
LU-TP 22-26
May 2022

Combining Cross-Validation and Ensemble Creation for
Artificial Neural Networks

Anna Lena Hölldobler

Department of Astronomy and Theoretical Physics, Lund University

Bachelor thesis supervised by Patrik Edén

Abstract

Artificial neural networks (ANNs) are widely used nowadays, and the research into im-
proving their performances is continually ongoing. One main goal of ANNs is to have a
high generalization performance, which can be estimated through validation. Ensembles
can be useful to raise the generalization performance, but the validation of ensembles is
often computationally costly if the size of the training data set is limited. Therefore, this
thesis introduces shortcut ensembles during cross-validation, where several validation out-
puts get averaged to estimate the generalization performance of an ensemble. To evaluate
this method the validation performance of the shortcut ensemble was compared to valida-
tion and test performances of a single model and an actual ensemble, using two different
data sets for classification problems. The results show that the shortcut ensemble gives
better estimates for the generalization performance of an ensemble than a single model
during validation and it can approximate the validation performance of an actual ensem-
ble. Hence, the shortcut ensemble can provide a less costly way of validating ensembles
during cross-validation.

Popular Abstract

Robots are already playing a big role in our world, and if you dive into the world of science
fiction, you will very quickly come across stories of robots with artificial intelligence taking
over the world. Is this a realistic scenario? In reality, artificial intelligence is far away from
human thinking. But research is constantly aiming to improve artificial neural networks -
networks that partly mimic functions of human brains. This thesis investigates a method,
so-called shortcut ensembles, that might have the potential to improve their performance
at least a little bit.

A central function of our brain is to make conscious decisions, and everyone knows that
making important decisions is hard and can take a bit of time. We all experienced the
situation where we had a decision that we liked to discuss with other people to collect their
opinions before choosing ourselves. Usually, we feel that our decision has been approved if
many people agree with it, and it is more likely that we made a good decision. Similarly, if
you want an artificial neural network to make a decision it can be helpful to also ask more
than one network for an opinion and then choose the decision that agrees with the most
networks. This process is called ensemble learning and is already widely used.

In general, artificial brains need to be trained, similarly as we humans have to study if
we want to increase our ability to make decisions. While training, there are several com-
monly used possibilities to check the performance of an artificial neural network. However,
some of them are very costly in combination with ensemble learning, since then tedious
computations need to be performed and lots of time is consumed. Here, the new method
of creating shortcut ensembles could be able to help. The method suggests asking for
opinions from other networks directly during the process of checking the performance.

After studying the shortcut ensembles, it was possible to conclude that they are indeed
useful to approximate performances that can be reached when using ensemble learning with
artificial neural networks. There is still more research needed, testing the new method
on more complex systems, but it can make ensemble learning easier and more efficient.
Furthermore, ensemble learning might become an even more used learning method, helping
artificial brains to make better decisions. With this improvement, robots including artificial
intelligence might not be able to rule the world, but they could give us greater help in
everyday life.

2

Contents

1 Introduction 4

2 Theory 5
2.1 Overfitting . 5
2.2 Performance Measures . 5
2.3 K-fold Cross-Validation . 6
2.4 Ensembles . 7

3 Methods 8
3.1 Shortcut Ensemble . 8
3.2 Software and Algorithms . 10
3.3 Data Sets . 12

4 Results 14
4.1 Six-Dimensional Synthetic Data . 14
4.2 MNIST Data Set . 16

5 Discussion 17

6 Conclusion 19

A Hyperparameters 21

List of Figures

1 Over- and underfitting . 5
2 K-fold cross-validation . 6
3 Ensemble creation with K-Fold splitting 8
4 Shortcut ensemble . 9
5 Algorithm . 11
6 Synthetic data . 13
7 MNIST . 14
8 Results from synthetic data for several numbers of hidden nodes 15
9 Results from synthetic data using 50 hidden nodes 15
10 Results from MNIST database for several numbers of hidden nodes 16
11 Results from MNIST database using 50 hidden nodes 17

3

1 Introduction

Artificial neural networks (ANNs) denote a collection of different algorithms, inspired by
some functions of the human brain. They have the ability to learn during a training process,
meaning they can adapt their weights, mimicking synapses, while processing given training
data [1]. With this ability, ANNs play a key role in fields such as machine learning and
artificial intelligence.

