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Abstract

Surveillance cameras are an important part of protecting people in their ev-
eryday life. Some of these cameras carry a protective dome which sometimes
creates unwanted image artifacts in the form of circular lens reflections. One
could solve this problem mechanically by developing less reflective domes, but
this has shown to be quite hard.

Another, perhaps more reliable solution, would be to develop a neural net-
work which can filter out the reflections. Many reflection removal networks
already exist. However, none of them have been trained on dome reflections.

In this thesis, we investigate the dome reflection removal performance of
four existing reflection removal networks. We fine-tune the networks using our
own synthesized dataset, and evaluate the results both quantitatively and quali-
tatively.

The results show that the Enhanced Reflection Removal Network perform
best. Moreover, this fine-tuned network shows a significant improvement in the
dome reflection removal ability, compared to the initial pre-trained network.

Keywords: Reflection removal, Dome cameras, Image artifacts, Convolutional neural
networks, Generative adversarial networks
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Chapter 1

Introduction

This chapter formulates the reflection removal problem and proposes our solutions to it. We
present previous work and the utilities used during our implementation.

1.1 Background
Surveillance is an important part of protecting people in their everyday life. By monitoring
the citizens’ behavior, wrongdoing can both be prevented and discovered. Perhaps the most
standard way of surveillance is using video cameras. Today, cameras are installed in almost
all public places.

A common camera in surveillance is the dome camera shown in Figure 1.1. As noticed, it
is easily recognized by its protective plastic cover, also called dome. This type of camera has
the advantage of wide angle images, while the dome makes it more durable. Figure 1.2 shows
images taken with a dome camera under normal conditions.

Figure 1.1: A dome camera. Image taken from amazon.com
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1. Introduction

Reflection-free image in laboratory environment. Reflection-free image in daylight.

Reflection-free image at night. Reflection-free image at night.

Figure 1.2: Four examples of reflection-free images in different en-
vironments.

However, the protective transparent dome of these cameras tends to reflect the camera
lens back into the image. This phenomena only happens in certain lighting conditions, but
can still be disturbing. The reflections generally take the appearance of light circles in the
image. Figure 1.3 shows examples of images with such dome reflections. As seen in the figure,
the dome reflection decreases the overall image quality and is therefore something one wants
to avoid.

One solution to this could be to develop a less reflective dome, but this approach has
shown to be rather hard in practice. A possibly more reliable method is to filter out the
reflections after the image is taken – a procedure often referred to as reflection removal.

Reflection removal is the process of separating a reflection layer from an image and keep-
ing only the background, called transmission layer. As mentioned in Zhang et al. (2018), the
original image, I , can be approximated as

I = T + R, (1.1)

where T and R represents the transmission and reflection layers, respectively.
Since the number of unknowns exceeds the number of equations in Eq. 1.1, reflection

removal is an ill-posed problem. There exists a large number of possible T and R for each
image, and there are no known priors or additional constraints (Zhang et al., 2018).

To add additional constraints, one possible approach is to use multiple images of the same
scene captured in various ways or at different angles. However, since surveillance cameras
have specific settings and are stationary mounted, this is not possible in our case.

A better approach would be single image reflection removal, where only one image is utilized
in the removal process. The most recent solutions are built on approximating the transmis-
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1.2 Contributions

Subtle reflection in laboratory environment. Subtle reflection in daylight.

Strong reflection in laboratory environment. Subtle reflection at night.

Figure 1.3: Four examples of images containing dome reflections in
different environments.

sion layer using neural networks, where no priors nor constraints are needed. These kinds of
neural networks rely on images with reflections and their corresponding ground truth – an
identical image without the reflection.

However, one of the great challenges in single image reflection removal is the retrieval of
a reflection image and its corresponding ground truth. This is hard since a reflection appears
due to a reflective surface being present in the image. If the surface is removed, more details
than just the reflection would differ between the images. However, assume it was possible
to create such image pairs. Then one could proceed to train a neural network to input a
reflection image and output the filtered image without reflection.

1.2 Contributions
Amanlou et al. (2022) systematically reviewed recent research in single image reflection re-
moval. The neural networks presented have not been trained on any specific type of reflec-
tion. In contrary, our project will solely focus on reflections from dome cameras.

In this thesis, we fine-tune four neural networks and evaluate their dome reflection re-
moval results to determine the best performing one. To fine-tune, we create a synthetic
dataset of blended images. Our blended images are generated by adding a transmission and
reflection layer together. Our reflection layers are processed images taken in a laboratory
environment against dark background. To evaluate, we use 38 images containing real-world
dome reflections and 445 synthetic images. Our contributions can be summarized:

• From transmission and reflection layers, we create a dataset containing blended im-
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1. Introduction

ages. The reflection layers are based on images taken in a laboratory environment. Our
dataset is used for both training and evaluation.

• We gather 38 images containing real dome reflections, which are used for evaluation.

• We train four neural networks built for reflection removal on our synthetic dataset.
Thereafter, we evaluate their performance on both synthetic and real-world data.

• We determine the best performing network and use it to remove reflections from im-
ages taken with dome cameras. The network, ERRNet, performs best during evalua-
tion on both synthetic and real-world data.

1.2.1 Individual Contribution
To the highest extent possible, we have collaboratively worked on this thesis. We have actively
participated in all parts, including research, implementation and writing.

Regarding implementation, the work was divided into training and evaluation. Tove
mainly focused on training and testing the networks, while Ellen wrote code for evaluation.

During the phase of writing, we worked individually on different parts, although review-
ing was done collectively. We estimate that we have contributed equally.

1.3 Previous Work
Through recent years, multiple different algorithms for reflection removal have been pro-
posed (Wan et al., 2017). Each algorithm has its own advantages and disadvantages, and this
has led to varying results. In this chapter, we discuss previous work within the field.

1.3.1 Multiple-Image Methods
Some reflection removal algorithms require multiple image input. This is a way to add pri-
ors and constraints, making the problem formulation less ill-posed. The most elementary
solutions position the camera in different viewpoints, as done by Be’ery and Yeredor (2008).
Later implementations, like Gai et al. (2012) and Guo et al. (2014), used the same technique.

Other multiple image methods use images with and without an added feature. One exam-
ple of such a feature is polarizing filters, as introduced by Schechner et al. (1999). The same
approach has later been implemented by both Diamant and Schechner (2008) and Kong et al.
(2014).

Furthermore, Agrawal et al. (2005) and Agrawal et al. (2006), instead made use of flash
and no-flash image pairs. A third approach is to use different focuses as features, which was
done by Schechner et al. (1998).

In the case of a stationary mounted dome camera, neither of these features are available.
This makes these methods ineffective in our type of application. Instead, our focus will be
single image reflection removal.
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1.4 Utilities

1.3.2 Single-Image Methods
Single image reflection removal requires only one image. Here, the early solutions are meth-
ods built on optimizing different priors of one of the layers.

These priors could, for instance, be related to the image gradient distribution. It is a
well-known fact that the gradient of an image is sparse. Thus, the decomposition of the
two layers, transmission and reflection, can be based on minimizing the total number of
corners and edges. Levin et al. (2004) used this edge minimization approach. Later, Levin
and Weiss (2007) used the same optimization criteria, but with the difference of the end-
user interactively classifying parts of the gradients as either belonging to the transmission or
reflection layer.

Other methods used the plausible assumption that the camera is focused on the trans-
mission part of the image. Thus, the reflection layer should be more blurry. Sharp edges can
therefore be marked as part of the background, while smoother ones are assumed to belong
to the reflection. Both Yan et al. (2013) and Wan et al. (2016) used this premise when creating
their models.

Lastly, an effect related to the physical properties of the reflective material, is that thick
glass tends to create a double reflection. This phenomena is called the ghosting effect. The first
reflection is created when the light hits the reflective surface, and the second when it leaves
it. Therefore, there are two reflections, with a shift in between. Shih et al. (2015) based their
algorithm on this assumption.

Building a model based on optimizing one of these assumptions makes the models less
flexible. They perform well for the cases they are optimized for, but the results are poor for
other types of reflections. In the first optimization case, Zhang et al. (2018) argue that the
image gradient distribution is a low-level feature. The results will therefore be limited when
a high-level understanding of the image is necessary. Moreover, the assumption regarding
blurry reflection layers, breaks down when the reflection is sharp, and the third as soon as
the ghost effect is not clear enough.

Instead, the most recent models have been built using deep learning techniques. This has
led to better results on natural images which are more versatile. The underlying assumption
is that the reflection and transmission layers have different distributions, and that machine
intelligence can learn to tell the difference. This idea was first implemented by Fan et al.
(2017b), in a model called CEILNet. Since then, numerous others have built similar neural
networks.

1.4 Utilities
Training a convolutional deep learning model is a computationally heavy task, which requires
high-performing GPUs. We performed both training and testing using the GPU cluster Alvis.
Alvis is a resource provided by the Swedish National Infrastructure for Computing (SNIC) at
Chalmers University, Göteborg. The cluster contains a variation of GPUs, but the majority
of times, we trained using a NVIDIA A40. This specific GPU has 8GB VRAM, 64GB system
memory and 16 CPU cores.

