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Abstract

Simulation mimics the behaviour of real world processes or the system over time.
It helps us to understand the impact of modification and the effect of introducing
various interventions to a system. One such simulation method is known as Monte
Carlo (MC) simulation, which has been utilized to evaluate the performance of
digital communication systems over the last 70 years.

MC has been the most exploited simulation method to assess modern commu-
nication systems due to its ability to cope with arbitrary complex system. This
method utilizes the concept of repeated sampling, i.e., it blindly samples from a
pseudo-random number generator without any knowledge of rare (error) events, to
obtain the statistical properties of the system. Hence, to estimate the performance
metric down to very low probabilities with high accuracy, long MC simulations are
needed and require significant computational power.

Therefore, in this thesis we will explore a modified MC simulation technique
called importance sampling (IS), which reduces the variance of the estimator by
sampling from the error (rare) events of the input space and thus achieves a given
accuracy with shorter simulation time. A detailed evaluation and implementation
of current state-of-the-art IS techniques is presented across the additive white
Gaussian noise (AWGN) and the Rayleigh fading channel.

The limitation of IS is the requirement of the input probability density func-
tion (pdf) which helps in identifying the error region. Obtaining a pdf for 3rd

generation partnership project (3GPP) channel models is often not possible and
therefore researchers and standardization engineers still resort to MC for system
evaluations. In this thesis, we derive an optimal channel pdf for a multiple impor-
tance sampling (MIS) technique called ALOE (“At Least One rare Event”) in an
orthogonal frequency-division multiplexing (OFDM) system. It is further observed
that channel samples from the optimal pdf are obtainable via rejection sampling
(RS). Significant gain over MC, and better or satisfactory performance compared
to the current state-of-the-art IS technique for the Rayleigh fading channel is ob-
tained.

Also, a significant improvement over the current state-of-the-art IS technique
for the Rayleigh fading channel has been achieved. This is accomplished by us-
ing the Kullback-Leibler divergence (KLD) to estimate an optimal pdf for ALOE
using another Rayleigh channel pdf. The system and methods are implemented
using MATLAB, and to obtain 3GPP channel models we have utilized QuaDRiGa
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Popular Science Summary

Performing simulations using the statistical sampling techniques was made possi-
ble by the miraculous development of the first digital computer called electronic
numerical integrator and computer (ENIAC) in 1945. Since then, utilization of
simulation to asses communication systems has increased significantly, as it pro-
vides an insight about the system behaviour under different conditions before
the actual implementation with hardware and is much more cost effective than a
hardware prototype. One of the vastly utilized method to evaluate communication
systems is MC simulation.

MC simulates the system without any knowledge of the systems error region,
using the repeated sampling technique in order to obtain the performance of a
system under certain conditions, which results in very long simulations time to
estimate the low error probabilities with good accuracy. Therefore, in this thesis
we will investigate a variance reduction (VR) technique known as IS, to obtain a
superior performance compared to MC, which utilizes the knowledge of the input
pdf to locate the rare event or error region. The main idea of this thesis work can
be understood by the following example:

Consider a supermarket where there are different sections and each section has
a worker assigned to it. MC corresponds to you blindly going around in the market
looking for the taco (error region) without asking anyone. IS without consider-
ing channel pdf corresponds to you blindly going to different sections (bathroom,
gardening, food, etc.) and asking the corresponding worker whether the tortilla is
in his section. If it is, the worker shows you and you are done. If it is not, you
move randomly to the next section. Now, adding signs into the supermarket (or
each worker recommending which worker to ask next) corresponds to changing the
channel pdf, so that you move only to the relevant sections and reject others.
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Chapter 1
Introduction

1.1 Background and Motivation

Ultra-reliable low latency communications (URLLC) is one of the key technolo-
gies of 5th generation cellular network technology (5G) new radio (NR) and has
gained significant interest in the wireless community since it was introduced by
3rd generation partnership project (3GPP) in release 15 [1]. URLLC is recog-
nized as the enabler for tactile internet consisting of use cases such as autonomous
driving vehicles, augmented reality, robotics in healthcare, smart gird, and are
incorporated within two categories: human-to-machine and machine-to-machine
communication. In order to fully achieve the potential of these applications, low
latency and high reliability is required. The 3GPP has characterized the basic
URLLC reliability essentials for a single data frame of 32 byte as 99.9%, and an
end to end (E2E) communication latency of <1 ms [1]. Due to stringent require-
ments for URLLC introduced in release 16, a block error rate (BLER) of 10−6 is
needed for motion control use cases in industrial automation [2].

Digital communication systems performance (such as BLER) is estimated by
averaging a performance metric across the random variables in the system [3]. The
most straightforward and common method for averaging is Monte Carlo (MC)
simulation, which has the ability to estimate arbitrarily complex communication
systems. This technique works on the principle repeatedly sampling the random
variables to calculate the mean of the random process [4]. In the case of BLER, to
obtain a high degree of accuracy with MC simulation at high signal-to-noise ratio
(SNR), large number of samples are required to cause an error event. As a rule
of thumb, to estimate the error probability of order Pe, MC simulation requires
a sample size of order 100/Pe to obtain relative precision of 10% [3]. Applied to
the requirement for URLLC stated above, MC simulation will require around 108

samples, which is approaching the infeasible simulation complexity.

In this thesis, we will investigate a variance reduction (VR) technique called
importance sampling (IS), which obtains high accuracy with much lower number
of samples.
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2 Introduction

1.2 Methodology
The selection of a coherent algorithm is necessary to accelerate the simulations and
minimize the storage overhead for estimating a performance metric. However, for
advanced systems, huge speed-up cannot be achieved only by efficient algorithms
unless the statistical efficiency of the simulation is enhanced. The statistical effi-
ciency of the system is measured by the variance of the estimator [5]. VR in e.g.
bit error probability (BEP) or symbol error probability (SEP) estimation provides
speed-up as better accuracy can be achieved with smaller sample size, or equiv-
alently, fewer samples are required for the same accuracy. Most VR techniques
require more complex computations than MC simulation, but the improvement in
statistical efficiency compensates for the decrement in computational efficiency [5].

VR is achieved by modifying MC simulation such that it encourages important
events. This modified MC simulation is called IS. IS works on the fundamental that
certain input random variables in simulation have more impact on the estimator
output than others. Therefore, in order to decrease the variance, these “important”
values are sampled more frequently.

The resulting biased sampling is accomplished by modifying the statistical
distribution to encourage the occurrence of these important events. In order to
obtain an unbiased result (same mean value), the output of the modified simulation
must be “weighted” in a particular way [3].

1.3 Literature Review
The idea of utilizing a different simulation technique than MC to reduce estimator
variance was first introduced in the mid-fifties by Herman Kahn [6], where he
introduced six different sampling methods to combat the statistical problem faced
by MC.

IS was formally introduced for a digital communication system by K. S. Shan-
mugam and P. Balaban in the early eighties [7]. They showed that significant
speed-up can be obtained over MC simulation by sampling in the tail region of
Gaussian noise with zero mean and unit variance. Although these concepts were
applied to the additive white Gaussian noise (AWGN) channel model, they paved
the way to explore the application of IS to other channel models.

IS for the flat Rayleigh fading channel was explored in [8], where IS provided
significant speed-up over MC for BEP estimation, and the concept of overbiasing
was also explained. The main takeaway from this paper was that in order to obtain
gain over MC, the statistics of both noise and channel needed to be altered, as
only changing the Gaussian noise did not provide any gain.

Another IS concept is multiple importance sampling (MIS) which was intro-
duced in the late 1980s [9]. It proposes to sample from multiple distributions
instead of one as seen in conventional IS. A general way of implementing IS with
a mixture proposal was explained in [10].

IS implementation for single-input single-output (SISO) orthogonal frequency-
division multiplexing (OFDM) systems across frequency selective Rayleigh fading
channels was presented in [11]. The same authors have also optimized the conven-
tional IS (CIS) and improved importance sampling (IIS) over frequency selective
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fading channels to minimize the variance of the estimator by modifying the vari-
ance and mean of noise.

1.4 Contributions
As discussed in [8], biasing the noise probability density function (pdf) is not
efficient to obtain speed-up across fading channels and to obtain shorter simula-
tion run time channel pdf knowledge is required. Therefore, this master’s thesis
introduces new and efficient IS simulation techniques for scalar and OFDM sys-
tem across fading channels which provides massive speed-up compared to MC and
satisfactory performance compared to the current state-of-the-are IS technique
without utilizing the channel pdf knowledge. Also, an another IS technique is in-
troduced which obtained significant improvement over the current state-of-the-are
IS technique by utilizing the channel pdf knowledge.

In order to achieve this speed-up across fading channels an optimal channel
pdf is derived for the MIS technique discussed in [10], i.e., we have extended [10] to
fading. Further, two techniques are discussed to obtain samples from the optimal
channel pdf; rejection sampling (RS) and Kullback-Leibler divergence (KLD).

1.5 Thesis Structure
The layout of this report is as follows: Chapter 2 introduces the basic concept,
mathematical background of simulation methods and OFDM system model for IS
analysis. In Chapter 3, we introduce the state-of-the-art IS methods for modifying
the statistical properties of the distribution and their simulation results are pre-
sented across AWGN and Rayleigh fading channels. Chapter 4 derives a close to
optimal IS pdf for a scalar fading channels, along with a method to sample from
it. Simulation results of its performance are also given in Chapter 4. Chapter 5
generalizes the method in Chapter 4 to OFDM channels and illustrates its perfor-
mance across 3GPP channels. Finally, the report is concluded and future work is
summarized in Chapter 6.



Chapter 2
Simulation Methods and System Model

This chapter introduces the different simulation techniques used to evaluate digital
communication systems. Here we discuss the traditional MC simulation technique
followed by its drawback in advanced communication systems. Further, we explain
the IS methodology and its advantages over MC. Also, the evaluation parameters
are introduced to compare the performance of IS and MC simulation. Lastly, we
introduce the OFDM system model on which IS techniques are applied.

2.1 Monte Carlo Simulation
MC simulation has been widely utilized to evaluate the performance of digital
communication over the past seventy years. The MC method was developed during
the time of World War II at the University of Pennsylvania in Philadelphia, where
a team of scientists, engineers, and technicians were trying to build the electronic
numerical integrator and computer (ENIAC), the first electronic computer [12].

The spark which led to the evolution of the MC method happened in 1946
during the review of ENIAC at Los Alamos, where Stanislaw Ulam was astonished
by the feasibility and speed of ENIAC. Ulam, himself was already aware of the
tedious calculation required for statistical sampling required for electromechanical
computers, but after seeing the speed and versatility of the ENIAC he thought
that the sampling technique should be resuscitated and discussed the idea with
John von Neumann. Subsequently, von Neumann wrote the proposal to solve the
problem of neutron diffusion in fissionable materials. As both of them wanted
to keep the work on this method a secret, they went for the code name Monte
Carlo which was suggested by their colleague Nicholas Metropolis and refers to
the Monte Carlo Casino in Monaco where Ulam’s uncle used to borrow money
from relatives and gamble [12].