During the past decades, the significance of machine learning including artificial in-
telligence increased drastically. With the availability of large amounts of data, increasing
computing powers, and improved algorithms, artificial neural networks grew and were ca-
pable to solve larger and larger problems. Their high flexibility and large scope lead to a
constant search for improvement of their performances.

A main goal of ANNs is to generalize well, e.g., having a high generalization perfor-
mance, which means that the network performs a mainly correct input-output mapping
also for previously unseen data [1]. The unseen data can be called test set and contains
data that was not used during creation or training of the ANN [1, 2]. However, it is usually
assumed that the test data is generated with the same process as the training data [2].

To estimate the generalization performance of an ANN, different validation techniques
can be used [2]. Similar to test data sets, validation data sets should be obtained in the
same way as the training data [3]. Often, the available training data set is simply divided
into training and validation data. The network is only trained on the training data and
the validation set is used to approximate its generalization performance [2]. Validation
techniques can further be used to decide on a suitable set of hyperparameters for the
network [3]. Some common methods are: the holdout method for large data sets, and
cross-validation or bootstrap for smaller data sets [2].

A common and powerful method to improve performances of ANNs is the creation
of ensembles. Ensembles, sometimes also called committees or committee machines, are
denoting a combination of several artificial neural networks, designed to improve the overall
output [4]. The general idea is that the combination of several networks is leading to a
better performance than even the best single member of the ensemble can provide [1]. In
practice, ensembles often lead to high time consumption during validation if the data set
is not large enough to allow for the holdout method. Hence, ensembles are often avoided
when performing cross-validation.

To improve the estimate of the generalization performance given by the validation
performance, this thesis investigates the process of building averages of the validation
outputs during cross-validation, here referred to as shortcut ensemble. Later these average
outputs are applied to a performance measure to obtain the validation performance of the
shortcut ensemble. In order to evaluate this validation performance, it will be compared
to validation and test performances from a single model as well as an actual ensemble.

4

2 Theory

2.1 Overfitting

Overfitting or overtraining is a process that can lead to a lower ability of a network to
generalize well [1]. During this process, a network gets trained too well on the training
data, thus it might also fit to noise of the training set [2]. An example of overfitting for
a two-class classification problem is shown in Figure 1(c), where the decision boundary is
also curved around single data points, that can be seen as noise. As opposed to overfitting,
an ANN is said to be underfitting if it fits poorly to both training and test data [2].
Here, an example is illustrated in Figure 1(a), where the decision boundary partitions
the classes badly in the training set. Figure 1(b) shows a well fitting model, where the
decision boundary separates the classes well, without fitting to noise. Both overfitting and
underfitting can be detected using validation methods during training.

3 2 1 0 1 2
x1

4

2

0

2

x2

(a)

3 2 1 0 1 2
x1

4

2

0

2

x2

(b)

3 2 1 0 1 2
x1

4

2

0

2

x2

(c)

Figure 1: Plots showing how well a model can fit to data. Plot (a) shows an underfitting model,
plot (b) a well fitting model, and plot (c) an overfitting model.

2.2 Performance Measures

There exist several methods to measure the performance of an ANN. One common measure
is the loss function, which quantifies the difference between an output yn computed by an
ANN and the corresponding target value dn [5]. Here, n = 1, 2, ..., N denotes a pattern of
the data set. The output yn is dependent on the input vector xn and the weights vector ω
of the ANN, yn = y(xn,ω). Therefore, the loss represents a function of the weights ω. In
this project the cross-entropy error (CEE) for binary classification problems was used as
loss function E(ω) [2]:

E(ω) = − 1

N

∑

n

[dn ln(yn(xn,ω)) + (1− dn) ln(1− yn(xn,ω))] , (1)

where the factor 1/N is a scaling factor [2].
For multi-class classification problems, so-called one-hot encoding is introduced to avoid

ordering of the classes. Hence, instead of assigning consecutive integers to the classes, the

5

target values are given by [2]:

dni =

{
1, if n ∈ Ii

0, if n /∈ Ii
, (2)

where Ii stands for the ith class. Then, the categorical cross-entropy error for multiple
classes can be defined as [2]:

E(ω) = − 1

N

N∑

n=1

I∑

i=1

dni ln yi(xn,ω), (3)

where yi(xn,ω) denotes the ith value of the output vector of pattern n. In general, the
goal is to minimize the loss for an ANN [5].