All scripts are based on Python 3.8. Apart from this, the pre-implemented networks
required different packages. See their respective GitHub repositories for further details.
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Chapter 2

Dataset

In this chapter, we describe the generation of synthetic data and the gathering of real-world
data. Furthermore, we present the most commonly used evaluation metrics in single image
reflection removal.

2.1 Real and Synthetic Dataset
One great challenge with single image reflection removal is to retrieve a dataset of images
containing reflection and the corresponding ground truth, without reflection. The problem
originates in the fact that light refraction varies between materials. Due to this, a photo taken
through a plastic dome will be unaligned compared to a photo taken with the same camera,
but without dome. A combination of such images can therefore not be considered a pair
consisting of a reflection image and its ground truth background. Note that some reflection
removal networks are able to handle unaligned data, but this does not hold for the majority.

Instead, we synthesize the images used for training by blending a transmission and reflec-
tion layer together. The transmission layer will then act as the target for the neural network.
In terms of images containing real reflections, they are only used for evaluation.

2.1.1 Final Synthetic Dataset
We use laboratory reflection images and background images to create synthetic reflections.
All these images are RGB, with dimensions 1080 × 1920 and are gathered from four Axis
dome cameras. The different camera models we use are called P5655, Q6075, Q6135, and
Q6315. In total, we collected 1488 background images from Axis’s database and we took
2060 reflection images in a laboratory environment. We did the latter by placing the specific
camera in a dark room and, while aiming a light source at it, took pictures towards a dark
wall. Figure 2.1 further explains the set up. By shifting the camera’s position and the light
source’s position and strength, we obtain a diverse set of reflection images.

13



2. Dataset

Figure 2.1: Photo of the laboratory environment, where we created
the reflection layers.

To create the final dataset, we process the images before blending. Previous single image
reflection removal networks have all used synthetic data and similar code for generation. We
start from the synthesizing code written by Zhang et al. (2018) and make changes to better
fit the requirements for our data. After some trial and error, we find the generated images
comparable to real reflection images taken by Axis’s dome cameras.

To create a more realistically looking reflection layer, the reflection image is pre-processed
using a Gaussian blur and segmentation. The size of the Gaussian blur is a random odd
integer between 3 and 17, and the variance is randomly chosen between 0.2 and 4. Moreover,
the segmentation threshold is based on which camera and what lab session the reflection
layer is created. Due to the large variation in brightness, for camera Q6075, the images are
also separated according to a “light” and “dark” category. Table 2.1 shows the segmentation
thresholds, lab session, and number of images per camera.

Table 2.1: Camera type, segmentation thresholds, lab session and
number of images of that session.

Camera category Threshold Lab Session Nbr of images
Q6135 0.25 1st 92
Q6135 0.22 2nd 391
Q6075 light 0.4 1st 205
Q6075 dark 0.3 1st 362
P5655 0.25 1st 277
Q6315 0.55 1st 39
Q6315 0.37 2nd 85
Q6315 0.3 3rd 609

To allow the generation of a larger, fixed size dataset, while decreasing the risk of over-
fitting, we augment the images. The data augmentation consists of mirroring and random
cropping of both reflection and background layer. We choose the final dataset to contain
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2.1 Real and Synthetic Dataset

4000 blended train images and 445 blended test images.
To create the final dataset, we pair a random background image with a random reflection

image. Next, the images are both randomly mirrored – the background only in the y-axis,
and the reflection in either the y-axis, x-axis or both. Additionally, we crop the layers to the
same dimensions.

However, due to the properties of the reflection layer, we restrict the cropping. One
observation of the reflection layer is that the dome reflection is always centered in the x
direction, but not necessarily in y. Therefore, to let the dataset have similar properties to
real-world images, we keep the reflection centered in the x-direction even after cropping.
Moreover, the crop of the reflection image also has to be more restricted to a certain area.
This is because we want to keep the main part of the reflection after the images are cropped.

Another fact which influences the cropping is that some of the reflection images contain
a water stamp in the upper part of the image. Therefore, the reflection images are split into
two categories: layers with and without water stamp.

• If the image does not contain water stamp, we randomly crop it within the range 80-
280 pixels on both sides in the x-direction. In the y-direction, we crop it randomly,
but not necessarily equally, on both sides within the range 4-200 pixels.

• On the other hand, if the image contains water stamp, we crop it randomly within the
range 160-360 pixels on both sides in the x-direction. In the y-direction, we once again
crop it randomly, but not necessarily equally, on both sides but now within the range
80-120 pixels.

Once the reflection is cropped, the corresponding (random) background image is cropped
according to the dimensions of the reflection image. Thus, this crop is not restricted in any
way except dimension-wise. Figure 2.2 shows two examples of a blended images and their
ground truths.

Original reflection im-
age.

Processed reflection
image.

Background image, i.e.
ground truth.

Blended background
and reflection.

Figure 2.2: Two cropped blended images with corresponding back-
ground and reflection images.

2.1.2 Real-World Data
In terms of real-world data, we gather 38 images from Axis’s database, chosen with the in-
tention to cover different types of reflections. For instance, these images cover both strong
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2. Dataset

and subtle reflections, outdoor and indoor environment, natural and artificial lighting, and
differently colored reflections.

2.2 Evaluation Metrics
According to Amanlou et al. (2022), reviewing earlier single image reflection removal papers,
there are two frequently used metrics for evaluation. These are the peak signal-to-noise ratio
(PSNR) and the structural similarity index measure (SSIM).

2.2.1 PSNR
The PSNR metric is a global comparison on pixel level between images. PSNR is calculated
in decibels (dB) and can be described through the formula:

PSNR = 10 log10

(
M2

MSE

)
,

where M is the maximum possible pixel value and MSE is the mean squared error between
the images.

In the extreme case where the images are identical, the MSE becomes zero and the PSNR
goes to infinity. In general, the higher the PSNR is, the higher is also the image quality
(i.e. similarity between two images). Nevertheless, if the PSNR is higher than 40 dB, the
human eye generally has a hard time to observe a distinct difference between the quality in
the images. Therefore, this threshold is often used as a guideline of what should be considered
high image quality (Chervyakov et al., 2020).

2.2.2 SSIM
As mentioned, the PSNR returns a quality score based on the global variations in two im-
ages. However, this is not necessarily how humans would compare and interpret differences
in images. The human mind would rather assess the image quality based on the ability to
mentally recover information.

SSIM is a method which tries to interpret image quality more similarly to humans. To
do this, SSIM takes local luminance, contrast and structural features into account in images,
rather than only comparing images globally through the pixel-wise difference.

For instance, even if the contrast between an image and its corresponding reference varies,
this does not mean that the human brain would consider the quality to differ greatly. If the
compared image instead is blurred, the human mind will recognize a larger decrease in image
quality. The MSE could return similar scores for both these artifacts, despite the human brain
clearly interpreting the former as higher quality.

As mentioned, the SSIM score is based on the luminance (l), contrast (c), and structure
(s). Since these components can be varying within an image, the SSIM is calculated locally
within a certain window. The final SSIM score becomes the mean of all local scores. One
such local score is calculated according to

SSIM(x, y) = [l(x, y)]α × [c(x, y)]β × [s(x, y)]γ,
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2.2 Evaluation Metrics

where α, β, and γ are positive parameters defining the relative importance of each compo-
nent. Moreover, l, c and s are defined as

l(x, y) =
2µxµy +C1

µ2
x + µ

2
y +C1

,

c(x, y) =
2σxσy +C2

σ2
x + σ

2
y +C2

,

s(x, y) =
σxy +C3

σxσy +C3
,

where µx, µy, σx, σy, and σxy are the local means, standard deviations, and cross-covariance
for images x and y. Lastly, C1, C2 and C3 are small constants used to avoid instability when
the denominator is close to zero (Wang et al., 2004).
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Chapter 3

Architectures

In this chapter, we describe the four networks we evaluate: ERRNet, IBCLN, DADNet, and
RAGNet. In order to fully understand the networks, we first present some base architectures.
We assume the reader to have basic knowledge of convolutional neural networks. Therefore,
we did not include details on this.

3.1 Base Architectures
3.1.1 VGG-19
The VGG-19 network (Simonyan and Zisserman, 2015) is a commonly used pre-trained net-
work for image classification. The network, shown in Figure 3.1, consists of 19 weight layers
which are mainly convolutional layers with a kernel size of 3×3. The VGG-19 network stands
out as it achieved state-of-the-art results in image classification when it was introduced. This
holds despite decreasing the number of network parameters significantly compared to earlier
classification networks. Moreover, the pre-trained VGG-19 network generally performs well
on a variety of different datasets.

3.1.2 Long Short-Term Memory
Long-short term memory (LSTM) is an architecture to process sequences. It is similar to
recurrent neural networks but includes more information. In addition, it can solve back-
propagation problems.

Backpropagation is a central algorithm in neural networks. Starting from the output
of the loss function, this algorithm makes it possible to propagate backwards through the
hidden layers and compute the contribution every node had on the error (Chollet, 2017).

