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Abstract

This thesis is concerned with the estimation of crash frequency based on the bivariate
modeling of surrogate measures of safety (SMoS), which serve as indicators for traffic
risk. Using the SMoS, any traffic conflict between two road users can be described
by their proximity together with their hypothetical consequence. We quantify traffic
conflicts of different severity as random vector of proximity SMoS and consequential
SMoS, and define the traffic risk as the probability measure over the random vector
of SMoS pair. We use EVT both in its bivariate context and in approximating
the marginal distribution of proximity SMoS, which is combined with copula, to
compute the probability of severe collision. The 10-year frequencies of severe collision
are also computed based on the fitted models. From a methodological point of
view, the copula approach with EV margin is more favorable than bivariate EV
models, as collisions of lower severity can also be computed. From an implementation
point of view, the bivariate EV model is more favorable, as the assumptions on the
marginal distribution are defined by the model. The new approach that combines
EV distributions and copula is found to have the most accurate estimated crash
frequency given that the police report was used a reference, for our data set.
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Abbreviations and notations

BM:Block Maxima
DoA: Domain of Attraction
EVT: Extreme Value Theory
FML: Full Maximum Likelihood
GEV: Generalized Extreme Value distribution
GoF: Goodness of Fit
GPD: Generalized Pareto distribution
i.i.d: Independently identically distributed
LminD: The left-turning vehicles under min distance measurements
LPETD: The left-turning vehicles under first PET distance measurements
max i.d: maximum infinite divisible
MEVD: Multivariate Extreme Value distribution
MLE: Maximum Likelihood Estimator
POT: Peaks over threshold in univariate case
POT1: Peaks over thresholds of type 1 exceedences in multivariate case
POT2: Peaks over thresholds of type 2 exceedences in multivariate case
PET: Post Encroachment Time
r.v: random variable
r.vt: random vector
r.vs: random variables
SMoS: Surrogate Measure of Safety
w.r.t: with respect to
w.l.o.g: without loss of generality
Φ(x): standard normal distribution
xF := inf{x ∈ R : F (x) > 0}: the left end point of distribution function F
xF := sup{x ∈ R : F (x) < 1}: the right end point of distribution function F
Ac: the complement of the set A.
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1 Introduction

Road traffic accidents is one of the most frequent cause of death. As being summa-
rized in the 2018 WHO report ”Global status report on road safety”, there were 1.35
million people killed and more than 50 million people injured in traffic accidents.
The traffic safety can be improved by infrastructures. To evaluate the effect of the
improvement, the expected crash frequency is of great importance, as accidents
are still extremely rare events relative to the number of all traffic interactions. The
observation for collision in each cite is limited and thus considered as extreme events.
Frequency of such extreme events can be interpreted as the risk of certain cite. We
intend to formulate the problem more formally using Surrogate Measure of Safety
(SMoS).

In the studying of traffic risk, the term ”traffic conflict” is more general than
accident. A traffic accident is defined as the collision of multiple road users while
the traffic conflict refers to the situation where two or more road users are on the
colliding course. In our project we focus on only two road users at the same time
hence the definitions are simplified accordingly. A traffic conflict is terminated either
when one road user has left the colliding course or the evasions of two road users
are successful. Otherwise the conflict will end up in a collision. The severity of a
collision is evaluated based on the unleashed energy and the protection offered by
the vehicles.

Essentially we want to answer two questions: how close are two road users to
a collision (proximity)? How bad is the collision going to be (severity)? Proximity
and severity of collision are two aspects for investigating traffic risks in road safety
context. To quantify the risk of traffic conflicts, we use SMoS. From the proximity
aspect we employ proximity SMoS, which measures the closeness to collision. The
characterization of traffic conflicts based on proximity SMoS can be visualized as a
pyramid, this is a classic concept that appeared first in Hydén [1987]

undistributed passages

potential conflict

light conflict

serious conflict

collision

Figure 1: Hierarchy pyramid of traffic events

The hierarchy structure of traffic events motivates the use of order statistics to
analyze collisions. We characterize the seriousness of a conflict by the low values of
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proximity SMoS. Suppose X1, · · · , XN are samples of proximity SMoS of N encoun-
ters and X(1), · · · , X(N) be its order statistics. Because of the well-order property
of proximity indicators, if X(1) is greater than 0 i.e it is not a collision, then there
is no collisions in X1, · · · , XN . In another word:

P (No collision) = 1− P (X(1) > 0)

Let X 7→ T (X) be a monotonic decreasing transformation, then the probability
above can be equivalently stated as:

P (No collision) = P
(
max

i
(T (X1), · · · , T (XN )) < T (0)

)

As the number of traffic encounters increases, the extreme order statistics will
converge to a class of non-degenerate distributions, called Extreme Value Distri-
butions. Hence we can use extreme value theory (EVT) to compute the probability
of having a collision, which has the following advantages:

First and the most importantly is that the proximity is a continuous random
variable that has support on the positive real axis, meaning that the collision X ≤ 0
is an event that has zero Lebesgue measure. It is possible in EVT modeling that the
limiting distribution of extreme order statistics has supports which strictly includes
0. Consequently we can compute a non-zero probability for having a collision. An-
other major improvement brought by the EVT approach is the robustness, since no
demands are imposed on the underlying distribution of temporal SMoS. Next we will
discuss briefly the applications of single variate EVT to traffic risk, more precisely,
the proximity SMoS.

1.1 Extreme value theory in analysis of i.i.d near-crash events

The use of EVT in analysing road safety arose in the recent twenty years. The
earliest statistical modeling dated back to Songchitruksa and Tarko [2006], where
block maxima models were used in analysing the post encroachment time (PET) at
a signalized intersection. The framework of EVT analysis based on the Hyden event
pyramid was developed later in Tarko [2012], where the formulation of peaks over
threshold model in road safety context was discussed in details. The two univariate
extreme value models were then applied to model the proximity under different
situations, usually in the form of comparative studies. For example Zheng et al.
[2014a] modeled the PET of freeway entries; Borsos et al. [2020] modeled Time
To Collision of signalized intersections with left-turning and straight moving road
users; Farah and Azevedo [2017] modeled minTTC between two road users moving
towards the each other in a passing maneuver.

The first attempt of modeling crash proximity with bivariate extreme value the-
ory appeared in Jonasson and Rootzén [2014]. In this paper bivariate modeling
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with two proximity SMoS as margins were used to reduce the selection bias due
to different types of proximity SMoS. 1 The bivariate extreme value models have
been validated with different data sets and with different combinations of proximity
SMoSes, such as in Zheng et al. [2018],Wang et al. [2019],Zheng et al. [2019] and
Cavadas et al. [2020]. It was verified that the crash frequencies estimated from the
bivariate extreme value distributions are more accurate, in the sense that the esti-
mated crash frequency based on bivariate models are much closer to real life events
than univariate models. Since the validity of different SMoS are questionable under
different circumstances and different SMoSes interpret conflicts slightly differently,
hence for a traffic conflict if we take what is agreed by different proximity SMoS, we
get a more precise description of the conflict.

1.2 Severity of traffic conflicts

The collisions according to the Hyden pyramid does not specify the consequence
of a collision, but the (potential) consequence of a traffic conflict is as well of our
interest. As this thesis is motivated by the EU Vision Zero project, which is aiming
at reducing casualty of traffic accidents to 0. To properly define severity, we employ
the concept of Traffic Conflict Technique (TCT), where the severity of conflicts
are level curves that represent the combinations of measurements in temporal and
consequential SMoSes.

The severity of a traffic conflict is a combination of the proximity and potential
consequences. The TCT extends the Hyden pyramid by including the (potential)
consequences of a collision. By this characterization a collision that has low

1for example, some proximity SMoSes indicate there is a collision while others do not. The
selection bias can be reduced by improving data collection procedure, for example in Wang et al.
[2019] the video footage were recorded from a drone above target site, which eliminates the selection
bias due to the position of the cameras. More discussions of video footages can be found in Laureshyn
[2010]
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consequence may be ranked as less severe than a near-collision that has
potentially high consequence.

Yet none of existing bivariate EVTmodels of two proximity SMoSes are incapable
of predicting the severity of a conflict. As pointed out in Laureshyn et al. [2010],
the proximity SMoS alone ignores the behaviours of road users, for example as two
vehicles merge drivers will brake which result in decrease in consequential SMoS
thus the severity of the conflict also decreases. One possible approach is to form
a universal SMoS that accounts also for the behavioural aspect of road users. For
example in Laureshyn et al. [2017] a SMoS extended ∆v is introduced where braking
is taken into consideration when measuring the ∆v.2

Alternatively, Jonasson and Rootzén [2014] suggested that we can use bivari-
ate extreme value models of a proximity SMoS and a consequential SMoS in their
first paper regarding the bivariate modeling of SMoSes. There may exist certain
dependence between proximity and consequence which is then captured by the joint
distribution. This was experimented in Borsos [2021].

Borsos [2021] used a bivariate extreme value model called Peaks Over Threshold
type 1 (POT1) to investigate the probability of severe conflicts, which are events
located in the red coloured region in Figure 1.2. The conflicts of high severity, but
not necessarily collisions are represented in the red region. We will define the risk
to be the probability measure of the random vector Z = (X,Y ).

2similar approach can found in Bagdadi [2013] with the difference in the calculation of deceler-
ation, where in Laureshyn et al. [2017] constant deceleration that represents two levels of braking
were used while in Bagdadi [2013] the deceleration is the continuation of the derivative of the in-
terpolated speed in terms of polynomials.
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1.3 Partition of outcome space

Consider the probability space (Ω,F , P ) and a measurable function X : Ω 7→ S ⊂
R+. Moreover suppose that S is compact, then we can represent S as a finite union
of open sets. In our case we may assume that S = ∪n

i=1Si where Si s are consecutive
and disjoint intervals such that Si = [ai−1, ai). By construction we can partition the
outcome space into finitely disjoint subsets: Ω = ∪n

i=1Ωi, where Ωi = X−1(Si)

We are going to partition the outcome space twice, with two distinct measurable
functions X,Y . In our context we let Ω be the set of all traffic encounters, the two
measurable functions X,Y represent the proximity and the (expected) consequen-
tial measurements of traffic conflicts, then we can partition the traffic encounters
according to the two pyramids, such that

• Proximity: Ω = ∪n
i=1Ωi, where Ωi = X−1(Di), X : Ω 7→DDD = ∪n

i=1Di

• (Expected) consequence: Ω = ∪m
j=1Ω̃j , where Ω̃j = Y −1(Sj), Y : Ω 7→ SSS =

∪m
j=1Sj

The partition Ω = ∪n
i=1Ωi gives the Hyden pyramid (Figure 1)and the partition

Ω = ∪m
j=1Ω̃j can also be visualized as a pyramid:

no injury

light injuries

serious injuries

casualty

Figure 2: pyramid of consequence of (hypothetical) collisions

It is important to note that both DDD and SSS are unions of consecutive disjoint
intervals on the positive real line. The intervals corresponding to the two pyramid
summits are located towards the opposite ends. For example the set of collision is
Ω1 = X−1(D1) while the set of the most severe (hypothetical) collisions is Ω̃m =
Y −1(Sm). By such construction it follows that the k th level of the proximity
pyramid counting from the top is Ωk; the k th level of the consequence pyramid
counting from the bottom is Ω̃k. By such construction any rectangle in Figure 1.2
can be represented as a combination of levels of the two pyramids, as illustrated in
the following Figure 3.
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Figure 3: Connection between the pyramids and severity

1.4 Definition of risk

We start from defining the risk of an event formally:

Def 1.4.1 (Risk in TCT). Let Ω be collection of all traffic encounters, (Ω×Ω,F , P )

be the probability space, X : Ω 7→ DDD
compact
⊂ R+, Y : Ω 7→ SSS

compact
⊂ R+ be two

continuous F-measurable functions, Z = (X,Y ) : Ω × Ω 7→ SSS ×DDD to be a random
vector. We define the risk of ZZZ ∈ SSS ×DDD to be the probability measure of Z over ZZZ
i.e P (Z ∈ ZZZ).

Consider the partitions ∪n
i=1Ωi, ∪m

j=1Ω̃j of the outcome space Ω as discussed
in previous Section 1.3. By such construction the intersection between any two
arbitrary union (∪iΩi)∩(∪jΩ̃) ∈ F , thus we can apply the probability measure. This
means for any combination of the levels of the two pyramids, there is a corresponding
region in the TA/Speed plot (Figure 1.2) and we can compute the probability of the
colored region P (Z−1(S × D)). By this definition an encounter is said to be of
high risk if it has a combination of high consequential SMoS and low proximity
SMoS. The collisions are concentrated on the consequential SMoS axis, thus the
identification of collision severity becomes easier. For some severity level curve ξ,
”collisions that are severer than level ξ” can be otherwise stated as ”collisions that
have consequential SMoS measurements greater than y, in which y is the intercept
of ξ with the consequential SMoS axis. An illustration of the events is presented
below (Figure 4):
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Figure 4: Left: Some traffic conflicts; Right: Collisions that are severer than ξ

We are interested in collisions that where one is injured seriously and we refer to
the maximum abbreviated injury score (MAIS) for determining the injury levels. It is
not possible to directly identify the corresponding MAIS level given the consequential
SMoS. The relation between MAIS and the severity of a collision is probabilistic.
The probability of reaching certain MAIS levels is affected by consequential SMoS
as well as other factors, such as the hitting position, brands of vehicles etc, for which
one can investigate by means of multinomial or ordinal logistic regressions.

We regard for simplicity that if given the consequential SMoS measurement of a
collision is greater than 12 meters/second, then we consider it to be a collision where
serious injury may occur. We choose ∆ ≥ 10 according to the result from Gabauer
and Gabler [2008] such that the probability of resulting in MAIS level 3 injury is
lower than 0.1 for collision at ∆v ≤ 10. Therefore the collisions that of our interest
is defined by {ω ∈ Ω : X−1(0) ∩ Y −1((y,∞)), y ≥ 10} and its risk:

P
(
{ω ∈ Ω : X−1(0) ∩ Y −1((y,∞))}

)
= P (X = 0, Y > y) (1)

Looking at (1) we identify a problem immediately. By assumption both proximity
and consequential SMoSes are continuous random variables, hence (1) will have value
0. This is apparently not the case in practice. To obtain a non-zero probability
measure of collision events, we require the distribution function of the proximity
SMoS to be supported on an interval that strictly includes 0 such that infx∈R{x :
F (x) > 0} =: xF < 0. Instead of (1), we make an extrapolation on the support of
temporal SMoS and compute the following probability:

P
(
{ω ∈ Ω : X−1([xF , 0]) ∩ Y −1((y,∞))}

)
= P (X ≤ 0, Y > y) (2)
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Figure 5: Before and after the extrapolation

The rest of the thesis is dedicated to the computation of (2), in particular we
test two approaches: bivariate extreme value theory and copula. Intuitively se-
vere collisions lie precisely in the region of high risk conflicts, as developed in
Borsos [2021], so we may choose POT1 model. Under this circumstance we can
use truncated BEV distribution to approximate the conditional tail distribution
P (X ≤ 0, Y > y|X < u1, Y > u2). In order to apply this method it is required
that the tails of two margins are towards the maximum of the their supports. Un-
fortunately this is not the case for severe collisions, thus it is necessary to make a
transformation before fitting bivariate POT1 models. We will discuss the choice of
transformation in Section 3.

