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Abstract

Artificial neural networks are prone to overfitting – the process of learning details specific
to a particular training data set. Success in preventing overfitting through combining the
L2 and dropout regularisation techniques has led to the combination’s recent popularity.
However, with the introduction of each additional regularisation technique to an artificial
neural network, there comes new hyperparameters which must be tuned in an increasingly
complex and computationally expensive manner. Motivated by L2’s action as a Gaussian
prior on the loss function, we hypothesise an analytic relation for an optimal L2 strength’s
dependence on the number of patterns. Conducted on an artificial neural network com-
posed of a single hidden layer, this systematic study tests the hypothesis for optimal L2

strength, and considers what interactions the additional involvement of dropout and early
stopping may have on the relation. On an otherwise static problem and network calibra-
tion, the results of this thesis suggested the success of the hypothesis within a valid working
region. The results are useful informants for the choice of L2 strength, drop rate and early
stopping usage, and gave promise that the predictor may find real world applications.



Popular Science Description

Artificial Intelligence’s (AI’s) potential for incredible state-of-the-art performance has not
gone unnoticed; from medicine to military, the interest of all manner of fields has been
peaked [1]. This has encouraged the rapid integration of AI into our everyday lives [2].
However, in the recent swarm of industrial excitement, whilst new applications have taken
the limelight, rigour and understanding have began to lag behind. By shining light on a
popular choice of mechanisms which assist in the training of AI, known as dropout, L2

and early stopping, my study aimed to be a small step towards designing AI in a more
informed and understood manner.

Artificial Neural Networks (ANNs) are a collection of computational architectures in-
spired by the brain; they are the current most realised form of AI. If an ANN is insufficient
in size, it will lack the capacity to solve even the simplest of problems. However, if an ANN
is too large, then that excessive capacity seldom lies dormant. Instead, in a process known
as overfitting, the ANN tends to learn undesirable peculiarities in a data set, such as fuzzy
noise. This, in turn, can result in an ANN that generalises poorly to new data – a tendency
to perform insufficiently on previously unseen variations of the same underlying problem
[3].

Driven by a desire to suppress overfitting, there have been a variety of developments
of so-called regularisation techniques. L2, dropout and early stopping are common such
choices. In particular, L2 and dropout have recently received praise and popularity for
providing good results when applied in conjunction [4, 5]. Though regularisation techniques
offer significant benefits – often being of practical necessity – their implementation does not
come without its costs. Notably, both L2 and dropout have associated values controlling
their strengths, each of which must be exhaustively fine-tuned to the specific problem and
chosen ANN architecture [6].

To guide in what can become a lengthy and troublesome process of trial-and-error,
my study aimed to test a hypothesised predictor for optimal L2 strength. The predictor
proposed that optimal L2 strength is proportional to the amount of available training data.
The effects on optimal L2 strength, of using L2 in conjunction with both the dropout and
early stopping regularisation techniques, were then observed.

The results, which suggest the predictor to be successful within a suitable region, have
helped to improve understanding of the interactions between these combined regularisation
techniques. There shows promise that the predictor may find real world usage from it’s
extrapolation to situations with many training patterns, which would otherwise rely upon
a time-consuming hyperparameter search.
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Introduction

After an initial period of training, Artificial Neural Networks (ANNs) are prone to over-
fitting – the process in which a network trains too exactly to a data set. Overfitting is
problematic, as it often results in the learning of undesirable peculiarities in the training
data, such as fuzzy noise. In turn, this can cause an ANN to generalise poorly, even on data
sets belonging to the same statistical distribution. Regularisation techniques are attempts
to improve generalisation by suppressing overfitting, without jeopardising performance [3].

L2 regularisation, a common regularisation technique, acts to minimise complexity by
penalising excessively large weights. However, there is a fine line to be drawn; too much
L2 regularisation, and large weights will be penalised so much that the model will tend to
set all weights to zero. When designing an ANN, the L2 regularisation strength λ must
therefore be varied in order to determine it’s optimal value [7].

Dropout, another regularisation technique, is the effective idea of omitting weights
connected to random nodes during training. Dropout thus helps suppress the collaboration
of nodes, which can otherwise allow for the accommodation of noise-induced outliers. The
L2 and dropout regularisation techniques are popular choices, distinguished for providing
good results when applied in conjunction [4, 5].