Using classification problems for ANNs gives rise to several new performance measures
in addition to the loss function. In this project, the accuracy is used, which stands for the
fraction of correctly classified inputs compared to the total amount of inputs [2].

2.3 K-fold Cross-Validation

K-fold cross-validation is a commonly used validation method when working with smaller
data sets, since statistical uncertainties lead to unreliable results when either training or
validation sets are too small [3]. Figure 2 presents the method schematically.

V

V

V

V

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

Data, splitted into K parts

K-fold cross-Validation

P val
1

P val
2

P val
3

P val
K

P val
k

Figure 2: Caption

4 cross-validation

5

Figure 2: Schematic showing K-fold cross-validation, adapted from [2]. The data is split into K
parts, then validation is performed in K folds, so that each partition of the data serves as vali-
dation set (V) once. The partitions that are not used for validation (T) are combined into the
training set. Each validation leads to a validation performance P val

k of the kth fold.

Following the description presented in [2], the data set is first split into K different parts of
approximately equal size, where the split is usually performed randomly. Then K different
folds are achieved, where in each fold one of the K data parts is declared as validation

6

set (V). The remaining parts (T) are joined together and form the training set for each fold,
respectively. Now K models get trained, one for each fold, using the respective training
and validation set. Last, the validation performance for the whole data set P val is given
by the average of validation performances P val

k , k = 1, 2, ..., K, obtained from the K folds.
Thus,

P val =
1

K

K∑

k=1

P val
k . (4)

Further, it is possible to repeat the procedure in C cycles using a different random split
every time. In this case the validation performance is given by

P val =
1

CK

C∑

c=1

K∑

k=1

P val
k,c . (5)

When performing cross-validation, only the validation performances are stored, whereas
the trained models are discarded [2].

Cross-validation is used to estimate the generalization performance of an ANN with a
specific set of hyperparameters. The idea is that a model trained on all data should perform
similarly to the models trained on training data excluding partition K. Hence, for future
data a network is trained with the whole training data set and the same hyperparameters
as during cross-validation. In this research, the performance of such a single model on
future data is denoted as P one.

2.4 Ensembles

One method to improve generalization is the creation of ensembles. A simple possibil-
ity to combine the individual networks is by averaging their output [6], which is also
the method used in this thesis. Considering the output ym of the individual network m
(m = 1, 2, ...,M), the output yens of an ensemble build by M members and using ensemble
averaging, is obtained by [6]:

yens =
1

M

M∑

m=1

ym. (6)

Using ensembles can improve the generalization performance, hence they can be used
as regularization tool [2]. This can be illustrated by looking at the squared error of the en-
semble, (yens(x)−⟨d|x⟩)2, where ⟨d|x⟩ is the conditional expectation value of the target [2].
Then, it can be observed that the ensemble error is decomposed as [2]:

(yens(x)− ⟨d|x⟩)2 = 1

M

∑

m

(ym(x)− ⟨d|x⟩)2

︸ ︷︷ ︸
(⋆)

− 1

M

∑

m

(ym(x)− yens(x))
2

︸ ︷︷ ︸
(⋆⋆)

. (7)

In this decomposition, the first term (⋆) is solely depending on the errors made by the
individual members of the ensemble. Meanwhile, the second term (⋆⋆), which is subtracted,

7

depends on the difference among the ensemble members [7]. The second term is also
being referred to as diversity term [2], and it shows that with increasing diversity among
the networks, it is possible to decrease the total ensemble error in equation (7) [7]. An
enlargement of variance among the members can be realised by allowing overfitting of the
individual ANNs [8].

There exist several approaches how different ensemble members can be created. The
strategy this project focuses on is K-fold splitting, which shows similarities to K-fold cross-
validation. The process is sketched in Figure 3.

X

X

X

X

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

Data, splitted into K parts

Training of ensemble members

member 1

member 2

member 3

member K

Figure 3: Schematic showing ensemble creation using K-fold splitting, adapted from [2]. Each
member is trained on a slightly different data set, where one part (X) from the total data is left
out.

