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Abstract

Cancer is the second leading cause of death worldwide and 30% of all cancer cases among women
are breast cancer. A popular treatment is breast-conserving surgery, where only a part of the breast is
surgically removed. Surgery is expensive and has a significant impact on the body, and on some women,
a reoperation is needed. The aim of this thesis was to see if there is a possibility to predict whether
a person will be in need of reoperation with the help of whole mammographic images and deep learning.

The data used in this thesis were collected from two different open sources: (1) The Chinese Mam-
mography Database (CMMD) where 1052 benign images and 1090 malignant images were used. (2)
The Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM)
where 182 benign images and 145 malignant images were used. With those images, both a simple
convolutional neural network (CNN) and a transfer learning network using the pre-trained model Mo-
bileNet were trained to classify the images as benign or malignant. All the networks were evaluated
using learning curves, confusion matrix, accuracy, sensitivity, specificity, AUC and a ROC-curve.

The highest results obtained belonged to a transfer learning network that used the pre-trained model
MobileNet and trained on the CMMD data set. It got an AUC value of 0.599.

Sammanfattning

Cancer är idag det näst vanligaste dödsorsaken i världen, där 30% av alla cancerfall bland kvinnor är
bröstcancer. En vanlig behandling är bröstbevarande operation, där en bit av bröstet kirurgiskt tas bort.
Operationer är både dyrt och har en betydande inverkan på kroppen och för vissa kvinnor krävs en
omoperation efter den första operationen. Syftet med detta arbete har varit att undersöka möjligheten
att förutsäga om en person kommer att vara i behov av en omoperation med hjälp av hela mammografi-
bilder och maskininlärning.

Datan som användes i arbetet hämtades från två olika öppna källor: (1) The Chinese Mammography
Database (CMMD) där 1052 benigna bilder och 1090 maligna bilder användes. (2) The Curated Breast
Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) får 182 benigna bilder
och 145 maligna bilder användes. Med dessa bilder tränades både ett enkelt konvoluionellt nätverk och
ett överförningsinlärningsnätverk med den för-tränade modellen MobileNet för att klassificera bilderna
som benigna eller maligna. Alla nätverken utvärderades med inlärningskurvor, confusion matrix, nog-
grannhet, känslighet, specificitet och en ROC-kurva.

De högsta resultaten som erhölls var ett AUC-värde på 0.599 och tillhörde ett överföringsinlärning
nätverk som använt den för-tränade modellen MobileNet och tränat på CMMD-datauppsättningen.
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1
Introduction

Today, cancer is the second most common cause of death both in Sweden and worldwide. The most
common cancer diagnosis for women is breast cancer, where 30% of all cancer cases for women are
breast cancer [1]. The most common method of treatment for breast cancer is to surgically remove parts
of the breast or the entire breast, but undergoing such surgery is both expensive and has a major impact
on the body [2]. Surgery is something you only want to do once, but of those who were diagnosed with
breast cancer in Sweden between 2008 and 2020, 9% have had a reoperation [3].

Artificial intelligence (AI) is a computer system that tries to imitate the human brain, more specifically
tries to mimic the ability of the brain to obtain information, see connections, conclude, solve problems
and learn from experience. The areas of application are many, for example, can an AI drive a car, play
chess, and translate languages. AI is growing in popularity and is showing improved results for different
medical image analysis tasks. One way to learn an AI to classify images is by showing images and
telling what is being shown to the AI. From this, the AI can learn and draw conclusions about what a
non before seen image shows. [4]

The aim of this thesis is to see if there is a possibility to predict, with the help of deep learning and
classification tasks, whether there is a high risk that reoperation will be needed or not. The hope is that
this will make it easier to make decisions and be able to reduce the number of reoperations that take
place. While waiting on the necessary data to be collected, two open mammography datasets have been
trained to classify whether a tumor is benign or malignant. By doing so it was imagined that the same
network could be used to classify reoperations instead by reusing most of the learnt features but train
for this task instead. However, the data was unfortunately not collected in time to try out if it worked to
change labels for the reoperation task.

This master’s thesis begins with this introduction and is followed by the aim of the thesis and some
medical background. After that, theory regarding AI is provided and then the data that was used is
presented. This is followed by a short presentation of related work, the method, the result, and finally a
discussion regarding the results, conclusion and further aspects.
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2
Aim of Thesis

The aim of this thesis is to make the first step towards an algorithm for predictions of breast cancer
reoperation. This is done with the following steps:

• Collecting data.

• Using benign and malignant images, since it is easier to distinguish than reoperated and non-
reoperated, to train the networks of the following type:

– A Simple CNN.

– Transfer learning with a pre-trained model.

• Adding augmentation

• Evaluating the best models

• Comparing the results
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3
Medical background

Cancer is a group of diseases and is characterized by an abnormal growth of cells caused by damage to
the cell’s genome. The damage leads to an atypical cell division and cell differentiation which results
in an imbalance of replication and death. A tumor can be benign or malignant, but a cancerous tumor is
always malignant. With this said, breast cancer is a malignant tumor in the mammary gland. [2, 5]

In most developed countries, breast cancer is the most common type of cancer among women. Among
men, breast cancer is uncommon but there are cases where men got breast cancer as well. The tumor
often starts as a slowly growing, non-painful lump in one of the breasts. The tumor can spread by
creating metastases often in the lymph nodes in the armpit . To detect cancer early is important since it
provides more treatment options and a higher chance of survival. [5]