Early stopping regularisation, the final technique of concern, halts training at the first
sign of overfitting; this can potentially improve generalisation performance and reduce the
required number of epochs. Whilst the technique can completely avoid overfitting during
training, it’s use is often criticised for lacking elegance. Namely, it has been argued that
early stopping replaces one problem with another, as it introduces the risk of overfitting to
the validation data set [3]. Regardless of it’s shortcomings, early stopping is important to
understand, as it can be employed unintentionally if other settings prevent training from
converging.

With the introduction of each additional regularisation technique, there come new
hyperparameters which must be tuned. As the list of hyperparameters is already extensive,
the task of hyperparameter selection is complex and difficult. Despite the fact that it is
both computationally expensive and time consuming, random hyperparameter selection
through trial-and-error remains the gold-standard [6].

My study aimed to inform this often convoluted process by testing a hypothesised
predictor for optimal L2 strength. The hypothesis – motivated by L2’s action as a Gaussian
prior on the loss function [8] – proposes that the optimal of λ is inversely proportional to
the number of training patterns. The effects on optimal λ, of using L2 in conjunction with
dropout and early stopping, were then observed.
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2

Theory

ANNs are a collection of computational models inspired by the functioning of the brain.
The fundamental building block of ANNs is the node – a simple computational unit, akin
to the biological neuron. Each node has input and output connections with associated
weights, including a bias term which controls the node’s critical input level. To calculate
a node’s output, a chosen output function is applied to the sum of the bias term and
a weighted average over the node’s inputs. Over a period of training, the weights are
adjusted to best solve the given problem. Adjustments to the weights are driven by the
minimisation of a loss function E(ω), in a process known as gradient descent [3]. A
single node alone is only capable of solving linearly separable problems. However, when
multiple nodes are arranged into elaborate architectures, such as the Multi-layer Perceptron
(MLP) exemplified in figure 2.2a, ANNs have proved capable of solving increasingly difficult
Turing-computable problems [9].

2.1 Bias-variance trade-off

Whilst the capacity to solve problems increases with larger and more elaborate networks,
so does the risk that the network may over-train to a property specific to the training data
set, such as noise. This relationship can be described by the bias-variance trade-off [10].
Bias and variance are defined as follows:

• Bias, not to be mistaken for the node-bias term, is a measure of how much the ANN’s
output function differs from the target function [3].

• Variance, σ2, measures the output’s sensitivity to the data set [3].

In keeping with these definitions, the golden standard of ANNs – for which the output
function approaches target function – requires that bias and variance are simultaneously
minimised. In order to obtain a low bias, the ANN must have a sufficient capacity, which is
typically achieved by increasing the number of hidden nodes. However, too much capacity,
and the ANN faces the risk of overfitting to the particular data set, resulting in a stark
increase in variance. This trade-off between bias and variance is illustrated in figure 2.1,
where it is shown that the cost of a low variance through underfitting is a high bias, and
the cost of a low bias through overfitting is a high variance. This proves problematic in
the search for an ANN that is both accurate and generalisable [10].
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(a) Underfitting

Target function
Class A
Class B

Output function

(b) Overfitting

Figure 2.1: Typical decision boundaries from heavily under-fitted and over-fitted MLPs

2.2 Regularisation techniques

Regularisation techniques are attempts to overcome the bias-variance trade-off. A common
symptom of overfitting, as seen in figure 2.1b, is the accommodation of outliers through
regions of high curvature. Since it is only the weights and not the node-biases that control
the output curvature, the node-bias term is typically exempt from regularisation [3].

2.2.1 Weight Decay

Weight Decay, or L2 regularisation, is a technique which modifies the loss function E(ω)
– used during training to calculate the weight updates. The loss function is modified to
include a term that penalises exceptionally large weights ω; without this term, it would
allow for the accommodation of outliers, and hence the learning of noise specific to the
training data set. The modified loss function Ẽ(ω) is described mathematically in equation
2.2.1 [7].