A known problem with backpropagation occurs when propagating back to the deeper lay-
ers. Going through the layers, the errors have a tendency of vanishing or exploding exponen-
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3. Architectures

Figure 3.1: General architecture of VGG-19 (Zheng et al., 2018).

tially, giving name to the vanishing and exploding gradient problem. While vanishing gradients
makes the network unsure of in which direction to adjust the weights, exploding gradients
makes the learning procedure unstable (Goodfellow et al., 2016).

LSTM networks introduce a secondary flow of information, parallel with the backprop-
agated errors. As explained in Chollet (2017), this can be compared to a conveyor belt of
information running concurrently with the backpropagation algorithm. At any time, in-
formation can be put on this belt and stay intact, which allows relevant information to be
extracted when needed. Thus, LSTM networks prevent information from disappearing or
expanding during backpropagation.

3.1.3 Encoder-Decoder Networks
An encoder-decoder network consists of two parts: an encoder and a decoder. As explained by
Ye and Sung (2019), the encoder takes an input and maps it onto a feature space. In the next
step, the decoder will take this feature map and decode it into an output. The two parts work
together and the layers are trained jointly to learn to extract helpful features and generate an
optimal output.

Figure 3.2 gives an example of an encoder-decoder architecture proposed by Badrinarayanan
et al. (2015) for image segmentation. As one can see, the encoding layers iteratively perform
convolution and pooling to obtain lower-level feature maps of the input. During the phase
of decoding, these will be translated into an output using up-sampling. To avoid losing too
much information, the encoder and decoder layers are connected, as illustrated by the arrows
in the figure.

When handling image artifacts, the encoder part will ideally extract the representation of
these artifacts in the feature maps and remove them. The decoding layers will then be able to
reconstruct the image without the unwanted parts. Stepping through the decoder layers, the
generated image will gradually become more detailed until reaching its original size. Thus,
the encoder-decoder network learns to map a flawed image to an improved version (Mao
et al., 2016).
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3.1 Base Architectures

Figure 3.2: An example of an encoder-decoder architecture used in
a convolutional neural network. (Badrinarayanan et al., 2015)

3.1.4 Generative Adversarial Networks

A collection of images displaying some object or scene can be assumed to represent a certain
distribution. Imagine that one would like to generate fake but realistic images of a similar
scene or object. A plausible approach would be to try to mimic the distribution to which
these images belong. This type of image generation can be done using generative adversarial
networks (GANs) (Goodfellow et al., 2014).

These networks work through the use of a generator, G, and discriminator, D, compet-
ing against each other. The general idea of this network is to train G to generate fake, but
realistic images, and D to distinguish between generated and real images. To achieve this,
the discriminator is trained with both fake and real images to output the probability of the
image being real. At the same time, the generator wants to fool the discriminator by trying
to produce realistic images from a latent space vector z.

Let us consider the generator G, the latent space vector z, and the set of real images X .
Then, the generator G will try to generate images which could be mistaken as some x ∈
X . This means the aim of the generator becomes forming a distribution pz(z) which after
mapping through G mimics the real image distribution pdata(x).

On the other hand, the discriminator is trained to maximize the probability of assigning
the correct label to real and fake images. Thus, for some real image x ∈ X , the ideal behavior
of D is to output D(x) = 1. Furthermore, for some fake image x̂ ∈ G(z), the ideal behavior
of D is to output D(x̂) = 0.

This competition between D and G can be viewed as a minimax game. To obtain this
behavior by D and G, the minimax value function is defined:

min
G

max
D

V (D,G) = Ex∼pdata (x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))]. (3.1)

Let us assume the discriminator is behaving optimally, namely, correctly classifying generated
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fake images as fake, and real images as real. Then Equation 3.1 becomes

V (D,G) = Ex∼pdata (x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))]
= Ex∼pdata (x)[log(1)] + Ez∼pz(z)[log(1 − 0)]
= Ex∼pdata (x)[0] + Ez∼pz(z)[0] = 0,

which is the maximization of Eq. 3.1.
In practice, both the generator and discriminator will get increasingly better at their

respective tasks throughout the training process. Eventually, the generator will be able to
mimic the distribution of real images. This makes the distribution of real and fake data
indistinguishable for the discriminator. Therefore, the optimal behavior of the discriminator
would be to classify the probability of an image being real or fake equally. Namely, a 50%
chance of either. When this state is reached, then

V (D,G) = Ex∼pdata (x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))],
= Ex∼pdata (x)[log(0.5)] + Ez∼pz(z)[log(1 − 0.5)],
= − log 4,

which is the global optimum for the minimax game. When reaching this state, parameters
of both the discriminator and generator will have converged. Figure 3.3 shows a converging
adversarial process.

Figure 3.3: The evolution of a general GAN. The upward arrows
represents the mapping G(z). The dotted black curve shows the real
data distribution. The green curve shows the distribution estimated
by G. Furthermore, the blue curve shows the discriminator’s out-
putted probability. As seen in (a), the discriminator is quite certain
of a data point either being real or fake – those points at left are
according to D quite likely to be real, whereas points at the right
are quite likely to be fake. In (b) and (c), we see the evolution of D
and G as they are both getting better at their respective task. Finally
in (d), convergence is reached – the generator now perfectly mimics
the real data distribution and the discriminator cannot distinguish
between real and fake data points (Goodfellow et al., 2014).

22



3.2 Neural Networks for Single Image Reflection Removal

3.2 Neural Networks for Single Image Re-
flection Removal

As mentioned in Section 1.3, there already exist multiple neural networks for single image
reflection removal. In this thesis, we trained four of these pre-implemented networks on our
synthetic dataset.

In order to be able to train and thereafter evaluate, the networks have to include code
and instructions for both training and testing. To avoid having to start training from scratch,
we have a requirement that there exists a saved pre-trained model which can be used for fine-
tuning. Since there is no consensus about which neural network to consider state-of-the-art
in single image reflection removal, we assume the most recent ones are the best. We choose
the networks RAGNet, DADNet, IBCLN and ERRNet. At the time of writing, these are the
latest published networks under the task Reflection Removal at www.paperswithcode.com,
which also fulfilled our criteria.

In this section, we present the networks in their publication order. Note that the net-
works sometimes use similar structures and loss functions, but generally different notations.

3.2.1 ERRNet
Wei et al. (2019) introduced the Enhanced Reflection Removal Network (ERRNet). The term
enhanced reflection removal refers to the fact that ERRNet uses channel-wise context and
multi-scale spatial context modules. Unlike the three other networks, ERRNet can handle
both aligned and unaligned image pairs.

Since ERRNet can handle both aligned and unaligned data, different loss functions are
used in these two cases. Our data only consists of aligned image pairs and thus only these loss
functions are relevant. In total, ERRNet makes use of three losses for the aligned data: a pixel
loss, feature loss and adversarial loss. Figure 3.4 shows the general architecture of ERRNet
(Wei et al., 2019).

Figure 3.4: The general architecture of ERRNet (Wei et al., 2019).

Channel-Wise Context Modules
In a classic convolutional network, each of the learned filters only operates locally. This leads
to an impaired ability to exploit contextual information outside of the feature map. The
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assumption in ERRNet is that information about the reflection and transmission layer can
be found in the feature map channels (Wei et al., 2019).

Consequently, ERRNet uses a network proposed in Hu et al. (2017), called the squeeze
and excitation network. In ERRNet, Figure 3.4, this part represents the lower left block
framed in yellow. This method works by squeezing the spatial information into scalar channel
descriptors. These channel descriptors are formed via a global average pooling operation,
which sums and averages each value in the corresponding feature map. Once the descriptors
are created, they are passed through a smaller, so called, excitation net to determine their
relative importance. This allows for the network to suppress less important feature maps
and promote others.

Assume the input X ∈ RH′×W ′×C′ is sent through the feature transformation Ftr . Further
let U ∈ RH×W×C denote the output feature maps of this transformation. Then the predicted
channel-wise importance can be determined as seen in Figure 3.5. Here, the feature maps U
are inputted to the transformation Fsq. The output of Fsq are the feature maps reduced to
one dimension, obtained via global average pooling. Thus, the output of Fsq is a vector of
dimension 1×1×C. This vector is then passed through the excitation block: Fex(·,W), where
W are weights learned throughout the training. The aim of the weights W is to suppress less
important feature maps and promote others. The last step is to combine the weights with
the input U scaled through Fscale(·, ·), outputting X̃. Here, X̃ has the exact same dimensions
as U, that is RH×W×C . However, unlike U, X̃ has a notion of the relative importance of its
feature maps (Hu et al., 2017).

Figure 3.5: General architecture of the squeeze and excitation net-
work (Hu et al., 2017).

Multi-Scale Spatial Context Module
In addition to the channel-wise context module, ERRNet uses a multi-scale spatial context
module for each channel. This module is responsible for extracting information through the
spatial dimensions instead of through the channels. In Wei et al. (2019), this is done through
something called pyramid pooling (see the lower middle block framed in green in Figure 3.4).

Pyramid pooling was first introduced in He et al. (2014). In semantic segmentation, pyra-
mid pooling has shown to be effective in representing the global scene. Unlike classic pooling,
this approach uses several pooling operations for the input feature map. Moreover, the pyra-
mid pooling layer is often situated at the tail of the network, as the last step before the final
output. Figure 3.6 shows the general principle of pyramid pooling.