3.1 Anatomy of the breast

The female breast consists of fat cells called adipose tissue, with age the breast often becomes fattier,
hence having more adipose tissue. A healthy breast has about 12-20 lobes. Those lobes are built up of
smaller lobules which is the gland that produces milk. Both the lobes and the lobules are connected by
milk ducts which can be seen as small tubes that carry the milk to the nipple. An illustration of the breast
anatomy can be seen in Figure 3.1. [6]

Figure 3.1 An illustration of the breast anatomy. Source: National cancer institute, Don Bliss (Illustrator)
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Chapter 3. Medical background

3.2 Tumors

A tumor is a mass of abnormal tissue that is growing, it can be both benign and malignant, i.e. non-
cancerous and cancerous. To determine if a tumor is benign or malignant a biopsy is performed. A
benign tumor is often left alone if it is not causing any discomfort whereas on a malignant tumor the
biopsy result can be used to determine the severity and aggressiveness of the tumor. A malignant tumor
can also be metastatic cancer, which is when cancer migrates beyond its original placement to other
parts of the body often using the lymph system or the bloodstream. [7]

3.3 Mammographic images

Mammographic imaging uses a low dosage of x-rays. The image has a black background and the breast
tissue is in white and shades of gray. A denser breast appears whiter on the mammogram and a fattier,
less dense breast appears more gray. [8]

Figure 3.2 shows a mammographic image of normal fatty breast tissue. As already mentioned, the gray
areas in the image are fatty tissue, while the white areas consist of ducts and lobes that are denser.
Figure 3.2 does not have any masses, but if it would have, the masses would also appear white on the
mammogram, but the masses are generally more concentrated white due to being denser than the rest of
the breast.[9]

Figure 3.2 Mammographic image of normal fatty breast tissue. Source: Dr. Dwight Kaufman. National Cancer
Institute.

Figure 3.3 shows two different mammograms of dense breasts without masses. Dense breasts often
belong to young women who have not had children. A mammogram of a dense breast is typically
harder to read due to less difference in density between normal and abnormal tissue. Worth mentioning
is also that it has been shown that women with dense breasts tend to have a slightly increased risk of
developing breast cancer.[9]

Figure 3.3 Mammographic image of normal dense breast tissue. Source: Dr. Dwight Kaufman. Division Of
Cancer Treatment.
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3.3 Mammographic images

Figure 3.4 shows a mammogram with both fatty and dense tissue. The bottom left corner shows a
concentrated white mass which is a malignant tumor. [9]

Figure 3.4 Mammographic image with cancerous mass in bottom left corner. Source: Dr. Dwight Kaufman.
National Cancer Institute.
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4
Theory - Artificial Neural Network

Artificial neural networks, also called ANNs, are inspired by the brain’s structure and connections. The
most basic network is a single layer network called the perceptron, but it is limited for a classification
task. When using more than one layer it is called a multi-layer perceptron. When training on images,
the most common ANN is a convolutional neural network. [10]

4.1 Convolutional Neural Network

The input of the convolutional neural network (CNN) is in vector form and compared to a regular ANN,
the CNN uses weight-sharing to reduce the number of parameters. The CNN also focuses on feature
detection in multiple layers. As the name indicates, CNN uses the mathematical operation convolution.
When doing convolution on a 2-dimensional image, the input I (on vector form) with pixel coordinates
(x,y) and the kernel K with dimensions (m,n) create a new vector H as the result of the convolution.
Discrete convolution in two dimensions is calculated as follows,

H(y) = (I ∗K)(x,y) =
∞

∑
m=−∞

∞

∑
n=∞

I(x−m,y−n)K(m,n). (4.1)

The CNN is built up of three types of layers, which are the convolution layer, the pooling layer, and
the fully connected layer. Stacking these layers results in the architecture of the CNN. An example of
what this architecture can look like is shown in Figure 4.1. The different layers will be explained down
below. [11, 10]

Figure 4.1 Illustration of the architecture of an CNN.
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Chapter 4. Theory - Artificial Neural Network

4.1.1 Convolution Layer
It is in the convolutional layer the trainable weights are. When the convolutional layer is added to the
network three things need to be specified, kernel size, stride, and layer depth. The kernel can be seen
as a filter or a small matrix and detects different features in the input, as defined in Equation 4.1. The
size of the kernel is the height and the width of this matrix. The kernel is convolving across the input
creating a feature map by calculating the dot product of the flipped filter and the input. The stride size
decides how many steps the kernel will take and the layer depth sets the number of filters used in the
convolution layer. [11, 10, 12]

Sometimes it is preferable to also compute non-linear features in the image, which is not possible when
using only convolutions since it is linear. To solve it, a non-linearity layer is often placed directly after
the convolutional layer to introduce the non-linearity to the activation map. Different operations can be
used to make it non-linear such as sigmoid, tanh, and Rectified Linear Unit (ReLU), whereof ReLU
often is used. The ReLU function [13] is defined as

φ(x) = max(0,x). (4.2)

4.1.2 Pooling layer
The pooling layer performs downsampling of the feature map to reduce the dimension of the feature
map and the number of parameters in the network. This is done by having the pooling layer operate over
the output from the convolution layer and deriving a summary of the nearby outputs. There are several
types of pooling functions such as weighted average, L2 norm, rectangular, and more. The most popular
is max-pooling, which is represented in Figure 4.2. In max-pooling, the output represents the maximum
output within the kernel size. The kernel size is usually of size 2x2 and has a stride size of 2. If this is
the case it scales down the original map by 25% while keeping the depth. [10, 11]

Figure 4.2 Illustration of max-pooling.