The data set is again randomly split intoK approximately equally large divisions. Then, K
ensemble members are trained disregarding a different data division (X) for each member.
If the process is repeated in C cycles, each starting with a new random split, the ensemble
obtains a size of C ·K members. Due to training the members on slightly different data sets,
variance is introduced in between the members. It becomes clear that the diversity of the
networks increases with smaller values of K. In contrast to cross-validation, the obtained
models are kept, whereas the validation performances are usually not obtained [2].

3 Methods

3.1 Shortcut Ensemble

The shortcut ensemble aims to combine the two previously explained methods of K-fold
cross-validation and ensemble creation using K-fold splitting. In general, K-fold cross-
validation and K-fold splitting can have different K values independently from each other.

8

However, to be able to combine these methods, it needs to be required that K is identical
for both. The goal of the shortcut ensemble is to find a simpler way of estimating the gen-
eralization performance of an ensemble. Figure 4 illustrates the construction of a shortcut
ensemble.

1 2 3

1 2 3

1 2 3

1 2 3 1 3 2

3 3 3

C cycles

cycle 1

cycle 2

cycle 3

C members

member 1

member 2

member 3

pattern n

yn,1

yn,2

yn,3

P val
1,1

P val
3,1

P val
1,2

P val
1,2

P val
2,2

P val
3,2

P val
1,3

P val
2,3

P val
3,3

P val
k,c

yn,c

K-fold splitting + cross-validation

’Shortcut’ ensemble for pattern n

average validation

output for pattern n: ysce
n =

1

C

CX

c=1

yval
n,c

P val
sce = P ({ysce})

average validation performance for one model:

hP val
onei =

1

CK

CX

c=1

KX

k=1

P val
k,c

validation

training

Schematic for
K = 3, C = 3

1 2 3 1 3 2

1 2 3 1 3 2

1 2 1 2 1 2

3 3 31 2 1 2 1 2

3 3 31 2 1 2 1 2

1 2 3 1 3 2

3 3 31 2 1 2 1 2

1 2 3

3

Figure 4: Schematic of how to obtain a shortcut ensemble for pattern n. First, the average
of the validation outputs yscen for pattern n from different cycles is build. Then the validation
performance of the shortcut ensemble P val

sce is determined by applying the averaged outputs from
all patterns ysce to a performance measure.

In the beginning, K-fold cross-validation is performed in C cycles, but this time, the
trained models are kept. After C cycles, every pattern n of the data set has been vali-
dated C times, every time by a different trained model. Thus, for each pattern n, there
exist C validation outputs yvaln,c. Therefore, a shortcut ensemble can be created for each
pattern consisting of C members. The output from the shortcut ensemble for pattern n is
equal to the average of the outputs obtained during cross-validation:

yscen =
1

C

C∑

c=1

yvaln,c. (8)

The average outputs can then be used to acquire the validation performance P val
sce of the

shortcut ensemble:
P val
sce = P ({ysce}). (9)

9

The project compares three different estimates of the generalization performance ob-
tained during cross-validation: ⟨P val

one⟩ from one single model, P val
sce from the shortcut en-

semble, and ⟨P val
ens⟩ where an actual ensemble is created with K-fold splitting in each fold

during validation. To enable comparison the same amount of folds and cycles are used
as for cross-validation. Moreover, the generalization performance is tested on new unseen
data, by both a single model giving P one and an ensemble leading to P ens. In total, this of-
fers five different values, three validation performances and two performances on new data,
that can be compared to each other in order to investigate the usefulness of a shortcut
ensemble.

3.2 Software and Algorithms

The investigation of the shortcut ensemble is performed numerically using the machine
learning platform TensorFlow [9] for python. For creating the ANNs the functions from
Keras [10], a deep learning API (Application Programming Interface) of TensorFlow, are
used. This library provides simple possibilities to construct ANNs with adjustable hyper-
parameters. For this project, only multi-layer perceptrons (MLPs) with a single hidden
layer are used.

An outline of the algorithm used for this project is illustrated in Figure 5. As already
sketched in Section 3.1, cross-validation is performed in C cycles and K folds. During
validation, the validation performance of a single model and an actual ensemble is collected.
Further, all validation outputs are saved and combined to shortcut ensemble outputs. In
addition, the trained models from cross-validating the single model are kept. After the
cross-validation process, it is left to find the generalization performances P one and P ens.
Hence, a single model is trained on all training data and the already saved models from
cross-validation are combined into one ensemble. Both the single model and the ensemble
are applied on the test set to obtain their generalization performances.