As stated in Wei et al. (2019), ERRNet uses four different pooling operations at the end
of the network. These layers output feature maps with spatial dimensions scaled according
to the lower, middle block with green frame in Figure 3.4. Once the four different pooling
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Figure 3.6: General principle of a network structure containing spa-
tial pyramid pooling. Here 256 is the filter number of the conv_5
layer, and conv_5 is the last convolutional layer (He et al., 2014).

operations are calculated, they are proportionally concatenated as visualized in Figure 3.6.
The last step involves upsampling to the desired output size.

Pixel Loss
An indication of a good prediction of the transmission layer would be if the pixel value dif-
ference between the prediction and the ground truth is small. ERRNet does not only use the
plain pixel-wise difference but also the pixel-wise gradient difference (Wei et al., 2019). As
explained in Fan et al. (2017a), the gradient will detect edges in the image. This could be a
useful feature in reflection removal since the reflection layer likely contains detectable edges.

Let T denote the transmission layer and T̂ denote the predicted transmission, then the
pixel-wise intensity difference is penalized via the pixel loss function

lpixel = α∥T̂ − T∥22 + β
(∥∥∥∇xT̂ − ∇xT

∥∥∥
1 +

∥∥∥∇yT̂ − ∇yT
∥∥∥

1

)
.

Here, ∇x and ∇y are the gradient operator along the x- and y-direction, respectively. In
practice, α = 0.2 and β = 0.4 (Wei et al., 2019).

Feature Loss
The idea behind the feature loss is to investigate features on different decoder layers. This
enables a comparison of the output and ground truth in different resolutions. Thus, both
high and low level information can be compared between the predicted transmission and the
target transmission image (Zhang et al., 2018).

In the ERRNet implementation, the comparison between the generated transmission
and the true transmission is done at different levels in the pre-trained VGG19 network, see
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Simonyan and Zisserman (2015). The loss function is described as

lfeat =
∑

l

λl
∥∥∥ϕl(T ) − ϕl(T̂ )

∥∥∥
1 .

In this function, ϕl is the feature from the l-th layer of VGG-19 and {λl} are balancing weights.
The layers considered in VGG-19 are conv2_2, conv3_2, conv4_2, and conv5_2, displayed in
Figure 3.1 (Wei et al., 2019).

Adversarial Loss
By the use of an adversarial loss, one can ensure the generated transmission layer looks realis-
tic. ERRNet will, from a blended image, aim to approximate a realistically looking transmis-
sion layer by the use of a generative adversarial network. As always in adversarial processes,
we make use of a generator GθG and discriminator DθD (Wei et al., 2019).

In the ERRNet implementation, the discriminator is relativistic, as introduced in Ar-
jovsky et al. (2017). The relativistic term means that DθD will not output the probability of a
transmission layer being real. Instead, the main goal of DθD is to output the probability that
the given real data is more realistic than a randomly sampled fake data. The goal of the overall
network is to make the generator generate realistically looking transmission layers. There-
fore, as stated by Wei et al. (2019), the generator loss is equivalent to the whole adversarial
loss according to Equation (3.2).

Let T denote the transmission layer, and T̂ a randomly sampled predicted transmission
layer. Then, the adversarial loss can be expressed as

ladv = lGadv = − log
(
DθD(T̂ ,T )

)
+ log

(
1 − DθD(T, T̂ )

)
. (3.2)

In this function, T̂ is generated via GθG and DθD(x, y) = σ (C (x) −C(y)) with σ(·) being
the sigmoid function. As explained in Arjovsky et al. (2017), C(·) can be interpreted as how
realistic the input data is. A negative number means that the input data looks fake, and a
positive number indicates the input data looks real. Passing this through the sigmoid function
will output a probability between 0 and 1, as we expect the discriminator to do.

During training, the goal of the generator is to minimize the loss in Eq. (3.2). To do this,
the generator has to get increasingly better at generating realistic transmission layers. The
procedure would not converge unless the discriminator and generator network simultane-
ously got better. Once convergence is reached

σ
(
C (T ) −C(T̂ )

)
= σ

(
C(T̂ ) −C(T )

)
= σ(0) = 0.5

holds, indicating the discriminator can no longer distinguish between real and fake data.

Overall Loss
Summing all of the previous losses together, the loss function for aligned data becomes

laligned = w1lpixel + w2l f eat + w3ladv,

where w1 = 1,w2 = 0.1, and w3 = 0.01.
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3.2.2 IBCLN
Li et al. (2019) proposed an Iterative Boost Convolutional LSTM Network (IBCLN). The
name refers to the fact that this network iteratively predicts the transmission and reflection
layer by the use of cascaded sub-networks. Furthermore, the information between the sub-
networks is passed on via LSTM networks.

As explained in Li et al. (2019), the assumption in IBCLN is that the transmission layer
is a dominant feature in the image, whereas the reflection layer has weaker features. In the
ultimate case, the network has auxiliary information in the form of ground truth transmission
layer, which is the goal to predict. Obviously, this is not available, since if it was, the problem
with reflection removal would not exist. Nevertheless, if one could use an approximation of
the transmission layer as auxiliary information, this would provide guidance for the network.

In IBCLN, a reflection image is assumed to be described through the equation I = αT+R,
where α is a constant, usually within the range 0.8-1. Here, α is used to model the slight
attenuation of light as it passes through the reflective surface. This means that if one could
make a prediction, T̂ , of the dominant layer T , one would also be able to predict the residual
reflection R̂ = I − αT̂ . To do this, IBCLN makes use of two sub-networks – one which
predicts the dominant transmission layer and another which predicts the weaker reflection
layer (Li et al., 2019).

The two sub-networks share the same architecture. First is an encoder, consisting of
convolutional layers extracting the image features. This is followed by a convolutional LSTM
unit, which in turn is connected to a convolutional decoder network. Figure 3.7 gives an
overview of such sub-network block.

Figure 3.7: The general architecture of one prediction iteration in
IBCLN (Li et al., 2019).

The idea in IBCLN is to use several connected sub-networks to make iterative predictions
of reflection and transmission layers. As a first step, an initial transmission layer, T0, and
residual reflection layer, R0, are introduced. These initial layers are always assumed to be the
same. That is, T0 is assumed to be the image I and R0 is assumed to be 0.1 for all entries.

These initial layers are used as input in the first sub-network. Then, the output of this
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sub-network is passed on as input to the next sub-network, and so on. Thus, in each step,
the network has the approximations of both layers available. This cycle continues until con-
vergence is reached. See Figure 3.8 for a visualization of the cascaded prediction process in
IBCLN (Li et al., 2019).

Figure 3.8: The cascaded prediction steps used in IBCLN (Li et al.,
2019).

Figure 3.9 shows the general architecture of IBCLN. Between each prediction of T and R,
the two sub-networks GT and GR are seen. Here, each GT and GR resembles the sub-network
structure in Figure 3.7.

Figure 3.9: The general architecture of IBCLN (Li et al., 2019).

As always when training neural networks, the loss functions are of great importance.
In IBCLN, four different loss functions are used, the so-called: residual reconstruction loss,
multi-scale perceptual loss, pixel loss and adversarial loss (Li et al., 2019).

Residual Reconstruction Loss
One important aspect of the generation of transmission and reflection layer is that the combi-
nation of both layers should resemble the original image. To make sure the network accounts
for this, IBCLN uses a so called residual reconstruction loss.

Consider the image Î = αT̂ + R̂, being the reconstructed image from the predicted
reflection layer R̂, the predicted transmission layer T̂ and a constant α (usually within the
range 0.8-1). Then, the residual reconstruction loss is described as

Lresidual =
∑
I∈D

N∑
t=1

LMSE
(
I , Ît

)
,

whereLMSE is the mean squared error, t is the time step of the two sub-networks,D denotes
the dataset and N is the final time step when T̂ converges (Li et al., 2019).
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Multi-Scale Perceptual Loss
The multi-scale loss in IBCLN closely resembles the feature loss in ERRNet. As in ERRNet,
the comparison between the generated transmission and the true transmission is done at
different decoder levels by the use of the pre-trained VGG19 network. At the top of Figure
3.7, the multi-scale perceptual loss is visualized.

The loss function is described as

LMP =
∑

T,T3,T5∈D

(
LVGG(T, T̂ ) + γ3LVGG

(
T 3, T̂ 3

)
+γ5LVGG

(
T 5, T̂ 5

))
,

where T̂ , T̂ 3, and T̂ 5 corresponds to the outputs of conv1_2, conv3_2, and conv5_2 for time
step N in VGG-19, see Figure 3.1. Moreover, T,T 3, and T 5 denote the ground truth transmis-
sion layer, at the same scale as the corresponding approximated transmission. Lastly, γ3 = 0.8
and γ5 = 0.6 (Li et al., 2019).

Pixel Loss
In IBCLN, there is an additional pixel level loss to make sure the output transmission and
reflection layers are as close as possible to their respective ground truth. This loss is described
through

Lpixel =
∑
T∈D

N∑
t=1

[
LMSE

(
T, T̂t

)
+LMSE

(
R̃, R̂t

)]
.