Ẽ(ω) = E(ω) + λΩ(ω) (2.2.1)

Here, λ is the L2 strength and ω the weights of the ANN. A choice of λ = 0 is thus
equivalent to the original loss function. The Weight Decay regularisation term Ω(ω) is
defined as a summed square over all the weights, bar node-biases:

Ω(ω) =
1

2

∑
i

ω2
i (2.2.2)
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2.2.1.1 Provisional hypothesis

From a desire to find an analytical relation for the dependence of optimal L2 strength
λ∗ on the number of training patterns N from a data set D, we proposed a provisional
hypothesis:

λ∗ ∝ 1

N
(2.2.3)

Derivation The hypothesis was motivated by the conventional maximum likelihood in-
terpretation of the loss, E(ω) = − 1

N
ln p(D|ω), and a Bayesian interpretation of the regu-

larised loss, Ẽ(ω) = − 1
N
ln p(ω|D). From Bayes’ theorem [11], the hypothesis’ derivation

began from a search for a suitable constant of proportionality for the L2 choice of prior:

p(ω|D) = p(D|ω)p(ω)

p(D)
⇐⇒ ln p(ω|D) = ln p(D|ω) + ln p(ω)− ln p(D)

After disregarding terms independent of ω, the substitution of E(ω) and Ẽ(ω) was facili-
tated by multiplication by a factor of − 1

N
. This gave a form equivalent to equation 2.2.1,

hinting that λΩ(ω) = − 1
N
ln p(ω):

− 1

N
ln p(ω|D) = − 1

N
ln p(D|ω)− 1

N
ln p(ω) + constant

⇐⇒ Ẽ(ω) = E(ω) + λΩ(ω)

Hence, the L2 choice of prior was hypothesised to have a constant of proportionality 1
N
.

2.2.2 Dropout

A procedure found to consistently improve generalisation is that of collecting ensembles of
individual neural networks, from which an averaged output is then calculated and used.
The technique favours a diverse collection of networks. Such a collection of accurate net-
works with low bias and high diversity is optimal, with an average output that should tend
towards having a low bias and low variance – circumventing the bias-variance trade-off.
However, exceptional performance does not come without its expense. Often in order to
create a sufficient diversity of networks, the architecture of the ANN itself must be altered
across the ensemble members. Consequently, substantial time can be consumed by the
hyperparameter tuning and training of the diverse ANN’s [4].

Dropout is a technique which was introduced to combine a vast amount of ANN ar-
chitectures in an efficient manner. For each pattern, every node has a probability P of
being “dropped”. P is typically set per layer, where P = 0 is equivalent to no dropout.
If a node is dropped, then all weights to and from the node are temporarily ignored from
calculations, resulting in an altered weight update. Therefore, dropout effectively acts as
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a low-cost ensemble across a variety of architectures, briefly performed over a single period
of training. Because of this, dropout is able to prevent nodes from collaborating to fit
outliers [3, 5].

(a) MLP (b) MLP after applying dropout

Figure 2.2: MLP without and with dropout

Dropout is typically applied to the input layer and hidden layers; common to other
regularisation techniques, dropout is not applied to node-biases. Dropout provides max-
imum regularisation at P = 0.5, for which P is typically close to optimum for hidden
units. Larger P is ill-advised, as connections receive less training, without benefiting from
greater regularisation. For input nodes, a lesser drop rate of P = 0.2 is often considered
more suitable, as it is advantageous to retain training data [4, 12].

2.2.3 Early stopping

After an ANN is initialised and prior to training, it is typical to have a high bias and
low variance. Over the course of training, bias tends to decrease whilst variance tends
to increase. Eventually, when validation loss E is minimised, the effect of the increasing
variance begins to overcome that of the decreasing bias, as illustrated in figure 3.2 [10].
Early stopping prevents overfitting by halting training at this minimal validation loss.
However, whilst overfitting to the training data set may be prevented, the observation
of validation loss, which informs this process, introduces the risk of instead overfitting
to the validation data set. The reliance on the validation data set additionally spoils
the orthogonalisation of hyperparameter selection, which can prove especially problematic
when used in conjunction with other regularisation techniques [13].
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3

Methodology

Through a systematic study of combined regularisation techniques, I investigated optimal
L2 strength’s dependence on the number of training patterns, for a variety of typical drop
rates and instances of early stopping. To facilitate this investigation, a problem and model
for the ANN were chosen. In order to limit the scope of the study, the ANN was chosen
to be a MLP with a single hidden layer. The MLP was then trained using gradient
descent. Stochastic Gradient Descent (SGD) was not used, as it can itself be considered a
regularisation technique, which would risk adding confusion to the results. The synthetic
data set and the MLP were generated in Python using our own code base [14].

