Passed 1 27 1 2 0 0

Table 33: The confusion matrix for the DEN network on multi-class classification on the real passed images and
real real blurred images.

True
Predicted Blemish Blur Dead Pixels Lines Noise Passed

Blur 2 65 1 1 0 65
Passed 1 12 0 18 0 0

As seen by examining tables 24-33 the performance of the networks on the real data was poor.
There was no obvious choice when deciding upon the best performing network.
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5 Discussion

5.1 Data Generation
Using synthetic data instead of or alongside real/authentic data is an easy and frequently used
method to increase the number of samples in your data. There is however one drawback that
is always present when using synthetic data, and that is how well the data represents reality.
This is especially true if the data you are trying to simulate is seemingly random, while the code
for generating the synthetic data is only pseudorandom. This was the case in this thesis. The
pseudorandomness could create underlying structures which are not present in the real images.

The visual evaluation of the synthetic images initially gave good indications that the simulated
images corresponded well to the real images. Since the benefits of using synthetic data, such as
being able to acquire large amounts of data and easily perform correct annotations, far outweighed
the shortcomings of the simulated images not being a entirely equal to the real images. A possible
improvement could be to investigate if there is a way to mathematically evaluate the simulated
images, if the visual assessment is not considered enough. This could however be difficult since the
defects are different from one image to another.

As the amount of available real images deemed as failed with clear quality defects was rather
small, it was clearly a possibility that the assumptions made on the character and distribution
of the defects might not hold in all real cases. One example of this is the noise defect; in the
simulated images the noise was added to the whole image whereas in the authentic case this might
not always hold true as only parts of the image can become noisy.

For the sake of easily acquiring lots of image samples with standardized backgrounds/targets
the data was gathered from the passed images of another production test. The reason for using
standardized targets in the images was first and foremost for future prospects of implementing
neural networks in production, where standardized tests are preferred. A second reason was that
having the same targets/background in all image samples was believed to improve the results of
the neural networks. This was done with the drawback that the networks will not generalize as
well to images with other backgrounds.

Yet another possible issue, one that was not initially considered, is the fact that the images were all
stored in the jpg format and when simulating and adding the defects the images were once again
saved as jpgs. This could be problematic as editing and saving jpgs multiple times can reduce the
overall image quality. However since the images only had simulations performed on them once
before being saved and stored, the jpg compression should not noticeably affect the quality of the
images.

When it comes to creating data sets, one should always aim to have a large amount of samples as
training neural networks are heavily reliant on the amount of data available. This was not adhered
when creating the small data set as it only contained 1200 images. This was first and foremost due
to hardware constraints on the computers available. It was also a quick and easy way to get started
with examining different networks and network architectures, and it was additionally believed that
networks performing well when trained on this small data set would perform even better when
trained on a larger one. Thus the small data set was seen as a ”trial” data set.

When the hardware issues had been resolved the big data set that used all available images of
good enough quality was generated. It was decided that no image would be used for more than
one simulated defect or as a passed image with no defect. This means that all images were unique in
order to prevent possible overfitting. The decision to only use unique images limited the amount of
samples in the data set but this was still preferred to having duplicate images. The third data set,
the multi-class data set, was created with the same reasoning in mind, but for the sake of having
all classes equally represented there were less passed images than in the big data set. However,
there were still only unique images in the set.
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5.2 Network Selection
The final networks were chosen based on the theory presented in section 2.2 and by testing on the
small data set. Eight different networks were evaluated throughout the rest of the thesis. Two of
the networks, the SCN and DCN network, were fairly simple and made from scratch. All others
were based on transfer learning, i.e. they had a pretrained network as a base.

The advantage of using transfer learning is that the network has already seen many images and
therefore one does not need as large of a data set. The last added layers simply tunes the network
to the specific data set. A negative aspect of the pretrained networks that were used is that they
were all trained on ImageNet which is made for object recognition. They are therefore made to
detect physical objects in an image and since this thesis was not only looking for objects but rather
the state of the image itself it could mean that the networks are not learning optimal features.
The networks used are also large and memory-demanding.

In the results on the small data set, see table 13, a clear overfitting of most networks can be seen
as the training accuracy was high but the test accuracy was much lower. For example the SCN
network had a training accuracy of 0.944 and a test accuracy of 0.838. The best overall performance
on the small data set was given by the DDN network with a test accuracy of 0.992, a specificity
of 0.992 and a sensitivity of 0.992. The worst performance was given by the DCN network with
an accuracy of only 0.488, a specificity of 0.431 and a sensitivity of 0.547. Here the advantages of
transfer learning is clear since the networks with a pretrained base performed better than those
without. A conclusion is therefore that for a smaller data set it is important to have a deep or
complex network to be able to learn properly.