In general, it was not the goal to optimize hyperparameters, but to concentrate on the
comparison of different validation and test performances, when using one reasonable set of
hyperparameters. The sets of hyperparameters that were specialized in the MLP models
for different data sets are shown in Appendix A. The only hyperparameter that was not
fixed in the beginning of the study is the number of hidden nodes, since that one has
a high influence on overfitting and it needs to be found during training. Therefore, the
obtainment of all validation and performance measures was embedded in a loop through
different numbers of hidden nodes in the range of 5 to 100. Further, it was chosen to
use C = 3 for the number of cycles and K = 5 for the number of folds. The number of
cycles must be larger than 1 for a shortcut ensemble to be formed, but should not be too
large in order to keep the running time of the program reasonable.

10

1. Load training and test data.

2. Define set of hyperparameters.

3. Loop through di↵erent numbers of hidden nodes or fix number of hidden
nodes.

Cross-validation (C cycles, K folds)

3.1 Loop through cycles.

(a) Split training data in K folds.

(b) Loop through folds.

i. Train model.

ii. Save trained model.

iii. Obtain output of validation data.

iv. Calculate loss and accuracy.

v. Save output for shortcut ensemble.

vi. Build actual ensemble (with same K and C) and obtain val-
idation performances.

3.2 Build average validation performance hP val
onei for one model.

3.3 Build average output ysce for shortcut ensemble.

3.4 Validate shortcut ensemble to obtain P val
sce .

3.5 Build average validation performance hP val
ensi of actual ensemble.

Test set

3.6 Use the same set of hyperparameters as before, train one model on all
training data.

3.7 Validate the model using the test set to obtain P one.

3.8 Combine saved, trained models from cross-validation to a test ensemble.

3.9 Run test ensemble on test data, obtain P ens.

Figure 1: Sketch of the algorithm used to obtain the five performance measurements that are used
for comparison.

4Figure 5: Sketch of the algorithm used to obtain the five performances that are compared to each
other.

11

To approximate the errors on the performances, standard error estimates were used.
The validation performances of a single model and an ensemble were build by creating
averages from C cycles and K folds. Thus the standard error of the mean (SEM) is used:

SEM =
σ√
C ·K

, (10)

where σ is the standard deviation of the validation performances P val
k,c of the different folds.

For the test performances and the validation performance of the shortcut ensemble, the
standard error (SE) was used:

SE =
σ√
N
. (11)

Here, N is the total number of patterns and σ denotes the standard deviation of the
validation performances from the different patterns.

3.3 Data Sets

Two different data sets were used in this research. The first one is a 6-dimensional synthetic
data set for binary classification. Secondly, the MNIST database is used, providing a 10-
class classification problem.

The use of synthetic data rises the possibility to control the exactness of the performance
on test data, since the test set can be created arbitrarily large. With a test set that is
large enough, the error on the generalization performance estimates P one and P ens will
have a negligible size. This simplifies the comparison between the different validation
performances.

The synthetic data is obtained using random data points from two six-dimensional
normal distributions [11]. The two classes are chosen to have different width and to be
overlapping. Furthermore, one distribution is assigned to the target value 0, whereas the
other one is assigned to the target value 1. A similar two-dimensional data set is shown in
Figure 6.

12

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Figure 6: Plot of a 2D synthetic data set similar to the one used in this project.

For this project a training set of 400 input points with corresponding target values was
used together with a test set consisting of 15000 data points. Before applying the data to
the algorithm, it got preprocessed, such that each input in the training data has a variance
of 1 and a mean of 0. The same preprocessing was used for both training and test data.

The MNIST database (Modified National Institute of Standards and Technology data-
base) introduced by LeCun et al. [12] consists of greyscale images of handwritten digits.
The database originates from the larger NIST database (National Institute of Standards
and Technology database). The training set of MNIST consists of 60000 samples, whereas
the training set includes 10000 images [13]. Some examples of images from the training set
are shown in Figure 7.