3.1 Data set

The chosen problem was a simple binary classification composed of two equally-distributed,
overlapping Gaussian distributions, each with an assigned class [3]. To ensure that the
optimal of λ would not favour an overwhelming suppression of weights, the target decision
boundary would need to be non-linear. Consequently, the second distribution was chosen
to have half the standard deviation of the first. The centers of the distributions were then
displaced along a single axis by a distance equal to the larger of the standard deviations.

The number of dimensions of the synthetic data set was varied in order to get sufficient
overfitting on a problem that wasn’t overwhelmingly difficult. As the number of dimensions
increased, the amount of overfitting increased whilst the problem difficulty decreased. This
relationship can be explained by the decision boundary having more dimensions of freedom
with which to accommodate outliers. This is demonstrated for the 1D and 2D versions of
the data set in figure 3.1. Preliminary results from a selection of dimension-varied takes
on the problem deemed the 10D case to be sufficiently responsive to regularisation.
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Figure 3.1: The 1D and 2D versions of the data set, demonstrating a decision boundary
with more dimensions of freedom to better avoid outliers

The 10D case of the problem was used consistently across all trials; variations were made
only to the number of patterns, and the seed of the random number generator responsible
for synthesising the data set. The number of patterns and the seed were respectively varied
for investigative purposes and the approximation of errors. Since the stability of the results
relied upon a suitably large validation data set, 4 times the number of validation patterns
were used relative to training patterns N .

3.2 Random hyperparameter search

Once the data set was established, a broad tuning of the ANN’s hyperparameters was
performed. Since the provisional hypothesis involves a loss-minimising λ, validation loss
was chosen as the primary performance measure. The constant hyperparameters shown
in table 3.1a were tuned early-on whilst using the default hyperparameters in table 3.1b,
and were subsequently left unchanged in all the presented investigations. To ensure that
the network with dropout would not suffer from insufficient capacity, a generous number
of hidden nodes was chosen. Due to a lesser P being favoured for inputs, to reduce the
number of hyperparameters, dropout was not applied to the input layer. As such, the
presented drop rate of P is only applicable for the hidden layer.
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Constant Hyperparameters
Activation function tanh
Learning rate 0.1
Hidden nodes 20

(a) Hyperparameter values that were
held constant

Default Hyperparameters
Epochs 4000
L2 strength, λ 0.0
Drop rate, P 0.0
Training patterns, N 103

(b) Hyperparameters take these
default values, unless stated oth-
erwise

Table 3.1: Constant and default hyperparameter values

To aid in the cumulative collection of results, random hyperparameter search was chosen
over grid-search [6]. Using a random hyperparameter search, algorithm 3.1 describes the
procedure for creating a heat map of λ against P for a fixed number of epochs, coloured
by final validation loss E. Plots like this were used to help inform of L2’s interaction
with dropout. To enhance illustrations, an irregular triangular grid was formed from the
existing runs, upon which cubic interpolation was applied and clamped [15].

An informed investigation into how the optimal of λ varies with N was then conducted,
testing the hypothesis. The procedure for generating a plot of optimal L2 strength λ∗

against N for a given drop rate and number of epochs is seen in algorithm 3.2. I chose
to plot and calculate the standard errors of log⟨λ∗⟩ as opposed to ⟨log(λ∗)⟩, since in the
calculation of the mean in the latter, regardless of whether there is just a single λ∗ = 0 or
many, the resulting value would be 0; this could have proved misleading by risking reducing
the range over which regressions could be made.