Contrary to the small data set, the results on the big data set, see table 14, show less signs of
overfitting as the test accuracy and training accuracy were much more similar. All of the networks
performed well with accuracies above 0.9. The best performance was again given by the DDN
network with a test accuracy of 0.999, a specificity of 0.999 and a sensitivity of 1. The worst
performing network was the IV3 network with a test accuracy of 0.957, a specificity of 0.971 and
a sensitivity of 0.943. The SCN network had a test accuracy of 0.991, a specificity of 0.992 and
a sensitivity of 0.990. There is not a big difference between the networks using transfer learning
and those that do not, proving that if the data set is large enough then there is no need for a
deep or complex network. Even though the best result was given by the DDN network it was only
marginally better than the SCN network and therefore the SCN network might be preferable since
it is less complex and requires less memory.

As for the multi-class data set, see table 15, the results were also very promising, though the
accuracies somewhat lower than for the big data set. The best result was given by the DDN
network as well as the DEN network, both with test accuracies of 0.989. The worst performance
was again by the DCN network with a test accuracy of 0.939. In the confusion matrices for all
of the networks, see tables 16-23, most of the confusion seemed to be regarding the blemishes;
blemishes were classified as other defects as well as other defects were classified as blemishes.

In general there does seems to be a high potential for the use of neural networks for classifying
image quality defects. The best performing network was the DDN network for all of the synthetic
data sets. It is also clear that when training on a small data set a complex network is required for
good results, but when training on a large data set it is enough with a simple network. Most of the
defects’ characteristics were learned properly, but there was some confusion with the blemishes.
This was not surprising since the blemishes were small and blended in well with the detailed
background. It would be easier to detect blemishes if the background was homogeneous. It is
therefore advisable that such a test is used for the blemishes instead of combining the blemishes
with the other defects in the general image quality test.

The performance of the binary classification was marginally better than for the multi-class classi-
fication. The binary classification is good for a more general use when other defects than the ones
that the networks have been trained on can occur. With the multi-class classification the networks
will only be able to detect the specific defects that the networks have been trained on. Other new
defects have to fit in with one of these which might raise some confusion. It is possible that for the
binary classification the networks can learn that all traits that are not similar to the passed target
are classified as failed. For the multi-class networks a new defect still has to find a category to fit
in with, which could be problematic.
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5.3 Augmentation
As augmentation is a commonly used technique for network improvement when the amount of data
is limited, it was used in the early stages of training different networks on the small data set. The
augmentations used were randomly flipping, rotating or changing the white balance of the images.
This did however not improve the accuracy on the validation data, but rather seemed to worsen
the accuracy. Therefore augmentation was not further used.

The loss in accuracy could be explained by the fact that the images were of a very specific and
detailed target, flipping and rotating of these targets made it harder for the network to recognize
which traits should be present and which should not. Moreover, augmentation of the images was
not relevant when training on the big data set since there was enough data to give satisfying results.
Last but not least, one possible defect that can appear but was not included in this thesis is that
an image can be turned upside down due to firmware issues which is yet another reason to not use
augmentation in this particular case.

5.4 Evaluation on The Real Data
The main goal of evaluating the networks on the real data was to see if they could correctly classify
defects that had not been simulated but also to see how they would react to new previously unseen
images or defects. Since the passed images of image test targets were used for training there was
no use in testing these in this phase, but rather images of other scenes that had been passed in
production were of interest. There was a large database of blurred images, in fact most of the
images used during training originated from a focus test, and therefore many more blurred images
could be tested, compared to the other defects. For the other defects such as dead pixels, lines etc
only a handful of images could be found. Due to this the real data set was skewed with varying
amounts of images with different defects, which is why the accuracy might not be a good measure
on the performance of the networks. Additionally, there were not that many images in total to
test on which means that these result are not completely reliable.

Still, looking at the resulting accuracies in tables 24 and 25, these are not very promising. For
the binary classification the best result was given by the SCN network with an accuracy of 0.54,
while the worst was the DCN network with an accuracy of 0.209. For the multi-class networks the
best was the DCN network with an accuracy of 0.412 and the worst was the RN network with an
accuracy of 0.309.

A better approach would be to look at the sensitivity and specificity for binary classification and
the confusion matrix for multi-class classification, see table 24 and tables 26-33. Which network
is better depends on whether the specificity or sensitivity is of higher importance. In this case
the sensitivity was more important, since it is worse to send out faulty cameras to customers
than remaking good cameras. In the long run however, it is important that both sensitivity
and specificity are high in order to reduce unnecessary costs of remaking cameras. For binary
classification the highest sensitivity was 0.594, given by the RN network, but this network had a
specificity of 0. The highest specificity was 1, given by the DDN-network. This network had a
sensitivity of 0.267. The middle ground between sensitivity and specificity was given by the DEN
network with a specificity of 0.419 and a sensitivity of 0.494. For multi-class classification only
the DCN network was able to classify a passed image as passed, but only one out of 31. The
best performance on the blurred images was by the DCN and SCN networks with 67 out of 134
correctly classified. In general the networks were able to correctly classify between 55-67 of the
blurred images.