In this loss, R̃ = I − α · T is the residual reflection, and T̂t and R̂t are the transmission and
reflection outputs at time step t (Li et al., 2019).

Adversarial Loss
As in ERRNet, IBCLN uses an adversarial loss to improve the realism of the predicted trans-
mission layer. This loss is similarly connected to the ability of discriminator D. By the use of
the adversarial loss introduced in Zhang et al. (2018), IBCLN defines

Ladv =
∑
T∈D

− log D(T, T̂ ),

where I andD denote the original image and dataset, respectively. Here, D(T, T̂ ) outputs the
probability that the prediction T̂ is a real transmission image given the input transmission
T .

Overall Loss
The overall loss is obtained by summing all of the previous losses together, and multiplying
with a respective weight, according to

L = λ1Lresidual + λ2LMP + λ3Lpixel + λ4Ladv.

As stated in Li et al. (2019), the weights in IBCLN have empirically been set to λ1 = 2, λ2 =

1, λ3 = 2, λ4 = 0.01.
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3.2.3 DADNet
The name DADNet refers to the term Deep Adversarial Decomposition Network. Compared
to the other networks, DADNet does not have the sole objective to filter out reflections in
images. Instead, the ambition is broader – to separate different kinds of single mixed images.
This network can thus be used in various tasks, such as image deraining, photo reflection
removal and image shadow removal (Zou et al., 2020).

To output the layer separation, DADNet uses an adversarial training process. A genera-
tive network G is trained to minimize the distance between the separated outputs and their
corresponding ground truth. To make sure the output layers are well-separated, a discrimi-
nator DC is added to the network. As always in adversarial training, the generator and dis-
criminator are competing in a minimax game. In DADNet, convergence is reached when the
discriminator is unable to distinguish between the quality of the layer separation performed
by the generator and the quality of two real, actually separate layers (Zou et al., 2020).

In some areas of a mixed image, the linearity I = T + R does not hold. Therefore, the
predicted layer separation might not be realistic. DADNet tries to solve this problem using
two (Markovian) discriminator networks, DM1 and DM2, which input a respective patch of
the two predicted and separated layers and classifies it as real or fake. Figure 3.10 shows the
general architecture of DADNet.

To invoke the behavior described in this section, DADNet makes use of three losses: a
so called crossroad loss, separation critic loss and something (in our project) referred to as
Markovian loss (Zou et al., 2020). Note that DADNet uses reverse notation for prediction and
ground truth, compared to the other networks. Namely, in DADNet x denotes the prediction
and x̂ the ground truth.

Figure 3.10: The general architecture of DADNet (Zou et al., 2020).

Crossroad Loss
Assume x̂1 and x̂2 represent the true transmission and reflection layer, and that y = f (x̂1, x̂2)
is their mixture. Here, the function f (·) is unknown and can be either linear or non-linear.
Given the mixture image y, the generator G aims to predict the separate layers x1 and x2,
according to

x1, x2 = G(y).
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In DADNet, x1 and x2 are not necessarily output in a certain order. Therefore, the stan-
dard pixel-wise difference between the output and ground truth can not be directly com-
puted. Instead, the crossroad loss is defined as:

lcross ((x1, x2) , (x̂1, x̂2)) = min {∥x1 − x̂1∥1 + ∥x2 − x̂2∥1 , ∥x1 − x̂2∥1 + ∥x2 − x̂1∥1} .

With the use of this loss, the order of outputs does not matter as the minimum of the above
will always correspond to the correct pairing between output and ground truth. Thus, the
crossroad loss can be described through:

Lcross = E x̂i∼pi(x̂i) {lcross ((x1, x2) , (x̂1, x̂2))} ,
where pi (x̂i) represents the distribution of the image data, and i ∈ {1, 2} (Zou et al., 2020).

Separation Critic Loss
As stated in Zou et al. (2020), a separation critic loss is used in DADNet. The separation critic
loss aims to make the two output layers as well-separated as possible. This is an adversarial
training process where a generator G tries to minimize the distance between the outputs
and ground truth. On the other hand, a discriminator DC tries to maximize this distance.
Thus, the discriminator is supposed to output the probability of the predicted layers being
well-separated. Namely, output something closer to 1 if the layers are well-separated and
something closer to 0 otherwise.

Let (x1, x2) be the predicted layer separation and (x̂1, x̂2) be the ground truth separation.
Then the loss function is summarized:

Lcritic (G,DC) = E x̂i∼pi(x̂i)
{
log DC (x̂1, x̂2)

}
+ Exi∼pi(xi)

{
log (1 − DC (x1, x2))

}
+ E x̂i∼pi(x̂i)

{
log

(
1 − DC

(
x′1, x

′
2
))}
.

It is desirable that the discriminator learns to recognize a blend of two images as something
which is not well-separated. Hence (x′1, x

′
2) is considered in the last term, corresponding to

the linear mix of the ground truth layers, according to

x′1 = αx̂1 + (1 − α)x̂2, x′2 = (1 − α)x̂1 + αx̂2,

where α is a random weight.

Markovian Loss
As mentioned, DADNet also makes use of two discriminator networks, DM1 and DM2. These
networks input a respective N ×N patch of the two predicted layers and classifies it as real or
fake. The discriminators will output the probability of the image patch being real. Optimal
behavior for the discriminator is to classify patches of ground truth layers as real, and patches
of generated layers as fake. For the discriminator to minimize the loss during these cases, the
loss function is defined as:

LMi (G,DMi) = E(x̂i ,y)∼pi(x̂i ,y)
{
log DMi (x̂i | y)

}
+E(xi ,y)∼pi(xi ,y)

{
log (1 − DMi (xi | y))

} ,
where i = 1, 2 (Zou et al., 2020).
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Overall Loss
The overall objective function in DADNet becomes

L (G,DC ,DMi) = Lcross (G) + βCLcritic (G,DC)

+ βM

∑
i=1,2

LMi (G,DMi) ,

where βC and βM are positive weights (Zou et al., 2020).

3.2.4 RAGNet
The name RAGNet relates to the Reflection Aware Guidance used in the network. The
overall structure of RAGNet is an encoder-decoder network.

During filtering, the transmission layer prediction is split into two stages. In the first
stage, the reflection layer is estimated using the simple U-net segmentation, explained in
Ronneberger et al. (2015). In the second stage, the initially predicted reflection is sent through
the encoder part of the network. After this, the encoded reflection is sent to a decoder net-
work, where the transmission is predicted. The prediction is made using, so called, reflection
aware guidance modules (RAG modules) – hence, the name RAGNet (Li et al., 2020).

Let R̂ and T̂ denote the reflection and transmission layer predictions, respectively. In
areas with high intensity reflection, the linearity T̂ = I−R̂ usually does not hold. Subtracting
the estimated reflection layer R̂ from the image I will in these cases lead to darker areas than
desired in the predicted transmission T̂ . A seen in Figure 3.11, the transmission prediction
I − R̂ does not look accurate.

Figure 3.11: Shows the darker areas in the predicted transmission
T̂ = I−R̂. These can appear when linearly subtracting the reflection
layer R̂ from an image with strong reflection (Li et al., 2020).

To account for the non-linearity in these heavy reflection areas, RAGNet makes use of the
RAG module. In the RAG module, a mask M is introduced to further exploit the reflection
layer. The prediction of the transmission layer is then based on this mask, which describes
the properties of the reflection layer. Thus, the term reflection-aware guidance comes from
the fact that the transmission layer is predicted through guidance of the estimated reflection
and its properties.

Areas where the mask is close to zero indicates the linearity I = R + T does not hold.
Therefore, an ordinary subtraction is not going to recover the transmission layer. Instead,
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image inpainting (a task of reconstructing missing regions in an image) would be a better
approach in these areas (Li et al., 2020).

Similarly to IBCLN, RAGNet makes use of a reconstruction loss, perceptual loss and ad-
versarial loss. Regarding these losses, they mostly differ in notation between these networks,
even though there are some smaller differences in the way they are calculated. In addition
to these losses, an exclusion and mask loss is used in RAGNet (Li et al., 2020). Figure 3.12
illustrates the second stage of RAGNet.

Figure 3.12: The general architecture of the second stage of RAGNet,
where the first stage reflection estimation R̂ is used as input (Li et al.,
2020).

Reconstruction Loss
In the case of synthetic images, the ground truths T and R are available. Assume the network
outputs the predictions T̂ and R̂, then the pixel-wise difference between the outputs and the
corresponding ground-truths T and R can be calculated through

Lrec =
∑

Y∈{T,R}

∥Ŷ − Y∥1.

In RAGNet, this is called the reconstruction loss.

Perceptual Loss
Similarly to ERRNet and IBCLN, RAGNet also uses a perceptual loss. Let us assume that
ϕ represents the pre-trained VGG-19 model. The goal of the perceptual loss function is to
minimize the�1 difference between ϕ(T̂ ), ϕ(R̂) and ϕ(T ), ϕ(R) in conv1_2, conv2_2, conv3_2,
conv4_2, and conv5_2 layers. Accordingly, the loss function becomes

Lpercep =
∑

Y∈{T,R}

∑
l

κl
∥∥∥ϕl(Ŷ ) − ϕl(Y )

∥∥∥
1 ,

where l indicates the index of the convolutional layer in VGG-19. Moreover, {κl} are weights
used to balance different layers (Li et al., 2020).
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Adversarial Loss
Just like IBCLN, RAGNet uses a discriminator network to calculate the adversarial loss.
According to Li et al. (2020), the discriminator consists of 4 layers and the whole RAGNet
is considered to be the generator G. The adversarial loss function is defined as

Ladv = −EI log D(I ,G(I)),

where I is the input image.