Suppose now that T (·) is a decreasing transformation of X, then the probability
P (X ≤ 0, Y > y) is equivalently stated as P (T (X) ≥ T (0), Y > y). The severe
traffic conflicts separated by the thresholds 3. The computation of (2) based on
bivariate EVT approach is:

P (Y > y, T (X) > T (0)) = Ḡ(T (0), y)1{y ≥ u2} (3)

where u2 is the thresholds for the consequence SMoS. The advantage of POT1
models is that the marginal distributions of proximity and consequential SMoSes do
not bother us as long as the thresholds u1, u2 are large enough. The compromise to
be made is that we lose the flexibility of computing the probability for events being
not part of the colored region in Figure 1.2. However most of targeted events for
this project are well included in the colored region. The choice of thresholds is of
great importance in POT1 approach, details will be discussed in Section 4.

3which is the red region in Figure (1.2)
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The copula approach is more straight-forward. In theory if the correct marginal
distributions of proximity and consequential SMoS are supplied, we can compute the
risk for all conflicts. Suppose that F1, F2 are the underlying distribution of proximity
and consequential SMoSes, C is some copula that exactly fits to the provided data,
then we compute (2) by:

P (X ≤ 0, Y > y) = P (X ≤ 0)− P (X ≤ 0, Y ≤ y) = F1(0)− C(F1(0), F2(y)) (4)

In the copula approach, the challenge occurs in identifying suitable marginal
distribution for proximity SMoS. For large number of data we can replace the exact
distribution with empirical distribution for consequential SMoS. But this is not
possible for distribution proximity SMoS. Since our data do not contain any collision,
the requirement xF < 0 will not be fulfilled. We discuss the technical parts of copula
approach in Section 5.

The probability (1) is computed based on the two approaches mentioned above
and is used in the estimation of collision frequency. Denote the number of collisions
that have ∆v > y in a period Y to be NT , then NT ∼ Bin(nT , P (X ≤ 0, Y > y))
where nT is the number of traffic encounters in the given time period T and the
expected number of such collision is equal to E(NT ) = nT · P (X ≤ 0, Y > y).
Usually the data are collected from a short (relative to T ) observational period t,
in this case NT ∼ Bin

(
T
t · nt, P (X ≤ 0, Y > y)

)
and the expected value is changed

accordingly:

E(NT ) =
T

t
· nt · P (X ≤ 0, Y > y) (5)

In Section 1 we provided motivations and infrastructure for bivariate modeling.
Section 2 contains the necessary bivariate extreme value theory for the POT1 ap-
proach. More mathematical details regarding EVT are presented in appendix. The
actual modelling starts from Section 3 and ends at Section 5. In Section 3 we discuss
the data preparation before the analysis. We present the implementation 4 and the
results from POT1 models in Section 4. The theory and implementation of copula
approach are included together in Section 5. At last we will reflect on the two ap-
proaches and suggest future researches on the modeling of collision risks in Section
6.

2 Extreme value theory

In single variate case there exist two ways in modeling the extremes of i.i.d ran-
dom variables X1, · · · , Xn: Block Maxima (BM) and Peaks Over Threshold (POT).
BM models the extremes using the limiting distribution of extreme order statistics
X(n). This approach is based on the Fisher–Tippett–Gnedenko theorem, which was

4which is done in R R Core Team [2021]. The package ggplot2 Wickham [2016] is used for
plotting
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generalized in de Haan [1970] as ”there exist sequences of normalizing constants

{an > 0}n, {bn ∈ R}n such that limn→∞ Fn(anx + bn)
d−→ G(x) for some non-

degenerate distribution G.” Moreover the original distribution F is said to belong
to the domain of attraction of a generalized extreme value distribution G. Suppose
the observations are divided into m blocks and x̂1, · · · , x̂m are the block maxima,
then according to the theorem the maximal order statistics has GEV distribution
with parameters estimated from the block maxima.

Peaks over threshold models the upper tail by filtering out observations that do
not exceed a certain threshold i.e we are modeling the conditional random variable
X|X > u. It was shown in section 3 of Pickands [1975] that the distribution of
the upper tail P (X ≤ x|x > u) has a generalized pareto distribution as u goes
to the right end point if and only if F belongs to the domain of attraction of an
extreme value distribution G. The result is known as Pickands–Balkema–De Haan
theorem, which together with Fisher–Tippett–Gnedenko theorem are often called
the first and the second theorem of extreme value theory. We will discuss the
Fisher–Tippett–Gnedenko theorem in more details, as it is also a cornerstone in
multivariate extreme value theory.

For univariate distributions, the Fisher–Tippett–Gnedenko theorem (also known
as the extremal type theorem) provides the complete characterization of the family
of max-stable distributions using the three extremal type distributions. This applies
even to higher dimensions, but the max-stable distributions in higher dimension
are characterized somewhat more complicated. In Appendix we show that the non-
degenerate limiting distribution of extreme order statistics must be max-stable.We
start by stating one of the most important theorem in extreme value theory. A
further step is to derive the expression for univariate max-stable distributions

Theorem 2.1 (Fisher–Tippett–Gnedenko). Let {Fn := Fn}n be the sequence of dis-
tribution functions of extreme order statistics. If ∃{αn > 0}n, {βn ∈ R}n sequences
of normalizing constants s.t Fn(αnx+ βn) → G where G is non-degenerate, then G
belongs to one of the following three types:

Φα(x) = exp
(
− x−α

)
, x ≥ 0 , α > 0 (Fréchet)

Ψα(x) = exp
(
− (−x)α

)
,x ≥ 0 , α > 0 (inverse Weibull)

Λ(x) = exp−(e−x),x ∈ R (Gumbel)

(6)

Putting Lemma 7.5 and 7.6, we know that the non-degenerate limiting distribu-
tion of extreme order statistics is max-stable and satisfies the functional equation
Gs(α(s)+β(s)) = G(x) , ∀s > 0. By solving the equation we get the three extremal
type distributions.

Remark 2.1.1. The three extremal type distributions can be represented by the
family called Generalized Extreme Value distributions (GEV){

G(x;µ, σ, γ) = exp

(
− (

(
1 + γ

x− µ

σ

)−1/γ

+

)
: µ, γ ∈ R, σ ∈ R+

}
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By Theorem 6 (in Appendix) we know that if the non-degenerate limiting dis-
tribution of order statistics belongs to one of the extremal types,it is denoted as
F ∈ D(G) i.e F belongs to the Domain of Attraction of (DoA) of G. The follow-
ing lemma gives an equivalent definition for DoA.

Lemma 2.2. Let F be a single variate distribution function, then Fn(αnx+ βn) →
G(x) (F ∈ D(G))where G is non-degenerate iff

lim
n→∞

n(1− F (αnx+ βn)) → − lnG(x)

Proof. We rewrite Fn as Fn =
(
1 − n−1 · n(1 − F )

)n
, then by a standard limit we

have limn→∞ Fn = exp
(
− n(1− F )

)
.

lim
n→∞

Fn(αnx+ βn) = exp
(
− n(1− F (αnx+ βn))

)
Suppose limn→∞ n(1− F (αnx+ βn)) → − lnG(x), then

Fn(αnx+ βn) = exp
(
− n(1− F (αnx+ βn))

)
→ exp (ln(G))

Conversely, suppose F ∈ D(G), then

exp
(
− n(1− F (αnx+ βn))

)
→ G(x) =⇒ lim

n→∞
n(1− F (αnx+ βn)) → − lnG(x)

2.1 Approximation of upper tail distribution

An application of Lemma 2.2 is that we can show if F ∈ D(G), then the conditional
tail distribution of X ∼ F is approximately Generalized Pareto distributed (GPD)5.
Since F (αnx+ βn) and F (x) are of the same type,

lim
n→∞

n(1− F (αnx+ βn)) → − lnG(x) =⇒ 1− F (αnx+ βn) → n−1
(
1 + γ

x− µ

σ

)−1/γ

+

=⇒ 1− F (x) ≃ n−1
(
1 + γ

x− µ

σ

)−1/γ

+

=⇒ P (X > x+ u|X > u) =
1− F (x+ u)

1− F (u)
≃

(
1 + γ x+u−µ

σ

1 + γ u−µ
σ

)−1/γ

+

=

(
1 + γ

x

σ + γ(u− µ)︸ ︷︷ ︸
σ∗

)−1/γ

(7)

which we recognize to be the survival function of GPD. We have shown that
F ∈ D(G) =⇒ the conditional tail distribution is approximately GPD(σ∗, γ). The
GPD is stable under the filtering-excesses operator s.t if X ∼ GPD(σ∗, γ), then
P (X > x + u|X > u) is again GPD. By writting out the conditional probability

5The converse also holds
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we immediately obtained P (X > x + u|X > u) =

(
1 + γ x

σ∗+γu

)−1/γ

, which is the

survival function for GPD(σ∗+γu, γ). This property is used for selecting thresholds.
At last we can obtain the unconditional tail distribution easily s.t

P (X ≤ x) = P (X ≤ x|X > u) · P (X > u) = 1− ηu

(
1 + γ

x

σ + γ(u− µ)

)−1/γ

(8)

2.2 DoA and point processes

Suppose X1, · · · , Xn are random samples from F and F ∈ D(G), G is a GEV.
Consider a region A ⊂ [0, 1] × [xG, x

G] := E. Define a simple point process
Nn(A) :=

∑n
i=1 1{

xi−βn

αn
∈ A} 6, in which {αn}n, {βn}n are the sequences of normal-

izing constants as prescribed in Theorem 6. We shall establish the characterization
of G from the distribution of the limiting point process Nn(A). Nn(A) is Bin(n, pn)
distributed, for small probability pn, it will converge in distribution to a Poisson
distribution.

Lemma 2.3. Suppose Xn ∼ Bin(n, pn) and n · pn → λ < ∞, then limn→∞Xn
d−→

Y ∼ Poi(λ).

Proof.

P (Xn = k) =

(
n

k

)
(1− pn)

n−kpkn =

(
n

k

)
(1− npn/pn)

n−k(npn/n)
k

=
n(n− 1) · · · (n− k + 1)

nk
· npn

k!
· (1− npn/n)

n−k

→ λk

k!
· exp (−λ) = P (Y = k) ∀k ∈ N as n → ∞

Theorem 2.4. Let X1, · · · , Xn be random samples from F ∼ D(G) , G ∼ GEV (µ, σ, γ)
and Nn(A) be a point process defined as above. Moreover choose A := [t1, t2]×[x, xG],
then Nn(A) converge in distribution to a non-homogeneous Poisson process with in-

tensity measure Λ(A) = (t2 − t1)
(
1 + γ x−µ

σ

)−1/γ

+

First we use Lemma 2.2, F ∈ D(G) implies

P (
X − αn

βn
≤ x) = F (αnx+ βn) ≡ − ln(G) =

(
1 + γ

x− µ

σ

)−1/γ

+

6i.e the number of points that lies in A
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Intuitively the proof of Theorem 2.4 will follow from Lemma 2.3 and Lemma
2.2, but the convergence of the point process Nn(A) distributed as Bin(n, (t2 −
t1)P (X−αn

βn
≤ x)) to a non-homogeneous Poisson process with intensity function

Λ(A) = (t2−t1)
(
1+γ x−µ

σ

)−1/γ

+
turns out to be more complicated. Instead of showing

the convergence directly, one can show the convergence of Laplace functional, which
uniquely determines the law of the point process (Proposition 3.5 Resnick [2008]).
A rigorous proof of Theorem 2.4 is given in Proposition 3.21 Resnick [2008].

In the univariate case, if we let A := [0, 1] × E \ (−∞, x], then the event of no
occurrence of a point xi > x , ∀i = 1, · · · , n is equivalent to the event Nn(A) = 0.
So

P (
Mn − αn

βn
≤ x) ≈ P (N(A) = 0) = exp

(
−
(
1 + γ

x− µ

σ

)−1/γ
)

2.3 Characterization of multivariate max-stable distributions

Discussion of multivariate max-stability in this section follows closely to A. A. and
S. I. [1977],de Haan and Resnick [1977] and Resnick [2008].

Def 2.3.1 (Component-wise operations). Let x, y, a, bx, y, a, bx, y, a, b ∈ Rd, then we define:

1. xxx < yyy if xi < yi,∀i = 1, · · · , d (Component-wise ordering).

2. xxx ∈ [aaa,bbb] if xxx ∈ ∩d
i=1{xi ∈ [ai, bi]} (Hyper rectangle).

3. xxx ∨ yyy = (x1 ∨ y1, · · · , xd ∨ yd), where xi ∨ yi := max (xi, yi) (Component-wise
max operation).

Let XXX1, · · · ,XXXn be random samples from Rd, then the component-wise maxima is

defined by MMMn := max1≤j≤nXXXj = (M
(1)
n , · · · ,M (d)

n ).

The multivariate max-stable distribution is defined similarly as in the univariate
case, since the multivariate max-operation is component-wise. We provide a proof
for conditions of univariate max-stable distribution in Appendix, which will be used
as a definition for the multivariate case.

Def 2.3.2 (multivariate max-stability). A d dimensional distribution G is max-
stable if there exists functions defined on (0,∞), α(i)(s) > 0 , β(i)(s) s.t ∀s > 0 , 1 ≤
i ≤ d , Gs(α(1)(s)x1 + β(1)(s), · · · , α(d)(s)xi + β(d)(s)) = G(xxx).

Generally speaking the max-stable distribution is a subclass of operator stable
distributions. Michael [1969] provided in-depth measure-theoretical and group-
theoretical arguments for conditions in order for a distribution to be operator stable
and demonstrated the theory on sum-stable distributions. A simplified version of
Sharpe’s result is that: For a sequence of i.i.d random variables {Xi}ni=1, Xi ∼
F , suppose A is a function of X1, · · · , Xn, if F is A-stable, then there exists an
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automorphism of F H such that H(F ) is the distribution of A{Xi}ni=1 and H(F ) is
a non-degenerate distribution function that is different from F only up to a location-
scale transformation. To obtain max-stable distributions we let

A :=
max1≤i≤n(X1, · · · , Xn)− µn

σn
, H(·) := ·n

where {µi}i, {σi > 0}i are sequences of normalizing constants. Without the
normalizing sequences max1≤i≤n(X1, · · · , Xn) collapses to degenerate distribution
with a point mass at the right end point of X.