13

0 20

0

10

20

Label: 2

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 3

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 4

0 20

0

10

20

Label: 3

0 20

0

10

20

Label: 5

0 20

0

10

20

Label: 3

0 20

0

10

20

Label: 6

0 20

0

10

20

Label: 1

0 20

0

10

20

Label: 7

0 20

0

10

20

Label: 2

0 20

0

10

20

Label: 8

0 20

0

10

20

Label: 6

0 20

0

10

20

Label: 9

Figure 7: Plot of examples from the training set of the MNIST database.

4 Results

4.1 Six-Dimensional Synthetic Data

For a first comparison of the different performances introduced in Section 3.1, all perfor-
mances except the validation performance of the actual ensemble ⟨P val

ens⟩ are plotted for
different numbers of hidden nodes. These plots are shown in Figure 8, where the accuracy
(Figure 8(a)) and the cross-entropy error (Figure 8(b)) are used as performance measures.
The plots are showing that 50 hidden nodes are an acceptable size of the network, which
will be used from now on for further comparison of the estimates. Therefore, ⟨P val

ens⟩ was
also plotted for 50 nodes.

14

(a) (b)

Figure 8: Plot of the validation performance of one model and the shortcut ensemble, as well as the
performance of one model and the ensemble for different numbers of hidden nodes. Plot (a) shows
the accuracy, and plot (b) the cross-entropy error. As data set, the 6-dimensional synthetic data
was used. The results for 50 nodes, highlighted by a box, are shown in greater detail in Figure 9.

Figure 9 shows the different performance estimates spread out using 50 hidden nodes.
First, there are the two generalization performances P one and P ens. As expected, the
ensemble gives a better performance with a lower CEE and higher accuracy, even though
the differences are relatively small, approximately 5 · 10−3 for the accuracy and 1.5 · 10−2

for the CEE. This result is consistent with the theory. Thus, it is desirable to find a good
approximation for P ens. Furthermore, the standard errors on the test performances are
indeed small enough to be neglected, which was desired by choosing a large test set.

Pone Pens Pval
one Pval

sce Pval
ens

different performances

0.960

0.965

0.970

0.975

0.980

0.985

Ac
cu

ra
cy

(a)

Pone Pens Pval
one Pval

sce Pval
ens

different performances

0.050

0.075

0.100

0.125

0.150

0.175

0.200

CE
E

(b)

Figure 9: Different performances for accuracy (a) and CEE (b) when using 50 hidden nodes are
separated for better visualization of the error bars. As data set the 6-dimensional synthetic data
was used.

15

Next, the three validation performances are compared to P ens. First of all, the shortcut
ensemble seems to offer a better estimate for the performance on future data then a single
model. The standard error of the mean for ⟨P val

one⟩ has the order of 5 · 10−3 for the accuracy
and 3·10−2 for the loss. For P val

sce there is a standard error of approximately 8·10−3 for accu-
racy and 5 ·10−2 for the cross-entropy error. Considering the actual ensemble, the shortcut
ensemble leads to a similar validation performance. In this case, the shortcut ensemble per-
forms slightly better when looking at the accuracy, but slightly worse when considering the
cross-entropy error. The standard errors of the mean for ⟨P val

ens⟩ are approximately 5 · 10−3

for accuracy and 2 · 10−2 for the CEE. Although the goal was to estimate P ens, it is still
interesting to also look at the comparison to P one. It can be noticed that the shortcut
ensemble also estimates P one better during validation than a single model.

4.2 MNIST Data Set

Similarly as for the synthetic data set, both accuracy and loss performances are first plotted
for several numbers of hidden nodes. This can be seen in Figure 10, which shows the plots
for the performances on the test set of one model and the ensemble as well as the validation
performances of one model and the shortcut ensemble. A network with 50 hidden nodes
seems to give acceptable results, even though the performance is further improved using
a larger network with 70 or 100 hidden nodes. Considering that the computing time for
the validation of an actual ensemble should stay reasonable, a network size of 50 nodes is
chosen for further comparison. Thus, for 50 nodes also the validation performance of the
ensemble is plotted.

(a) (b)

Figure 10: Plot of the validation performance of one model and the shortcut ensemble, as well as
the performance of one model and the ensemble for different numbers of hidden nodes. Plot (a)
shows the accuracy, and plot (b) the categorical cross-entropy error, as data set, the MNIST
database was used. The results for 50 nodes, highlighted by a box, are shown in greater detail in
Figure 11.

16

In general, almost all error bars are of negligible sizes. Solely the standard errors for the
test performance for one model are slightly larger, they are of the order of 10−3 for the
accuracy and 10−2 for the loss.