In conclusion, the networks trained on synthetic data did not perform well on the real data. A
possible reason for this is that, as mentioned before, the synthetic data was not similar enough
to the real data and the networks had not seen all of the defects present in the real data. It did
seem like the networks for binary classification had learned that the passed images should have a
specific structure and anything that was not similar to this was simply classified as failed. This
applies to all networks but the DDN network for binary classification were it was able to classify
the passed images correctly.
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In general the networks were able to identify dead pixels and lines well and could classify all these
images as failed. However, they did show a tendency to find similar structures such as straight
edges and color spots in the passed images and therefore classify these as failed. This indicates
that due to the networks being trained on the specific image test target, all images being tested
should also be of the same target as the networks are specialized on that specific background.
The blurred images were mostly classified as blemishes or passed images. The confusion with the
blemishes was also seen in the synthetic data and therefore did not come as a surprise. A reason
for a blurred image to be classified as passed could be that there was a very mild blurring in the
image or that only some parts were blurry. The conclusion to be drawn is that a large data set of
real images should be used to train the networks in order for them to be used in practice.

5.5 Ethical Considerations
There are no ethical considerations in this thesis as the images did not contain any ethically com-
promising information nor did they compromise the integrity of any concerned parties. Moreover
there are no ethical dilemmas in the purpose of the thesis.
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6 Conclusion
There is a clear potential for the use of machine learning and specifically a neural network based
algorithm to classify image quality in camera production. The images should be restricted to the
image test target, as this is what the network has been trained on. Networks for both binary
and multi-class classification could be used. Binary classification networks ought to be better at
handling new unseen defects - defects that would make an image fail the test, with the downside
of not classifying the nature of the defect while multi-class classification networks can produce
misleading results when exposed to a new type/class of defect. There is a need for a large data set
of real images since the networks trained on synthetic data did not perform well on real data. If
the data set is large enough a small convolutional network is sufficient, but with a limited amount
of data and with enough hardware resources available, networks using transfer learning perform
well. The networks evaluated were able to classify most defects, although having problems with
blemishes specifically. The recommendation would therefore be to have other tests more suited to
find blemishes while focusing more on other defects such as dead pixels or noise in a final general
image quality test.
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7 Future Work
To build on the work done in this thesis, the first thing to do would be to gather more real data
and train the networks on those images. It would also be of interest to investigate how one would
handle images with multiple defects in them. Expanding with more defects than were examined
in this thesis project could also be an additional possibility. Moreover, it would be interesting to
see if semantic segmentation could be used to find where the defects are located in the image, and
display them to an onlooking operator.

Since the general image quality test used in production not only looks at images but also at video
streams it would be of interest to investigate if the classification and/or segmentation could be done
on videos and how well it could perform there. Other networks and architectures, more suited for
video streams, might then be needed.

In the future it is also a matter of designing one or several test tools/programs that can actually
be used in production.

During testing of the networks in this thesis there was a behaviour that we were unable to explain:
there was some discrepancy between the results on one network when tested on different data sets.
This was first encountered when testing a network, trained on the big data set, on the small data
set. The reason for this weird behaviour likely lies in the simulation of the defects in the images
but could be further investigated.
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Appendix A Grid Search Results
Below in tables 34-36 the results from the grid searches for the different networks and data sets
are presented.

Table 34: Results of grid search for the different networks when trained on the small data set for binary classification.

Network: Optimizer: Learning rate: Decay steps: Momentum: Dropout:
SCN RMSprop 0.001 200 0 -
IV3 RMSprop 0.001 200 0.8 0.3
RN Adam 0.0001 100 - 0.3
DN Adam 0.0001 200 - 0.3
EN Adam 0.0001 200 - 0.3
DCN RMSprop 0.01 500 0.4 0.5
DDN RMSprop 0.0001 200 0 0
DEN Adam 0.01 200 - 0

Table 35: Results of grid search for the different networks when trained on the big data set for binary classification.

Network: Optimizer: Learning rate: Decay steps: Momentum: Dropout:
SCN RMSprop 0.01 1000 0.1 -
IV3 RMSprop 0.0001 1000 0.1 0
RN Nadam 0.0001 Not decaying - 0.1
DN Adam 0.0001 1000 - 0.1
EN Adam 0.001 1000 - 0.1
DCN RMSprop 0.001 Not decaying 0 0.6
DDN RMSprop 0.0001 1000 0 0.1
DEN SGD 0.1 1000 0.4 0.1

Table 36: Results of grid search for the different networks when trained on the multi-class data set for multi-class
classification.

Network: Optimizer: Learning rate: Decay steps: Momentum: Dropout:
SCN Adam 0.001 1000 - -
IV3 Adam 0.0001 1000 - 0.1
RN Adam 0.0001 1000 - 0.1
DN Adam 0.0001 1000 - 0.3
EN Adam 0.0001 1000 - 0.1
DCN RMSprop 0.001 1000 0 0.1
DDN SGD 0.1 500 0.1 0.5
DEN SGD 0.1 1000 0.1 0.5
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