MC simulation suggests to draw N independent, identically-distributed (i.i.d)
samples {xi}Ni=1 from a density f(x) defined on a high dimensional space Γ. These
N samples are utilized to approximate the distribution f(x) by the empirical
point-mass function [13]

fN (x) =
1

N

N∑
i=1

δxi
(x), (2.1)

4



Simulation Methods and System Model 5

where δxi
(x) denotes the delta-Dirac mass located at xi. The above empirical

approach of approximating a density can be applied to evaluate integrals I(p)
with a tractable sum IN (p) as

IN (p) =
1

N

N∑
i=1

p (xi)
a.s−−−−→

N→∞
I (p) =

∫
Γ

p (x) f (x) dx, (2.2)

where p(x) is an integrable function and a.s. denotes almost sure convergence.
Equation (2.2) implies that the estimator IN (p) converges to the mean value of
p(x) under f(x) and is therefore unbiased [13]. Consider a communication system
with a discrete random variable x as an input. Generally, this can be a passband,
binary or M-ary complex-valued input symbol with the probability density function
fX (x). Let the receiver output be υ , which is composed of the input, the channel
and noise. The systems probability of error Pe can be expressed as [7]

Pe =
∑
x

∫
υ

1ϵ (υ|x) fV |X (υ|x) fX (x) dυ, (2.3)

where fV |X (υ|x) is a conditional pdf of channel and noise for a given x and 1ϵ (υ|x)
is the error indicator function

1ϵ (υ|x) =
{

1 υ ∈ Γx

0 υ /∈ Γx,
(2.4)

where Γx is the error region of the receiver for system input x. Using (2.4) we can
re-write (2.3) as

Pe =
∑
x

∫
Γx

fV |X (υ|x) fX (x) dυ. (2.5)

The MC estimator for Pe is denoted by P̂e and is given by

P̂e =
1

NMC

NMC∑
i=1

1ϵ (υi|xi) =
Ne

NMC
, xi ∼ fX(x), υi ∼ fV |X (υ|x) , (2.6)

where {xi, υi}NMC

i=1 are the input and output sequences, respectively, with xi and υi
being distributed according to fX(x) and fV |X (υ|x), respectively. Ne and NMC

are number of error events and number of samples, respectively. By definition,
1ϵ (υi|xi) is a Bernoulli distributed random variable with probability of success
Pe. Hence, Ne is binomially distributed as B(NMC , Pe). Thus, the mean and
variance of the MC estimator can be deduced using the mean and variance of Ne

as
E
[
P̂e

]
= Pe, (2.7)

and
σ2
MC =

Pe (1− Pe)

NMC
≈ Pe

NMC
. (2.8)

From (2.7), we can confirm that the MC estimator in (2.6) is unbiased and (2.8)
shows that the variance of estimator will be reduced as the number of samples
increases [11].
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The relative precision ϵr of an estimator with variance σ2 is defined as [7]

ϵr =∆
σ

Pe
. (2.9)

Using (2.9) and the approximation in (2.8), the number of samples required by
MC to estimate Pe with a given ϵr can be approximated as

NMC ≈ 1

ϵ2rPe
. (2.10)

Equation (2.10) indicates that the simulation run time increases exponentially to
obtain reliable low error probability. Due to this, MC simulation is infeasible to
evaluate the algorithms for URLLC.

2.2 Importance Sampling
Importance sampling is a VR technique that has the potential to offer substantial
run time savings for communication systems. This technique provides speed-up
by simulating the system with a modified (biased) distribution, i.e., varying the
statistical distribution which encourages important events (errors) to occur more
often. Knowledge of the biased distribution is exploited at the output to make the
estimator unbiased.

IS introduces the biased conditional pdf f∗
V |X (υ|x) which is used to simulate

the communication system for efficient performance. One can also modify the
input pdf fX(x), which is known as probabilistic constellation shaping, however,
this technique is not investigated in this thesis. Using the biased pdf f∗

V |X (υ|x)
(2.5) can be written as

Pe =
∑
x

∫
Γx

fV |X (υ|x) fX (x) dυ =
∑
x

∫
Γx

fV |X (υ|x)
f∗
V |X (υ|x)

f∗
V |X (υ|x)fX (x) dυ,

(2.11)
where W (υ|x) =∆

fV |X(υ|x)
f∗
V |X(υ|x) is the weight function of IS. The estimator for Pe

becomes

P̂ ∗
e =

1

NIS

NIS∑
i=1

1ϵ (υi|xi)W (υi|xi), xi ∼ fX(x), υi ∼ f∗
V |X (υ|x) , (2.12)

where P̂ ∗
e is the IS estimator with NIS samples. This estimator is unbiased, which

can be shown by re-writing (2.12) as

E
[
P̂e

∗]
=

1

NIS

NIS∑
i=1

E

[
1ϵ (υi|xi)

fV |X (υi|xi)

f∗
V |X (υi|xi)

]

=
1

NIS
×NIS

∑
x

∫
Γx

fV |X (υ|x)
f∗
V |X (υ|x)

f∗
V |X (υ|x)fX (x) dυ

=
∑
x

∫
Γx

fV |X (υ|x) fX (x) dυ = Pe,
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The variance of P̂ ∗
e is given as [14]

σ2
IS =

1

NIS

∑
x

∫
Γx

fV |X (υ|x)W (υ|x) fX (x) dυ − P 2
e

NIS
. (2.13)

The idea of IS is to choose a biased conditional density that reduces the vari-
ance. The reward of selecting a good biased density are substantial time savings
compared to MC simulation. On the other hand, the penalty of selecting a bad
density is longer run time and worse performance than MC. Such biased densities
underestimate or overestimate the SEP which results in bad performance of IS [3].
This phenomenon is called overbiasing (OVER).

In general, good system knowledge is required in order to select a good biased
density f∗

V |X (υ|x), which means that IS is a system specific simulation technique.
The optimal density which achieves σ2

IS = 0 can be derived from (2.13) as [3]

f∗
opt (υ|x) =

1ϵ (υ|x) fV |X (υ|x)
Pe(x)

. (2.14)

The expression (2.14) is not realizable as it contains the true mean Pe that we
want to calculate. However, it provides us with an intuition that a good IS density
should have all of its mass in the error region proportional to the original density.

To identify the run time saving and speed-up obtained by IS compared to
MC, evaluation of its biased density is required. This is generally measured by the
variance reduction factor ζMC/IS for a sample size N = NMC = NIS , given as

ζMC/IS =∆
σ2
MC

σ2
IS

∣∣∣∣
N

, (2.15)

which can also be interpreted as a speed-up factor by which the IS estimator
achieves the same precision as MC. The variance reduction factor has to be cal-
culated empirically by running many error probability simulations and computing
the variance of the resulting error estimates for MC and IS. It is noteworthy that
this evaluation parameter does not involve the computation overhead incurred
by weight calculation W (υ|x). Therefore some authors define the net run time,
which besides variance reduction also counts mathematical operations as a part of
computation overhead, to be the main performance metric [15].

2.3 System Model
The simulation of MC and IS techniques with different channel models is exe-
cuted over an OFDM system shown in Fig. 2.1. The OFDM signal consists of N
subcarriers, where each subcarrier is modulated by rectangular M -ary quadrature
amplitude modulation (QAM), M being the order of QAM. The baseband modu-
lated symbols have a symbol time of Ts and are grouped into blocks of N symbols.
A block can be denoted as

x = [x0, x1, x2, ..., xN−1]
T
, (2.16)
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M-ary QAM 
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Bits

Serial to Parallel 
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M-ary QAM
Demodulation

Output
Bits

Figure 2.1: OFDM transmitter and receiver structure

where [.]T denotes the transpose of a matrix and xi is the modulated symbol
selected from the QAM constellation S. Each symbol xi carries n information bits
where n = log2 M . The M -ary QAM constellation is the set [11]

S =
{
[(±2d1 + 1)± j (2d2 + 1)] /

√
Es; d1, d2 ∈ {0, 1, ..., log2 M − 1}

}
, (2.17)

where Es = 2(M − 1)/3. The QAM constellation symbol power E
[
|xi|2

]
and

bit power E
[
|xi|2

]
/n are equal to 1 and 1/n, respectively. Symbols on each

subcarrier are generated randomly and have equal distribution of power. This
is an appropriate choice, in cases when there is no channel knowledge at the
transmitter [16].

The baseband modulated symbols are OFDM modulated and transmitted
through the channel. The OFDM transmitted signal can be written as

r (t) =

N−1∑
i=0

xie
j2πi t

T ,−Tcp ≤ t ≤ T, (2.18)

where T = NTs is the OFDM symbol duration and Tcp is the cyclic prefix (CP) du-
ration which is inserted between consecutive OFDM symbols to avoid intersymbol
interference (ISI) and maintain the orthogonality between OFDM subcarriers.

The OFDM signal is transmitted through a communication channel with im-
pulse response h (t). Therefore, the received OFDM signal y (t) is given as

y (t) = h (t) ∗r (t) + z (t) ,−Tcp ≤ t ≤ T, (2.19)

where z (t) is the complex Gaussian distribution with zero mean and variance σ2
z

per dimension and ‘∗’ represents convolution.
If we consider a communication channel that is a multipath, frequency-selective

fading channel that is constant during an OFDM symbol, the channel response
h (t) can be written as [17]

h (t) =

L−1∑
l=0

hlδ (t− τl) , (2.20)

where hl is the attenuation factor for the signal received at lth path, τl is the
propagation delay for lth path and L is the number of paths. Inserting (2.20) in
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(2.19) we obtain that (2.19) can be written as

y (t) =

L−1∑
l=0

hlr (t− τl) + z (t) ,−Tcp ≤ t ≤ T. (2.21)

The AWGN channel is a special case of (2.21) with L = 1, τ0 = 0 and h0 = 1.
Considering Tcp larger than the channel maximum delay spread, the output

symbol for ith subcarrier after OFDM demodulation is given as [11]

Yi =
1

T

∫ T

0

y (t) e−j2π i
T tdt, i = 0, 1, ..., N − 1. (2.22)

Using (2.18), (2.20) and (2.21), equation (2.22) can be expressed as [18]

Yi = Hixi + Zi, (2.23)

where Zi is a circular symmetric complex Gaussian (CSCG) random variable with
zero mean and variance σ2

z per dimension, Zi ∼ CN
(
0, 2σ2

z

)
. Hi is the channel

frequency response at ith subcarrier

Hi =

L−1∑
l=0

hle
−j2πi

τl
T , i = 0, 1, ..., N − 1. (2.24)

A coherent detection is assumed at the receiver, i.e., channel state information
(CSI) is assumed to be known at the receiver. In this thesis we have utilized the
zero-forcing (ZF) equalizer, whose weighting factor can be described as [19]

Gi =
1

Hi
, i = 0, 1, ..., N − 1. (2.25)

ZF is chosen here as it equals the maximum likelihood (ML) equalizer for SISO
channels and coherent detection. Therefore, the output sample of channel equal-
ization at ith subcarrier equals

Vi = GiYi = xi + Z ′
i, i = 0, 1, ..., N − 1, (2.26)

where Z ′
i is a CSCG variable CN

(
0, 2σ2

i

)
with σ2

i = 1
|Hi|2σ

2
z . The detector will

make an independent decision on each subcarrier i to estimate the SEP.