The class of operator stable distributions belongs to be class of operator in-
finite divisible distributions. A non-degenerate distribution G is said to be
A-infinitely divisible if ∃{Xi}∞i=1 sequence of i.i.d random variables s.t Xi ∼ F and

H is an automorphism of F such that H−1(G)
d
= F . In particular we are interested

in max-infinite divisible distributions (max i.d). The key aspect of characterizing
multivariate max i.d distribution is the exponent measure µ(·), which is shown in
A. A. and S. I. [1977], a multivariate max i.d distribution takes the form:

F (xxx) = exp (−µ(Rd \ (−∞,xxx])) (9)

(9) can be interpreted as the probability of having no occurrence in a d di-
mensional simplex given a non-homogeneous Poisson process. Extra restriction is
imposed on the intensity measure µ.

Def 2.3.3 (exponent measure). A positive non-decreasing function µ : B(Rd) 7→ R+

is called an exponent measure if it satisfies:

1. µ(R × A) = ∞, for any A ⊆ Rd−1, i.e the exponent measure for any cube in
Rd is infinte.

2. For any i = 1, · · · , d, limxi→∞ µ(Rd\(−∞, x1]×· · ·×(−∞, xi]×· · ·×(−∞, xd]) =
0

Since max-stable distribution is max i.d, the class of multivariate max-stable
distributions also takes the form (9). We will first show that the class of multivariate
max-stable distribution has max-stable (GEV margins). The next theorem is an
extension of Theorem 7.4 in higher dimensions. The proof is analogous.

Theorem 2.5. Suppose (M
(1)
n , · · · ,M (d)

n ) is the component-wise maximum of i.i.d

r.vtX1X1X1, · · · ,XnXnXn. If ∀i = 1, · · · , d∃ sequences of normalizing constants {α(i)
n }n , {β(i)

n }n
s.t M

(i)
n −β

(i)
n

α
(i)
n

d−→ Gi non-degenerate, then G is max-stable.

Def 2.3.4 (MEVD). A d dimensional max-stable distribution function is called
Multivariate Extreme Value distribution if its margins are GEV distributed.
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Hence the class of MEVD takes the form (9). Extra restriction on the exponent
measure µ(·) is needed to preserve multivariate max-stability, s.t Gs(ααα(s)xxx+βββ(s)) =
G(xxx) holds for some vector valued function ααα(s),βββ(s). Fortunately we can transform
any MEVD G(xxx) to MEVD with unit Frechet margins G∗(xxx), for which the max-
stability holds withGs

∗(sxxx) = G∗(xxx) , ∀s > 0. Essentially we have to extend Theorem
7.7 to higher dimensions using Theorem 2.5, such that:

Theorem 2.6. Let G,G∗ be d dimensional distributions in which Gi , i = 1, · · · , d
are margins of G and G∗ has unit Frechet margins, ϕ−1(xxx) :=

(
− 1

ln (G1(x1))
, · · · ,− 1

ln (Gd(xd))

)
,

then G(xxx) = G∗(ϕ
−1(xxx)) and G∗(xxx) = G−1(exp (−xxx−1)). In particular G∗ is MEVD

⇐⇒ G is MEVD.

Assume that G is MEVD and F ∈ D(G), G is max-stable, let V (xxx) := 1
1−F (xxx)

and F∗(xxx) := F (V −1(xxx)), then F∗ ∈ D(G∗).

The consequence of Theorem 2.6 is that any MEVD can be represented by MEVD
with unit Frechet margins s.t

G(x1, · · · , xd) = G∗

((
1 + γ1

x1 − µ1

σ1

)1/γ1 , · · · , (1 + γd
xd − µd

σd

)1/γd︸ ︷︷ ︸
x̃̃x̃x

)

= exp
(
− µ∗(Rd+ \ (000, x̃̃x̃x])

)
(10)

where µ∗(·) is the exponent measure associated with G∗. Hence we can w.l.o.g
use a MEVD with unit Frechet margins, whose max-stability is fulfilled if

∀s > 0 , µ∗(Rd+ \ [0,xxx]) = s · µ∗(Rd+ \ [0, s · xxx]) (11)

(de Haan and Resnick [1977])

2.4 The dependence function

The main result of this part is Proposition 5.11 in Resnick [2008]. We will go through
the proposition without formally proving it and state a popular characterization
of 10 in two dimensions. The procedure is based on the point process in higher
dimensions. We first extend Theorem 2.4 with Lemma 2.2 and Theorem 2.5, that a
d dimensional distribution F ∈ D(G) for some MEVD G if and only if for the point
process

Nn([0, 1]× E \ (−∞,xxx]) =

n∑
i=1

1

{(y(1)i − β
(1)
n

α
(1)
n

, · · · ,
y
(d)
i − β

(d)
n

α
(d)
n

)
> xxx

}
→ N([0, 1]× E \ (−∞,xxx])

where E := [xxxG,xxx
G] ⊆ Rd is the support of G, N([0, 1]×E \ (−∞,xxx]) is a d di-

mensional non-homogeneous Poisson process with intensity function µ(E \(−∞,xxx]).
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For MEVD with unit Frechet margins, we have E = Rd+ \ {0}, β(1)
n ≡ · · · ≡ β

(d)
n ≡

0 , α
(1)
n =, · · · , α(d)

n = n.

For the intensity function µ∗(A) of a non-homogeneous Poisson process on A, we
use the notation µ∗(da) to denote the infinitesimal intensity measure s.t µ∗(A) =∫
a∈A µ∗(da). When µ∗ is also the exponent measure associated with G∗, by Def-
inition 2.3.3 µ∗ is equal to 0 for any xi = ∞, thus the exponent measure is con-
centrated on a compact subset N ⊂ E. Take ∥ · ∥ to be a norm in Rd and define
N := {xxx ∈ E : ∥xxx∥ ≤ c} for some finite constant c. As all norms on finite dimen-
sional Euclidean space are equivalent, we can w.l.o.g define N := {xxx ∈ E : ∥xxx∥ ≤ 1}

Moreover the exponent measure µ∗ for any cube in Rd is infinite. Meaning that
G∗(xxx) = 0, ,xxx ∈ Br(0) := {xxx : ∥x∥ < r, r > 0} for some arbitrary neighbourhood of
the origin. We are only interested in the region N ∩Br(0)

c, for which 0 < G∗(xxx) < 1
and its the expression for x ∈ int(E) thus becomes:

G∗(xxx) = exp
(
− µ∗(Rd+ \ [000,xxx])

)
= exp

(
−
∫
N∩Br(0)c

µ(dxxx)
)

(12)

Furthermore there exists a subset N ⊇ Ñ := {xxx ∈ E : xxx/∥xxx∥ = 1}, we can define
a new measure S on Ñ s.t for any A ⊂ Ñ :

S(A) := µ∗({∥xxx∥ > 1,xxx/∥xxx∥ ∈ A}) (13)

Note that Ñ = {xxx ∈ E : ∥xxx∥ = 1} is the unit sphere in Rd+, thus S(Ñ ) =
µ∗(B1(000)

c∩Ñ ) ≤ µ∗(B1(000)
c∩N ) < ∞ by the definition of exponent measure. Next

we will show that it is possible to represent (12) in terms of S.

To begin with let us consider a pseudo polar transformation T : E 7→ (0,∞]×Ñ
s.t T (xxx) = (∥xxx∥,xxx/∥xxx∥) = (r,aaa).

T (E \ (0,xxx]) = T ({yyy ∈ E : y(i) > x(i) , for some 1 ≤ i ≤ d})
= {(r,aaa) ∈ (0,∞]× Ñ : r · a(i) > x(i) , for some 1 ≤ i ≤ d}

= {(r,aaa) ∈ (0,∞]× Ñ : r >
d∧

i=1

x(i)

a(i)
} (14)

and its pre-image is defined as:

T−1(r,aaa) = {yyy ∈ E : ∥yyy∥ > r,yyy/∥yyy∥ ∈ Ñ} (15)

Now we can establish the relation between exponent measure µ∗ and the measure
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S:

µ∗ ◦ T−1(r,aaa) = µ∗({yyy ∈ E : ∥yyy∥ > r,yyy/∥yyy∥ ∈ Ñ})
= r−1µ∗({r−1yyy ∈ E : ∥yyy∥ > r,yyy/∥yyy∥ ∈ Ñ}) (16)

= r−1µ∗({r−1yyy ∈ E : r−1∥yyy∥ > 1, r−1yyy/∥r−1yyy∥ ∈ Ñ}) (17)

= r−1µ∗({xxx ∈ E : ∥xxx∥ > 1,xxx/∥xxx∥ ∈ Ñ}) = r−1S(Ñ ) (18)

(16) is due to (11) and we obtain the infinitesimal measure:

µ∗ ◦ T−1(dr, daaa) = r−2drS(daaa) (19)

Next we combine (12), (14), (18) and (19) to arrive at the characterization of
MGEV with unit Frechet margins:

G∗(xxx) = exp
(
− µ∗(E \ (000,xxx])

)
= exp

(
− µ∗ ◦ T−1 ◦ T (E \ (000,xxx])

)
= exp

(
−
∫
T (E\(000,xxx])

µ∗ ◦ T−1(dr, daaa)
)

= exp
(
−
∫
Ñ

∫
r>

∧d
i=1

x(i)

a(i)

r−2drS(daaa)
)

= exp
(
−
∫
Ñ

d∨
i=1

a(i)

x(i)
S(daaa)

)
(20)

The only requirement for the measure S is∫
Ñ
a(i)S(daaa) = 1, , ∀1 ≤ i ≤ d (21)

so that G∗(xxx), has unit Frechet margins:

G(∞, · · · , x(i),∞) = exp

(
−
∫
Ñ

a(i)

x(i)
S(daaa)

)
= exp (−1/x(i)) (22)

In the bivariate case, we may choose ∥xxx∥ = x + y. Thus the set Ñ becomes
{www :

∑2
i=1w

(i) = 1} and xxx/∥xxx∥ =
(

x
x+y ,

y
x+y

)
and (20) instead becomes:

G∗(xxx) = exp

(
−
∫ 1

0
max ((1− w)/x,w/y)S(dw)

)
= exp

(
− x+ y

xy

∫ 1

0
max ((1− w)

y

x+ y
, w

x

x+ y
)S(dw)

)
= exp

(x+ y

xy
·A(q)

)
(23)
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where µ∗(R2+ \ (0, x]× (0, y]) = (x−1+ y−1) ·A(q) is a popular form of exponent
measure and

A(q) =

∫ 1

0
max ((1− w)q, w(1− q))S(dw) , q = y/(x+ y)

is called the Pickand dependence function Pickands [2010]. Based on (22) we can
derive the properties of A(q).

A(0) =

∫ 1

0
wS(dw) =

∫ 1

0
(1− w)S(dw) = A(1) = 1 (24)

Since w, q ∈ [0, 1], we can use (22) again to establish the lower and upper bound
for A(q), s.t

max (w, 1− w) ≤ A(q) ≤ 1 (25)

The last but also the most important property of A(q) is the convexity. This
is due to the positiveness of the density of (23), which is fulfilled if A′′(q) ≥ 0. To
sum up briefly, A(q) is the class of function that is convex in [0, 1] s.t the boundary
conditions (24), (25) are satisfied. We gives some examples of MEVDmodel based on
(23) in Table 1. These parametric models will be used in fitting the data in Section
4. We adopt the parametrization in accordance with the manual of Stephenson
[2002] (evd package) where the dependence functions and their properties are well
summarized from the original papers.
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2.5 Statistical models based on MGEV

There are three statistical models for multivariate EV analysis, which are component-
wise block maxima, POT1 and type 2 peaks over threshold (POT2). The component-
wise BM method takes the r largest order statistics component-wisely and approxi-

mate (M
(1)
r , · · · ,M (d)

r ) with (23). The POT1 model is a analogue of single variate
peaks over threshold with exceedances in all margins. The model including the prob-
ability distribution and inference were discussed by for example (Joe et al. [1992]).
It can be shown that the exceedances in both margins X,Y |X > u1, Y > u2 are ap-
proximated by a truncated version of (12). The POT2 is more general than POT1,
as it deals with exceedances in at least one margin. Tajvidi [1995] showed that the
limiting distribution of X,Y |(X,Y ) ≰ (u1, u2) is bivariate generalized Pareto.

We will show that the joint tail distribution is approximately BEVD (Table 1).
The procedure follows from chapter 8.3 of (Beirlant et al. [2004]) and will involve
convergence of copulas, which is discussed in Section 5. Suppose a r.vt (X1, X2)
has marginal distributions that belong to the DoA of GEV and joint distribution
F , then according to discussion in Section 2.1, the unconditional tail distribution of
the margins satisfy (8), which we denote them as F1, F2. The next Lemma is useful
for transforming r.vs to unit Frechet distributed.

Lemma 2.7. Let X ∼ F be a continuous random variable, then − 1
ln (F (X)) ∼ G∗(x)

where G∗(x) = exp (−x−1) is unit Frechet distributed.

Proof. Let X ∼ F and G∗(x) = exp (−x−1), then G−1
∗ (u) = −1

ln (u) .

By theorem 5.1 we know that F (X) ∼ Un[0, 1] and G−1
∗ (U) ∼ G∗, so

−1
ln (F (X)) ∼

G∗

The first step is to transform all margins to unit Frechet. Suppose V (xxx) and
F∗(xxx) are defined as in Theorem 2.6, the unconditional joint tail distribution F (xxx)
is equal to:

F (xxx) = F∗
(
− 1

ln (F1(x1))
, · · · ,− 1

ln (Fd(xd))

)
, ∀xxx > uuu (26)

where the marginal tail distribution follows (8). Since F ∈ D(G), by Theorem
2.6 F∗ ∈ D(G∗). Let zi := − 1

ln (Fi(xi))
, then F∗(zzz) has unit Frechet margins (by

Lemma 2.7). Next we will show F∗(zzz) ≈ G∗(zzz) for large zzz.

Let CF∗(uuu) := F∗(zzz) be a copula of F∗, by Theorem 5.2:

F∗(zzz) = CF∗(exp (−zzz−1)) = C(uuu) = F∗(−
1

ln (uuu)
) (27)

Let ũuu := F (nzzz), then ũuu = exp (−1/(nzzz)) = uuu1/n

Fn(nzzz) = CFn
∗ (ũuu) = Fn

∗
(
− n

ln(uuu)

)
= Cn

F∗(uuu
1/n) (28)
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F∗ ∈ D(G) =⇒ ∀s > 0, F s(szzz) → G∗(zzz) =⇒ CFn
∗ (ũuu) = Cs

F∗
(uuu1/s) → CG∗(uuu),

where CG∗ is EV copula that satisfies the relation Cs(uuu1/s) = C(uuu)7.