Exclusion Loss
The exclusion loss used in RAGNet is directly taken from Zhang et al. (2018). The loss works
in the gradient domain, where the edges of an image are clearer. Based on the assumption that
the edges of both layers are unlikely to correlate, the number of shared edges is minimized.

The loss function is defined as

Lexcl =
1

N + 1

N∑
n=0

√∥∥∥Ψ (
T ↓n,R↓n

)∥∥∥
F ,

where Ψ(T,R) = tanh (λT |∇T |)◦ tanh (λR|∇R|), with normalization factors λT and λR. More-
over, ∇T and ∇R are the gradients of T and R, and ∥ · ∥F denotes the Frobenius norm. Lastly,
T ↓n and R↓n denote the n times down-sampled versions of T and R, where T ↓0 and R↓0 are
the original inputs. In this implementation, N = 2, λT =

1
2 , and λR =

∥∇T∥1
∥∇R∥1

.

Mask Loss
As mentioned, RAGNet utilizes a mask to invoke guidance for the network in areas of heavy
reflection. In these areas, linearity between the image, reflection and transmission layers will
not hold, i.e. T ̸= I − R. If linearity does not hold, the corresponding feature maps will
neither be linear (Li et al., 2020).

Let the feature maps for the original image and reflection layer be denoted FI and FR,
respectively. Further let the difference between these be Fdiff = FI −FR. As one can imagine
when observing Figure 3.11, Fdiff will not be useful in extracting features of the transmission
layer, in the case of heavy reflection. In fact, the case of heavy reflection removal rather
mimics an inpainting problem. This is a consequence of that the reflection layer is intense,
and thus, the transmission layer will not be recovered from the linear relationship T = I −R.

Li et al. (2020) conclude that different reflection areas in the image have to be treated
differently depending on their respective intensity. This means that if Fdiff cannot recover
the information, it is an indication that inpainting should be used in these areas. Therefore,
Fdiff is not useless in these areas but can rather work as a complement to the decoder feature,
Fdec. To take advantage of this information, RAGNet utilizes a mask M =

[
Mdi f f ,Mdec

]
,

where [·, ·] denotes the concatenation operation, and Mdiff and Mdec are masks corresponding
to Fdiff and Fdec, respectively. Figure 3.13 shows an example of a learned mask, M.

As covered by Liu et al. (2018), inpainting can be solved through partial convolutions,
by the use of a mask M . In RAGNet, the mask Mdiff is used to determine which areas in the
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image that are linear, and which are not. Moreover, the partial convolution is defined as

F′ =
 (W ∗ (F ◦M)) ◦ 1

M3×3
+ b, M3×3 > 0

0, otherwise
,

where W and b denote the weight and bias of the partial convolution, respectively. Moreover,
F =

[
Fdi f f ,Fdec

]
, whereas ∗ and ◦ represents convolution and entry-wise product. Lastly,

M3×3 contains the average values of M in 3 × 3 neighborhood regions, which are calculated
through a 3 × 3 average pooling operation (Li et al., 2020).

When solving the inpainting problem, the goal of Mdi f f is to be zero in areas with in-
tense reflection and closer to one within areas with weak reflections. This will act as a guide
of linearity to the decoder feature Fdec. To make the mask behave this way, the mask loss
function is defined as

Ldiff
mask =

4∑
i=1

∥∥∥Mi
diff [R > φ]

∥∥∥
1 ,

where i refers to the i-th layer in Figure 3.12, and ∥ · ∥1 denotes the �1 norm. Moreover,
Mi

diff [R > φ] represents the part of Mi
diff where the reflection layer R is greater than the

threshold φ = 0.3.
As the careful reader might notice, this loss function is minimized when Mdiff = 0,

leading to a trivial and unwanted solution. In weaker reflection areas, both Fdi f f and Fdec are
reliable, and we want the partial convolution to take both of these into account. Therefore,
in weaker reflection areas, M should be closer to 1. To account for this, an additional loss is
constructed as

L
reg
mask =

4∑
i=1

∥∥∥Mi[R < ξ] − 1
∥∥∥

1 ,

where ξ = 0.01 is the threshold for areas with fewer reflections. Thus,

Lmask = L
diff
mask +L

reg
mask

will be the total mask loss function (Li et al., 2020).

Overall Loss
The overall loss used in RAGNet is the weighted sum of all formerly mentioned losses. This
is formulated as

L = λ1Lrec + λ2Lpercep + λ3Lexcl + λ4Ladv + λ5Lmask,

where λ1 = λ2 = λ5 = 1, λ3 = 0.2 and λ4 = 0.01 (Li et al., 2020).

3.3 Training Details
To find the best network for dome reflection removal, we train each of the four presented
networks using our final synthetic dataset. This dataset consists of 4000 images. The training
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Figure 3.13: Shows an example of 12 randomly selected channels for
Mdi f f and Mdec. As seen, the values close to zero in Mdi f f indicates
the areas of heavy reflection in the reflection layer. (Li et al., 2020).

is based on pre-trained models of the networks. In order to speed up training and better suit
the structure of the networks, we down-sample our dataset to images of size 256×256 pixels.

During training, all network parameters are kept unchanged according to the developers’
implementation. Instead, our main changes in implementation are related to pre-processing
of data. In order to analyze the networks’ performances equally, we remove all cropping,
resizing and data augmentation inside the networks. Instead, we perform these operations
restrictively before passing the images into the network.
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Chapter 4

Evaluation

In this chapter, we first present the process which led to the decision of our final synthetic
dataset. Secondly, we evaluate the performance of the networks on both synthetic and real-
world data. Lastly, we present the best performing network.

4.1 Synthetic Dataset Evaluation
In previous single image reflection removal nets, the majority of works use synthetic data and
similar code for generating this data (Amanlou et al., 2022). Our data generation originates
from the synthesizing code written by Zhang et al. (2018). However, to better suit our specific
dataset, we make some changes. See Chapter 2 for the specific details.

We create our dataset iteratively. To be able to evaluate the different versions of it, we
fine-tune IBCLN using each version. By fine-tuning, we mean training using our own dataset,
but starting from a pre-trained version of the network. Based on the results of fine-tuning,
we modify the dataset to keep the background intact and remove the reflections. See below
Section 4.1.1.

For fine-tuning, we use IBCLN mainly for its simplicity in setup and training process.
Moreover, to speed up training and better suit the network structure, we use down-sampled
images of size 256× 256 pixels. After fine-tuning, we evaluate the performance qualitatively
on real-world images and quantitatively on synthetic ones. The quantitative comparison is
based on PSNR and SSIM.

4.1.1 Comparison of Synthetic Datasets
A first version of the synthetic dataset is referred to as the precursor. We create the precur-
sor without too much restrictions neither on the properties of the reflection layer nor on
augmentation.
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After fine-tuning IBCLN using the precursor dataset, we test the network on some syn-
thetic and real example images. Studying the filtered results, we observe two main things.
Light sources, flares, and bright lines are often dimmed out of the images during filtering,
as considered part of the reflection layer. Secondly, often the reflection from the lens is still
intact or only partially removed.

Based on these observations, we improve our synthesizing process by adding reflection
layer images containing less light sources. We also adjust the code to ensure the lens will be
clearly visible in the images. Thereafter, we generate our final dataset.

Figure 4.1 shows a comparison between the performance of the pre-trained version of
IBCLN, the precursor dataset, and the final dataset. We choose these examples to emphasize
the differences in performance. To further illustrate the distinctions, Figure 4.2 shows the
detected reflections of the same images.

Looking at Figure 4.1 and 4.2, the pre-trained version struggles to detect and remove
the majority of the reflection. The precursor performs better. However, in the first image,
the precursor partially removes the white cord in the background. Instead, in the second
image, parts of the circular lens reflection remains intact. In contrary to the precursor, the
final version leaves the white cord intact in the first image and removes more of the circular
reflection in the second one.

Real-world image Pre-trained Precursor Final

Figure 4.1: Filtered results of real reflection images by IBCLN, fine-
tuned on different synthetic datasets.

To further strengthen the assumption that the final dataset is the best, we make a quan-
titative evaluation based on the metrics PSNR and SSIM. Table 4.1 shows the quantitative
comparison of the performance of IBCLN fine-tuned using the final dataset, the precursor,
and the original pre-trained network. Here, the test set is synthetically generated irrespective
of the compared datasets.

For both metrics, a higher value implies a more similar estimated transmission image.
However, for SSIM the highest possible value is 1 whereas the PSNR is unbounded. To calcu-
late SSIM, we use the default settings of the function structural_similarity from skimage.metrics
in Python. For PSNR we use the function peak_signal_noise_ratio from skimage.metrics.
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real-world image Pre-trained Precursor Final

Figure 4.2: Detected reflection on real reflection images by IBCLN,
fine-tuned on different synthetic datasets. The detected reflection
layer is marked pink, while green represents background.