Algorithm 3.1 L2 strength λ against drop rate P heat map

Generate training data set Dtraining

Generate validation data set Dvalidation

while there are fewer pairs of P and λ than desired do
P ← random uniformly-distributed number ∈ [0, 1]
λ← random log uniformly-distributed number ∈ [10−6, 1]
Create the ANN
Train the ANN using Dtraining

Validate the ANN using Dvalidation

E ← final validation loss
Store this pair of P and λ, with a reference to E

end while
Plot log (λ) s against P s as a heat map, colouring each point by its respective E

8



Algorithm 3.2 Optimal L2 strength λ∗ against number of training patterns N plot

Ns← array containing the number of patterns N to try
for each N ∈ Ns do

λ∗s← Ø ▷ For each Dvalidation tested, this set will contain a λ∗

while there are fewer λ∗ than desired do
Generate training data set Dtraining from N patterns
Generate validation data set Dvalidation from 4N patterns
Es← Ø ▷ For each λ tested, this set will contain a E
while there are fewer λ than desired do

λ← random log uniformly-distributed number ∈ [10−6, 1]
Create the ANN
Train the ANN using Dtraining

Validate the ANN using Dvalidation

E ← final validation loss
Insert E into Es
Store this λ, with a reference to E

end while
λ∗ ← λ which references min (Es)
Insert λ∗ into λ∗s

end while
ε← the standard error of λ∗s
Store this pair of log⟨λ∗⟩ and ε, with a reference to N

end for
Plot log⟨λ∗⟩s, with error-bars εs, against log(N)s
In the region which visual inspection deems suitable, fit a linear regression to the plot
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3.3 Early stopping

Without regularisation, for a variety of training patterns N , plots of validation loss E over
epochs were created. As indicated in figure 3.2, minimum E occurred at greater epochs as
N increased. To see what interactions early stopping may have with L2 and dropout, the
number of epochs was reduced from 4000 to 1000. From looking at the minimum validation
losses, we know to expect that at 1000 epochs of training, early stopping will occur for
approximately N ≥ 102.5. Whilst early stopping won’t typically occur for N < 102.5, we
know to instead expect a reduced amount of overfitting.

0 500 1000 1500 2000 2500 3000 3500 4000
Epochs
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Figure 3.2: Typical validation loss over epoch plots for varying amounts of patterns, with-
out L2 or dropout
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4

Results

The following statements are repeated here as a reminder to the reader:

1. L2 strength λ was applied equally across all layers.

2. Dropout was not applied to the input layer, such that the presented drop rate of P
is only applicable to the hidden layer.

3. N refers to the number of training patterns, whilst the number of validation patterns
was 4N .

4.1 Regular epochs for substantial overfitting

Trained for 4000 epochs, figure 4.1 depicts heat maps of final validation loss E for runs
varying in L2 strength λ and drop rate P . The seeds responsible for the data set, weight
initialisation and dropout were held constant for a given heat map. It is therefore impor-
tant to note that, although the loss landscapes presented are quite typical, there is some
susceptibility to variation.

The results, as shown in figure 4.1, suggest that the number of training patterns N
both affects the range of observed final validation losses E, and the location and shape
of the region over which E is minimal. In particular, it was seen that as N increased,
E typically decreased, with the region over which E was minimal shifting to lesser L2

strengths and drop rates. Highlighted on the color-bar is E = 0.693 ≈ ln (2). For binary
classification with equally distributed classes, this value corresponds to the optimal loss for
an uninformed classifier – one which assumes the same output to every pattern. As this
value of validation loss is consistently seen across large λ, L2 is likely suppressing weights
so much as to enforce a pattern-independent output. When the ANN was trained on as
exceptionally few patterns as N = 10, a minimum loss of E ≈ 0.693 in figure 4.1a suggested
that the ANN held no predictive power.
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Figure 4.1: Random hyperparameter search heat maps of L2 strength and drop rate for
various amounts of training patterns N , coloured by validation loss for 4000 epochs
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(b) P = 0.0
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(c) P = 0.2
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(d) P = 0.5

Figure 4.2: Plots of mean optimal L2 strength against number of training patterns, with
standard errors, coloured by validation loss for 4000 epochs

Drop rate, P Gradient
0.0 −1.26± 0.05
0.2 −1.69± 0.06
0.5 −2.19± 0.18

Table 4.1: Linear regression gradients, with standard errors, of mean optimal L2 strength
against number of training patterns for 4000 epochs

Within suitable regions of N , least-squares linear regressions were fit to log⟨λ∗⟩. Pre-
sented in table 4.1 are the properties of these regressions with their standard errors, for
which it was suggested that the gradient steepened with increasing P . Data suggested
that, above some critical number of training patterns, it was optimal to have no L2 reg-

13



ularisation, as demonstrated in figures 4.2c and 4.2d. Data suggested that this critical
number of training patterns was inversely proportional to the drop rate P .