CF∗(uuu
1/s) → C

1/s
G∗

(uuu) = CG∗(uuu
1/s) (29)

s → ∞ in (29) corresponds the upper tail zzz → zzzF , hence we can establish

F (xxx) ≈ G∗(−
1

ln (F1(x1))
, · · · ,− 1

ln (Fd(xd))
), ∀xxx > uuu and uuu → xxxF (30)

with Fi(xi) = 1− ηi

(
1 + γi

xi
σi+γi(u−µi)

)−1/γi

, i = 1, · · · , d

3 Preparing the Data

3.1 Description

The data was formerly used in the analysis of Laureshyn et al. [2017], Borsos et al.
[2020] and Borsos [2021]. It consists of video footage of encounters at a non-signalized
intersection where traffic conflicts occur between left turning vehicles and straight
moving vehicles. The weight of each vehicle was approximately grouped by its
appearance: whether it is a car, a minivan or a truck. Measurements were taken
between 6:00 to 21:00 of two consecutive days. In total there were 1512 vehicles,
756 encounters. We divided the vehicles into two groups according to the type of
maneuvers, because the distance is measured per encounter while the ∆v is measured
per vehicle. It is noteworthy that there exists one encounter whose proximity SMoS
attains 0; this was due to the position of the camera, in fact collision did not happen.
So we set the distance to 0.2 meters instead of 0 meters.

3.2 Two ways of measuring

The video footage was first processed by the software T-analyst T-A. Different mea-
surements of proximity and consequential SMoS are recorded. Once when the dis-
tance between two vehicles were minimal; once at the last moment before the ter-
mination of a conflict (i.e one vehicle has left the colliding course, which is also
defined as the post encroachment distance). The observations we obtained under
minDistance measurements tend to have smaller values in proximity SMoS, but it
does not always imply a near-collision since two vehicles may not be on the colliding
course any longer. On the other hand, observations obtained under PETDistance
tend to have larger values in both proximity and consequential SMoS which is more
difficult to make inference on the collisions, but the results are more convincing from
a practical point of view.

7see Section 5.2 for details of EV copula
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Figure 6: Illustration of the SMoS measurements at two moments, dotted arrows
indicate the direction of the vehicles

We choose the SMoS pair to be Distance and ∆v∆v∆v. The ∆v for the first vehicle
is computed by

∆v0 =
m1

m1 +m2

√
v21 + v22 − 2v1v2 · cosα

where v1, v2 are the speed; m1,m2 are the mass; α is the angle of collision. We
assume the mass are the same for all vehicles in the same category, thus the only
difference in ∆v measurements between the two vehicles occur when they are not
the same type class vehicles. In total there will be four data sets based on which we
compute the probability of traffic conflicts:

Table 2: the name abbreviation for the four data set

maneuver
measurement

minDistance PET Distance

Left turning LminD LPETD

Straight moving SminD SPETD

Note that the same measurement of consequential SMoS may result in different
levels of injury. This is due to the difference in the contact point. The left-turning
drivers are more vulnerable than straight-moving drivers. Given the same ∆v, the
chance of passenger injury in left-turning vehicles are greater. Hence we decide to
make inference using only the left-turning data.

The plots of Distance and ∆v against record time are listed in the Appendix
(Figure 19,20). No obvious trends in time are spotted and thus we may assume the
samples are i.i.d. The difference between two measurements are reflected on the
scale of the axis.
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Figure 7: Scatter plots of the left turning data under two measurements, left: LminD;
right: LPETD

3.3 Transformation of the Data

As mentioned in Section 1.4, the measurements of distance need transforming de-
creasingly. Moreover in order for (3) to be non-zero, we demand that P (T (X) >
T (0)|T (x) > T (u1)) to be non-zero. We know from Section 2 that if T (X) be-
longs to the domain of attraction of some GEV (µ, σ, γ), T (X)|T (X) > T (u1) is
asymptotically generalized Pareto distributed with scale σ̃ = σ + γ(T (u1) − µ)
and shape γ as T (u1) → T (xF ). The distribution P (T (X) ≤ x|T (X) > T (u1))
is supported on the positive real axis if γ ≥ 0; it is supported on the interval
[0, µ− T (u1)− σ/γ]. Hence it is required for the monotone decreasing transforma-
tion T s.t T (0) ∈ [0, µ− T (u1)− σ/γ).

The simplest possible transformation T is the negation T (X) = −X. But in
practice we found that under negation collision events do not always have non-zero
probabilities in LminD, LPETD situations. Besides the negation, we have also
considered the shifted reciprocal transformation T (X) = 1

X+δ for some constant δ.
Under this transformation, we identified (3) to be

P (Y > y,X > T (0)) = P (Y > y,
1

X + δ
> 1/δ) (31)

This transformation is adopted from Zheng et al. [2014b] and the parameter es-
timation is simplified. In the original approach, the threshold and δ was treated as
parameters. The estimation of the model was carried out by Monte Carlo method.
Though such approach is slightly more computationally expensive, it helps to elim-
inate the subjectivity in selecting the threshold value and the value of δ. Moreover
the distribution of the tail is different, the joint distribution will change accordingly.
Considering the difficulty in characterizing POT1 models, we decided not to treat
the threshold value u1 and shift constant δ as parameters, but as prescribed con-
stants instead. For example we choose δ := miniXi.
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4 The Peaks Over Threshold Type 1 approach

In the study of collisions of certain severity we consider only the POT1 models. This
is because bivariate block maxima is taken component-wisely. Even though bivariate
block maxima is indeed suitable for modeling the dependence between two extreme
order statistics, the events does not have to happen simultaneously. Hence it does
not satisfy our need of computing the collision probability of certain severity. In this
section we present the detailed implementation for the left turning vehicles (refer to
Table 2), the implementation procedure for straight moving vehicles is identical.

4.1 The notations

We follow the same notation as in the introduction. In addition we define X̃ :=
T (X) = 1/(X+δ) as the shifted reciprocal proximity SMoS. Based on our discussion
in Section 2, the tail distribution of any bivariate distribution, which is P (Y ≤
y, X̃ ≤ x̃), is approximately BEVD distributed. The scheme of computing the
collision frequencies goes as follows: we fit all models presented in Table 1 to the
chosen tail region by maximizing the censored log-likelihood and select the best
model(s) according to likelihood ratio test, AIC and confidence interval of collision
probabilities. Then we will compute the probability (1) and expected frequency (5)
using the fittest model(s).

4.2 Selection of thresholds

We begin the analysis from threshold selection. To achieve a balance of bias and vari-
ance of the parameter estimation, T (u1) := ũ1, u2 should be large enough such that
the conditional marginal distribution of P (Y > y, X̃ > 1/δ) can be approximated by
GPD while the semi-open rectangular region [u1,∞) × [u2,∞) (which corresponds
to the tail of a bivariate distribution) contains a decent amount of observations.
Such semi-open rectangular region in which BEVD approximates tail distribution
well is obtained by selecting the thresholds for the two margins separately, each as
in the setting of univariate peaks over threshold. The package extRemes Gilleland
and Katz [2016] is used univariate analysis.

The threshold selection in single variate POT is aided by the mean residual plot
and the threshold range plot. Both plots exploit the stability of GPD s.t

∀u > 0 , X ∼ GPD(σ0, γ0) =⇒ X−u|X > u ∼ GPD(σ1, γ1) , σ1 = σ0+γu , γ1 = γ0

For the mean residual plot, the first moment E(X − u|X > u) = σ+γu
1−γ , which in

theory is linear in threshold u. We plot its empirical version, that is,

{
(u, n−1

u

n∑
i=1

(xi − u)+) : u ∈ I ⊂ R
}
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in which nu denotes the number observations that are greater than u. We should
select the threshold from a range where the mean residual plot appears to be linear.
For the threshold range plot, we plot σ1 − γ0u and γ1 against u, which should be
a constant. In practice the parameters are replaced with their maximum likelihood
estimates, for which we can also add confidence intervals. We should select the
thresholds as large as the variances of the estimates are acceptable.

Figure 8: Threshold selection for the proximity SMoS in LminD

We combine both mean residual plot and threshold range plot for threshold
selection. From the mean residual plot we see that the value for a good threshold
ũ1 (under LminD) is between 0.06 and 0.15 as the mean residual is approximately
linear in this range. Then we turn to the threshold range plot to locate the threshold
more precisely. The threshold range plot plots the width of the confidence intervals
when a POT model is fitted to the data at some given thresholds. The principle is
to choose the threshold along the threshold range plot as large as possible, however
we should also bear in mind that the variance may affect the fitting of bivariate
model later. According to Figure 8 we select ũ1 to be 0.1 for LminD.

Figure 9: Threshold selection for the proximity SMoS in LPETD

ũ1 LPETD: A threshold that yields acceptable variance is chosen between 0.04
and 0.06. Combining with the threshold range plot and the number of exceedences
in two dimension, we choose ũ1 to be 0.04.
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Figure 10: Threshold selection for the consequential SMoS in LminD

u2 LminD: threshold that yields acceptable variance is chosen between 2 and
10, combining with the threshold range plot and the number of exceedences in two
dimension, we choose u2 to be 10.

Figure 11: Threshold selection for the consequential SMoS in LPETD

u2 LPETD: A threshold that yields acceptable variance is chosen between 10
and 14, combining with the threshold range plot and the number of exceedences in
two dimension, we choose u2 to be 10. The exceedences over ũ1, u2 for LminD and
LPETD are plotted below:

Figure 12: Type 1 exceedences (Left:LminD; Right:LPETD)
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4.3 Parameter estimation

We use Full Maximum Likelihood (FML) to estimate the parameters8. The log-
likelihood of tail distribution P (X̃ ≤ x, Y ≤ y), ∀(x, y) ≥ (ũ1, u2) censors the ob-
servations below either thresholds. When applying the FML to distributions from
Table 1, we should adjust the observations that do not exceed both thresholds ac-
cordingly. Suppose G is a distribution from Table 1, l(θθθ, x, y) = ln (g(x, y|θθθ)), then
we have the censored log-likelihood

l(θθθ, x, y) =



ln
∂G∗
∂x∂y

|(x,y), x > ũ1, y > u2

ln
∂G∗
∂y

|(ũ1,y), x ≤ ũ1, y > u2

ln
∂G∗
∂x

|(x,u2), x > ũ1, y ≤ u2

G∗(ũ1, u2), x ≤ ũ1, y > u2

(32)

Table 3: Estimates of model parameters (LminD)
Model scale1 shape1 scale2 shape2 dep asy1 asy2 alpha beta

neglog 0.053 -0.022 2.218 -0.264 0.051 NA NA NA NA

alog 0.053 -0.031 2.149 -0.228 0.999 0.752 0.776 NA NA

aneglog 0.054 -0.032 2.147 -0.227 0.075 0.999 0.401 NA NA

bilog 0.054 -0.022 2.149 -0.237 NA NA NA 0.816 0.998

negbilog 0.054 -0.031 2.151 -0.229 NA NA NA 16.611 16.634

hr 0.054 -0.031 2.151 -0.229 0.201 NA NA NA NA

ct 0.057 0.016 2.211 -0.143 NA NA NA 0.002 0.329

log 0.060 -0.052 1.732 -0.122 0.999 NA NA NA NA

Table 4: Estimates of model parameters (LPETD)
scale1 shape1 scale2 shape2 dep asy1 asy2 alpha beta

ct 0.015 0.189 2.251 0.033 NA NA NA 0.128 0.002

neglog 0.015 0.158 2.167 -0.091 0.064 NA NA NA NA

negbilog 0.015 0.164 2.148 -0.070 NA NA NA 6.639 7.647

hr 0.015 0.155 2.172 -0.094 0.265 NA NA NA NA

aneglog 0.015 0.135 2.148 -0.056 0.050 0.814 0.813 NA NA

alog 0.015 0.163 2.161 -0.084 1.000 0.797 0.841 NA NA

log 0.016 0.161 1.932 -0.188 0.999 NA NA NA NA

bilog 0.017 0.161 2.170 -0.052 NA NA NA 0.999 0.832

The FML estimates of dependence parameters in the models given by Table 1
suggest that proximity SMoS (transformed) and consequential SMoS are asymptot-
ically independent in the upper tail. Meaning that the consequential SMoS does not
depend on the collisions in serious traffic conflicts. But there are still differences
between bivariate POT1 models and the product of two independent GPD margins,
as we have have used FML to fit the bivariate models.

8See Appendix for details of FML.
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Figure 13: The dependence function of models in Table 1 estimated from the data

4.4 Model selection

In all eight models provided by Table 1, the logistic model is nested in the asymmet-
ric logistic model; negative logistic model is nested in asymmetric negative logistic
model (when the α = β = 1). For near independence we may regard logistic model
and negative logistic models being nested in bilogistic and negative bilogistic models.
The first step in model selection is to determine whether more complicated models
result in a significant increase of the likelihood. This is done by the likelihood ratio
test.

Table 5: Likelihood ratio test for nested models in LminD
Test Deviance statistics Critical value Result

log against alog 5.63 5.99 do not reject log

log against bilog 2.86 5.99 do not reject log

neglog against aneglog 0.35 5.99 do not reject neglog

neglog against negbilog 0.38 5.99 do not reject neglog

Table 6: Likelihood ratio test for nested models in LPETD
Test Deviance statistics Critical value Result

log against alog 28.77 5.99 reject log

log against bilog 23.57 5.99 reject log

neglog against aneglog 0.46 5.99 do not reject neglog

neglog against negbilog 2.99 5.99 do not reject neglog

Based on the results from the likelihood ratio test, we discard the asymmet-
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ric logistic, bilogistic, asymmetric negative logistic and negative bilogistic models
in LminD; we discard logsitic, asymmetric negative logistic and negative bilogistic
models in LPETD.

The next selection is based on whether the right end point of the proximity
SMoS based on the FML estimation significantly includes the collisions (i.e x̃G1 >
1/δ), which can be done by constructing a confidence level. We will construct the
confidence interval by Delta method.

IḠ1(σ̂1,γ̂1;1/δ) =

[
Ḡ1(σ̂1, γ̂1; q/δ)±1.96·

√
∇Ḡ1(σ̂1, γ̂1; 1/δ)T I−1(σ̂1, γ̂1)∇Ḡ1(σ̂1, γ̂1); 1.δ

n

]

where

Ḡ1(σ̂1, γ̂1;x) =
(
1 + γ̂1

x− ũ1
σ̂1

)−1/γ̂1 , ∇Ḡ1 =
(∂Ḡ1

∂σ1
,
∂Ḡ1

∂γ1

)

∂Ḡ1

∂σ1
=

1/δ − ũ1
σ2
1

·
(
1 + γ1

1/δ − ũ1
σ1

)− γ1+1
γ1

∂Ḡ1

∂γ1
=

(
1 + γ1

1/δ − ũ1
σ1

)− γ1+1
γ1

·
((

1 + γ1
1/δ − ũ1

σ1

)
· ln

(
1 + γ1

1/δ − ũ1
σ1

)
− γ1 ·

1/δ − ũ1
σ1

)
· γ−2

1

Note that we do not construct confidence interval for the joint probability (3).
As it requires additional treatments. The first and the most important reason is that
the maximization of (32) using gradient-based algorithm such as Newton-Raphson
does not always work. Thus the presence of covariance matrix is not guaranteed. As
in our case some models are estimated through the Nelder-Mead algorithm where
the covariance matrix is not available. We may obtain the variance of the estimates
through bootstrapping. Another problem is the gradient of G∗(xxx;θθθ) w.r.t θθθ requires
more effort in terms of computation. However we may construct only confidence
interval for the proximity margin.