Table 4.1: Quantitative comparison using mean, median and stan-
dard deviation of the evaluation metrics PSNR and SSIM. The eval-
uation was made on a synthetic test set consisting of 173 images. The
best results are marked in bold.

PSNR SSIM
Network Mean Median Std Mean Median Std
Pre-trained 25.801 26.167 3.945 0.945 0.960 0.0485
Precursor 29.259 29.354 3.731 0.966 0.974 0.0327
Final 29.227 29.757 3.948 0.966 0.976 0.0333

Studying Table 4.1, the results are ambiguous. For example, the mean value of PSNR
implies that the precursor is the best dataset. Additionally, the mean of SSIM is the exact
same value.

To further examine this result, we perform a t-test of the mean PSNR scores for the
precursor and final dataset. Using a paired t-test, the p-value is

p = 0.8189 > 0.01,

which implies the difference is not significant. Thus, we cannot conclude that there is a
performance difference between the precursor and final dataset.

However, observing Figures 4.1 and 4.2, the filtered results of real-world images are clearly
better using the final dataset. Therefore, despite the ambiguous results in Table 4.1, we choose
this dataset to be our final version.

39



4. Evaluation

4.2 Network Evaluation
After we decide the final dataset, the next step is to determine the best performing network
from Section 3.2. We first fine-tune all four pre-trained nets using our final dataset. After
this, we evaluate each network performance on both synthetic and real-world data.

Our final synthetic test set contains 445 randomly chosen images. Here, there exists a
target for the filtered result – the transmission image. Thus, the synthetic evaluation is based
on PSNR and SSIM.

Apart from this, we gather 38 real-world images containing dome reflection. For these
images, no ground truth exists, which is why we use a human evaluation process.

4.2.1 Synthetic Image Evaluation
The network evaluation using synthetic test data is based on the metrics PSNR and SSIM.
Filtering the 445 blended images from our final synthetic test set, we can compare each image
to the original transmission image. Doing this for the four networks, we summarize the result
using mean, median, and standard deviation in Table 4.2.

Table 4.2: Quantitative comparison using mean, median, and stan-
dard deviation of the evaluation metrics PSNR and SSIM. The evalu-
ation is made on our final synthetic test set consisting of 445 images.
The best results are marked in bold.

PSNR SSIM
Network Mean Median Std Mean Median Std
DADNet 30.749 30.596 3.314 0.968 0.974 0.0273
ERRNet 32.926 32.916 3.346 0.978 0.982 0.0225
IBCLN 31.640 31.478 3.235 0.976 0.983 0.0256
RAGNet 31.711 31.813 3.403 0.972 0.979 0.0295

In Table 4.2, ERRNet has the highest mean and median for PSNR and the highest mean
for SSIM. Regarding median of SSIM, IBCLN performs best. Moreover, Figure 4.3 shows
filtering results of all networks, on a few synthetic images. To better see the details of the
images, the reader is advised to zoom in.

4.2.2 Real-World Image Evaluation
For real reflection images, no original transmission image is available. Therefore, we cannot
use PSNR and SSIM to assess the reflection removal performance. Instead, we ask 7 people
at Axis to grade 38 filtered real-world images. The participants are asked to primarily focus
on the questions:

How reasonable does the filtered image look overall? Would you consider the quality
better than the unfiltered image?

when grading according to:
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1: Large decrease in quality

2: Small decrease in quality

3: No difference in quality

4: Small increase in quality

5: Large increase in quality.

Due to a small grading scale, everyone is further asked to pinpoint the best performing
network for each image. See Appendix A for additional information on the human evaluation
instructions. Table 4.3 shows the results. It is clear that ERRNet got the highest score. In
addition, a selection of filtered real-world images can be seen in Figure 4.4.

Table 4.3: Evaluation based on 38 real-world images containing re-
flection. For each network, the result of every image is graded by all
participants according to a scale from 1-5, with 5 being the best. For
each image, the participants also marked the best network.

Network DADNet ERRNet IBCLN RAGNet
Mean of Grades 3.261 4.238 3.681 3.921
Times Ranked Best 1 189 15 36

4.3 Further Evaluation – ERRNet
4.3.1 T-Test
In the synthetic evaluation, ERRNet has the highest mean for both PSNR and SSIM, see
Table 4.2. The differences are although not large. Thus, there might not be a statistically
significant difference between the values.

To further examine this, we perform paired t-tests comparing the mean value distribu-
tions of ERRNet against the other networks. Tables 4.4 and 4.5 outline the PSNR and SSIM
results, respectively. In the tables, µdi f f is calculated as

µdi f fi = meanERRNet −meanNetworki ,

while µlower and µupper represent the lower and upper quantile.

Table 4.4: T-tests for PSNR. The mean values of PSNR from Table
4.2 have been compared between ERRNet and the other networks.

Network p-value t-value µdi f f µlower µupper
DADNet <0.0001 21.610 2.177 1.978 2.374
IBCLN <0.0001 14.095 1.286 1.106 1.465
RAGNet <0.0001 10.945 1.215 0.997 1.433

The t-tests conclude that there is a statistically significant difference in the mean values
between ERRNet and the other networks. This holds for both PSNR and SSIM. Thus, in re-
gards to synthetic data, the dome reflection removal performance of ERRNet is significantly
better compared to the other networks.
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Table 4.5: T-tests for SSIM. The mean values of SSIM from Table 4.2
have been compared between ERRNet and the other networks.

Network p-value t-value µdi f f µlower µupper
DADNet <0.0001 21.553 0.0106 0.00962 0.0115
IBCLN <0.0001 4.174 0.00222 0.00117 0.00326
RAGNet <0.0001 8.111 0.00580 0.00439 0.00720

4.3.2 Comparison with Pre-Trained Version
To conclude that fine-tuning ERRNet actually has an impact, we compare our fine-tuned
network to the pre-trained one. The results on synthetic data are shown in Table 4.6. To
further illustrate the differences, Figure 4.5 contains filtering results of real-world images.

Table 4.6: Quantitative comparison using mean, median and stan-
dard deviation of the evaluation metrics PSNR and SSIM. The eval-
uation was made on our final synthetic test set consisting of 445
images. The best results are marked in bold.

PSNR SSIM
Network Mean Median Std Mean Median Std

Pre-trained 25.573 25.518 3.337 0.954 0.967 0.0440
Fine-tuned 32.926 32.916 3.346 0.978 0.982 0.0225

When studying Table 4.6, it is clear that fine-tuning highly increases the results. Regard-
ing the real example images in Figure 4.5, the filtering results looks considerably worse for
the pre-trained model compared to the one fine-tuned with our dataset. Our fine-tuning of
ERRNet clearly has a positive impact on the results.
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Input DADNet ERRNet IBCLN RAGNet Transmission

Figure 4.3: Visual comparison of seven images from our final syn-
thetic test dataset. The figure displays input images, transmission
images, and filtered results from the four networks.
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Input DADNet ERRNet IBCLN RAGNet

Figure 4.4: Visual comparison of seven images from our real-world
test set. The figure displays input images and filtered results from
the four networks.
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Real-world image Pre-trained ERRNet Fine-tuned ERRNet

Figure 4.5: Filtered results of real-world reflection images. The fig-
ure displays input images and filter results for the pre-trained and
fine-tuned version of ERRNet, respectively.
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Chapter 5

Discussion

In this chapter, we discuss our results and present proposals for further work. Thereafter, we
present our conclusions.

5.1 Best Network
In almost all aspects of our synthetic reflection removal evaluation, ERRNet performed the
best. This includes the highest mean and median for PSNR, and the highest mean for SSIM
during the synthetic evaluation. Although, IBCLN obtained the highest median of SSIM.

Since the difference between the mean values were not that large, we performed a t-
test. The t-test concluded that the mean value difference of PSNR and SSIM is statistically
significant between ERRNet and the other networks, in all cases. This means we can conclude
that ERRNet performs significantly better than the other networks on our synthetic test
data.

Even if the results from the synthetic evaluation points in favor of ERRNet, it is also
important that the network can perform well on real-world images. In the evaluation of
real-world images, ERRNet got the highest mean value and was most frequently ranked best.
Thus, ERRNet was considered to be the best network.

5.1.1 ERRNet vs. RAGNet
One general observation is that ERRNet often removes more reflection than the other net-
works. However, sometimes ERRNet removes too much of the background. This is the
opposite problem compared to RAGNet, which we noticed has a tendency to not filter out
a sufficient amount of the reflection. Nevertheless, RAGNet often retains the background
properties better than ERRNet, which seems more prone to blurring the images. For in-
stance, compared to ERRNet, RAGNet rarely removes light sources in the images.
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Considering these observations, RAGNet could be more interesting to investigate in
some applications. Especially under circumstances where it is important that the background
part remains untouched, for example in surveillance. Although according to our evaluation,
ERRNet is clearly better.