4.1.3 Fully connected layer
The fully connected layer contains neurons that are all directly connected to the two adjacent layers. In a
categorical model, the last fully connected layer has the softmax activation function. [11] The definition
of softmax is:

F(xi) =
exi

∑
k
j=1 ex j

, for i = 0,1,2, ...,k, (4.3)

where x is the input vector of k real numbers i. An advantage of using softmax is that the sum of the
output equals 1, which gives each class a value that can be interpreted as the probability for that class.
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4.2 Important parameters for training

4.2 Important parameters for training

Before a CNN can be used it has to be trained. During training, some parameters are extra important to
find the best weights for the classification task. The following subsections will mention some of those
parameters.

4.2.1 Training, validation and test data
The training data is the data that is used to train the model. The model learns from this set of data. The
validation data on the other hand is used for frequent evaluation of how the model fits the training data.
The model is regularly evaluated on this data but does not learn from it. Lastly, the test data is used to
provide an unbiased evaluation of how well the model fits the training data. This data is only used once
when the model is finalized. [14]

4.2.2 Batch size, iteration, epoch and learning rate
The batch size refers to the number of training samples used in one iteration. The higher the batch size
the more memory is needed. Iteration is the number of batches needed to complete one epoch. One
epoch is defined as “when the entire dataset is passed forward and backward through the neural network
only once”. [15] Learning rate is a hyper-parameter, often between 0 and 1, that controls how much the
weights of the network are adjusting with respect of the loss. [16]

4.2.3 Loss function
The loss function calculates the distance between the current output and the expected output. There
are different kinds of loss functions, one common is cross-entropy. The cross-entropy loss function
computes the difference between two probability distribution functions. There are different kinds of
cross-entropy; binary, categorical, and sparse. They all give a value between 0 and 1 where 0 is perfect
and 1 is bad. [17]

4.2.4 Optimization function
The optimization function is used to change parameters such as weights and learning rate to reduce the
loss. The most common one is the Stochastic Gradient Descent (SGD) which is a variant of Gradient
Descent. Another popular is Adaptive Moment Estimation (Adam) which is fast and converges rapidly,
it also rectifies vanishing learning rates and high variance. A variant of Adam has been used in this
thesis and is called Nadam which is similar to Adam but uses Nesterov’s momentum. [18, 19]

4.3 Transfer learning

Since models can be hard to train from scratch to achieve good results, transfer learning can be used.
Transfer learning is often used when the dataset is too small to train a model from start to finish, which
often is the case with medical applications. A typical workflow can look like the following [20]:

• Use layers from the previously trained model.

• Freeze the layers to avoid destroying information for the future.

• Add new trainable layers on top of the pre-trained frozen layers.

• Train the new layers.

• Optional step is to fine-tune, which means unfreezing parts of or the whole model and retraining
it with a low learning rate.

In this thesis, three different pre-trained networks will be used in the transfer learning network: Mo-
bileNet, VGG16, and Resnet50. All of the pre-trained networks are trained on the ImageNet data set,
which is a data set that is commonly used in machine learning and consists of 14 million images of more
than 21’000 classes [21].
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Chapter 4. Theory - Artificial Neural Network

4.3.1 MobileNet
MobileNet is based on depthwise separable convolution, except for the first layer which is a normal
convolution. That a layer is depthwise separable means that it performs a single convolution on each
channel instead of flattening it. Except for this, the size of the network is smaller than many other
networks, which makes it good for mobile devices. Table 4.1 shows the architecture of the MobileNet.
[22]

Table 4.1 The architecture of MobileNet. s stands for stride and and dw stands for depthwise convolution

MobileNet architecture
Type Filter Shape Input Size

Conv / s2 3 × 3 × 3 × 32 224 × 224 × 3
Conv dw / s1 3 × 3 × 32 dw 112 × 112 × 32

Conv / s1 1 × 1 × 32 × 64 112 × 112 × 32
Conv dw / s2 3 × 3 × 64 dw 112 × 112 × 64

Conv / s1 1 × 1 × 64 × 128 56 × 56 × 64
Conv dw / s1 3 × 3 × 128 dw 56 × 56 × 128

Conv / s1 1 × 1 × 128 × 128 56 × 56 × 128
Conv dw / s2 3 × 3 × 128 dw 56 × 56 × 128

Conv / s1 1 × 1 × 128 × 256 28 × 28 × 128
Conv dw / s1 3 × 3 × 256 dw 28 × 28 × 256

Conv / s1 1 × 1 × 256 × 256 28 × 28 × 256
Conv dw / s2 3 × 3 × 256 dw 28 × 28 × 256
5x Conv / s1 1 × 1 × 256 × 512 14 × 14 × 256

5× Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512
Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512

Conv dw / s2 3 × 3 × 512 dw 14 × 14 × 512
Conv / s1 1 × 1 × 512 × 1024 7 × 7 × 512

Conv dw / s2 3 × 3 × 1024 dw 7 × 7 × 1024
Conv / s1 1 × 1 × 1024 × 1024 7 × 7 × 1024

Avg Pool / s1 Pool 7 × 7 7 × 7 × 1024
FC / s1 1024 × 1000 1 × 1 × 1024

Softmax / s1 Classifier 1 × 1 × 1000

4.3.2 VGG16
The VGG network got its name from the department of Visual Geometry Group at the University of
Oxford. The VGG16 consists of 16 layers whereas the first 13 layers are convolution layers with the
number of filters going from 64 to 512 and max pooling, this is followed by 3 fully connected layers
whereof the last one is the output layer. [23, 24]