Table 7: Criteria for model selection (LminD)
df AIC CI of collision prob (lower) CI of collision prob (upper)

hr 5 984.0221 0.0001002 0.0001003

log 5 990.0884 0.0001059 0.0001061

neglog 5 984.4095 0.0001067 0.0001068

bilog 6 989.2230 0.0001428 0.0001430

ct 6 995.1402 0.0007201 0.0007218

From Table 7 and 8 the confidence intervals of all collision probabilities do not
include 0. More accurate confidence interval may be constructed based on profile
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Table 8: Criteria for model selection (LPETD)
df AIC CI of collision prob (lower) CI of collision prob (upper)

hr 5 1381.887 0.0011168 0.0011255

neglog 5 1381.839 0.0011589 0.0011679

alog 7 1386.000 0.0014137 0.0014256

bilog 6 1389.187 0.0022946 0.0023194

ct 6 1392.099 0.0017176 0.0017318

likelihood. For details of CI for GPD probability. one may refer to Mach [2022], who
have construct CI for GPD probabilities using profile likelihood for the same data
set. Finally we compare the AIC for models that are left in LminD and LPETD, we
decide to keep Hustler-Reiss and negative logistic models as the candidates
for computing probabilities and expected frequencies.

4.5 Probabilities and frequencies

Suppose σ̂1, σ̂2, γ̂1, γ̂2 are the estimated parameters of the GPD margins using FML,
then the probability (3) is computed by (30):

P (X̃ > 1/δ, Y > 12) = Ḡ∗

(
− 1

ln (G1(1/δ))
,− 1

ln (G2(12))

)
· η (33)

where Gi(·) = 1− η
(
1 + γ̂i

·−ui
σ̂i

)
)−1/γ̂i , i = 1, 2. The expected crash frequency is

computed by (5)

E(N10yrs) =
T

t
· nt, P (X ≤ 0, Y > 12) =

10 · 365
2

· 758 · P (X̃ > 1/δ, Y > 12)

Table 9: The probability and frequencies (in 10 years) of having collision(s) that has
∆v > 12
Model Prob (minD) Freq (minD) Prob (First PET) Freq (First PET)

hr 3.212352e-06 4.443807 2.529293e-05 34.98897

neglog 2.577869e-06 3.566095 3.133501e-05 43.34729

indep 3.2e-06 4.4640637 2.65e-05 36.6663307

Under both LminD and LPETD, we note that the bivariate POT1 models fails
to make distinct difference from the product of independent marginal distributions.
More importantly, for side collisions, a ∆v of 10 m/s is sufficient to constitute a
serious injury. However in the POT1 approach we have selected the margin u2 to be
10, which makes the models less flexible for evaluating risk of left turning vehicles.
Hence POT1 models are not always the best approach.
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5 Copula approach

The major theoretical limitation of POT1 approach in modeling SMoS is that high
thresholds are required for the sake of assumptions, yet the consequential SMoS
measurement of a severe collision can be much lower than the thresholds. The idea
of copula approach is that we study the marginal distribution of proximity and
consequential SMoS separately, then compute probability (4) directly from the joint
distribution and this is made possible by Sklar’s theorem. Conceptually the copula
approach is more straightforward than the POT1 approach, as there is no longer
restriction on the events for which probability (4) is evaluated. But it is challenging
to find suitable marginal distributions.

To mitigate the difficulties of finding parametric margins, we may instead use
empirical distributions. Unfortunately it is not possible for proximity margins. As
we discussed in Section 1, we wish to extend the support of temporal SMoS below 0
and it can not be done by using empirical distribution, since there is no observation
of proximity SMoS that is less or equal to 0 in our data. However we may filter the
data in specific ways so that the marginal distribution of proximity SMoS becomes
known, or can be approximated by some known distributions.

The section is structured as the following: we first go through the basics of
copula theory, including properties and the copula functions that we selected for
this data set. Then we will fit the selected copulas to the data with two ways of
transforming the margins: semi-parametric case and parametric case. In the first
case we use some parametric distribution to model proximity SMoS and empirical
distribution to model consequential SMoS; in the latter case we use some parametric
distributions to model both margins.

5.1 Basic copula theory

Def 5.1.1. Let U1, U2 be identically Un[0, 1] distributed random variables on prob-
ability space (Ω,F , P ), then a function C : [0, 1]2 7→ [0, 1] is called a copula if
C(U1, U2) = P

(
∩2
i=1 {Ui ≤ ui}

)
Def 5.1.2. A function F : Rd 7→ [0, 1] is a d dimensional distribution function if F
satisfies the following properties:

1. F (x1, · · · , xd) is increasing w.r.t all arguments, moreover and limxi→−∞ F (xxx) =
0 for any i = 1, · · · , d, limxxx→∞ F (xxx) = 1.

2. Let x−i denote the arguments that is not xi, then limx−i→∞ F (xxx) = Fi(xi) ∀i,
where Fi is a one dimensional distribution function.

3. For any xxx,yyy ∈ Rd, F (xxx ∧ yyy) ≥ F (xxx) · F (yyy). (d increasing)

A bivariate copula is by definition a joint distribution function of r.vt of uniformly
distributed r.vs. Hence it has the properties of distribution function in two dimen-
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sions. According to the Kolmogorov existence on Rd, for each probability measure
on the unit square there exists unique copula associated with the measure s.t for any
B ∈ B([0, 1]2) , P ((U1, U2) ∈ B) =

∫ ∫
B dC(u, v), hence it can be shown that for any

bivariate random vector (X,Y ) that has marginal distributions FX(x), FY (y) and

joint distribution FFF (x, y), there exist a copula such that C(FX(x), FY (y))
d
= FFF (x, y)

uniquely.

Lemma 5.1 (Inverse method). Let X a continuous r.v, F be the distribution func-
tion of X, F−1(u) := inf{x ∈ R : F (x) ≥ u} be the general inverse function, then

1. F (X) ∼ Un[0, 1]

2. F−1(U) ∼ F for some U ∼ Un[0, 1]

Proof. Let U := F (X), qu := supx{x : F (x) < u}, we wish to show P (U ≤ u) = u,
which is the same as showing V ≤ v ⇐⇒ X ≤ qu.

U ≤ u ⇐⇒ F (X) ≤ u ⇐⇒ X ≤ F−1(u) = inf{x ∈ R : F (x) ≥ u} = qu

So P (U ≤ u) = P (F (X) ≤ u) = u ⇐⇒ F (X) ∼ Un[0, 1], it follows immediately
that F−1(U) = F−1(F (X)) = X ∼ F .

Remark 5.1.1. Lemma 5.1 can be extended for all distribution functions in which
case the proof becomes more complicated. Since we only deal with continuous r.v in
this project, we adapt to a simpler version.

Theorem 5.2 (Sklar’s theorem). Let (X1, · · · , Xd) ∼ F be r.vt on probability
space (Ω,F , P ), F1, · · · , Fd are marginal distributions of F , then there exists a d-
dimensional copula s.t

C(F1(x1), · · · , Fd(xd)) = F (x1, · · · , xd) ∀(x1, · · · , xd)

Conversely, if C is a copula and there is a function

F (x1, · · · , xd) = C(F1(x1)), · · · , Fd(xd)) ∀(x1, · · · , xd)

then F is a joint distribution function whose margins are F1, · · · , Fd.

Proof. Let (X1, · · · , Xd) ∼ F , Xi ∼ Fi, then

F (x1, · · · , xd) = P
(
∩d
i=1{Xi ≤ xi}

)
= P

(
∩d
i=1{Fi(Xi)︸ ︷︷ ︸

∼Un[0,1]

≤ Fi(xi)}
)
= C(F1(x1), · · · , Fd(xd))

(34)
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The third equality is followed from Lemma 5.1 and the fourth equality is followed
from the definition of copula. Conversely, suppose Xi ∼ Fi , Ui = Fi(Xi), by Lemma
5.1 we know Ui ∼ Un[0, 1]. Assume that (U1, · · · , Ud) ∼ C for some copula C, then

C(u1, · · · , ud) = P
(
∩d
i=1{Ui ≤ ui}

)
= P

(
∩d
i=1{F−1(F (Xi)) ≤ F−1(ui)}

)
= P

(
∩d
i=1{Xi ≤ xi}

)

Theorem 5.3 (Frechet-Hoeffding bounds). For every copula C(u1, · · · , ud),

max
1≤i≤d

( d∑
i=1

(ui)− d+ 1, 0
)
≤ C(u1, · · · , ud) ≤ min

1≤i≤d
(u1, · · · , ud)

Proof. We prove the case for d = 2. Let (U1, U2) ∼ C, then the upper bound is
simply obtained from the definition of copula:

C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2) ≤ min(P (U1 ≤ u1), P (U2 ≤ u2)) = min(u1, u2)

The lower bound comes from the De-Morgan’s law:

C(u1, u2) = P (U1 ≤ u1, U2 ≤ u2) = 1− P (U1 > u1, U2 > u2)

≥ 1− P (U1 ≥ u1)− P (U2 ≥ u2) = u1 + u2 − 1

In the case of d = 2, the upper and lower Frechet-Hoeffding bounds are also
copulas for the strongest positive and negative dependence structure respectively.
The lower bound is called counter monotonicity copula (denoted as W (u1, u2)) and
the upper bound is called co-monotonicity copula (denoted as M(u1, u2)). Note that
not every copula can reach the Frechet-Hoeffding bounds.

The dependence structure of r.vs in r.vt is modelled by copula via the rank
correlation:

Def 5.1.3 (Concordance). Let (x1, y1), (x2, y2) be observations of r.vt (X,Y ), then
(x1, y1), (x2, y2) are said to be concordant if (x2 − x1) · (y2 − y1) > 0, otherwise the
pair is discordant.

Kendall’s τ is one popular measurement of rank correlation. It measures the
mean difference between the number of concordant pairs and discordant pairs in a
data set. Suppose a data set has n observations from a r.vt whose joint distribution
is H(x, y), then the sample τ is computed by:

τ =
#concordant pairs−#discordant pairs(

n
2

)
= P ((Xi −Xj) · (Yi − Yj) > 0)− P ((Xi −Xj) · (Yi − Yj) > 0)

= 2 · P ((Xi −Xj) · (Yi − Yj) > 0)− 1 , for any i ̸= j
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Since (Xi, Yi), (Xj , Yj) are drawn from the same r.vt

P ((Xi −Xj) · (Yi − Yj) > 0) = 2 · P (Xi < Xj , Yi < Yj)

= 2 ·
∫ ∫

R2

P (Xi ≤ x, Yi ≤ y|Xj = x, Yj = y)dH(x, y)

= 2 ·
∫ ∫

R2

H(x, y)dH(x, y) = 2 ·
∫ ∫

[0,1]2
C(u, v)dC(u, v)

The last equality is due to Theorem 5.2. So the Kendall’s τ can be written as a
function of the copula C.

τ = 4

∫ ∫
[0,1]2

C(u, v)dC(u, v)− 1 (35)

It is possible to verify that the Frechet-Hoeffding bounds indeed give the greatest
and lowest τ :

τ = 4

∫ ∫
[0,1]2

min(u1, u2)dM(u1, u2)− 1 = 4

∫ 1

0
u1du1 − 1 = 1

τ = 4

∫ ∫
[0,1]2

max(u1 + u2 − 1, 0)dW (u1, u2)− 1 = −1

We use the Copula package Yan [2007] for parameter estimation and evalua-
tion of copula probabilities. We will test the following one-parameter copula whose
parametrzation is adopted from the manual of Yan [2007].

Normal: C(u, v) = F (σ1 · Φ−1(u), σ2 · Φ−1(v)) where F is bivariate normal
distribution with covariance matrix Σ and σ1, σ2 are the diagonal entries of Σ.

Frank: C(u, v) = −1
θ log

(
1 + (e−uθ−1)(e−vθ−1)

e−θ−1

)
Clayton: C(u, v) = max (u−θ + v−θ − 1, 0)

−1/θ

Gumbel: C(u, v) = exp

(
−

(
(− log(u))θ + (− log(v))θ

)1/θ)
Hustler-Reiss: C(u, v) = exp

(
− ln (u) · Φ

(
θ−1 + 0.5 · θ ln ln (u)

ln (v)

)
− ln (v) · Φ

(
θ−1 + 0.5 · θ ln ln (v)

ln (u)

))

Galambos: C(u, v) = uv · exp
((

| ln (u)|−θ + | ln (v)|−θ
)−1/θ

)
Tawn: C(u, v) = uv · exp

(
− θ ln (u) ln (v)

ln (uv)

)
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5.2 Connection with MEVD

Suppose G∗(xxx) is a MEVD (12), then the max-stability condistion for G∗ yields
∀s > 0, Gs(sxxx) = G(xxx). This condition must be fulfilled by copula function that is
equal in distribution to MEVD. Let uuu := exp (−xxx−1) , ũ := exp (−(sxxx)−1), note that
ũ = u1/s, by Theorem (5.2):

G∗(xxx) = C(uuu) = G∗(−1/ ln (uuu)) = exp

(
− µ∗

(
Rd+ \

[
000,

−1

ln (uuu)

]))
(36)

Gs
∗(sxxx) = Cs(ũuu) = Gs

∗(−1/ ln (ũuu)) = exp

(
− s · µ∗

(
Rd+ \

[
000,

−1

ln (ũuu)

]))
= exp

(
− sµ∗

(
Rd+ \

[
000,

−s

ln (uuu)

]))
= exp

(
− µ∗

(
Rd+ \

[
000,

−1

ln (uuu)

]))
(37)

The first equality in (37) is due to (11). Putting (36) and (37) together, we
obtain the relation Cs(uuu1/s) = C(uuu). The class of copulas that satisfies this property
is called Extreme Value copula. In bivariate case the EV copula can adapt to
the MEVD with Pickand dependence function (23), s.t

CG(u, v) = G∗
( −1

ln (u)
,

−1

ln (v)

)
= exp

(
ln (uv) ·A

( ln (u)

ln (uv)

))
(38)

The EV copula can be seen as a characterization of MEVD with uniform margins.
The dependence structure will not change. In the 7 selected copulas of ours, Gumbel
(logistic), Hustler-Reiss, Galambos (negative logistic) and Tawn are EV copulas
which has same dependence structure as the MEVD in Table 1.

5.3 Goodness of Fit of copula

The empirical distribution plays an important role in testing goodness of fit of
distribution function as the test statistics are continuous functional of the empirical
distribution. In this subsection we introduce the one level parametric bootstrap test
which is used both in testing GoF of copulas as well as the GoF of their marginal
distributions. Main references of this section are Stute et al. [1993], Genest and
Rémillard [2008] and chapeter 19,23 of Vaart [2000].

Def 5.3.1 (Empirical distribution). Let X1, · · · , Xn be random sample from X ∼ F ,
then the empirical distribution of X is defined by

Fn(x) = n−1
n∑

i=1

1{Xi ≤ x}
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By the law of large number, we have Fn(x) = n−1
∑n

i=1 1{Xi ≤ x} a.s−−→ E(1{X ≤
x}) = F (x). The empirical distribution will converge almost surely to the underlying
distribution.