Chapter 3
State-of-the-Art IS

In this chapter, different state-of-the-art IS techniques are explained and their
performance investigated.

3.1 Variance Scaling and Mean Translation of Noise
As described in Chapter 2, the main idea of IS is to as good as possible approx-
imate the optimal biased distribution. This is accomplished by approximating
the original distribution in the error region, i.e., the biased distribution should
be selected such that it places as much of its mass as possible inside the error
region. For the communication model in (2.26), fV |X from Chapter 2 is a Gaus-
sian distribution. The error region of (2.26) lies in the tail region of the Gaussian
distribution. Therefore a good approximation of f∗

opt for the model in (2.26) is a
scaled/translated version of fZ (z) [3]. The scaling of noise is achieved by modify-
ing the variance of the fZ (z), and this technique is called variance scaling (VS) or
CIS. The other way to modify the original distribution is by translating/shifting
fZ (z), and this method is known as mean translation (MT) or IIS.

For the communication model presented in (2.26), we can represent the SEP
Pei for the ith subcarrier from (2.11) as

Pei =
∑
x

∫
Γx

W (zi) fX (x) f∗
Z′

i
(zi) dυi, (3.1)

where zi = υi − xi, W (zi) =
fZ′

i
(zi)

f∗
Z′
i
(zi)

is the weight function, fZ′
i
(zi) and f∗

Z′
i
(zi)

are the input and biased noise density functions, respectively. The estimator for
Pei is given as

P̂ei = 1ϵ (υi|xi)W (zi) , xi ∼ fX(x), (3.2)

and the variance of P̂ei is

σ2
ISi

=
1

N

∑
x

∫
Γx

W (zi) fX (x) f∗
Z′

i
(zi) dυi −

P 2
ei

N
. (3.3)

10
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3.1.1 Variance Scaling
As described above, variance scaling provides a biased density that is scaled in the
tail region of the input density as shown in Fig. 3.1. This is achieved by scaling
the input density by VS factor β. Let σ∗

zi be the standard deviation of the biased
noise and βi the VS factor on the ith subcarrier, which are related as

σ∗
zi = βiσz. (3.4)

The IS weighting function for VS equals [11]

WV S (z′i) = β2
i exp

(
−|z′i|2

2σ2
i

(
1− 1

β2
i

))
, (3.5)

with biased noise pdf being

f∗
Z′

i
(z′i) =

1√
2πβ2

i σ
2
i

exp
(
− |z′i|2

2β2
i σ

2
i

)
. (3.6)

The VS estimator variance σ2
V S for a binary phase-shift keying (BPSK) system

with amplitude A is given by [11]

σ2
V S =

β2
i

2− 1
β2
i

Q


(√(

2− 1
β2
i

))
A

σi

 , (3.7)

where
Q (t) =

1√
2π

∫ ∞

t

e
−t2

2 dt. (3.8)

The value of β that minimizes the variance in (3.7) is [11]

β2 =
5σ2 + 4D2 +

(
25σ4 + 8σ2D2 + 16D4

)0.5
8σ2

, (3.9)

where σ = maxi

{
1

|Hi|σz

}
and D = A for BPSK. For higher order QAM modula-

tion, D = A = dmin

2 where dmin is the minimum Euclidean distance between two
symbols in the QAM constellation.

3.1.2 Mean Translation
Mean translation provides a biased density by shifting the mean of the input
density towards the error region as shown in Fig. 3.2. Let Z ′

i denote the AWGN
noise on subcarrier i and let mz′

i
= mx′ + jmy′ denote its mean value. The

weighting function for the ith subcarrier equals [11]

WMT (z′i) = exp

(
−
|z′i|2−|z′i −mz′

i
|2

2σ2
i

)
, (3.10)
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Figure 3.2: Mean translation of
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with the biased noise pdf as

f∗
Z′

i
(z′i) =

1√
2πσ2

i

exp

(
−
|z′i −mz′

i
|2

2σ2
i

)
. (3.11)

Assuming a BPSK system with −A as the transmitted symbol, the MT estimator
variance σ2

MT can be approximated as [11]

σ2
MT ≈ σi√

2π (A+mx′)
exp

(
−
3m2

x′ + 2m2
y′ + 2Amx′ +A2

2σ2
i

)
. (3.12)

Minimizing (3.12) with respect to mx′ and my′ yields the mean

mz′
i
=

2A+
√

(A2 − 3σ2
i )

3
. (3.13)

For high SNR scenario we can assume A2 ≫ σ2
i , therefore the expression for

optimum mean of MT can be approximated as

mz′
i
≈ A. (3.14)

The expression (3.14) shows that the mean that minimizes the IS estimator vari-
ance would shift Vi to the midpoint between the transmitted symbol and the error
symbol, thereby generating an error with a probability of 1

2 .
This technique can be applied to higher order constellations by targeting spe-

cific error centres of the signal constellation in each simulation run. Assuming that
the all zero bits sequence corresponding to symbol s0 is transmitted, the SEP for
s0 can be computed by

P̂e (s0) =

M−1∑
j=1

P̂ (sj |s0) , (3.15)

where sj is the target error center and P̂ (sj |s0) is the estimated probability of
decoding sj given that s0 is transmitted. The decision variable in (2.26) is now
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biased so that E∗[Vi] = (sj + s0) /2, where E∗[.] represents the expectation with
respect to the biased noise pdf [11].

Finally, the estimator for MT is given as

P̂e =
1

M

M−1∑
k=0

M−1∑
j=1
j ̸=k

P̂ (sj |sk). (3.16)

3.2 Variance Scaling of the Rayleigh Fading Channels
As discussed in [8], to achieve speed-up for fading channels, biasing of the channel
fading coefficient is required. Therefore, here we discuss the VS technique to bias
the fading coefficient. Let the time domain multipath coefficients hl be mutually
independent complex random variables (RVs) represented as

hl = |hl|ejϕl , (3.17)

where |hl| and ϕl are the amplitude and phase of hl, respectively. Assuming a
Rayleigh pdf of |hl|, we get

f|hl| (R) =
R

σ2
l

exp
(
− R2

2σ2
l

)
(3.18)

where 2σ2
l = E

[
|hl|2

]
is the power of hl. The pdf of ϕl is uniformly distributed

within [0, 2π].
The frequency domain multipath coefficient Hi in (2.24) is now the summation

of Gaussian variables and is thus Gaussian itself; therefore the pdf of |H| is a
Rayleigh distribution with E

[
|H|2

]
=
∑L−1

l=0 2σ2
l = 2σ2

H

f∗
|H| (R) =

R

σ2
H

exp
(
− R2

2σ2
H

)
. (3.19)

The channel coefficients |H| can be biased by using the VS factor β2
R; this biasing

is referred to as VS-Rayleigh [20]. The biased variance of |H| is β2
Rσ

2
H and of hl

it is β2
Rσ

2
l . The IS weighting function of VS-Rayleigh equals

WV S−R (R) = β2
Rexp

(
− R2

2σ2
H

(
1− 1

β2
R

))
. (3.20)

In the case of a BPSK system with −A as the transmitted symbol and the
output symbol of subcarrier i given by (2.23), the VS-Rayleigh estimator variance
equals [20]

σ2
V S−R =

β3
Rσ

2
z

2AσH (A2β2
Rσ

2
H + 2σ2

zβ
2
R − σ2

z)
0.5 . (3.21)

Minimizing σ2
V S−R in (3.21) with respect to βR yields the optimum βR for BPSK

as
β2
R =

3σ2
z

2A2σ2
H + 4σ2

z

. (3.22)

The optimum βR [20] for higher order QAM modulation can be derived simi-
larly by substituting A = dmin

2 in (3.22).
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3.3 ALOE
We know that the optimal bias density in (2.14) is proportional to the original
density in the error region. In Section 3.1, we have discussed the methods to
bias the noise pdf using variance and mean, which minimizes the variance of the
estimator but the biased pdf doesn’t follow the tails of the original density perfectly
as depicted in Fig. 3.1 and Fig. 3.2. In order to achieve significant gains we would
like to have a method which can approximate the original distribution in the error
region as good as possible. For this purpose, we will utilize an MIS technique
called ALOE (“At Least One rare Event”).

The SEP of a point xi, given a channel realization Hi, equals the integral of
a Gaussian over the union of half-spaces formed by K(xi) hyperplanes [10]. For
a rectangular QAM constellation the inner, edge and corner points have 4, 3 and
2 hyperplanes, respectively, as shown in Fig. 3.3. The goal of ALOE is to sample
the received point within this region.

Assume a symbol xi is being transmitted from the pdf fX(x) and the output
of the receiver is υi. The SEP of xi is the integral of the Gaussian distribution
centered at xi outside Ri (shaded region) in Fig. 3.3: pi

△
= P (e|xi) = P(υi ̸∈

Ri|xi). Thus, the SEP is

Pe =
1

M

M∑
i=1

pi. (3.23)

The idea of ALOE is to efficiently estimate pi, i = 1, 2, ..,M in (3.23).
The SEP of xi can be expressed as

pi =

∫
R2

1Rc
i
(υi|xi)fV |X(υi|xi)dυi, (3.24)

where 1Rc
i

is the indicator function taking value 1 for all υi ̸∈ Ri. As de-
scribed above, the error region Rc

i can be written as
⋃K(xi)

k=1 Si
k, where Si

k ={
υ ∈ C|R

{
υγ̄i

k

}
≥ βi

k

}
is the half-space parametrized by γi

k and βi
k which are

defined by the transmitted symbol xi, where γi
k is the direction of hyperplane

represented in complex domain, L̄ represents the complex conjugate of a complex
number L and R {C} denotes the real part of complex number C.