4.3.3 ResNet50
ResNet stands for Residual Network and the number 50 means that the network is 50 layers deep.
The architecture of ResNet50 consists of a convolution layer followed by a max-pooling layer. This is
followed by 4 bottleneck layers where each bottleneck layer contains 3 convolutional layers. One of
the most important things with the ResNet is the skip connections which reduces the risk of vanishing
gradients, which can be a problem for deep networks. [25, 26]

4.4 Evaluation

To evaluate the performance of a model different evaluation methods and metrics can be used. The
following subsections will briefly explain a few of them.
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4.4 Evaluation

4.4.1 Confusion matrix
The confusion matrix is a summary of the predicted results on a classification problem. It is useful
for measuring recall, precision, specificity, sensitivity, accuracy, and ROC-curves. Figure 4.3 shows an
illustration of a confusion matrix. TP stands for true positive, and is when the predicted value is positive
and the actual value is positive. TN stands for true negative and is when the predicted value is negative
and the true value is negative. FP stands for false positive and is when the predicted value is postitive
but the actual value is negative, and lastly FN stands for false negative and is when the predicted value
is negative and the actual value is positive. The values of TP, NP, TN, and FN can be used to calculate
precision as seen in Equation 4.4, accuracy as seen in Equation 4.5, sensitivity as seen in Equation 4.6,
and specificity as seen in Equation 4.7.

Figure 4.3 Illustration of confusion matrix

Precision =
T P

T P+FP
(4.4)

Accuracy =
T P+T N

T P+T N +FP+FN
(4.5)

“
Sensitivity =

T P
T P+FN

(4.6)

Speci f icity =
T N

T N +FP
(4.7)

4.4.2 Accuracy and Loss
Accuracy is the total number of correct predictions divided by the total number of predictions. Equation
4.5 shows how to calculate the accuracy of a binary classification. The result is between 0 and 1 where
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Chapter 4. Theory - Artificial Neural Network

none or all were correctly predicted. Accuracy may be deceptive in the case of imbalanced data, there-
fore it is important to have a balanced dataset to begin with, or use a weighted accuracy instead. Loss
is a value between 0 and 1 that calculates how close the predictions are to the actual output. The higher
the loss the worse the model is. [11]

4.4.3 Learning Curves
Learning curves are widely used in machine learning. It is common to use both the training learning
curve that is calculated from the training data and the validation learning curve that is calculated from
the validation data and shows how the model is generalizing. It is also common to look at both an
optimization curve i.e. loss and a performance curve i.e. accuracy. [27]

One of the most important parts of learning curves is to observe different dynamics such as under-fit,
over-fit, and optimal fit. Figure 4.4 displays examples of this. The top part illustrates the classification
problem with data points and the bottom part illustrates it in a deep learning view, which is the way seen
when training.

Figure 4.4 Illustration of a under-fitted, optimal and a over-fitted model. The top row shows data points illus-
trated as circles and the bottom row shows how it looks like when training a network.
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4.4 Evaluation

4.4.3.1 Under-fitted model

A model that is under-fitting refers to a model that is unable to model either training data nor new data.
Studying the lower plots in Figure 4.4, this can be identified as the training loss either is a horizontal
line with high loss or that is decreasing and continues to do so at the end of the training, i.e. it could
have been trained further. [27]

4.4.3.2 Over-fitted model

An over-fitted model refers to a model that knows its training data too well. This causes problems since
the more specialized the model becomes, the less well it will generalize to new data and therefore the
error will increase. This often happens when a model has more capacity than needed or high flexibility.
It may also occur if the model is trained for too long. Studying the lower plots in Figure 4.4, this can
be identified as the training loss continues to decrease or the validation loss decreases to a certain point
and then starts to increase again. It can also be seen that there is a large difference between the training
and validation loss. [27]

4.4.3.3 Optimal fit model

A good fit model is the goal and is achieved in the middle of over-fitting and under-fitting. When
studying the lower plots in Figure 4.4, a well-fitted model can be seen as the training loss decreases to
a point of stability and the validation loss does the same and with only a small gap to the training loss.
[27]

4.4.4 ROC and AUC
The Receiver Operating Characteristic (ROC) curve is a probability curve and Area Under the Curve
(AUC) represents the degree of separability. They are both important evaluation metrics for checking
the model’s performance. An illustration of the ROC-curve can be seen in Figure 4.5. The higher the
AUC the better the model is on predictions. The curve is plotted with True Positive Rate (TPR) on the
y-axis and the False Positive Rate (FPR) on the x-axis. TPR is defined as the sensitivity, which is defined
in equation 4.6, and the FPR is defined as 1 - Specificity. [28]

Figure 4.5 Illustration of the ROC-curve.
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5
Datasets

The data used in this thesis was conducted from two different open sources. A third data set containing
data from either Malmö Hospital or Optimam was supposed to be used, but due to a problem with
receiving this data, the third data set was omitted. Optimam [29] is a large resource with mammography
from the United Kingdom breast screening centers with clinical details. The images were collected over
a 10-year period and has data from over 17’000 women. In Table 5.1 a summary of the data sets used is
shown.

5.1 The Chinese Mammography Database

The Chinese Mammography Database [30] (CMMD) was downloaded from the cancer imaging archive
and contains two sets of data, where the first set contains information on left and right breast, age, type
of abnormality, and classification (begin vs malignant). The second set contained a subtype in addition
to the above-mentioned. Some patients had both benign and malignant tumors, those were omitted from
the data. Only the first set was used and it ended up containing 1052 images of benign tumors and 1090
of malignant tumors. All the images have the size 1914x2294.