Focusing on a network with 50 nodes (Figure 11), it appears that the generalization
performance of the ensemble P ens is clearly better than the generalization performance of
a single model P one. The performance of the ensemble is predicted fairly well by both P val

sce

and ⟨P val
ens⟩, but ⟨P val

ens⟩ remains a better estimate. Compared to the validation performance
of a single model ⟨P val

one⟩, the ensemble and the shortcut ensemble approximate P ens clearly
better. However, ⟨P val

one⟩ gives a good approximation of the generalization performance of
one model.

Pone Pens Pval
one Pval

sce Pval
ens

different performances

0.960

0.965

0.970

0.975

0.980

Ac
cu

ra
cy

(a)

Pone Pens Pval
one Pval

sce Pval
ens

different performances

0.08

0.10

0.12

0.14

0.16
Ca

te
go

ric
al

 C
EE

(b)

Figure 11: Different performances for accuracy (a) and categorical CEE (b) when using 50 hidden
nodes are separated for better visualization of the error bars. As data set, the MNIST database
was used.

5 Discussion

The results obtained in this research indicate that a shortcut ensemble is an appropriate
tool to estimate the generalization performance P ens of an ensemble. For both data sets,
the 6-dimensional synthetic data and the MNIST database, the validation performance of
the shortcut ensemble gave a better approximation of P ens than one single model during
cross-validation. This holds true for both performance measures that were used, accuracy
and cross-entropy error.

Considering the 6-dimensional synthetic data set, the shortcut ensemble gave consis-
tently a better validation result compared to the validation of one model. This holds true
regarding the test performances of both one single model and the ensemble. With the
use of synthetic data, it was possible to reduce the standard errors of the generalization
performance to be of negligible sizes. In contrast to that, the standard error of the mean
of ⟨P val

one⟩ and ⟨P val
ens⟩, as well as the standard error for the shortcut ensemble, are significant

17

and cannot be neglected.
One possibility to further reduce these uncertainties could be to use a larger number of

cycles, although this can lead to longer computation times. Additionally, an increase of the
number of folds could limit the error on the validation performances, but this possibility is
often limited by the amount of available training data. Also, the number of folds influence
the diversity of the ensemble. An increased number of folds leads to less variance among the
training data of the ensemble members and, therefore, to more similar ensemble members.
This can weaken the performance of an ensemble.

The comparison of P val
sce with ⟨P val

ens⟩ does not lead to a clear conclusion in the case of
the 6-dimensional synthetic data. The shortcut ensemble gave a better accuracy, whereas
the actual ensemble led to a loss value closer to the loss of the generalization perfor-
mance P ens. However, due to the error bars on both quantities P val

sce and ⟨P val
ens⟩ it is not

possible to be certain about the tendency which of the validation performances leads to
a better estimate. Nonetheless, it is reasonable to say that the shortcut ensemble can be
used to approximate the validation result of the ensemble. Moreover, it can save time
during the validation process compared to an actual ensemble. Hence, it can serve as en
estimate of P ens.

In contrast to the synthetic data set, the MNIST data set leads to a very clear result.
Especially on the validation performances the errors are small enough to be neglected,
due to the large data set provided by MNIST. Looking at how well the different estimates
approximate P ens, the use of the MNIST data set confirms that the shortcut ensemble is a
closer approximation than the single model. Contrarily, the actual ensemble clearly yields
an even better estimate of the generalization performance in this case, considering both
accuracy and loss. For the use of a single model on future data, the single model provides
the best estimate during validation.

Concentrating on the generalization performances on MNIST, the study clearly showed
that ensembles should be created, when approaching MNIST with a simple MLP. The
generalization performance of the ensemble was clearly better than of a single model. This
trend was also observed among the validation performance. Both P val

sce and ⟨P val
ens⟩ were

visibly better than ⟨P val
one⟩. Therefore, the shortcut ensemble indicated successfully that the

use of an ensemble improves the generalization performance significantly.
A simple MLP might not be as good for approaching MNIST as, e.g., convolutional

neural networks (CNNs), which make it possible to achieve very high accuracies on the
test set [14]. However, this study focused on comparing different validation results. Hence,
the performance of the ANN only had to be reasonably good but not optimized.