The ALOE mixture proposal with K(xn) hyperplanes is given as [10]

υn ∼ tn,α =

K(xn)∑
k=1

αn,kqn,k (υn|xn) , n = 1, 2, .., N, (3.25)

where αn,k is the non-negative weight of the k-th hyperplane such that∑K(xn)
k=1 αn,k = 1. The number of proposals, K(xn), is equal to the number of hy-

perplanes, with each proposal being a truncated version of the target distribution
(Gaussian centered at xn) beyond each hyperplane

qk (υn|xn) =
1Sk

(υn|xn) fV |X (υn|xn)

Pn,k
, (3.26)

where Pn,k =
∫
Rc 1Sk(υn|xn)fV |X (υn|xn)dυn is the integral of the target dis-

tribution beyond a hyperplane. The procedure to generate a sample from the
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Figure 3.3: 16 QAM constellation with hyperplanes and Ri

truncated Gaussian distribution is described in Appendix A. It should be noted
that the union upper bound equals p̃n

△
=
∑K(xn)

k=1 Pn,k.
Equation (2.12) of the IS estimator can now be extended as

P̂ (ALOE)
e =

1

N

N∑
n=1

1Rc
n
(υn|xn)W (υn|xn)

=
1

N

N∑
n=1

1Rc
n
(υn|xn)

fV |X (υn|xn)

tn,α (υn|xn)
. (3.27)

Inserting (3.26) in (3.25) it follows that (3.27) equals

P̂e
(ALOE)

=
1

N

N∑
n=1

1Rc
n
(υn|xn)∑K(xn)

k=1 αn,k1Sk
(υn|xn)P

−1
n,k

. (3.28)

The weight of each proposal in (3.25) is chosen as αn,k =
Pn,k

p̃n
, for k = 1, 2, ..,K(xn).

Then, (3.28) becomes

P̂e
(ALOE)

=
1

N

N∑
n=1

p̃n∑K(xn)
k=1 1Sk

(υn|xn)
,

=
1

N

N∑
n=1

p̃n
C (υn|xn)

, (3.29)
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where C (υn|xn) =
∑K(xn)

k=1 1Sk
(υn|xn) is the number of half-spaces Sk where υn

is observed. In (3.28), 1Rc
n
(υn|xn) is always equal to 1 as all the samples are

generated in Rc
n.

3.4 Performance Across the AWGN Channel
In this section, we will demonstrate the performance of the different sampling
techniques from this chapter across the AWGN channel. To compute the variance
of the SEP estimates, we repeat the SEP simulation Ns number of times and
compute the variance of the resulting Ns SEP estimates. The techniques are
simulated with N = 7.168× 104 and Ns = 200.

Variance Scaling and Mean Translation of Noise
Here, we present the simulation result of biasing the noise pdf using VS and MT
of noise.

According to Fig. 3.4 for 16 QAM, VS and MT achieves significant gain over
MC. Fig. 3.4 (a) shows that MC achieves similar precision as VS and MT at low
SNRs. At SNR = 11 dB, the estimated SEP in Fig. 3.4 (b) is 10−3, for which MC
obtains a good approximation of the true mean, since approximately 105 samples
are required (see Section 1.1), which is close to the number of samples we use in
the simulation. However, at high SNR the precision of MC decreases significantly
compared to VS and MT, which is expected as both VS and MT bias the noise
pdf with an optimal constant that minimizes the estimator variance, i.e., in each
simulation they obtain a good approximate of the true SEP. This also concurs
the accuracy of SEPs as low as 10−9 achieved by VS and MT. The speed-up in
simulation run time is measured by the variance reduction factor. As depicted in
Fig. 3.4 (c), at SNR = 14 dB, MT requires 2100 times less samples than MC to
obtain an estimate of the SEP with the same precision. The performance with 64
QAM is shown in Fig. 3.5, where a similar improvement in relative precision and
SEP is seen as for 16 QAM.
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ALOE
Here, we present the simulation result of biasing the noise pdf using ALOE.

As per Fig. 3.6 for 16 QAM, ALOE obtains a significant gain over MC. Fig. 3.6
(a) depicts the gain achieved in precision by ALOE over MC and substantiate the
precision of estimated SEP obtained at high SNR shown in Fig. 3.6 (b). The
performance with 64 QAM shown in Fig. 3.7 indicates similar enhancements in
relative precision and SEP as for 16 QAM. The superiority of ALOE over VS and
MT can be confirmed via the variance reduction factor shown in Table 3.1. As
the table demonstrates, enormous improvements on the order of at least 109, are
achieved at moderate and high SNRs.
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Figure 3.6: Performance of ALOE across AWGN channel for 16
QAM
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SNR 16 QAM 64 QAM
(dB) ζV S/ALOE ζMT/ALOE ζV S/ALOE ζMT/ALOE

10 1.63×104 2.00×103 1.80×102 5.72
15 9.46×108 1.64×109 6.02×104 9.54×102

16 4.14×109 2.79×1010 2.44×105 4.68×103

17 7.64×108 2.29×1010 2.61×106 5.25×104

18 - - 3.63×107 9.19×105

19 - - 1.06×109 4.47×107

20 - - 7.55×1026 7.60×1025

21 - - 1.15×1027 4.79×1026

22 - - 3.27×108 5.19×108

Table 3.1: Gain obtained by ALOE over VS and MT

3.5 Performance Across the Rayleigh Distribution Chan-
nels

Here, we present the simulation result of biasing the Rayleigh pdf using VS-
Rayleigh, where we now use Ns = 500.

Fig. 3.8 shows the performance with 16 QAM. From Fig. 3.8 (a) we can observe
that MC has comparable precision with VS-Rayleigh at low SNR; at 30 dB the
estimated SEP is 10−3 for which approximately 105 samples are required. After
30 dB, MC precision will decrease significantly and will require large number of
samples to obtain the same precision as VS-Rayleigh, which can also be verified
from Table 3.2. The reliability of SEP estimate can be validated by comparing
the theoretical Rayleigh SEP curve, with the estimated SEP as shown in Fig. 3.8
(b). The performance with 64 QAM, shown in Fig. 3.9 and Table 3.2, obtains is
similar as for 16 QAM.

SNR (dB) 16 QAM ζMC/V S−Ray 64 QAM ζMC/V S−Ray

30 43.48 5.56
40 354.29 56.75
50 3.58×103 524.24
60 4.19×104 6.31×103

70 3.99×105 6.71×104

Table 3.2: Reduction in estimator variance across SNR for 16, 64
QAM and Rayleigh fading



State-of-the-Art IS 21

SNR [dB]
0 20 40 60 80 100

ǫ
r

0

5

10

15

20

25
VS-Ray
MC

(a) Relative precision vs. SNR
SNR [dB]

0 20 40 60 80 100

S
E

P

10-10

10-8

10-6

10-4

10-2

100

VS-Ray
MC
Theoretical

(b) SEP vs. SNR curve for VS, MC and
theoretical values

Figure 3.8: Performance of VS-Rayleigh across Rayleigh fading for
16 QAM
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Fig. 3.10 shows the implementation of ALOE with 16 QAM across the Rayleigh
fading channel. As we can observe from Fig. 3.10 (a) and Fig. 3.10 (c), the
enormous gain obtained with ALOE across an AWGN channel has completely
vanished for a Rayleigh fading channel. This behaviour is consistent with [8],
where it was showed that only biasing the noise pdf is not efficient to obtain
significant speed-up across the Rayleigh fading channel.
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Figure 3.10: Performance of ALOE across Rayleigh fading for 16
QAM



Chapter 4
MIS for Flat Fading Channels

As observed in Chapter 3, ALOE achieved significant gain across the AWGN chan-
nel compared to MC, whereas, across the Rayleigh fading channel its performance
was equivalent to MC. On the other hand, VS-Rayleigh obtained significant gain
over MC. This speed-up in simulation run time of VS-Rayleigh was made possible
by utilizing the knowledge of the channel pdf to create a biased channel pdf that
causes more fading and thus more error events for the MC estimator. Observing
the performance of ALOE across the AWGN channel, we realized that it has the
potential to achieve speed-up, if we could obtain a biased channel pdf optimal for
ALOE. Therefore, in this chapter we have extended ALOE across fading channels
by deriving an optimal biased channel pdf for ALOE in a scalar channel system.
We refer to the new method as “At Least One rare Event with Minimum Variance
Prior” (ALOE-MVP). Further, the procedure to generate samples from ALOE-
MVP is introduced. Lastly, the simulation results are presented to demonstrate
the gain obtained by ALOE-MVP.

4.1 ALOE-MVP for Scalar Channel System
Assuming a scalar fading channel and a ZF equalizer, the model we assume is
v = x+ z/h. Since h is independent of x, the optimal biased pdf in (2.14) is now
equal to

f∗
opt (υ|x) =

1ϵ (υ|x) fV |H,X (υ|h, x) fH (h)

Pe (x)
. (4.1)

Note that fV |H,X is a Gaussian distribution while fH(h) is the prior distribution
of the channel. Further manipulation of (4.1) allows us to express it as

f∗
opt (υ|x) =

1ϵ (υ|x) fV |H,X (υ|h, x)
P (h, x)

P (h, x) fH (h)

Pe (x)
. (4.2)

In (4.2), P (h, x) =
∫
Γx

fV |H,X (υ|h, x) dυ, which makes the first ratio
1ϵ(υ|x)fV |H,X(υ|h,x)

P (h,x) a conditional pdf. Furthermore, the second ratio P (h,x)fH(h)
Pe(x)

is also a pdf and can be interpreted as the conditional pdf of the channel given
a transmit symbol x. Hence, sampling from the optimal pdf can be seen as first
sampling the channel from its new conditional pdf and then sampling the received

23
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signal in the detector error region for the given channel. Sampling exactly in this
way is unfortunately still intractable (this would result in zero estimator variance).
However, sampling in the detector error region is exactly what ALOE is suitable
for. Thus, we can approximate the first ratio in (4.2) with the ALOE pdf. The
second ratio is the channel pdf, and as seen it depends on the transmitted symbol x.
This would result in generating the channel with a new pdf for every transmitted
symbol. In a real communication system simulation, the channel is generated
independently of the transmitted signal and we have no possibility of changing the
channel pdf given a transmitted signal. Due to this reason, we replace the second
ratio in (4.2) with a channel pdf gH(h) that is independent of x (even though, as
just mentioned, this is a loss). Hence, with these changes, the pdf we propose is

f∗ (υ|x) =

K(x)∑
k=1

1Sk
(υ|x) fV |H,X (υ|h, x)

Pk (h, x)
αk

 gH(h), (4.3)

where Pk (h, x) =
∫
Rc 1Sk

(υ|x) fV |H,X (υ|h, x)dυ, αk = Pk(h,x)
p̃ and K(x) is the

number of neighboring hyperplanes for transmit point x. Due to the utilization
of a ZF equalizer the distance of x from any hyperplane k is equal; therefore, the
upper union bound becomes p̃ =

∑K(x)
k=1 Pk (h, x) = K(x)T (h), where T (h) is the

probability of crossing one of the K(x) hyperplanes and is the same for all x in a
QAM constellation, expressed as

T (h) = Q

(
A
σz

|h|

)
,

where Q(.) represents the Q-function, A = dmin

2 and σz is standard deviation of
the AWGN. With the pdf in (4.3), equation (3.29) is modified as

P̂e
(ALOE−MV P )

=
1

N

(
N∑

n=1

fH(hn)

gH(hn)

p̃n
C (υn|xn, hn)

)
, (4.4)

where fH(hn)
gH(hn)

is the weight function for channel compensation. A summation term
in (4.4), i.e., the weight function of ALOE-MVP can be expressed as

w(h, x) =
fH(h)

gH(h)

K(x)T (h)

C (υ|x, h)
. (4.5)

In (4.5), C (υ|x, h) is a random variable that denotes the number of half-spaces in
which υ is present for a given channel realization h and transmit symbol x (see
Section 3.3). The randomness of C(v|h, x) is caused by the residual AWGN after
conditioning on x and h. For a QAM constellation, C (υ|x, h) equals 1 or 2, which
makes w(h, x) binomially distributed. C (υ|x, h) equals 2 when υ is diagonally
beyond the hyperplane with respect to R (see Fig. 3.3). The optimal gH(h) is
derived by minimizing the variance of w(h, x) in (4.5) averaged across x and can
be shown to equal (see Appendix B)

gH (h) =
fH (h)T (h)

√
(1− ηT (h)) ρ

c
, (4.6)
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where η = 6a2+9a+3
4a2+9a+4 , ρ = 16a2+36a+16

M , a =
√
M − 2 and c =

∫
h
fH (h)T (h)√

(1− ηT (h)) ρdh. We can observe that (4.6) resembles the optimal channel pdf
in (4.2) as both of them can be expressed as a product of the original channel pdf
and a term that depends on the error probability of the channel.