5.2 Curated Breast Imaging Subset of Digital Database for Screening
Mammography

The Curated Breast Imaging Subset of Digital Database for Screening Mammography [31] (CBIS-
DDSM) was downloaded from the cancer imaging archive and is an updated version of the Digital
Database for Screening Mammography (DDSM). The database contains 1566 participants and images
of both normal, malignant, and benign images, as well as zoomed-in and whole breast images. Only the
whole breast images were used. In the end, 182 benign images and 145 malignant images were used.
The images vary in size.

Table 5.1 A summary of the images distribution for each data set

Data set Benign Malignant Total
CMMD 1052 1090 2142

CBIS-DDSM 182 145 327
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6
Related Works

No previous work has been found regarding neural networks and predictions of reoperations. On the
other hand, a lot has been done regarding the classification of breast cancer as benign and malignant.

With DDSM and CBIS-DDSM as datasets and by using a 5-fold cross-validation and patches, John D.
Miller, Vignesh A. Arasu, Albert X. Pu, Laurie R. Margolies, Weiva Sieh, and Li Shen manage to get a
test set AUC of 0.687 with a patch size of 96x96 and a test set accuracy of 0.763 when using a model
called BYOL [32],which is a self-supervised Learning method based on a strong augmentation. They
used the including ROIs of the CBIS-DDSM and pre-trained the networks on tiled patches drawn from
the whole mammograms and evaluated them on the whole image. More specifics regarding their work
can be found in their report “Self-Supervised Deep Learning to Enhance Breast Cancer Detection on
Screening Mammography” [33].

Kevin Wu, Eric Wu, Yaping Wu, Hongna Tan, Greg Sorensen, Meiyun Wang, and Bill Lotter competed
in the DREAM challenge which is a competition where training nor testing data are publicly available.
Wu et al. manage to get an AUC result of 0.93 +- 0.01 on their model by first training on patches
from Optimam and then using end-to-end training on a full-scale image from the DDSM data set. The
backbone of the network was MobileNet and the training consisted of (1) patch-level training on DDSM
Optimam data set. (2) image-level training on DDSM Optimam and (3) image-level training on the
DREAM data set. If interested in their work more can be found in their paper “Validation of a deep
learning mammography model in a population with low screening rates“ [34]

Benjamin Stadnick, Jan Witowski, Vishwaesh Rajiv, Jakub Chłędowski, Farah E. Shamout, Kyunghyun
Cho, and Krzysztof J. Geras compared five different models on seven different international data sets,
where CMMD was one of the data sets, in their paper “Meta-repository of screening mammography
classifiers”[35]. The models used differ in architecture, training procedures, and preforms differently.
For the CMMD data they manage to get an AUC of 0.534 with the End2end (with DDSM as training
data) model, 0.449 with the End2end (with Inbreast as training data) model, 0.806 with the Faster R-
CNN, 0.740 with the DMV-CNN model, 0.825 with the GMIC (single) model, 0.831 with the GMIC
(top-5 ensemble) model and 0.785 with the GLAM model.
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7
Method

The method used in this thesis can be split up into 2 different parts regarding the type of network.
In the first part, a Simple CNN was trained with the CMMD data set and in the second part, transfer
learning was used. The second part can be split into three different sub parts regarding the different
datasets used and their combination. In the first subpart, only the CMMD data was used, in the second
subpart, the CMMD data was combined with the data from CBIS-DDSM so that the CBIS-DDSM ended
up as the test data. In the third subpart, the CMMD and CBIS-DDSM data were combined and evenly
distributed over both training, validation, and test. The method was suppose to have an additional subpart
containing data collected from either Malmö hospital or Optimam, but as stated in the introduction, this
data was unfortunately not received in time which led to the this step being omitted. In addition to
training the network for the best performance only, an overtrained network was also trained, with the
purpose to check that the network actually could learn from the information. The integrated development
environment (IDE) used to train the networks was Google Colab.

7.1 Classes

Both the data from CMMD and CBIS-DDSM were separated into two classes; benign and malignant,
where class 0 was benign and class 1 was malignant. CBIS-DDSM had a third class called benign with
callback, which was simply excluded.

7.2 Data split

The data were in general split into 70% training, 15% validation, and 15% test according to Figure 7.1.
The only time it was not split according to this was when CBIS-DDSM was used as test data, then all
the data from CBIS-DDSM was used as test data, 80% of the CMMD was used as training data and the
rest 20% was used as validation data. When combining CMMD and CBIS-DDSM, the datasets were
first split according to 70%, 15,% 15% separately, and then the different parts were combined to evenly
distribute them. This was important due to CBIS-DDSM having fewer images.

Figure 7.1 A sketch of the folder structure that was used.
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Chapter 7. Method

7.3 Image resizing

The smallest original image found were 1914x2294 pixels. Using this size made the network crash due
to lack of RAM-memory. Resizing it to 20% of its original size (383x586) was still too large. Due to
this and that MobileNet needs an input of size 224x244 the images were resized to 224x224.

7.4 Augmentation

Image data augmentation was used to create more training data from existing data. This was done by
using Keras ImageDataGenerator [36]. Since some images had the breast on the left side and some on
the right side, a horizontal flip was used. In addition to this, zoom, rotation, and shear were used. A
summary of the augmentation can be seen in Table 7.1

Table 7.1 A summary of the augmentation used.

Zoom_range 0.2
Rotation_range 90

Shear_range 0.2
Horizontal_flip True

7.5 Parameters

Table 7.2 shows the different parameters used when training the different networks.

Table 7.2 Training parameters for the different networks.