For further research it would be interesting to try out the method of a shortcut ensemble
on a broader spectrum of network structures, tasks, and data sets. This research only
applied MLPs with one hidden layer, whereas nowadays often different or more complex
network structures are used, e.g., CNNs. The study of shortcut ensembles can also be
extended by putting a higher focus on optimizing hyperparameters. Furthermore, this
study focused solely on two classification problems, one binary and one multi-class problem.
However, ANNs are often used for regression tasks as well. Therefore, it remains open to
study the shortcut ensemble applied on various other settings.

18

6 Conclusion

The possibility of building a shortcut ensemble to improve the validation performance of
ANNs was investigated by comparing it to a single model and an actual ensemble. Using the
shortcut ensemble for validation gave better estimates of the generalization performance
of an ensemble than a single model during validation. Further, it was observed that the
shortcut ensemble leads to an approximation of the validation performance of an actual
ensemble. Using the MNIST database, the shortcut ensemble managed to show that an
ensemble leads to a clearly better performance on the data set compared to a single model.
Overall, these findings show that a shortcut ensemble can replace an actual ensemble during
validation, which yields a quicker possibility to approximate the validation performance of
an ensemble during cross-validation.

Acknowledgments

First, I would like to thank my supervisor Patrik Edén for his great support and guidance
during this project. In addition, I would like to express my appreciation to my friends and
family, for their mental support and their feedback on this thesis.

19

References

[1] Haykin S. Neural Networks - a comprehensive foundation. 2nd ed. Prentice Hall;
1999.

[2] Ohlsson M, Edén P. Lecture notes on Introduction to Artificial Neural Networks and
Deep Learning (FYTN14/EXTQ40/NTF005F). Lund University; 2021.

[3] Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. [Accessed 19
May 2022]. Available from: http://www.deeplearningbook.org.

[4] Re M, Valentini G. In: Ensemble methods: A review; 2012. p. 563-94.

[5] Jung A. Machine Learning: The Basics. Springer Nature Singapore Pte Ltd; 2022.

[6] Bishop CM. Pattern Recognition and Machine Learning. Springer Science+Business
Media; 2006.

[7] Bishop CM. Neural Networks for Pattern Recognition. Oxford University Press, Inc.;
1995.

[8] Sollich P, Krogh A. Learning with ensembles: How overfitting can be useful. vol. 8;
1995. p. 190-6.

[9] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al.. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Systems; 2015. [Accessed 19 May
2022]. Available from: https://www.tensorflow.org/.

[10] Chollet F, et al.. Keras; 2015. [Accessed 19 May 2022]. Available from: https:

//keras.io.

[11] Developers N. NumPy Reference; 2022. [Accessed 19 May 2022]. Available from:
https://numpy.org/doc/stable/reference/index.html.

[12] Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document
recognition. Proceedings of the IEEE. 1998;86(11):2278-324.

[13] LeCun Y, Cortes C, Burges CJC. THE MNIST DATABASE of handwritten digits;.
[Accessed 19 May 2022]. Available from: http://yann.lecun.com/exdb/mnist/.

[14] An S, Lee M, Park S, Yang H, So J. An Ensemble of Simple Convolutional Neural
Network Models for MNIST Digit Recognition; 2020.

20

http://www.deeplearningbook.org
https://www.tensorflow.org/
https://keras.io
https://keras.io
https://numpy.org/doc/stable/reference/index.html
http://yann.lecun.com/exdb/mnist/

A Hyperparameters

Table 1: Table presenting the hyperparameters used for the synthetic data set.

Hyperparameter Value
number of hidden layers 1
activation function hidden layer tanh
activation function output layer sigmoidal
minimization method Adam
learning rate 0.02
epochs 300
batch size 30

Table 2: Table presenting the hyperparameters used for the MNIST data set.

Hyperparameter Value
number of hidden layers 1
activation function hidden layer tanh
activation function output layer softmax
minimization method Adam
learning rate 0.01
epochs 20
batch size 200

21

	Introduction
	Theory
	Overfitting
	Performance Measures
	K-fold Cross-Validation
	Ensembles

	Methods
	Shortcut Ensemble
	Software and Algorithms
	Data Sets

	Results
	Six-Dimensional Synthetic Data
	MNIST Data Set

	Discussion
	Conclusion
	Hyperparameters