4.2 Sampling from ALOE-MVP
From (4.6), we see that gH(h) depends on the original channel pdf fH(h). Ap-
parently, this seems to imply that knowledge of fH(h) is necessary in order to
sample from gH(h). Remarkably, we can overcome this limitation by using the
rejection sampling technique. The reason for why this can be done is due to
the specific expression the optimal gH(h) exhibits - as a product of the original
channel pdf fH(h) and a known function of h that we can easily compute. How-
ever, if fH(h) is known in advance, then it is possible to approximate gH(h) with
another tractable distribution using Kullback-Leibler divergence. Hence, in this
section we will present the methodology to obtain samples from gH(h) using RS
and KLD. We refer to ALOE-MVP combined with these two sampling techniques
as ALOE-MVP-RS and ALOE-MVP-KLD, respectively.

4.2.1 Rejection Sampling
Rejection sampling is a Monte Carlo algorithm to generate samples from a target
distribution by utilizing the samples from a proposal distribution [24]. For our
scenario, gH (h) and fH (h) corresponds to the target distribution and proposal
distribution, respectively. RS requires the restriction

B >
gH (h)

fH (h)
, (4.7)

where B is a constant, finite bound on the likelihood ratio gH(h)
fH(h) . Inserting (4.6) in

(4.7), we obtain B = max
h

(
T (h)

√
(1−ηT (h))ρ

c

)
as the smallest such upper bound.

The procedure to obtain a sample from gH(h) with RS is as follows [24] :
Step 1: Generate u ∼ U (0, 1).
Step 2: Obtain a sample h̃ from fH (h).
Step 3: Check if u <

gH(h̃)
BfH(h̃)

. If true, accept h̃, otherwise go to step 1.
The sampled values provided by the above algorithm will be distributed ac-

cording to gH(h).
It is evident from the RS procedure that B dictates the number of samples

which should be “rejected” in order to obtain one sample from gH (h). B will be
large when the proposal distribution is far from the target distribution, resulting
in longer simulation time to obtain samples for gH (h), which can be considered
a drawback of this method. In principle, one can run the above RS algorithm
offline to obtain a set of channels on which simulation is performed. Moreover, we
will see from the simulation results that the drawback is also compensated by the
speed-up gain obtained when simulating across channels sampled from gH (h).
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4.2.2 ALOE-MVP Approximation Using Kullback-Leibler Diver-
gence

As described in Section 4.2.1, RS enables sampling from the optimal channel pdf
gH(h) even though gH(h) depends on the unknown, original channel pdf fH(h).
Instead of continuously generating and rejecting channel samples, another alter-
native is to approximate gH(h) with a tractable pdf that is easy to sample from.
As an example, if it is known in advance that h is Rayleigh distributed, then it
turns out that gH(h) can be well approximated by another Rayleigh distribution
Q(h;σ) with some variance σ2. This implies that we can obtain channel realiza-
tions from gH(h) as σ×h, where h is a sample from fH(h). Hence, this provides a
significant speed-up compared to RS, as there is no need to wait for RS to provide
optimally distributed channels. The approximation of gH(h) can be achieved by
applying a statistical distance measure called Kullback-Leibler divergence. KLD
(DKL (R||J)) is a non-symmetric measure of the difference between two pdfs R
and J , which is defined as [25]

DKL (R||J) ≜
∫ ∞

−∞
R (b) log

(
R (b)

J (b)

)
db. (4.8)

For our scenario, the pdf R(h) corresponds to gH(h) while J(b) corresponds to a
Rayleigh pdf Q(h;σ) with a certain variance σ2. The goal is to find a σ2 that
minimizes (4.8), which produces a pdf Q(h;σ) that approximates gH(h). The
minimization is accomplished by a numerical search of σ2 around a starting value,
where we choose the VS-Rayleigh variance β2

Rσ
2
H as a starting value. The reason

for this choice of starting value is that the VS-Rayleigh pdf is close to optimal
for Rayleigh distributed channels. Then, DKL(R||J) is evaluated for different
variances and the σ2 which minimized (4.8) is chosen for approximating gH(h)
with Q(h;σ).

4.3 Performance Evaluation of ALOE-MVP Across Scalar
Channels

This section demonstrates the performance of ALOE-MVP-RS and ALOE-MVP-
KLD. To compute the variance of the SEP estimates, we repeat the SEP simulation
Ns number of times and compute the variance of the resulting Ns SEP estimates.
We choose Ns = 300 and each simulation consists of 50 transmissions. These
simulation parameters are used for comparing ALOE-MVP-RS, ALOE-MVP-KLD
and VS-Rayleigh across Rayleigh fading whereas, for simulating ALOE-MVP-RS
and MC across Rician distribution we use 500 transmissions in each simulation.

ALOE-MVP-RS
Here, we evaluate the performance of ALOE-MVP-RS across Rayleigh and Rician
fading channels.

Fig. 4.1 shows the performance of ALOE-MVP-RS across Rayleigh fading with
16 QAM. Fig. 4.1 (a) depicts the gain achieved in precision by ALOE-MVP-RS
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over VS-Rayleigh and substantiate the precision of estimated SEP obtained at high
SNR shown in Fig. 4.1 (b). Also, significant speed-up is achieved by ALOE-MVP-
RS compared to VS-Rayleigh as shown in Fig. 4.1 (c), where at SNR = 45 dB,
ALOE-MVP-RS requires approximately 90 times less samples than VS-Rayleigh
to obtain an estimate of the SEP with the same precision. The performance with
64 QAM is shown in Fig. 4.2, where a similar improvement in relative precision
and variance reduction factor is seen as for 16 QAM.

These results confirm the optimality of gH(h) for ALOE by providing sig-
nificant gains to VS-Rayleigh, where the latter can be seen as the optimal biased
channel pdf for the MC estimator in Rayleigh channels. On the other hand, gH(h)
is the optimal biased channel pdf for the ALOE estimator, which is inherently a
more efficient estimator than MC. Furthermore, what is most important, is that
these significant gains were obtained without knowing fH(h), whereas VS-Rayleigh
only works for a perfectly known Rayleigh pdf fH(h).

SNR [dB]
0 10 20 30 40 50 60

ǫ
r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

ALOE-MVP-KLD
VS-Ray

(a) Relative precision vs. SNR

SNR [dB]
0 10 20 30 40 50 60

S
E

P

10-8

10-6

10-4

10-2

100

ALOE-MVP-KLD
VS-Ray
Theoretical

(b) SEP vs. SNR curves for
ALOE-MVP-RS, VS-Rayleigh and
theoretical values

SNR [dB]
0 10 20 30 40 50 60

ζ
V

S
-R

ay
/A

LO
E

-M
V

P
-R

S

0

20

40

60

80

100

(c) Reduction in estimator variance
across SNR

Figure 4.1: Comparison of ALOE-MVP-RS and VS-Rayleigh across
Rayleigh fading for 16 QAM
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Figure 4.2: Comparison of ALOE-MVP-RS and VS-Rayleigh across
Rayleigh fading for 64 QAM

To show that this sampling technique can be utilized for arbitrarily distributed
fading channels, we present the performance of ALOE-MVP-RS across the Rician
distribution with Rician K-factor equal to 3 and 16 QAM in Fig. 4.3. Fig. 4.3 (a)
depicts the enormous gain obtained by ALOE-MVP-RS in precision compared to
MC. Comparing Figures 4.1 (a), 4.2 (a) and 4.3 (a) with Fig. 3.6 (a), it is striking
that ALOE-MVP-RS achieves the same constant performance behaviour across a
fading channel as across an AWGN channel. It is as if ALOE-MVP-RS completely
removes the detrimental impact of fading on simulation time. Fig. 4.3 (b) plots
the SEP obtained in each simulation so to visualize the variation of the Ns differ-
ent SEP estimates for each SNR. As seen, ALOE-MVP-RS provides remarkably
accurate estimates across the whole SNR range, whereas MC estimation becomes
very unreliable at relatively low SNRs.

Also, we can observe from Figures 4.1 (b) and 4.3 (b) that ALOE-MVP-RS
achieves good approximation of the SEP across all SNRs with only 50 samples per
simulation. In contrast, MC could only obtain good SEP estimate until SNR = 20
dB with 500 samples, which again depicts the massive gain obtained in simulation
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run time with ALOE-MVP-RS.
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Figure 4.3: Comparison of ALOE-MVP-RS and MC across Rician
distributed fading channel with K-factor = 3 for 16 QAM

ALOE-MVP-KLD
Here, we evaluate the performance of ALOE-MVP-KLD across Rayleigh fading
channels.