Network Simple CNN Transfer learning,
only CMMD

Transfer Learning,
CMMD and CBIS-DDSM mixed

Transfer Learning,
CBIS-DDSM as test data

Optimizer Adam Nadam Nadam Nadam
Epochs 25 50 50 50
Learning rate 0.001 0.00001 0.00001 0.00001
Batch size 16 16 16 16
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7.6 Simple CNN

7.6 Simple CNN

Figure 7.2 shows the architecture of the Simple CNN used when training only the CMMD data. It was
constructed of four convolution layers with the number of channels being 16, 32, 64, and 128 with an
kernel size of 3x3. Between the layers drop out of 20% and batch normalization were used as well as
an max pooling layer with a kernel size of 2x2. This was followed by a flattened layer and two dense
layers, where the first one had size 8 with ReLU as activation function and the last one had size 8 with
softmax as activation function.

Figure 7.2 The architecture of the Simple CNN.
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Chapter 7. Method

7.7 Transfer Learning

The transfer learning network was trained by using the three pre-trained models, MobileNet, VGG16,
and ResNet50, one at a time. After training the three networks they were compared to each other and
the best one was used for evaluation and further training.

A base model was created using MobileNet, which was the pre-trained model that gave the best result,
without including the top. The model is illustrated in Figure 7.3, and was created with a sequential
model followed by the base model. An average pooling with a size of 7 was used after the base model
to get a smaller network. After that, flatten the model and add a dense layer with size 1024 and ReLU
as activation function and then three more dense layers with size 500 and ReLU as activation function.
In between all dense layers, a dropout of 50% was added. Lastly, a dense layer of size 2 with softmax
as an activation function was added.

7.8 Overtraining

When doing the overtrained network, the same schematics as Figure 7.3 was used, but all augmentation
was removed and no dropout was added.

7.9 Evaluation

When each network was trained, an evaluation was performed. Firstly the learning curves were plotted
to get an idea of how the network performed. This was done by generating a plot with the training
and validation loss and accuracy against the number of epochs. The next step was letting the model
predict the data sets. To do this, the true and predicted labels were obtained from the test data and
generated a confusion matrix with the help of the scikit-learn library [37]. A confusion matrix from the
validation data were also generated for the transfer learning networks. The results from the confusion
matrix were used to calculate the accuracy with Equation 4.5, as well as the sensitivity with Equation
4.6 and specificity with Equation 4.7. Finally, the ROC curve were plotted, also with the help of the
scikit-learn library. In addition to this Keras classification report was used to get an overview of the
performance.
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7.9 Evaluation

Figure 7.3 Schematic of the layers in the transfer model with MobileNet.

33





8
Result

8.1 Simple CNN

Figure 8.1 shows the accuracy and loss plotted against the number of epochs for the CMMD data trained
on the Simple CNN. The classification report can be seen in Table 8.2 and Figure 8.2 shows the ROC
curve. Table 8.1 shows the performance of the network, calculated from the confusion matrix of the test
data shown in Figure 8.3.

Figure 8.1 Training and validation accuracy and loss for the Simple CNN trained with CMMD data.
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Chapter 8. Result

Figure 8.2 ROC curve for the Simple CNN trained with CMMD data.

Figure 8.3 Confusion matrix made with test data from the Simple CNN trained with CMMD data.

Table 8.1 Performance of the the Simple CNN trained with CMMD data.

Accuracy Sensitivity Specificity
0.60 0.599 0.601

Table 8.2 Classification report for the Simple CNN trained with CMMD data. Label 0 refers to the benign class
and label 2 the malignant class. Support is the number of images used for the calculations.

label Precision Sensitivity f1-score support
0 0.60 0.56 0.58 157
1 0.60 0.64 0.62 163

accuracy 0.60 320
macro avg 0.60 0.60 0.60 320
weighted avg 0.60 0.60 0.60 320
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8.2 Transfer Learning with MobileNet

8.2 Transfer Learning with MobileNet

8.2.1 CMMD as dataset

Figure 8.4 shows the accuracy and loss plotted against the number of epochs for the transfer learning
network, using MobileNet, trained on the CMMD data. Table 8.4 shows the classification report from
the network and Table 8.3 states the performance of the model calculated from the confusion matrices
shown in Figure 8.6a and 8.6b.

Figure 8.4 Training and validation accuracy and loss for the transfer learning network, using MobileNet, trained
on the CMMD data
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Chapter 8. Result

Figure 8.5 ROC curve for the transfer learning network, using MobileNet, trained on the CMMD data

(a) Confusion matrix made from test data (b) Confusion matrix made from validation data

Figure 8.6 Confusion matrix from the transfer learning network, using MobileNet, trained on the CMMD data.
Shows both a confusion matrix made with validation data and test data.

Table 8.3 Performance of the transfer learning network, using MobileNet, trained on the CMMD data, calculated
from the confusion matrix made from test data as well as validation data.

Measurement Accuracy Sensitivity Specificity
Test data 0.584 0.573 0.596

Validation data 0.587 0.574 0.601
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8.2 Transfer Learning with MobileNet

Table 8.4 Classification report for the transfer learning network, using MobileNet, trained on the CMMD data.
Label 0 refers to the benign class and label 2 the malignant class. Support is the number of images used for the
calculations.

label Precision Sensitivity f1-score support
0 0.63 0.46 0.53 157
1 0.59 0.74 0.66 163

accuracy 0.60 320
macro avg 0.61 0.60 0.59 320
weighted avg 0.61 0.60 0.59 320
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Chapter 8. Result

8.2.2 CMMD with CBIS-DDSM as test data

Figure 8.7 shows the accuracy ans loss plotted against the number of epochs for the transfer learning
network, using MobileNet, trained with CMMD and containing test data from CBIS-DDSM. The clas-
sification report can be read in Table 8.6. Two confusion matrices were made, one from test data and
one from validation data, those can be seen in Figure 8.9a and 8.9b. From the confusion matrices per-
formance has been calculated, the results can be seen in Table 8.5. The ROC curve can be seen in Figure
8.8.