Perhaps the best network would be a combination of ERRNet and RAGNet. Generally,
RAGNet does not remove parts that should be kept in the image. This might be due to the
reflection aware guidance used in RAGNet – it has a better notion of where the reflection is
and its properties in certain areas of the image. On the other hand, when ERRNet finds the
reflection, it is efficiently removed. Thus, combining these attributes of the two networks
might lead to a better result.

5.2 Real-World Image Evaluation

The human evaluation on real-world images was consistent. ERRNet was by far ranked best
most frequently.

However, when talking to the participants, they sometimes thought it was hard to dis-
tinguish between the filtering results. On the other hand, many participants thought that
ERRNet was clearly better in some cases. Consequently, the participants might still have
answered ERRNet even in the cases where no distinguishable difference could be observed
between the networks. When observing Table 4.3, RAGNet is not far behind ERRNet in
terms of mean grade. Nevertheless, ERRNet is ranked best 189 times and RAGNet 36 times.
Therefore, the over-representation of ERRNet classified as the best network could be an
exaggerated result.

Another thing to factor in is that the participants was able to talk to each other about the
results. As a consequence, the participants could become biased towards a network which
others had perceived being best. For us, this was hard to regulate as the participants were all
part of our team and had daily contact. However, we did encourage them to not discuss the
results before they handed in the evaluation.

Lastly, the number of images graded in the human evaluation was only 38. In regards
to making a statistical conclusion, this would be considered quite few samples. Initially, the
aim was to make the participants grade 100 images, but after receiving feedback, this was
considered too many to grade within a reasonable amount of time. Therefore, similar images
were deleted from the real evaluation test set, ending up at a count of 38 images.

Even though the image count was greatly decreased, not all team members performed the
grading. Furthermore, some participants performed the grading but did not finish it for all
images. This leads to the conclusion that 38 images were still considered many, in terms of
time consumption. One reason why this task was perceived as quite time consuming could
be the fact that the network results in many cases were similar. Moreover, the images were
small, making it even harder to see the differences.

Regardless of these facts, our results are consistent, for both synthetic and real-world
images. It is clear that ERRNet is the best network, giving an improved image quality for
both synthetic and real-world data.
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5.3 Further Work
Reflection removal is considered a hard problem. Our results on real-world data show a
clear increase in image quality. This statement is certified by the mean values from Table 4.3
and by studying the images in Figure 4.4. Thus, our results show that it can be interesting
to further investigate if a reflection removal network can be implemented into real dome
cameras. However, the results are not perfect, leaving room for improvement.

5.3.1 Synthetic vs. Real-World Data Results
In regards to how well some of the networks performed on synthetic data (examples in Figure
4.3), the networks seem to have converged during training. Most of the networks have great
reflection removal abilities on synthetic data. This means that further training on this dataset
would not increase the model performance significantly. On the other hand, the results after
filtering real-world images are not as convincing. These two facts lead to the conclusion that
our dataset might not properly represent real-world data.

In our case, the results showed that our fine-tuned networks have a tendency to filter
out light sources, which is not desirable. This behavior could originate from the fact that
our reflection layers contained too much light leakage, despite trying to minimize this effect.
However, the reason why a dome reflection appears in the first place is a light source in
or near the image. Therefore, the presence of a light source is inevitable in the creation of
synthetic reflection layers. A result of this is that our networks sometimes include the light
leakage as part of the reflection layer.

Another factor that might be contributing to this is the properties of our background
images. If a light source is present, it often comes with a reflection. This leads to an under-
representation of background images containing light sources. On the other hand, as men-
tioned, the reflection layers are over-representative in terms of light leakage. This likely
contributes to our lacking results on real-world images containing both light source and re-
flection. In conclusion, this way of creating a synthetic dataset might not be the best to
obtain optimal results on real-world images.

5.3.2 Unaligned Image Pairs
One possible improvement could be to complement the dataset with real-world images, taken
with and without dome. If this was done, the training data could better represent real-world
data. However, removing the reflective surface would lead to more differences in the image
than only the reflection. For instance, this could lead to unaligned image pairs. In ERRNet,
this would however not be a problem since this network can handle both aligned and un-
aligned data. The generation of such a complementary dataset would be time consuming,
but future work could explore this.

5.3.3 Generative Adversarial Networks
Another idea for further work is to investigate the possibilities of generating a dataset through
generative adversarial networks. That is, instead of creating a synthetic reflection image by
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blending two layers together, one could train a network to input a background image and
add a reflection. During training, the input would be unpaired real-world images with and
without reflection, such that the network could learn the underlying structure of these two
classes. If successful, one could thereafter input a background image and let the network
generate a reflection in this image. Most likely, this reflection image would be more realis-
tic than a blended image, leading to better results on real-world data. Moreover, this could
greatly improve the ability to generate bigger and more versatile datasets. This is due to only
background images being needed for the generation of new reflection images.

5.4 Summary of Discussion
Even though improvements can be made, our results show that dome reflection removal using
neural networks is a very promising approach. The image quality on both synthetic and
real-world data is greatly improved. Moreover, the networks seem to understand the main
appearance of real dome reflections, despite training only on synthetic data. However, in
some cases the networks have problem recognizing the reflection. Nevertheless, the results
are quite consistent with regards to which cases the networks struggle with. Therefore, in
further work, one suggestion is to complement the training dataset based on these findings.

5.5 Conclusions
In this thesis, we investigated the possibility to remove dome reflections using neural net-
works. We created a dataset consisting of blended transmission and reflection layers. Using
our dataset, we fine-tuned four networks built for reflection removal. Our thesis shows that
this is a promising method. According to both our synthetic and real evaluation, the best
network was ERRNet.

To improve the results, we propose to focus on generating a more realistic training dataset,
as the results are not as good on real-world data. Since ERRNet is able to handle unaligned
images, one option is to take images with and without dome, and complement the synthetic
dataset. Another option would be to investigate if a generative adversarial network would
be able to exploit the underlying structure of reflection and reflection-free images.

To the best of our knowledge, no dome reflection removal networks have been previously
proposed. Even though there is room for improvement, our results show a great improvement
in image quality for both synthetic and real-world data. Our fine-tuning of ERRNet is with-
out a doubt better than just the pre-trained version. Thus, dome reflection removal using
neural networks is clearly a promising method.
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Appendix A

Real Image Evaluation

Before the human evaluation on real images, we sent instructions according to Figure A.1 to
the participants. The participants ranked and graded the results based on collages containing
filtered images from the four networks. Figure A.2 displays an example of such a collage.

Figure A.1: The instructions for human evaluation.

57



A. Real Image Evaluation

Figure A.2: An example of a collage from the human evaluation on
real images. The left column contains the filtering results of the net-
works and the right column contains the original real reflection im-
age.
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Maskininlärd extrahering av bakgrunder
i reflektionsbilder tagna med
domekameror

POPULÄRVETENSKAPLIG SAMMANFATTNING Ellen Åström & Tove Thunborg

På vissa övervakningskameror sitter ett skyddande hölje, även kallad dome, som i
specifika ljusförhållanden skapar reflektioner i bilder. Då övervakning bidrar till ett
tryggare samhälle är bildkvaliteten hos dessa kameror avgörande. Detta arbete pre-
senterar ett neuralt nätverk som kan filtrera bort denna typ av reflektioner.

I dagens samhälle finns övervakningskameror i
varenda byggnad och gathörn, vilket bidrar till
ett tryggt samhälle. Det är därför önskvärt att
bildkvaliteten hos dessa kameror ska vara så bra
som möjligt. På vissa övervakningskameror sit-
ter ett skyddande plasthölje, en så kallad dome.
Problemet med dessa domer är att de har en ten-
dens att skapa cirkulära reflektioner i bilder tagna
under vissa ljusförhållanden. Den här typen av
reflektioner uppstår när objektivet reflekteras i
domen och tillbaka in i bilden. Våra resultat visar
att domereflektioner effektivt kan filtreras bort,
enligt bilden nedan.

Fundera på hur du själv uppfattar en reflektion i
en bild. Visst är det inte så svårt för dig att men-
talt separera reflektionen från bakgrunden? Hy-

potesen är att även datorer kan lära sig denna
förmåga genom träning. Vid filtrering av reflek-
tioner i bilder har neurala nätverk visat sig vara
speciellt effektiva.

I skrivande stund finns flertalet neurala nätverk
som skapats för att filtrera bort reflektioner. Dock
har inget av dessa nätverk fokuserat på att filtr-
era bort just domereflektioner. Det finns därför
anledning att tro att vi kan förbättra resultaten
på denna typ av bilder. I vårt examensarbete har
vi tränat och utvärderat fyra existerande neurala
nätverk för att utröna om bildkvaliteten kan för-
bättras.

För att kunna träna närverken har vi behövt
skapa ett eget dataset. Datasetet är syntetiskt
genererat genom att slå ihop en bakgrunds- och
reflektionsbild. Givet en ihopslagen bild som in-
put, kan man sedan träna nätverken att återskapa
tillhörande bakgrundsbild.

Efter att nätverken tränats utvärderade vi resul-
taten på både syntetiska och verkliga reflektions-
bilder. De fyra nätverken presterade olika men ett
av dem var onekligen bäst. Resultaten talar sitt
tydliga språk: vårt bästa nätverk gav stor förbät-
tring av bildkvaliteten.
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