Theorem 5.4 (Glivenko-Cantelli). Let X1, · · · , Xn be random sample from X ∼ F ,
Fn be the empirical distribution of F , then supx |Fn(x)− F (x)| → 0

Proof. Let F (x−) denote the limit from the left, ε > 0, −∞ = x0 < x1 < · · · <
xn = ∞ be a partition of the real line s.t ∀i = 1, · · · , n , supi F (xi) − F (xi−1) < ε.
By definition we have Fn(xi−) = Fn(xi−1) < Fn(xi) and F (xi−) ≤ F (xi),for x ∈
[xi−1, xi], we have

Fn(xi−1−)− F (xi−1−)− ε ≤ Fn(x)− F (x) ≤ Fn(xi−)− F (xi−) + ε

Fn(x) → F =⇒ supx |Fn(x)− F (x)| ≤ ε for arbitrary ε.

Suppose P0 := {Fθ : θ ∈ Θ} is a parametric family of distributions, we form the
following hypothesis for testing GoF of F .

H0 : F ∈ P0

H1 : F /∈ P0

With the test statistics:
√
n · sup

x
|Fn(x)− F0(x)| Kolmogorov–Smirnov∫

R
|Fn(x)− F0(x)|2dF0(x) Cramér–von Mises

Under certain regularity conditions the test statistics possess asymptotic nor-
mality. But we do not use normal distribution to determine the p value of the test,
instead the p value is computed from the ranks of the bootstrap samples. We loosen
the confidence level from 0.95 to 0.9 i.e we reject the null hypothesis if the p-value
is less 0.1. The procedure of one level bootstrap Cramér–von Mises test (for copula)
goes as the following:

Suppose C = Cθ is the null hypothesis, θ̂n be a estimate of θ, U1, · · · , Ud are
samples between [0, 1]. Cn(uuu) = n−1

∑n
i=1 1{uuui ≤ uuu} is the empirical copula, then

the one level bootstrap test is proceed:

• Compute the sample Cramér–von Mises test statistics:

Sn = n ·
∫ (

Cn(uuu)− Cθ̂n
(uuu)

)2
dCn(uuu) = n · ECn

((
Cn(UUU)− Cθ̂n

(UUU)
)2)

=

n∑
i=1

(
Cn(uuui)− Cθ̂n

(uuui)
)2

(39)
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• The bootstrap step (N samples): For each bootstrap trial j = 1, · · · , N ,

1. simulate n bootstrap samples u∗j,1, · · · , u∗j,n
2. Compute the bootstrap Cramér–von Mises test statistics Sn,j using (39)

and u∗j,1, · · · , u∗j,n.

• Compute the p value by p∗ = 1
N

∑N
j=1 1{Sn,j > Sn}

The same procedure is applied to test the GoF of marginal distributions, except
the Cramér–von Mises statistics is replaced with Kolmogorov-Smirnov statistics and
the empirical copula is replaced with empirical distribution in one variable.

5.4 Fitting the marginal distributions

Let (X,Y ) denote the r.vt of the SMoS pair (distance and ∆V ) and H(x, y) be its
joint distribution. In order to apply Sklar’s theorem, first we need to identify the
marginal distributions. Note that for the margin of consequential SMoS we may
use the empirical distribution since we are not interested in the extreme quantile of
consequential SMoS, where observations are usually lacking.

Figure 14: The histograms of margins in LminD and LPETD

Figure 14 shows the histogram of the marginal densities. In particular the
marginal distribution of proximity SMoS should be an asymmetric distribution
whose support strictly includes 0. Intuitively a gamma distribution with an ex-
tra shift parameter satisfied our demands, but the shift parameter turned out to
be insignificant according to likelihood ratio test. Natural continuation is to test
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other parametric distributions for proximity SMoS until we achieve satisfactory re-
sult from the one level bootstrap Kolmogorov-Smirnov test. The best candidates
for proximity margin are Frechet distribution and bimodal distribution. Take bi-
modal distribution as an example, the normal copula and Tawn copula passes the
Cramér–von Mises test (with p values 0.25 and 0.5). But the frequency computed
from normal copula is 0.03 while the frequency computed from Tawn copula 312 9.
The difference between two frequencies are huge and the later case is not within our
acceptable range. This is either because poor choice of proximity margin, or the
selected copulas are not suitable for this data set.

We believe that the marginal distribution of proximity SMoS is the most chal-
lenging part in this approach. Another idea is to filter the data such that the
marginal distribution of proximity SMoS after filtering will follow certain distribu-
tion, or at least can be approximated by some known distributions. We introduce
the block maxima (BM) filter and peaks over threshold filter (POT). Instead of tak-
ing the component-wise block maxima or exceedences in both margins, we restrict
the filters only to the proximity SMoS. The filtered proximity is then able to be
approximated by univariate extreme value distribution (GEV or GPD).

Figure 15: LminD and LPETD + BM filter

For the BM filter, we select the block maxima of proximity SMoS and keep the
corresponding consequential SMoS in the pair. After applying the BM filter the
number of data left is equal to the number of original data divided by the choice of
block size. In Figure 15, the red dots are the data we used for fitting copulas.

Similarly for the POT filter, we select the pairs of SMoS in which the prox-
imity SMoS are greater than a given threshold. Note that we have transformed
both margins decreasingly, the decreasing transformation of proximity SMoS was
explained in Section 1 and 3. The decreasing transformation of consequential SMoS
is because some of the selected copulas are available only for data that have positive

9Same problems are observed when using Frechet margin, that the difference among frequencies
are huge
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Figure 16: LminD and LPETD + POT filter

rank correlation 10. In the case of BM filter the decreasing transformation for both
margins are negation while in the case of POT filter we use the shifted reciprocal
for proximity SMoS and negation for consequential SMoS.

The disadvantage of using the extreme value filter is that there are much less
observations after filtering. Implying that the use of empirical distribution in mod-
eling consequential SMoS will be impaired, especially in LPETD, where no filtered
observations have ∆v greater than 12. Thus we must fit a parametric distribution
in the second margin as well. Bimodal distributions are chosen to model the con-
sequential SMoS, as it passes the bootstrap Kolmogorov-Smirnov test with p values
0.32.

Table 10: Parameters in the GEV proximity margins (BM)
Parameters (LminD) 95% lower CI Estimate 95% upper CI

µ -3.76 -3.31 -2.87

σ 0.93 1.25 1.57

γ -0.53 -0.31 -0.09

Parameter (LPETD) 95% lower CI Estimate 95% upper CI

µ -12.82 -11.40 -9.98

σ 2.80 3.84 4.88

γ -0.51 -0.23 0.05

Note that the confidence interval for the shape parameters in GPD margins
include 0. Hence we fit also exponential distribution to the exceedences and found
that the estimates for σ is the same up to the fourth digit. Furthermore the likelihood
ratio test indicates we can not reject the exponential models with deviance statistics
0.002 and 0.5 (the critical value is χ2(1) = 3.84).

10Originally the proximity SMoS and consequential SMoS have positive rank correlations
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Table 11: Parameters in the GPD proximity margins (POT)
Parameters (LminD) 95% lower CI Estimate 95% upper CI

σ 0.04 0.05 0.06

γ -0.170 0.004 0.179

Parameter (LPETD) 95% lower CI Estimate 95% upper CI

σ 0.01 0.02 0.03

γ -0.24 0.12 0.48

Under LPETD, bimodal distribution is used for the filtered consequential SMoS,
the maximum likelihood estimation and plots use the functions from mixtools pack-
age Benaglia et al. [2009]. Suppose X1, X2 are two normal r.v with different mean
and standard deviation, then its affine combination λX1 + (1 − λ)X2 , λ ∈ [0, 1]
is bimodal distributed. The bimodal distribution is used in modeling asymmetric
density. The estimates of bimodal parameters are listed below:

Table 12: Estimates of bimodal distribution parameters
Case µ1 µ2 σ1 σ2 λ

LPETD (BM) -7.43 -4.03 1.88 1.88 0.64

LPETD (POT) -7.69 -3.57 1.76 1.76 0.52

Figure 17: Histogram and kernel estimate of density of consequential SMoS (Left:BM
filter; right: POT filter)

44



5.5 An intuitive formulation of the EV filters

Instead of taking the whole span of the data, as we did in the ”copula + whole data”
approach (equation (5)), the ”copula + EV filter” approach focus on restricted
outcome space. Consider the partition of outcome space based on the proximity
SMoS as discussed in Section 1.3, that Ω = ∪n

i=1Ωi.

P (X ≤ 0, Y > y) = E(1{X ≤ 0, Y > y}) =
∫
Ω
1{X ≤ 0, Y > y}dP (ω)

=

∫
∪iΩi

1{X ≤ 0, Y > y}dP (ω)

=

∫
Ω1

1{X ≤ 0, Y > y}dP (ω)

= E(1{X ≤ 0, Y > y}|Ω1) · P (Ω1) (40)

The last equality is essentially the more general definition of conditional prob-
ability in terms of conditional expectation. Now let P1 be a probability measure
restricted on Ω1, s.t P1(A) = P (A ∩ Ω1), then we may rewrite

E(1{X ≤ 0, Y > y}|Ω1) =

∫
Ω1

1{X ≤ 0, Y > y}dP1(ω)

=

∫
Ω1

1{F1(X) ≤ F1(0), F2(Y ) > F2(y)}dC(F1(x), F2(y))

= F1(0)− C(F1(0), F2(y)) (41)

The second last equality is due to Theorem 5.2 that we can find a copula on
probability space (Ω1,F1, P1). If X and Y are independent, then copula takes no
part in the computation of (40) s.t:

P (X ≤ 0, Y > y) = P (Y > y) · E(1{X ≤ 0})

= P (Y > y) ·
∫
Ω
1{X ≤ 0}dP (ω)

=

∫
∪iΩi

1{X ≤ 0, Y > y}dP (ω)

= (1− F(n)(y)) · P1(X ≤ 0) · P (Ω1) (42)

5.6 Estimation of the dependence parameter

The parameter estimation is mostly done by maximum likelihood estimation. But
there are models in which the optimization procedure fails. As an alternative we
can exploit the relation between copula and rank correlations, such as Kendall’s τ .
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For any copula with parameter θ, the rank correlation τ 35 is defined as

τ = 4 · E(Cθ(U, V ))− 1 = 4

∫ ∫
[0,1]2

Cθ(u, v)dCθ(u, v)− 1 =: g(θ)

Since we have only selected one-parameter copula, g : R 7→ R. Moreover if the
function g is bijective s.t its pre-image g−1(τ) is continuously differentiable w.r.t τ ,
then θ̂n = g−1(τ̂) is an estimator, where we can use the sample estimates τ̂

It can be shown that 11

τ̂ =
2n

n− 1

n∑
i=2

n∑
j=2

(
Cn(ui, vj) · Cn(ui−1, vj−1)− Cn(ui, vj−1) · Cn(ui−1, vj)

)

where Cn(u, v) = n−1
∑n

i=1 1{u(i) ≤ u, v(i) ≤ v} is the empirical copula.

Table 13: Estimates of the dependence parameter in selected copulas
Copula BM (LminD) BM (LPETD) POT (LminD) POT (LPETD)

Gumbel 1.131 1.115 1.201 1.179

Clayton 0.262 0.362 0.402 0.531

Frank 1.053 1.405 2.000 1.829

normal 0.181 0.233 0.260 0.241

Husler-Reiss 0.693 0.732 0.803 0.794

Galambos 0.366 0.377 0.451 0.437

Tawn 0.324 0.421 0.456 0.356

5.7 Probabilities and frequencies

We will compute (1) the expected frequencies of collisions with ∆v > 12, which is
used in comparison with results from POT1, then with ∆v > 9, which is to test the
copula models validity in predicting collisions of lower severity. The expected fre-
quencies are computed by (40),(41),(42) and (5). But the ordering is changed during
the decreasing transformation of the data, (41) is changed accordingly, instead the
frequency is computed by:

E(N10yrs) =
T

t
·nt, P (X ≤ 0, Y > y) =

10 · 365
2

·758·(F2(ỹ)−C(F1(0̃), F2(ỹ)))·P (Ω1)

(43)
for some copula C defined on the smaller probability space (Ω1,F1, P1). The

frequencies based on (43) will be compared with the frequencies assuming X,Y are
independent where copula plays no role in the computation.

E(N10yrs) =
T

t
·nt, P (X ≤ 0, Y > y) =

10 · 365
2

·758·(1−F(n)(y))·P1(X ≤ 0)·P (Ω1)

(44)

11For example, in chapter 5.6 of Nelsen [2006]
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Under the assumption that X,Y are independent, the BM filter and the POT
filter is different in P1(X ≤ 0), which is either GEV or GPD. P (Ω1) is also different
between BM filter and POT filter:

BM filter: E(N10yrs) =
10 · 365

2
· 758 · P1(X̃ > 0, Ỹ ≤ −y) · P (Ω1)

=
10 · 365

2
· 758 · (F2(−y)− C(F1(0), F2(−y)))/blocksize

(45)

POT filter: E(N10yrs) =
10 · 365

2
· 758 · P1(X̃ > 1/δ, Ỹ ≤ −y) · η

= (F2(−y)− C(F1(0), F2(−y))) · number of exeedances

number of observations
(46)

Table 14: the Frequency of collisions (∆v > 12) computed based on selected copulas

Copula
Data set

BM filter (LminD) BM filter (LPETD) POT filter (LminD) POT filter (LPETD)

Gumbel 0.5518144 1.3075681 0.1577956 0.0147283

Clayton 0.6135732 0.4969233 0.1740107 0.0031587

Frank 1.7714681 1.5411765 0.3602215 0.0269669

Normal 0.1305214 0.6769440 0.0459019 0.0025400

Hulser-Reiss 0.0282599 0.2614957 0.0052122 0.0003423

Galambos 0.1966677 0.5897830 0.0441941 0.0035147

Tawn 2.4437302 1.9840091 0.6197687 0.0558500

Independent 20.2086 43.50807 8.84 2.9086

Table 15: the Frequency computed based on selected copulas (∆v > 9)

Copula
Data set

BM filter (LminD) BM filter (LPETD) POT filter (LminD) POT filter (LPETD)

Gumbel 3.3014931 32.70260 2.4074726 0.6770924

Clayton 8.5555891 37.88434 6.3459871 0.8863747

Frank 9.9036418 37.96380 5.2513336 1.1711494

Normal 1.9878885 31.43132 1.9449360 0.4212750

Hustler-Reiss 0.2966294 10.71848 0.1604585 0.0356338

Galambos 1.3523754 18.04795 0.8124120 0.2018897

Tawn 12.2340224 43.49555 8.0580916 2.2195737

Independent 93.69458 200.6205 41.01055 13.4121

The frequencies in Table 15 can not be computed by means of POT1 approach,
since the thresholds we chose were 10 in both LminD and LPETD. Note that in Table
15, the independent case is computed from (42), (45) and (46). Compare Table 15
with Table 14, we can see the differences in frequencies as stepping away slightly
from high-severity collisions. We found that the Hustler-Reiss copula, Galambos
copula and Gumbel copula produce the most reasonable frequency estimates when
∆v is greater than 9. Furthermore we compute even the frequencies using these
three copulas with even smaller ∆v, to gain some ideas on how good are these three
copulas in modeling collisions of low severity.
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Figure 18: The frequency of collisions that have ∆v¿y

Figure 18 shows the change of estimated frequency of collisions of ∆v > y , 6 ≤
y ≤ 12. Under LminD there are steps in the frequencies, which are due to the use
of empirical distribution to model consequential SMoS. The POT filter with PET
measurement perform best in predicting low-severity crash frequency, for the 10-year
frequencies are less than 10 when ∆v > 6, which are the closest to the police report.