Figure 8.7 Training and validation accuracy and loss for the transfer learning network, using MobileNet, trained
on the CMMD data and using CBIS-DDSM as test data.
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8.2 Transfer Learning with MobileNet

Figure 8.8 ROC curve for the transfer learning network, using MobileNet, trained on the CMMD data and using
CBIS-DDSM as test data.

(a) Confusion matrix made from test data (b) Confusion matrix made from validation data

Figure 8.9 Confusion matrix from the transfer learning network, using MobileNet, trained on the CMMD data
and using CBIS-DDSM as test data. Shows both a confusion matrix made with validation data and test data.

Table 8.5 Performance of the transfer learning network, using MobileNet, trained on the CMMD data and using
CBIS-DDSM as test data. Calculated from the confusion matrix made from test data as well as validation data.

Measurement Accuracy Sensitivity Specificity
Test data 0.492 0.565 0.552

Validation data 0.611 0.675 0.683
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Chapter 8. Result

Table 8.6 Classification report for the transfer learning network, using MobileNet, trained on the CMMD data
and using CBIS-DDSM as test data. Label 0 refers to the benign class and label 2 the malignant class. Support is
the number of images used for the calculations.

label Precision Sensitivity f1-score support
0 0.64 0.38 0.48 181
1 0.49 0.74 0.59 144

accuracy 0.57 325
macro avg 0.57 0.56 0.53 325
weighted avg 0.57 0.54 0.53 325
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8.2 Transfer Learning with MobileNet

8.2.3 CMMD mixed with CBIS-DDSM

Figure 8.10 displays the accuracy and loss plotted against the number of epochs for the network that was
trained with a mix of CMMD and CBIS-DDSM. The network used transfer learning with the pre-trained
model MobileNet shown in Figure 7.3. The ROC-curve can be seen in Figure 8.11 and the confusion
matrices used to calculate the performance shown in Table 8.7 can be seen in Figure 8.12a and 8.12b.
The classification report can be seen in Table 8.8.

Figure 8.10 Training and validation accuracy and loss for the transfer learning network, using MobileNet,
trained on the CMMD and CBIS-DDSM mixed.
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Chapter 8. Result

Figure 8.11 ROC curve for the transfer learning network, using MobileNet, trained on the CMMD and CBIS-
DDSM mixed.

(a) Confusion matrix made from test data (b) Confusion matrix made from validation data

Figure 8.12 Confusion matrix from the transfer learning network, using MobileNet, trained on the CMMD and
CBIS-DDSM mixed. Shows both a confusion matrix made with validation data and test data.

Table 8.7 Performance of the transfer learning network, using MobileNet, trained on the CMMD and CBIS-
DDSM mixed. Calculated from the confusion matrix made from test data as well as validation data.

Measurement accuracy sensitivity specificity
Test data 0.580 0.552 0.667

Validation data 0.584 0.553 0.695
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8.2 Transfer Learning with MobileNet

Table 8.8 Classification report for the transfer learning network, using MobileNet, trained on the CMMD and
CBIS-DDSM mixed. Label 0 refers to the benign class and label 2 the malignant class. Support is the number of
images used for the calculations.

label Precision Sensitivity f1-score support
0 0.59 0.75 0.66 185
1 0.66 0.49 0.56 186

accuracy 0.62 371
macro avg 0.63 0.62 0.61 371
weighted avg 0.63 0.62 0.61 371

8.2.4 Overtraining
The results for the network that was forced to overtrain are shown in Figure 8.13, where the top plot
shows the accuracy and the bottom part shows the loss. As mentioned in section 4.4.3 the network is
overtraining which can be seen since the gap between the training and validation loss and accuracy is
large. It can also be seen since the performance on the validation data isn’t better than random while the
training data received almost 100% accuracy.

Figure 8.13 The top plot shows the training and validation accuracy and the bottom plot shows the training loss
and validation loss when the network was overtrained.
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9
Discussion

9.1 Evaluation of the data sets

9.1.1 The Chinese Mammography Database
The images in the CMMD were all similar in size which was an advantage since when resizing the
images they all get compressed similarly. The classes were also quite balanced with only 3% more
malignant images than benign. However, the data contained both mammograms with calcifications,
masses, and both of them. In the folder they are split up, first comes all images with calcifications, then
all that has both, and lastly all masses. If the images are not shuffled enough the training becomes hard
due to training on calcifications and testing with masses and the network will not recognize the masses.
But even when shuffled it makes training harder since the network has to recognize two abnormalities
that look different from each other.

9.1.2 Curated Breast Imaging Subset of Digital Database for Screening
Mammography

The images in CBIS-DDSM varied in pixel size, this probably makes it harder to classify after the size
was decreased since all images will compress differently due to different aspect ratios. The data sets
classes were not balanced either with 20% more benign images than malignant. It was also noticed that
the images have some artifacts and noise that can make the images harder to train on. This database
also contains different types of abnormalities, both masses, and calcifications where there are more
calcifications in the right breasts than in the left ones. This data set also contains some text information
on the images which can be problematic when training because the network can recognize the text
instead of the abnormalities.

9.1.3 Combining data sets
Together, the data sets are balanced with only one image difference between the two classes. Due to it
being text in the images from CBIS-DDSM it is crucial to make sure that all of those images do not end
up in training since it probably would affect how the network recognizes the different classes.