As described in Section 4.2.2, the approximation of gH(h) by a Rayleigh pdf
can be corroborated from Fig. 4.4. Fig. 4.4 (a) indicates that gH(h) resembles the
Rayleigh distribution. In Fig. 4.4 (b), we can observe that KL divergence provides
a satisfactory approximation of gH(h) with a Rayleigh pdf.
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Figure 4.4: gH(h) approximation using KLD

According to Fig. 4.5 for 16 QAM, ALOE-MVP-KLD achieves a significant
gain over VS-Rayleigh. Fig. 4.5 (a) shows that ALOE-MVP-KLD has obtained
better and stable precision than VS-Rayleigh. The reliability of SEP estimate
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obtained by ALOE-MVP-KLD can be validated by comparing it with theoretical
Rayleigh SEP curve as shown in Fig. 4.5 (b). Also, significant reduction in esti-
mator variance is achieved by ALOE-MVP-KLD as shown in Fig. 4.5 (c). The
performance with 64 QAM is shown in Fig. 4.6, where a similar improvement in
relative precision and variance reduction factor is seen as for 16 QAM.
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Figure 4.5: Comparison of ALOE-MVP-KLD and VS-Rayleigh
across Rayleigh fading for 16 QAM
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Chapter 5
MIS for Frequency Selective Channels

In Chapter 4, ALOE-MVP in a scalar channel system obtained significant gain
over MC and VS-Rayleigh, as its variance was minimized with respect to the pdf
of a scalar channel. However, to apply ALOE-MVP across frequency selective
channels in an OFDM system we need an optimal channel pdf for a vector channel
(representing the tapped delay model). In this chapter we will derive ALOE-MVP
for an OFDM system across a frequency selective channel that minimizes the
estimator variance for an OFDM symbol consisting of N subcarriers. We refer to
ALOE-MVP in an OFDM system as ALOE-MVP-OFDM. Further, the simulation
results are presented to demonstrate the gain obtained by ALOE-MVP-OFDM.

5.1 ALOE-MVP-OFDM for General Distribution of Chan-
nel Delays

Simulation across a frequency selective channel introduces correlation between
subcarriers. Due to this reason, we will derive ALOE-MVP-OFDM to minimize
the variance of the sum of weights across the N subcarriers in an OFDM symbol.
Let h = [h0, h1..., hL−1] denote the vector of L channel taps, xi the QAM symbol
on subcarrier i and wi(h, xi) the weight that multiplies the detector output on
subcarrier i. The considered variance can be expressed with Bienaymé’s identity
[26] as

Var

(
N∑
i=1

wi (h, xi)

)
=

N∑
i=1

N∑
j=1

Cov (wi(h, xi), wj(h, xj))

=

N∑
i=1

Var(wi(h, xi)) + 2
∑

1≤i<j≤N

Cov(wi(h, xi), wj(h, xj)),

(5.1)

32
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where Cov(.,.) is covariance. The sum of the variances in (5.1) equals

N∑
i=1

Var(wi(h, xi)) =

N∑
i=1

EgH(h),xi

[
(wi(h, xi)− EgH(h),xi

[wi(h, xi)])
2
]

=

N∑
i=1

EgH(h),xi

[
wi(h, xi)

2
]
−

N∑
i=1

P 2
ei , (5.2)

where Pei is the SEP of the ith subcarrier and gH(h) is the new channel pdf. Using
(B.9), (5.2) becomes

N∑
i=1

Var(wi(h, xi)) =

N∑
i=1

∫
h

[
(fH (h)Ti (h))2

gH (h) (1− ηTi (h)) ρ
]
dh −

N∑
i=1

P 2
ei , (5.3)

where η = 6a2+9a+3
4a2+9a+4 , ρ = 16a2+36a+16

M , a =
√
M − 2, fH(h) is the original channel

pdf and Ti(h) can be written as

Ti(h) = Q

 A(
σz

DFT(h)
i

)
 ,

where DFT (h)i represents the channel frequency response on subcarrier i, which
can be obtained from (2.24), A = dmin

2 and σz is the standard deviation of the
AWGN. The covariance term in (5.1) can be written as

2
∑

1≤i<j≤N

Cov
(
wi(h, xi), wj(h, xj)

)
=2

∑
1≤i<j≤N

EgH(h),xi,xj

[ (
wi(h, xi)− EgH(h),xi

[wi(h, xi)]
)

×
(
wj(h, xj)− EgH(h),xj

[wj(h, xj)]
) ]

=2
∑

1≤i<j≤N

EgH(h),xi,xj
[wi (h, xi)wj (h, xj)]− 2

∑
1≤i<j≤N

PeiPej . (5.4)

For a QAM constellation there are potentially 9 different values of
EgH(h),xi,xj

[wi (h, xi)wj (h, xj)] corresponding to the 9 different combinations of
corner, edge or inner QAM points for the two subcarriers i and j. Taking into
account all the possible combinations we get (see Appendix C)

2
∑

1≤i<j≤N

Cov
(
wi(h, xi), wj(h, xj)

)
=

∫
h

f2
H (h)
gH (h)

( N∑
i=1

ti

)2

−
N∑
i=1

t2i

 dh

− 2
∑

1≤i<j≤N

PeiPej . (5.5)

where ti = Ti (h)
(

4a2+12a+8
M − 4a2+8a+4

M Ti (h)
)

.
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Inserting (5.3) and (5.5) into (5.1), it follows that

Var

(
N∑
i=1

wi (h, xi)

)
=

∫
h

f2
H (h)
gH (h)

{
N∑
i=1

T 2
i (h)

(
ξ1 − ξ2Ti (h)− ξ23T

2
i (h)

)
+

[
N∑
i=1

Ti (h) (ξ4 − ξ3Ti (h))
]2}

dh −
( N∑

i=1

Pei

)2

, (5.6)

where ξ1 =
16a2(M−a2−6a−13)+12a(3M−16)+16(M−4)

M2 , ξ2 =
8a2(3M−4a2−20a−36)

M2 +
4a(9M−56)+4(3M−16)

M2 , ξ3 = 4a2+8a+4
M and ξ4 = 4a2+12a+8

M .
As in Chapter 4, the integral in (5.6) can be minimized by obtaining a La-

grangian function with the constraint
∫

h gH(h)dh = 1, and then applying the
Euler-Lagrange equation to obtain the optimal gH(h) for ALOE-MVP-OFDM as

gH (h)

=
fH (h)

√∑N
i=1 Ti

2 (h) (ξ1 − ξ2Ti (h)− ξ23T
2
i (h)) +

[∑N
i=1 Ti (h) (ξ4 − ξ3Ti (h))

]2
c

,

(5.7)

where c equals the integral of the numerator across h. We can observe that (5.7)
resembles the optimal channel pdf in (4.2) as both of them can be expressed as
a product of the original channel pdf fH(h) and a known function of the channel
realization. Hence, as in Chapter 4, we can apply RS to obtain channel vector
samples from gH(h). This technique is named ALOE-MVP-OFDM-RS. More-
over, since we know that for independent Rayleigh channel taps the subcarrier
channels are also Rayleigh distributed (albeit correlated) with the same Rayleigh
distribution, we can apply the KLD method from Chapter 4 to approximate the
optimal subcarrier channel distribution with another Rayleigh distribution. We
denote this method as ALOE-MVP-OFDM-KLD. In this specific case, as will be
explained below, the KLD approximation has even better performance than sam-
pling according to gH (h) in (5.7). The following section will shed more light on
these techniques.

5.2 Performance Evaluation of ALOE-MVP-OFDM
In this section, we will demonstrate the performance of ALOE-MVP-OFDM-RS
and ALOE-MVP-OFDM-KLD across 3GPP multipath fading channel models in
our OFDM system as introduced in Section 2.3. To compute the variance of the
SEP estimates, we repeat the SEP simulation Ns number of times and compute
the variance of the resulting Ns SEP estimates. Table 5.1 summarizes the OFDM
system parameters utilized for simulation. The parameters of the 3GPP chan-
nel models extended pedestrian A model (EPA) and extended vehicular A model
(EVA) are presented in Table 5.2 [28].
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Parameter Value
Total Bandwidth (W ) 3.072 MHz

Subcarrier frequency spacing (SCS) 30 KHz
Total number of OFDM symbols (N) 140

Number of subcarrier (Nsub) 1024

Length of cyclic prefix (Ncp) 72

OFDM symbol duration (T ) 33.33(µs)

Cyclic prefix duration (Tcp) 2.34(µs)

Modulation order (M) 16, 64 QAM
Number of simulations (Ns) 30

Table 5.1: OFDM system parameters

Extended Pedestrian A model Extended Vehicular A Model
Excess tap delay Relative power Excess tap delay Relative power

(ns) (dB) (ns) (dB)
0 0.0 0 0.0
30 -1.0 30 -1.5
70 -2.0 150 -1.4
90 -3.0 310 -3.6
110 -8.0 370 -0.6
190 -17.2 710 -9.1
410 -20.8 1090 -7.0

- - 1730 -12.0
- - 2510 -16.9

Table 5.2: Parameters of 3GPP EPA and EVA models

ALOE-MVP-OFDM-RS
Here, we evaluate the performance of ALOE-MVP-OFDM-RS by sampling from
gH(h) with RS across EPA and EVA models.

Fig. 5.1 shows the performance of ALOE-MVP-OFDM-RS with 16 QAM
across EVA model. Fig. 5.1 (a) illustrates the gain obtained in precision by ALOE-
MVP-OFDM-RS compared to VS-Rayleigh at low SNRs, while from SNR = 30
to 50 dB its performance is equivalent to VS-Rayleigh and at SNR greater than
50 dB it has precision slightly worse than VS-Rayleigh. Same behaviour can be
seen in estimator reduction factor in Fig. 5.1 (c). The reason for slightly worse
performance of ALOE-MVP-OFDM-RS at high SNR, compared to VS-Rayleigh,
is because ALOE-MVP-OFDM-RS minimizes the variance of the sum of weights
which is suboptimal compared to minimizing the variance of the weight on each
subcarrier. Since EPA and EVA models have i.i.d. Rayleigh fading channel tap,
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each subcarrier channel in (2.24) has the same Rayleigh distribution. Thus, VS-
Rayleigh uses this known Rayleigh channel pdf on each subcarrier and minimizes
the variance of the MC estimator on each subcarrier.

On the other hand, Table 5.3 and Fig. 5.1 (d) concurs that ALOE-MVP-
OFDM-RS has achieved significant gain in precision and estimator variance com-
pared to MC. ALOE-MVP-OFDM-RS at SNR = 50 dB, requires approximately
1300 times less samples than MC to achieve the same precision. Also, according
to the rule of thumb (see Section 1.1), MC would require 108 samples to achieve
good precision until SEP 10−6, which corresponds to simulating an OFDM system
with approximately 97650 OFDM symbols, which is infeasible to simulate. ALOE-
MVP-OFDM-RS gives unbiased SEP estimates which can be seen in Fig. 5.1 (b).
The performance with 64 QAM is shown in Fig. 5.2 and Table 5.4, where a similar
behaviour across EPA model is seen as for 16 QAM across EVA model.
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Figure 5.1: Comparison of ALOE-MVP-OFDM-RS, VS-Rayleigh
and MC across EVA model for 16 QAM



MIS for Frequency Selective Channels 37

SNR(dB) ζMC/ALOE−MV P−OFDM−RS

40 183.27
45 1.49×103

50 1.29×103

55 6.51×103

60 2.70×104

Table 5.3: Reduction in estimator variance across SNR for 16
QAM and EVA model
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SNR(dB) ζMC/ALOE−MV P−OFDM−RS

40 1.46×103

45 2.04×103

50 2.53×103

55 2.89×103

60 1.27×104

Table 5.4: Reduction in estimator variance across SNR for 64
QAM and EPA model

These results illustrate that ALOE-MVP-OFDM-RS, which requires no knowl-
edge on the distribution of the channel taps, obtains satisfactory performance com-
pared to VS-Rayleigh at high SNR. Moreover, compared to MC, which currently
is the only method to compute SEP in case where we have no knowledge of chan-
nel pdf, ALOE-MVP-OFDM-RS achieves significant gain in precision compared
to MC. This results into significant reduction in simulation run time.