6 Conclusions and Discussions

In the data of 758 of left-turning vehicles, each Xi and Yi does not appear to be
dependent in time. We can assume for this intersection that the each sample (Xi, Yi)
are independent. Distance and ∆v are weakly dependent (in terms of rank correla-
tion τ) in the total data and asymptotically independent. The results on the data are
consistent with Borsos [2021], where different choices of SMoSes were applied. With-
out any statistical models we may say the consequential SMoS in a near-collision
scenario does not exhibit relatable patterns. However as shown in Section 4 and
5, that modeling the joint distribution independently will result in much greater
frequencies.

To compute probability (2) and expected 10-year frequency (5), we used three
approaches where POT1 and copula + EV fillers were discussed in details. We found
that Hustler-Reiss and Galambos copula produced the most reasonable estimates
of 10-year frequencies, which coincides with the fittest from Section 4, that the
dependence structure of the upper tail distribution is best described by Hustler-
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Reiss and negative logistic (which is also called Galambos) models. We do not know
yet whether this is a coincidence, since we have selected the BEVD models and
copula models in different ways.

The POT1 models for this data set is not as satisfactory as we anticipated. First
of all, BEVD models make no difference from the product of two marginal extreme
value distribution if the data exhibit asymptotic independence 12. Secondly the
threshold choice for consequential margin is too high. We have shown that the new
approach, copula + EV filter, gave us more flexibility to analyze collisions of of lower
severity. Within the two EV filters, we prefer the POT filter rather than BM filter.
To begin with, from a theoretical perspective, (40) is designated for POT filter. If
the BM filter is applied, then P (Ω1) in (40) becomes trickier. In the computation we
made, 1/block size is used as P (Ω1), which is less theoretically justified since (40)
should instead become E(1{maxiX ≤ 0, Y > y}|Ω1) ·P (Ω1). This is reflected in the
10-year frequency: when ∆v tends to smaller value, the estimated frequencies by
BM filter (especially under LPETD), are much larger than those from POT filter.

If we were to compare the three approaches, the aspects that intrigues us are
the flexibility in analyzing traffic conflicts and the difficulties in implementation.
The ”copula + whole data” approach is the most general from a theoretical point
of view, but it perform poorly, at least for this data set. The biggest problem is the
distribution of proximity SMoS, which was and still is an interesting topic where
more researches are needed.

Both the POT1 approach and the copula + EV filter approach are means of by-
passing the assumption on the distribution of proximity SMoS. The POT1 has the
simplest implementation, as the assumptions on the marginal distributions are de-
fined by the model, but the events that can be studied by POT1 is limited to severe

12There are POT1 models based on multivariate slow varying functions for asymptotic indepen-
dent data Ledford and Tawn [1996]. For asymptotic dependent data it is enough to require the tail
to be regular varying (chapter 5.4 Resnick [2008])
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collisions. The copula + EV filters combines the advantages from POT1 approach
and copula + whole data approach – it is more flexible for analyzing collisions of
lower severity, though the marginal distribution of consequential SMoS is the price
to pay. But under some circumstances we might be able to use the empirical distri-
bution, which makes the implementation almost as simple as the POT1 approach.
Another concern with the copula + EV filter is that we are extrapolating the joint
distribution with the distribution defined on a much smaller outcome space. Hence
the deviation in the joint probability/frequency may be huge as we keep decreasing
∆v, as shown in Figure 18. Nevertheless the copula + EV filters approach is a good
starting point for investigation of less severe collisions, which might rise interest in
further researches such as insurance claims of traffic accidents.

There are some technical details from this report which may be studied more
thoroughly in future studies. For instance, the probability distribution of proximity
SMoS, which is not a new yet still challenging topic. Intuitively negative binomial
regression is a standard model for counts. It has been used in modeling crash fre-
quency with proximity SMoS and other covariates Tarko [2019](Chapter 2). The
proximity SMoS is suggested to be gamma-like distributed. Combining with our
discussion in Section 1, we may approximate the gamma distributed margins with
some distribution (for example, the mixture of some parametric distributions) whose
support strictly includes 0. Alternatively, one may consider sampling from the dis-
tribution of proximity SMoS directly using Monte Carlo instead of going after the
parametric distribution of proximity SMoS that only makes sense for some specific
crash sites. Better understanding of the distribtuion of proximity SMoS can enhance
the algorithm for micro-behaviour simulation, as well as the ”copula + whole data”
approach. Another example is the construction of confidence intervals for BEVD
probabilities, as we discussed in Section 4.4.

To sum up briefly, we applied two approaches to estimated long term crash
frequency of certain severity given a relatively short observational data, in which
the ”copula + EV filter” is developed by us. More precisely, we have only looked at
a parameter (the crash probability) in a simple crash frequency model (with binomial
distribution), which assumes constant traffic volume. The next step for research in
this direction is to calibrate the crash probabilities in more realistic models where
more parameters are involved. The approach should be tested with different SMoS,
in different crash sites, for its validity.
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7 Appendices

7.1 Univariate max-stable distributions

The proof of convergence to types is adapted from chapter 7.4 of Gut and Springer-
Link [2013]. The development of Extremal Type Theorem is referred to chapter 1.3,
1.4 of Leadbetter and Lindgren [1983]. The univariate version of some important
results in Section 2 are also proved.

First we would like to introduce the type of laws of random variables:

Def 7.1.1 (types). The law of types a r.v X ∼ F is defined by the family of distri-
butions {σX + µ : σ > 0, µ ∈ R}. Another random variable Y ∼ G is said to be the
same type as X if Y = σX + µ, or equivalently, F (x) = G(σx+ µ).

A distribution of degenerate type is defined when σ = 0.

Lemma 7.1 (Extended continuous mapping theorem). Let (D, d), (E, d) be two
metric spaces with the same metric, {Xn}n be a sequence of random variables s.t
Xn takes value in Dn ⊂ D,∀n, {gn : Dn 7→ E}n be a sequence of continuous map s.t

gn → g and Xn
d−→ X, then gn(Xn)

d−→ g(X) where g(X) is a random variable that
takes values in E

Proof. The proof relies on Bolzano-Weierstrass theorem and portmanteau lemma,
one may refer to chapter 18 of Vaart [2000]

We introduce extended continuous mapping theorem as a technical lemma for
proving the convergence to types theorem.

Lemma 7.2. 1. Suppose αn → A = ∞ then Xn/αn
d−→ 0 for any sequence of r.v

{Xn}n

2. Suppose Xn
p−→ X , {β}n is an unbounded sequence with supn |βn| = ∞, then

Xn − βn does not converge in distribution.

Proof. 1. Since limx→∞ P (|Xn| > x) = 0 , ∀n = 1, 2, · · · , ∃{cn > 0 : P (|Xn| >
cn) < 1/n}n. Let {αn = n · cn}, then for any ε > 0 and ε > n−1:

P
(∣∣Xn

αn

∣∣ > ε
)
= P (|Xn| > n · cn · ε) ≤ P (|Xn| > cn) < n−1 → 0, , asn → ∞

2. Suppose {βn}n is unbounded, then ∃ sub-sequences {βnj}j , {βnk
}k s.t limj →

∞βnj → −∞ , limk → ∞βnk
→ ∞, but this means that FXn−βn has two

different limits, namely

lim
j→∞

P (Xnj − βnj ≤ x) = 0 , lim
k→∞

P (Xnk
− βnk

≤ x) = 0
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Theorem 7.3. Suppose {Xn}n is a sequence of random variables s.t Xn
d−→ U and

∃ sequences of normalizing constants {αn > 0}n, {βn ∈ R}n s.t

Xn − βn
αn

d−→ V whereU, V are non-degenerate.

then αn → A ∈ R+ \ {0} , βn → B ∈ (−∞,∞) and U
d
= A · V + B, i.e U, V are of

the same type.

Proof. Assume that αn → A , βn → B , {gn(·) : (·)−βn

αn
}, then gn(·) → g(·) := (·)−B

A .

Denote Vn := gn(Xn) , V := g(U), by the extended continuous mapping theorem
(7.1) we obtain immediately that

Xn
d−→ U =⇒ Vn

d−→ V =
U −B

A

Next we want to show that if U, V are non-degenerate, the sequences {αn}n, {βn}n
must be bounded, meaning that:

0 < inf
n

αn ≤ sup
n

αn < ∞ , sup
n

|βn| < ∞ (47)

Let X̃n := Xn/αn , β̃n := βn/αn and suppose first supn |βn| < ∞ then

X̃n − β̃n = Vn
d−→ V

By (2) of Lemma 7.2, supn |β̃n| = supn |βn/αn| < ∞ =⇒ infn αn > 0.

Boundedness of {αn}n: Now assume that supn αn = ∞, then we can find a
sub-sequence {αnk

}k ⊂ {αn}n s.t limk→∞ αnk
= ∞. By (1) of Lemma 7.2 we know

that Xnk
/αnk

p−→ 0. In addition we have supn|βnk
/αnk

| < ∞, thus the sequence
{βnk

/αnk
}k is bounded and there exists a convergent sub-sequence {{βnkj

/αnkj
}j}

which has finite limit point c. We use (1) of Lemma 7.2 again that

lim
j

→ ∞
Xnkj

− βnkj

αnkj

d−→ V = −c

which contradicts that V is non-degenerate.

Boundedness of {βn}n: Assume that supn |βn| = ∞, then ∃ sub-sequence

{βnk
}k which converges to ∞. By assumption of the theorem we have Vn

d−→ V , thus

lim
k→∞

Vnk
lim
k→∞

X̃nk
− β̃nk

d−→ V
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which is not possible according to (2) of Lemma 7.2. Hence supn |βn| < ∞

It remains to show that U
d
= AV +B. We start with the iteration:

U
d
=

U−b
a − b

a

d
=

U−b
a

−b

a − b

a

d
= · · · d

=
U

an
− b

n∑
k=1

a−k =
U − b ·

∑n
k=1 a

n−k

an

Choose {αn = an}n, {βn = b ·
∑n

k=1 a
n−k}n, the boundedness of {αn}n, {βn}n as we

showed above implies a = 1, b = 0. So limn→∞ αn = 1 =: A, limn→∞ βn = 0 =: B

Basically we showed that U
d
= U−B

A =⇒ A = 1, B = 0.

Finally suppose {αn}n, {βn}n that satisfy the assumption of the theorem and the
conditions in the proof, let {αnk

}k, {αnj}j , {βnk
}k, {βnj}j be convergent sub-sequences

such that

lim
k→∞

Vnk

d−→=
U −B

A
= V = lim

j→∞
Vnj

d−→ U −B∗

A∗

⇐⇒ A

A∗ = 1 , B −B∗ = 0

Corollary 7.3.1 (Convergence to types). Suppose {Xn}n is a sequence of random
variables and ∃ sequences of normalizing constants {σn > 0}n , {µn ∈ R}n , {αn >
0}n, {βn ∈ R}n s.t

Xn − µn

σn

d−→ U , and
Xn − βn

αn

d−→ V whereU, V are non-degenerate.

then αn/σn → A < ∞ , (βn − µn)/σn → B ∈ (−∞,∞) and U
d
= A · V +B, i.e U, V

are of the same type.

Proof. Let X̃n = Xn−µn

σn

d−→ U , by assumption Xn−βn

αn

d−→ V , then

=⇒ σnX̃n + µn − βn
αn

d−→ V =⇒ X̃n − σ−1
n (βn − µn)
αn
σn

d−→ V

then We apply Theorem 7.3 to X̃.

Remark 7.3.1. For later use, it is more convenient to state the result in terms of
the corresponding distributions of Xn: Suppose the conditions in corollary (7.3.1)
is fulfilled and U ∼ G1 , V ∼ G2, then its result may be alternatively stated as:
Fn(σnx+ µn) → G1(x) , Fn(αnx+ βn) → G2(x) =⇒

Fn

(αn

σn
x+

βn − µn

σn

)
→ G2(x) = G1(Ax+B)
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The interpretation of theorem 7.3 is that if there exists normalizing sequences
s.t Fn(σnx + µn) converges to some non-degenerate G, then Fn can not converge
to other distributions that are of different type from G. Under this circumstance,
Fn is said to be in the domain of attraction of G denoted as F ∈ D(G).
Next we need to introduce the concept of max-stability. It can be shown that if the
limiting distribution of extreme order statistics converges to some non-degenerate
distribution, then the limiting distribution must be max-stable. The max-stability
can be extended to higher dimensions as disussed in Section 2.

Def 7.1.2 (max-stability). Suppose G is a distribution function, then G is said to be
max-stable if ∃ normalizing sequence {αn}n , {βn}n s.t limn→∞Gn(αnx+βn) = G(x)

Lemma 7.4. A distribution G is max-stable iff ∃{Fn}n a sequence of distribu-
tion functions, {αn > 0}n, {βn ∈ R}n are sequences of normalizing constants s.t
Fn(αnx + βn) → G and ∀k = 1, 2, · · · , limn→∞ Fn(αnkx + βnk) → G1/k(x) where
G,G1/k are non-degenerate.

Proof. For the necessary condition, assume that Fn(αnkx + βnk) → G1/k(x) and
G1/k is non-degenerate ∀k = 1, 2, · · · , then we apply Remark 7.3.1 to G,G1/k

=⇒ lim
k→∞

G

(
αnk

αn︸︷︷︸
α̃k

x+
αn(βnk − βn)

αnk︸ ︷︷ ︸
β̃k

)
= G1/k(x)

=⇒ Gk(α̃kx+ β̃k) = G(x)

For the sufficient condition, suppose G is max-stable. Consider {Fn := Gn}, by the
definition of max-stability, ∃{αn}n , {βn}n s.t limn→∞Gn(αnx + βn) = limn→∞ =
G(x). Moreover,

Fn(αnkx+ βnk) =
(
Gnk(αnkx+ βnk)

)1/k → G1/k(x) , ∀k = 1, 2, · · ·

7.1.1 Limiting distributions of extreme order statistics

Def 7.1.3 (Order statistics). Let {Xi}ni=1 be a sequence of i.i.d random variables,
then the sequence of its order statistics is {X(i)}ni=1 where X(j) < X(k) ∀1 ≤ j < k ≤
n. In particular we denote the largest order statistics Mn = X(n) = max1≤i≤nXi

Suppose {Xi}i is a sequence of i.i.d random variables, then the distribution of
the maximum order statistics is given by:

FX(n)
(x) = P

(
∩n
i=1 {Xi ≤ x}

)
= Fn(x)

58



Hence we can apply convergence to types to the sequence {Xn = X(n)}n.