9.2 Performance

9.2.1 Simple CNN
9.2.1.1 CMMD

The result from the Simple CNN trained with CMMD got the second-best result when looking at the
AUC value (58.2%) and the confusion matrix 8.3 looks good in comparison to the other networks. It
tends to classify more images as malignant than as benign but the majority of the images from each
class got classified correctly. Looking at the learning curves, Figure 8.1, it looks like the loss goes down
and up again which is a sign of overtraining. But in reality, this line is pretty much flat even if it does
not look like it, due to the y axis being zoomed in.
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Chapter 9. Discussion

9.2.2 Transfer learning
When using transfer learning, there are different models to choose from. In this thesis, both VGG16 and
Resnet50 were tried out in addition to MobileNet. The reason why MobileNet was used in the end, was
that it was the fastest and gave slightly better results. For example, Resnet50 took more than 8 hours to
finish training. During these 8 hours, the IDE often crashed or stopped for various reasons. This made
it hard to collect a result, and therefore there is no result from another transfer learning model than
MobileNet.

9.2.2.1 Transfer learning with CMMD as data

The results from the transfer learning network trained with only the CMMD showed the best results
with an AUC of 59.9%. The reason for this might be that all the data was from the same data set and the
images were captured in the same way with the same size of all images, and therefore the images are
getting compressed in the same way. The validation loss curve is rather flat, and looking at the confusion
matrix, Figure 8.6a and 8.6b, it can be seen that most of the images are predicted as benign.

9.2.2.2 Transfer learning with CMMD as train data and CBIS-DDSM as test data

Looking at the confusion matrices, Figure 8.9a and 8.9b, it can be seen that the validation data gets
predicted as benign but the test data gets predicted as malignant. This must be due to the test data and
validation data belonging to different data sets. This also means that the network does not generalize
well. A reasonable reason for this could be that the data from the two different datasets are too different
from each other, for example, does the CBIS-DDSM data contain text that the data from CMMD does
not. The network got an AUC of 53.4% and an accuracy of 57% which is over the rate of just guessing
but not far over.

9.2.2.3 CMMD and CBIS-DDSM combined

The combined data has the best-looking learning curves but might be on the line to under-fit according
to Figure 4.4. The AUC value is higher when combining the data sets instead of using the CBIS-DDSM
as test data, which makes sense because the network has seen both data sets before. Looking at the
confusing matrix, it can be seen that the network classifies more images as benign than malignant.

9.3 Overtraining

In the beginning, it was a struggle to get an accuracy higher than 50%. Due to this, a network was made
to overtrain to see if the network could learn more or if about 50% was the maximum. As seen in the
result, Figure 8.13 shows that the training accuracy goes up to almost 100%. The validation accuracy
stays between 50% and 60%, just like the other networks did at the beginning and not far from what the
results showed.

9.4 Simple CNN vs transfer learning for CMMD

The CMMD data set was used alone when training both the Simple CNN and the transfer learning
network had similar results. The AUC value of the two networks was pretty close to each other, 58.2%
and 59.9%, but the transfer learning network performed slightly better. While looking at the confusion
matrices for the test data 8.3 and 8.6a the two networks performed equally well with classification.
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10
Conclusion and Further Work

10.1 Conclusion

The result obtained in this thesis is not as good as the related work, which has better performance
overall. This might be due to using whole mammography images to train the network, which contains
a lot of information instead of segmenting out the important or the interesting parts as some of the
related work did. In addition to this, the images used had to be resized to a smaller size, both due to
the RAM-memory size and that the MobileNet needed an input of 224x244. Some important aspects
of the image might have disappeared when resizing an image that much and changing the shape from a
rectangle to a square since the image gets compressed.

The highest received value of AUC was from the transfer learning network with only the CMMD data
set. The second best was the Simple CNN with the CMMD data set. It can also be seen that the con-
fusion matrices for the networks trained with only the CMMD data set were more accurately predicted
than the networks trained with both data sets that tend to classify more images as benign or malignant.
This indicates that the images are pretty different and that the network does not generalize well. It can
also depend on that the CMMD data set had all the same original size, while the CBIS-DDSM data set
had different original sizes, and therefore when the size of the images has decreased the images and
therefore the tumors were compressed differently and made harder to classify.

10.2 Further work

It is believed that by further optimizing the network and using data with the correct labels, it would be
possible to predict reoperations in the future. A first step could be to change the data used for training,
validation, and testing while keeping the same network to see how and if it can learn from the new data.
Furthermore, it could be tested to use transfer learning with the networks already created.

In the future, if continue to work with this thesis, the most important thing is to incorporate data with
information regarding reoperations of adequate size, such as the Optimam data set. It should also be
considered to develop or incorporate segmentation in an attempt to increase the performance of the
network. The CBIS-DDSM data set has a region of interest (ROI) mask that could be used, and since
this data set has few images, cross-validation could be a way to increase the data. Another suggested
thing is to use an alternative integrated development environment (IDE) than Google Colab, due to it
crashing and losing connection regularly. It also only offers a RAM size of 12.68 GB which was not
enough but still more than the computer that was used had.

Figure 3.3 shows a mammogram of a dense breast, if compared to Figure 3.4 with a tumor, it can
be seen that it is hard to separate what is a tumor and what is dense tissue and therefore making it
harder to find the tumor and the outer regions of the tumor. This might make further work with the
classification of reoperation harder than just changing the labels. However, the results of this thesis can
be seen as a pre-training for a network that can be reused for this new task by using i.e. transfer learning.
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