The gH(h) obtained in (5.7) can be utilized to simulate an OFDM system
across channels whose distribution is different for each subcarrier, e.g. non-
standard, correlated Gaussian distributions, which is not possible with VS-Rayleigh
as it requires that each subcarrier must have the same Rayleigh distribution. Al-
though ALOE-MVP-OFDM-RS requires additional computations to obtain sam-
ples from gH(h), this reduction in computational efficiency is compensated by the
enormous speed-up gain obtained by ALOE-MVP-OFDM-RS when simulating
across the chosen channels.

ALOE-MVP-OFDM-KLD
Here, we evaluate the performance of ALOE-MVP-OFDM-KLD across EPA and
EVA models. Just as VS-Rayleigh, we utilize the fact that we know the distribution
of the Rayleigh fading channel taps, which produce the same known Rayleigh
distribution on each subcarrier, and obtain an approximation to gH(h) from (4.6)
on each subcarrier using KLD. Hence, this method results in obtaining a variance
scaling factor σ that is used to multiply each channel tap in the EPA and EVA
models. As VS-Rayleigh, this method is minimizing the weight variance on each
subcarrier.

According to Fig. 5.3 for 16 QAM, ALOE-MVP-OFDM-KLD has achieved
significant gain over VS-Rayleigh. This should not come as a surprise since ALOE-
MVP-KLD, with gH(h) in (4.6), has already been shown to be a much better
sampling method than VS-Rayleigh across scalar channels. Fig. 5.3 (a) shows
that ALOE-MVP-OFDM-KLD has obtained a better and more stable precision
than VS-Rayleigh across all SNRs. The reliability of the SEP estimate obtained by
ALOE-MVP-OFDM-KLD can be validated by comparing it with MC SEP curve as
shown in Fig. 5.3 (b). Also, significant reduction in estimator variance is achieved
by ALOE-MVP-OFDM-KLD as shown in Fig. 5.3 (c). The performance with 64
QAM is shown in Fig. 5.4, where a similar improvement in relative precision and
SEP is seen as for 16 QAM.
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Figure 5.3: Comparison of ALOE-MVP-OFDM-KLD and
VS-Rayleigh across EVA model for 16 QAM
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Figure 5.4: Comparison of ALOE-MVP-OFDM-KLD and
VS-Rayleigh across EPA model for 64 QAM

ALOE-MVP-OFDM-RS failed to achieve similar gains as ALOE-MVP-OFDM-
KLD which uses the fact that each subcarrier has the same distribution to minimize
the weight variance on each subcarrier. However, KLD for an OFDM systems will
only work if the channel pdf is perfectly known and generates the same, known,
pdf on each subcarrier. Despite the loss in gains, ALOE-MVP-OFDM-RS has this
advantage over ALOE-MVP-OFDM-KLD, as it can be utilized to simulate any
channel distribution with enormous gains compared to naive MC.



Chapter 6
Conclusion and Future Work

6.1 Conclusion
URLLC, a key technology of 5G, has imposed stringent requirements on latency
and reliability to the tactile internet applications. In order to meet these require-
ment, simulations with BLER as low as of 10−6 is needed for industrial automation
systems. Hence, in this thesis we have discussed, evaluated and compared MC and
IS simulation techniques across different channels. A new and efficient IS simula-
tion techniques for scalar and OFDM system across fading channels is introduced
and its performance evaluated with simulations.

IS techniques work by modifying the statistical properties of the input distri-
bution to reduce estimator variance, resulting in shorter simulation run time. For
a communication system this corresponds to altering either channel, noise, trans-
mit symbol distribution or a combination of them. We started with the evaluation
of altering noise pdf via VS and MT in an AWGN channel and obtained significant
speed-up and gains in estimator variance compared to MC. Further, we evaluated
the VS-Rayleigh technique which alters the variance of the Rayleigh distribution
and as expected huge gains were achieved compared to MC in both precision and
estimator variance. However, optimal IS density shows that the biased distribu-
tion should be proportional to the original (input) distribution in the error region.
VS and MT of noise nor VS-Rayleigh techniques satisfy this property.

To fully utilize the power of IS by biasing the distribution according to the
optimal IS density, we evaluated a current state-of-the-art MIS technique called
ALOE. As expected, ALOE achieved massive gains over VS and MT of noise across
AWGN channel both in precision and estimator variance. However, across fading
channels, the AWGN gains completely vanished and ALOE obtained equivalent
performance as MC. This behaviour was in-line with the results obtained in [8].
This result left us astonished (even though we expected it could happen), however
at the same time the significant gain of ALOE across the AWGN channel inspired
us to dig deeper in the methodology of ALOE and try to understand the reason
for its failure across the fading channel.

As it followed, we found that the culprit for the loss in gains of ALOE across
fading channels is that instead of generating channels with the original channel pdf,
we need a channel pdf that is optimized for ALOE. First we derived an optimal
channel pdf for the scalar channel system and we named ALOE with the improved
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channel pdf as “ALOE-MVP”. To obtain samples from ALOE-MVP, we introduced
two different techniques based on RS and KLD minimization; the two methods
were named ALOE-MVP-RS and ALOE-MVP-KLD, respectively. ALOE-MVP-
RS can be used for any original channel pdf, while ALOE-MVP-KLD assumes
knowledge of the original channel pdf in order to approximate it with another
pdf from which we easily can obtain samples. ALOE-MVP-RS was evaluated
across a fading channel and the results left us awestruck. Simulations showed us
that ALOE-MVP-RS completely removed the detrimental effect of fading. For
Rayleigh fading, it performed much better than the current state-of-the-art VS-
Rayleigh which needs knowledge of the Rayleigh fading pdf. ALOE-MVP-KLD
also obtained similar gains over VS-Rayleigh, which enables even simpler simula-
tion than ALOE-MVP-RS across Rayleigh fading since it results in a mere scaling
of the original Rayleigh fading samples.

Next, we derived an optimal channel pdf for ALOE in an OFDM system,
by minimizing the variance of the sum of weights across the subcarriers and re-
ferred to this method as “ALOE-MVP-OFDM”. We showed how to obtain samples
from ALOE-MVP-OFDM with RS and named this method ALOE-MVP-OFDM-
RS. ALOE-MVP-OFDM-RS gave a satisfactory performance compared to VS-
Rayleigh, while obtaining massive gain in both precision and estimator variance
compared to MC. For independent Rayleigh distributed channel taps, each sub-
carrier channel has the same Rayleigh distribution, which enables the use of the
KLD approximation method from Chapter 4 to minimize the weight variance on
each subcarrier. This method is superior than minimizing the variance of the total
weight sum (something that ALOE-MVP-OFDM-RS does). The KLD approxi-
mation method in OFDM systems is denoted as ALOE-MVP-OFDM-KLD and
provides a large speed-up compared to ALOE-MVP-OFDM-RS and VS-Rayleigh
for independent Rayleigh distributed channel taps.

To summarize, the main contribution of this thesis work are the IS methods
ALOE-MVP-RS, ALOE-MVP-KLD for scalar channels and ALOE-MVP-OFDM-
RS, ALOE-MVP-OFDM-KLD for OFDM channels. As described above, the RS
methods are suitable for simulation when no knowledge of the channel pdf is at
hand. On the other hand, if the channel pdf is known, then the KLD methods
have the potential to simplify the simulation process significantly as well as provide
additional speed-up in OFDM systems compared to RS methods.

6.2 Future Work
In order to extend our new IS methods further, following points can be considered:

• Implementation in different types of detectors, for example minimum mean-
square error.

• How will the methods behave for an imperfect channel estimation? This
question should be further investigated.

• Further examination is required to implement the methods in a SISO coded
system.
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• Further research is needed to find all the possible channel tap distributions
on which the KLD approximation can be applied.
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Appendix A
Algorithm to Generate Samples from a

Truncated Gaussian Distribution

Here we will represent a complex number c by its real-valued vector c = [R {c} , Im {c}]T
of real and imaginary part, respectively. Let Σ denote a non-singular covariance
matrix, I the identity matrix and 0 the all-zero vector. Furthermore, AT denotes
the transpose of matrix A.

A. Algorithm of normalizing N (µ,Σ) to a standard Gaussian N (0, I).
The half-space where υ belongs can be described as γT

k υ ≥ βk. Since Σ is a
non-singular covariance matrix, its square root

√
Σ exists. With υnorm ∼ N (0, I),

the equation for the half-space γT
k υ ≥ βk becomes [21]

ωT
k υnorm ≥ τk, ωk =

γT
kΣ

1
2√

γT
kΣγk

, τk =
βk − γT

kµ√
γT
kΣγk

. (A.1)

B. Algorithm to sample from a truncated Gaussian N (0, I)
Assume a truncated Gaussian υnorm ∈ N (0, I) in the half space described by

υT
normω ≥ τk. The sample υnorm is first obtained from the complementary half-

space (i.e., υT
normω < τk), then transformed to −υnorm for numerical stability.

The procedure for doing this is described in [21]
1). Simulate a standard Gaussian distribution z ∼ N (0, I).
2). Simulate a uniform distribution u ∼ U (0, 1).
3). Let y = Φ−1 (uΦ(−τ)), where Φ(τ), is the cumulative distribution func-

tion for the standard Gaussian distribution.
4). Let υnorm = ωy +

(
I− ωωT

)
z.