4.2 Reduced epochs for early stopping

By reducing the number of epochs from 4000 to 1000, early stopping was introduced for
runs with approximately N > 102.5. Conversely, for runs with approximately N ≤ 102.5,
whilst overfitting was not completely eliminated, the amount of overfitting, and hence
need for regularisation, was reduced. This allowed for the exclusive observation of both
the effects of early stopping, and the effects of reduced overfitting, on optimal λ’s relation
to N .
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(c) P = 0.2
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Figure 4.3: Plots of mean optimal L2 strength against number of training patterns, with
standard errors, coloured by validation loss for 1000 epochs
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Drop rate, P Gradient
0.0 −1.64± 0.08
0.2 −2.08± 0.11
0.5 −2.58± 0.47

Table 4.2: Linear regression gradients, with standard errors, of mean optimal L2 strength
against number of training patterns for 1000 epochs

Concurrence of minimum validation loss with the critical N above which optimal λ was
0, as demonstrated in figures 3.2 and 4.3 respectively, suggested that the occurrence of early
stopping is what determined the upper limit of the hypothesis. This was likely described by
early stopping removing any need for regularisation, as overfitting was already eliminated.
Hence, with early stopping, it was optimal to have no L2 at all. For this reduced number
of epochs, over the working region of the hypothesis, table 4.2 displayed steeper gradients
in comparison to table 4.1.

5

Discussion

In this thesis, I introduced and tested a predictor for optimal L2 strength, and considered
how the further involvement of dropout and early stopping may affect the relation. When
ANNs were faced with substantial overfitting, the results supported the hypothesis that L2

strength’s optimal value is inversely proportional to the number of training patterns within
a region of typical usage. The success of the hypothesis was best visualised in figure 4.2.

With the introduction of dropout, the constant of proportionality was found to increase,
as there was an intuitive reduction in optimal L2 strength for large data sets containing
many training patterns. This finding was further supported by figure 4.1, which demon-
strated how regions of optimal regularisation rely on a combination of L2 and dropout,
with an increase in one regularisation technique requiring a complementary decrease in
the other. Low variation of validation loss in the immediate vicinity of optimal regulari-
sation suggested that, once a region of optimal regularisation begins to appear, excessive
fine-tuning of regularisation strengths is not worthwhile, as demonstrated by figure 4.1.

From cross referencing figures 3.2, 4.2 and 4.3, it was consistently observed that, when
the presence of early stopping was expected, optimal L2 strength was 0. This was likely
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a consequence of early stopping causing an absence of overfitting, such that there was a
lack of a need for regularisation. When L2 and early stopping were further combined with
dropout, data demonstrated the working region of the hypothesis was further reduced.

Due to this study being limited to a single binary classification problem, the quantita-
tive aspect of the findings are quite impractical on their own. Indicated in figure 4.1 and in
contrast to the findings in [4], minimum validation loss was suggested to have an insignif-
icant dependence on the choice of regularisation techniques. That is, there was no clear
benefit to generalisation performance when using a combination of both dropout and L2,
compared to the independent use of either technique. This may suggest that our synthetic
data was a poor representation of real world data, or perhaps that an architecture known
to favour dropout, such as a deep network, may have been more favourable.

With these limitations of the study in mind, the success of the hypothesis should not
be overlooked. If the results were found to generalise to other data sets, then the predictor
for optimal L2 strength may find real-world usage for estimating a ball-park range over
which the optimal L2 strength lies, prompting the application of random hyperparameter
search over a reduced range. In particular, the proportionality of optimal L2 strength to
the number of training patterns, for a given problem and architecture, could be calculated
over a range of few training patterns, allowing the optimal L2 strength to be extrapolated
for a greater number of training patterns in a computationally inexpensive manner.
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