5). Output υ = µ−Σ
1
2υnorm.
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Appendix B
Derivation of Optimal Scalar Fading

Channel PDF

In order to denote different QAM constellation points, we will break the QAM
constellation set S into 3 sub-sets as S = Sin ∪ Sed ∪ Sco, where Sin, Sed and Sco

are the sets of inner, edge and corner points, respectively. The value of w(h, x) in
(4.5) for these points equals

w (h, x ∈ Sco) =

{
2fH(h)T (h)

gH(h) ; 1− T (h)
2fH(h)T (h)

2gH(h) ; T (h)
(B.1)

w (h, x ∈ Sed) =

{
3fH(h)T (h)

gH(h) ; 1− 4
3T (h)

3fH(h)T (h)
2gH(h) ; 4

3T (h)
(B.2)

w (h, x ∈ Sin) =

{
4fH(h)T (h)

gH(h) ; 1− 2T (h)
4fH(h)T (h)

2gH(h) ; 2T (h)
(B.3)

where T (h) is given as

T (h) = Q

(
A
σz

|h|

)
,

where Q(.) represents the Q-function, A = dmin

2 with dmin being the minimum
Euclidean distance between two symbols in the QAM constellation and σz is the
standard deviation of the AWGN. The variance of w(h, x) equals

Var(w(h, x)) = EgH(h),x

[(
w(h, x)− EgH(h),x[w(h, x)]

)2]
= EgH(h),x

[
w(h, x)2

]
− E2

gH(h),x [w(h, x)]

= EgH(h),x

[
w(h, x)2

]
− P 2

e , (B.4)

where Pe is the sought probability of error and Var(.) denotes variance.
EgH(h),x

[
w(h, x)2

]
in (B.4) can be further expressed with (B.1) - (B.3) as

EgH(h),x

[
w(h, x)2

]
=P (x ∈ Sco)EgH(h)

[
w(h, x ∈ Sco)

2
]

+ P (x ∈ Sed)EgH(h)

[
w(h, x ∈ Sed)

2
]

+ P (x ∈ Sin)EgH(h)

[
w(h, x ∈ Sin)

2
]
. (B.5)

48



Derivation of Optimal Scalar Fading Channel PDF 49

It holds that

EgH(h)

[
w(h, x ∈ Sco)

2
]
=4

∫
h

(
fH (h)T (h)

gH (h)

)2

gH (h) (1− T (h)) dh

+ 4

∫
h

1

4

(
fH (h)T (h)

gH (h)

)2

gH (h)T (h) dh

=4

∫
h

(fH (h)T (h))
2

gH (h)

(
1− 3

4
T (h)

)
dh. (B.6)

Similarly,

EgH(h)

[
w(h, x ∈ Sed)

2
]
= 9

∫
h

(fH (h)T (h))
2

gH (h)
(1− T (h))dh. (B.7)

EgH(h)

[
w(h, x ∈ Sin)

2
]
= 16

∫
h

(fH (h)T (h))
2

gH (h)
(1− 1.5T (h))dh. (B.8)

Using the fact that P (x ∈ Sco) = 4
M , P (x ∈ Sed) =

4(
√
M−2)
M , P (x ∈ Sin) =

(
√
M − 2)2/M we get that (B.4) becomes

Var(w(h, x)) =
∫
h

(fH (h)T (h))
2

gH (h)
(1− ηT (h))ρdh− Pe

2, (B.9)

where η = 6a2+9a+3
4a2+9a+4 , ρ = 16a2+36a+16

M and a =
√
M − 2. The integral in (B.9) can

be represented as a functional [23]

R[gH(h)] =

∫
h

L (h, gH(h)) dh, (B.10)

where L (h, gH(h)) is the integrand in (B.9). To minimize the variance in (B.9)
with respect to gH(h), we will utilize the Lagrange multiplier method [22] with
the constraint I(h, gH(h)) =

∫
h
gH(h)dh = 1, which expresses the fact that gH(h)

should be a pdf. Since Pe is a constant, the Lagrangian function for (B.9) can be
expressed as

L(gH(h), λ) = R[gH(h)] + λI(h, gH(h)), (B.11)

where L is the Lagrangian function of gH(h) and a scalar Lagrange multiplier λ.
Applying the Euler-Lagrange equation [23] to (B.11), it follows that the following
equality must be satisfied

∂[L (h, gH(h)) + λgH(h)]

∂gH(h)
= 0. (B.12)

Further manipulation of equation (B.12) leads to

∂L (h, gH(h))

∂gH(h)
= −λ

∂gH(h)

∂gH(h)

∂L (h, gH(h))

∂gH(h)
=

(fH (h)T (h))
2

g2H (h)
(1− ηT (h)) ρ = λ. (B.13)
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From (B.13) we can express gH(h) as

gH (h) =

√
(fH (h)T (h))

2

λ
(1− ηT (h)) ρ

=
fH (h)T (h)

√
(1− ηT (h)) ρ

c
, (B.14)

where
√
λ is replaced with c for ease of representation. Using the constraint

I(h, gH(h)), we obtain that

c =

∫
h

fH (h)T (h)
√

(1− ηT (h)) ρdh. (B.15)

Inserting (B.15) in (B.14), we finally obtain that the optimal gH(h) equals

gH (h) =
fH (h)T (h)

√
(1− ηT (h)) ρ∫

h
fH (h)T (h)

√
(1− ηT (h)) ρdh

. (B.16)



Appendix C
Derivation of the Covariance

In order to denote different QAM constellation points, we will break the QAM
constellation set S into three sub-sets as S = Sin∪Sed∪Sco, where Sin, Sed and Sco

are the sets of inner, edge and corner points, respectively. Cov(wi(h, xi), wj(h, xj))
in (5.4) is obtained by evaluating EgH(h),xi,xj

[wi (h, xi)wj (h, xj)] for each of the
9 combinations of S across subcarriers i and j by utilizing the functions in (B.1)
- (B.3) as

EgH(h),xi,xj
[wi (h, xi)wj (h, xj)]

=
∑

a=in,ed,co

∑
b=in,ed,co

P (xi ∈ Sa)P (xj ∈ Sb)EgH(h)[wi(h, xi ∈ Sa)wj(h, xj ∈ Sb)],

(C.1)

Using P (xi,j ∈ Sin) = (
√
M − 2)2/M , we get

P (xi ∈ Sin)P (xj ∈ Sin)EgH(h)[wi(h, xi ∈ Sin)wj(h, xj ∈ Sin)]

=
(
√
M − 2)4

M2

∫
h

16f2
H (h)Ti (h)Tj (h)

gH (h)

[
(1− 2Ti (h))(1− 2Tj (h))

+ (1− 2Ti (h))Tj (h) + Ti (h)Tj (h) + Ti (h) (1− 2Tj (h))
]
dh

=
(
√
M − 2)4

M2

∫
h

16f2
H (h)Ti (h)Tj (h)

gH (h)

[
(1− Ti (h))(1− Tj (h))

]
dh, (C.2)

where Ti,j (h) is given as

Ti,j(h) = Q

 A(
σz

DFT(h)
i

)
 ,

where DFT (h)i,j represents the channel frequency response on subcarrier i, j

which is obtained from (2.24), Q(.) denotes the Q-function, A = dmin

2 with dmin

being the minimum Euclidean distance between two symbols in the signal constel-
lation and σz is the standard deviation of the AWGN.
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Similarly,

P (xi ∈ Sin)P (xj ∈ Sco)EgH(h)[wi(h, xi ∈ Sin)wj(h, xj ∈ Sco)]

=4
(
√
M − 2)2

M2

∫
h

8f2
H (h)Ti (h)Tj (h)

gH (h)

[
(1− Ti (h))(1−

1

2
Tj (h))

]
dh. (C.3)

P (xi ∈ Sin)P (xj ∈ Sed)EgH(h)[wi(h, xi ∈ Sin)wj(h, xj ∈ Sed)]

=
4(
√
M − 2)3

M2

∫
h

12f2
H (h)Ti (h)Tj (h)

gH (h)

[
(1− Ti (h))(1−

2

3
Tj (h))

]
dh. (C.4)

P (xi ∈ Sed)P (xj ∈ Sin)EgH(h)[wi(h, xi ∈ Sed)wj(h, xj ∈ Sin)]

=
4(
√
M − 2)3

M2

∫
h

12f2
H (h)Ti (h)Tj (h)

gH (h)

[
(1− 2

3
Ti (h))(1− Tj (h))

]
dh, (C.5)

P (xi ∈ Sed)P (xj ∈ Sco)EgH(h)[wi(h, xi ∈ Sed)wj(h, xj ∈ Sco)]

=
16(

√
M − 2)

M2

∫
h

6f2
H (h)Ti (h)Tj (h)

gH (h)

[
(1− 2

3
Ti (h))(1−

1

2
Tj (h))

]
dh, (C.6)

P (xi ∈ Sed)P (xj ∈ Sed)EgH(h)[wi(h, xi ∈ Sed)wj(h, xj ∈ Sed)]

=
16(

√
M − 2)2

M2

∫
h

9f2
H (h)Ti (h)Tj (h)

gH (h)

[
(1− 2

3
Ti (h))(1−

2

3
Tj (h))

]
dh. (C.7)

P (xi ∈ Sco)P (xj ∈ Sin)EgH(h)[wi(h, xi ∈ Sco)wj(h, xj ∈ Sin)]

=
4(
√
M − 2)2

M2

∫
h

8f2
H (h)Ti (h)Tj (h)

gH (h)

[
(1− 1

2
Ti (h))(1− Tj (h))

]
dh. (C.8)

P (xi ∈ Sco)P (xj ∈ Sed)EgH(h)[wi(h, xi ∈ Sco)wj(h, xj ∈ Sed)

=
16(

√
M − 2)

M2

∫
h

6f2
H (h)Ti (h)Tj (h)

gH (h)

[
(1− 1

2
Ti (h))(1−

2

3
Tj (h))

]
dh, (C.9)

P (xi ∈ Sco)P (xj ∈ Sco)EgH(h)[wi(h, xi ∈ Sco)wj(h, xj ∈ Sco)]

=
16

M2

∫
h

4f2
H (h)Ti (h)Tj (h)

gH (h)

[
(1− 1

2
Ti (h))(1−

1

2
Tj (h))

]
dh, (C.10)

Inserting (C.2)-(C.10) in (C.1) it follows that

EgH(h),xi,xj
[wi (h, xi)wj (h, xj)]

=

∫
h

f2
H (h)Ti (h)Tj (h)

gH (h)

[(
4a2 + 12a+ 8

M
− 4a2 + 8a+ 4

M
Ti (h)

)

×
(
4a2 + 12a+ 8

M
− 4a2 + 8a+ 4

M
Tj (h)

)]
dh

=

∫
h

f2
H (h)
gH (h) titjdh, (C.11)
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where ti = Ti (h)
(

4a2+12a+8
M − 4a2+8a+4

M Ti (h)
)

,

tj = Tj (h)
(

4a2+12a+8
M − 4a2+8a+4

M Tj (h)
)

and a =
√
M − 2.

Inserting (C.11) into (5.4) we get

2
∑

1≤i<j≤N

Cov (wi (h, xi)wj (h, xj)) =2
∑

1≤i<j≤N

∫
h

f2
H (h)
gH (h) titjdh

− 2
∑

1≤i<j≤N

PeiPej , (C.12)

Using the multinomial theorem [27], (C.12) becomes

2
∑

1≤i<j≤N

Cov (wi (h, xi)wj (h, xj)) =

∫
h

f2
H (h)
gH (h)

( N∑
i=1

ti

)2

−
N∑
i=1

t2i

 dh

− 2
∑

1≤i<j≤N

PeiPej . (C.13)
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