Lemma 7.5. Let {Fn := Fn}n be the sequence of distribution functions of extreme
order statistics. If ∃{αn > 0}n, {βn ∈ R}n sequences of normalizing constants s.t
Fn(αnx+ βn) → G where G is non-degenerate, then G is max-stable.

Proof.

lim
n→∞

Fn(αnx+ βn) → G(x) =⇒ lim
n→∞

Fnk(αnkx+ βnk) → G(x)

=⇒ lim
n→∞

Fn(αnkx+ βnk) → G1/k(x) , ∀k = 1, 2, · · ·

By Lemma 7.4, G is max-stable.

Lemma 7.6. Let {Fn := Fn}n be the sequence of distribution functions of extreme
order statistics. If ∃{αn > 0}n, {βn ∈ R}n sequences of normalizing constants s.t
Fn(αnx+ βn) → G where G is non-degenerate, then ∃α(s) > 0, β(s) s.t Gs(α(s)x+
β(s)) = G(x), ∀s > 0.

Proof. From assumption we have Fn(αnx+βn) = F [ns](α[ns]x+β[ns]) → G. Denote
[ns] the integer part of the ns, then

F [ns](αnx+ βn) =
(
Fn(αnx+ βn)

)[ns]/n → Gs(x)

Gs is non-degenerate since G is non-degenerate. Thus we can apply Corollary 7.3
to Gs =: G1, G =: G2 and obtain

Gs

(
lim
n→∞

αn

α[ns]
x+ lim

n→∞

(βn − β[ns])

α[ns]

)
= G(x)

The proof is concluded by letting α(s) := limn→∞
αn
α[ns]

, β(s) := limn→∞
(βn−β[ns])

α[ns]
.

As a consequence of Lemma 7.5 and 7.6, if non-degenerate distribution function
G is max-stable, then ∃α(s) > 0, β(s)∀s > 0 , Gs(α(s)x+β(s)) = G(x). In particular
we are interested in the unit Frechet distribution G∗(x) = exp (−1/x), whose max-
stability is satisfied by Gs

∗(sx) = G∗(x). Next we will show for any r.v X ∼ F s.t
F ∈ D(G), there is a transformation s.t the distribution after the transformation
F∗(x) ∈ D(G∗).
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Theorem 7.7. Let G be a non-degenerate distribution and ϕ−1(x) := 1
− ln (G(x)) ,

then
G∗(x) = G(ϕ(x)) and G(x) = G∗(ϕ

−1(x))

where G∗(x) = exp (−x−1) is unit Frechet distributed.

In addition if G is one of the extremal type distribution and suppose a distribution
function F ∈ D(G), V (x) := 1

1−F (x) and define F∗(x) := F (V −1(x)), then F∗ ∈
D(G∗).

Proof. By Lemma 2.2, F ∈ D(G) =⇒ n(1− F (αnx+ βn)) → − lnG(x)

=⇒ V (αnx+ βn)

n
→ − 1

ln (G(x))
= ϕ−1(x) =⇒

(
V

n

)−1

(x) → ϕ(x)

Next we take the inverse of ϕ−1(x) and obtain ϕ(x) = G−1
(
exp (−x−1)

)
. Take F∗

as in the statement, then we notice ∃{αn = n}n , βn ≡ 0 s.t

lim
n→∞

Fn
∗ (nx) = lim

n→∞
Fn(V −1(nx))

= lim
n→∞

P (Mn ≤ V −1(nx))

= lim
n→∞

P

(
Mn − βn

αn
≤ V −1(nx)− βn

αn

)
= G(ϕ(x)) = G∗(x)

So we have shown F∗ ∈ D(G∗), the second relation also holds since

G(x) = lim
n→∞

Fn(αnx+ βn) = lim
n→∞

Fn
∗ (n · V (αnx+ βn)/n) = G∗(ϕ

−1(x))

The consequence of Theorem 7.7 is that for a r.v X ∼ GEV (µ, σ, γ), the distri-
bution of ϕ−1(X) is unit Frechet, where

ϕ−1(x) =
−1

ln (G(x))
=

(
1 + γ

x− µ

σ

)1/γ

7.2 Maximum Likelihood Likelihood estimation

Def 7.2.1 (MLE). Let X1, · · · , Xn be random sample of F ∈ {Fθ : θ = (θ1, · · · , θp) ∈
Θ}, f be the density or mass of F , then the maximum likelihood estimator (MLE) of
the parameters theta is defined as θ̂n := argmaxθ∈Θ l(θ), where l(θ, x) =

∑n
i=1 ln f(xi|θ)

is the log-likelihood.
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Suppose θ̂n is the MLE, it can be shown that for large number of sample, we
can instead maximize E(l(θ,X)). Note that the expectation is taken under X. The
following theorem states that E(l(θ,X)) attains maximum at θ̂n.

Theorem 7.8. Suppose f(x|θ) is the density of X such that f is continuous w.r.t to
θ and under some mild regularity conditions, l(θ, x) = ln f(x|θ) is the log-likelihood
of f , then

E

(
∂l

∂θ

)2

= −E

(
∂2l

∂θ2

)

Proof. By definition
∫
f(x|θ)dx = 1 =⇒ ∂

∂θ

∫
f(x|θ)dx = 0(∗)

Use chain rule we get ∂l
∂θ = ∂f

∂θ · 1
f(x|θ) =⇒ ∂f

∂θ = ∂l
∂θ · f(x|θ)

From (∗) ∫
∂l

∂θ
f(x|θ)dx = 0 =⇒ ∂

∂θ

∫
∂l

∂θ
f(x|θ)dx = 0

=⇒ ∂

∂θ

∫
∂l

∂θ
f(x|θ)dx =

∫
∂2l

∂θ2
f(x|θ)dx+

∫
∂l

∂θ

∂f

∂θ
dx = 0 =⇒ E

(
∂l

∂θ

)2

= −E

(
∂2l

∂θ2

)

Theorem 7.8 holds under some regularity conditions. One such condition requires
E(l(θ,X)) < ∞, thus we can interchange differentiation and integration under the

expectation. Hence E

(
∂2l
∂θ2

)
= ∂2

∂θ2
E(l(θ,X)) ≤ 0 implies that the function H(θ) =

E(l(θ,X)) ≈ 1/n
∑n

i=1 ln (f(xi|θ)) is concave. Hence the MLE θ̂n is obtained by
solving ∂H/∂θ = 0, where we can solve ∂l/∂θ = 0 instead. The arguments for a
vector of parameters are analogous. In the multivariate setting we define I(θ)θ)θ) :=

E

(
∂l
∂θθθ

)2

to be the Fisher Information Matrix and the central limit theorem

yields that:
√
n(θ̂n − θ0)

d−→ MVN(0, I−1(θ̂̂θ̂θ))

In general MLE does not have a closed form. We obtained the MLE by solving the
equation ∂l

∂θθθ numerically. For parameter space that has more than one dimensions,
the two most common approaches are Full Maximum Likelihood (FML) and
Inference For Margins (IFM). Suppose θθθ = (θ1, · · · , θp), then the MLE through
FML is obtained by sovling

(
∂l
∂θ1

, · · · , ∂l
∂θp

)
= 0 globally. MLE through IFM, on the

hand, find the local solutions θ̂1, · · · , θ̂p−1 by solving ∂l
∂θi

= 0, i = 1, · · · , p− 1. The

last estimates is obtained by solving ∂l
∂θp

∣∣
(θ̂1,··· ,θ̂p−1)

= 0. Comparing with FML, IFM

is more numerically stable but the estimates may deviates from the true parameters.
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MLE is invariant under parameter transformations. Meaning that if θ̂n is the
MLE of θ, h(θ) : Θ 7→ R, then h(θ̂) is the MLE of h(θ). The asymptotic normality
of h(θ) is also preserved. This is due to the Delta Method, in which it is stated
that if a estimator θ̂n is normal, then h(θ̂n) is again normal for some ”nice” function
h. The variance of Delta method is given in the following theorem:

Theorem 7.9. Suppose θ̂n is the MLE of θθθ = (θ1, · · · , θp), h(θθθ) : Θ 7→ R is contin-
uously differentiable, then

V ar(h(θ̂)) = ∇h(θθθ)T I−1(θθθ)∇h(θθθ)

∣∣∣∣
θ=θ̂

where ∇h(θ) = (∂h/∂θ1, · · · , ∂h/∂θp)

Proof. We can expand h in the neighbourhood of θ̂n since h is continuously differ-
entiable,

V ar
(
h(θ̂n)) = V ar(h(θ) +∇h(θ)T (θ̂n)− θ) + ≀(∥θ − θ̂n∥)

)
≈ V ar(∇h(θ)T θ̂n) = ∇h(θθθ)T I−1(θθθ)∇h(θθθ)

We can replace all θ with θ̂n.

The Delta method yields that:

√
n(h(θ̂)− h(θ0))

d−→ N(0,∇h(θ̂n)
T I−1(θ̂n)∇h(θ̂n))

And the two-sided confidence interval at level α from Delta method is:

Ih(θ̂n) =

[
h(θ̂n)± 1.96 ·

√
∇h(θ̂n)T I−1(θ̂n)∇h(θ̂n)

n

]

62



7.3 Extra plots

Figure 19: plot of Distance against time (Left: LminD; right: LPETD)

Figure 20: plot of ∆v against time (Left: LminD; right: LPETD)
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Figure 21: diagnostic plots of temporal SMoS margin in LminD, BM filter

Figure 22: diagnostic plots of temporal SMoS margin in LPETD, BM filter
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Figure 23: diagnostic plots of temporal SMoS margin in LminD, POT filter

Figure 24: diagnostic plots of temporal SMoS margin in LPETD, POT filter
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7.4 R functions

Computing BEVD probabilities for POT1

1 l ibrary ( evd )
2 evalProbPOT1 <− function (BPD, x , t a i l . type ) {
3 # BPD i s a fbvpot object , x = (x 1 , x 2) i s a vector , t a i l

= 1 re tu rn s d i s t , =2 return su r v i v a l funct ion ,
4 #= 3 i s the prob (X<=x 1 ,Y>x 2) , = 4 i s the prob (X>x 1 ,Y<=x

2) . u1 , u2 are th r e sho ld s
5

6 param <− BPD$ es t imate
7 scale <− c ( param [ 1 ] , param [ 3 ] )
8 shape <− c ( param [ 2 ] , param [ 4 ] )
9 u1 <− BPD$ th r e sho ld [ 1 ]

10 u2 <− BPD$ th r e sho ld [ 2 ]
11 x .F <−c(−1/log (1 − BPD$nat [ 1 ] /BPD$n∗pevd (x [ 1 ] , scale =

scale [ 1 ] , shape = shape [ 1 ] , lower . t a i l = F, type = ’GP’ ,
th r e sho ld = u1 ) ) ,

12 −1/log (1 − BPD$nat [ 2 ] /BPD$n∗pevd (x [ 2 ] , scale =
scale [ 2 ] , shape = shape [ 2 ] , lower . t a i l = F,
th r e sho ld = u2 , type = ’GP’ ) ) )

13

14 i f ( length ( param) == 5) {
15 #q <− abvevd (x .F =w, dep=param [ 7 ] , model=BPD$model )
16 i f ( t a i l . type == 1) {
17 return ( pbvevd (x .F ,model = BPD$model , dep= param [ 5 ] ,

mar1 =c ( 1 , 1 , 1 ) ,
18 mar2 = c ( 1 , 1 , 1 ) ) )
19 }
20 else i f ( t a i l . type == 2) {
21 return ( pbvevd (x .F ,model = BPD$model , dep= param [ 5 ] ,

mar1 =c ( 1 , 1 , 1 ) ,
22 mar2 = c ( 1 , 1 , 1 ) , lower . t a i l = FALSE) )
23 }
24 else i f ( t a i l . type == 4) {
25 return ( pgev (x .F [ 1 ] , l o c = 1 , scale = 1 , shape = 1) −

pbvevd (x .F ,model = BPD$model , dep= param [ 5 ] , mar1 =c
( 1 , 1 , 1 ) ,mar2 = c ( 1 , 1 , 1 ) ) )

26 }
27 else i f ( t a i l . type == 3) {
28 return ( pgev (x .F [ 2 ] , l o c = 1 , scale = 1 , shape = 1) −

pbvevd (x .F ,model = BPD$model , dep= param [ 5 ] , mar1 =c
( 1 , 1 , 1 ) ,mar2 = c ( 1 , 1 , 1 ) ) )

29 }}
30

31 else i f ( length ( param) == 6) {
32 i f ( t a i l . type == 1) {
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33 return ( pbvevd (x .F ,model = BPD$model , a lpha = param [ 5 ] ,
beta = param [ 6 ] , mar1 =c ( 1 , 1 , 1 ) , mar2 = c ( 1 , 1 , 1 ) ) )

34 }
35 else i f ( t a i l . type == 2) {
36 return ( pbvevd (x .F ,model = BPD$model , a lpha = param [ 5 ] ,

beta = param [ 6 ] , mar1 =c ( 1 , 1 , 1 ) ,mar2 = c ( 1 , 1 , 1 ) ,
lower . t a i l = FALSE) )

37 }
38 else i f ( t a i l . type == 4) {
39 return ( pgev (x .F [ 1 ] , l o c = 1 , scale = 1 , shape = 1) −

pbvevd (x .F ,model = BPD$model , a lpha = param [ 5 ] , beta
= param [ 6 ] , mar1 =c ( 1 , 1 , 1 ) ,mar2 = c ( 1 , 1 , 1 ) ) )

40 }
41 else i f ( t a i l . type == 3) {
42 return ( pgev (x .F [ 2 ] , l o c = 1 , scale = 1 , shape = 1) −

pbvevd (x .F ,model = BPD$model , a lpha = param [ 5 ] , beta
= param [ 6 ] , mar1 =c ( 1 , 1 , 1 ) ,mar2 = c ( 1 , 1 , 1 ) ) )

43 }}
44 else {
45 i f ( t a i l . type == 1) {
46 return ( pbvevd (x .F ,model = BPD$model , asy = param [ 5 : 6 ] ,

dep = param [ 7 ] , mar1 =c ( 1 , 1 , 1 ) ,mar2 = c ( 1 , 1 , 1 ) ) )
47 }
48 else i f ( t a i l . type == 2) {
49 return ( pbvevd (x .F ,model = BPD$model , asy = param [ 5 : 6 ] ,

dep = param [ 7 ] , mar1 =c ( 1 , 1 , 1 ) , mar2 = c ( 1 , 1 , 1 ) ,
lower . t a i l = FALSE) )

50 }
51 else i f ( t a i l . type == 4) {
52 return ( pgev (x .F [ 1 ] , l o c = 1 , scale = 1 , shape = 1) −

pbvevd (x .F ,model = BPD$model , asy = param [ 5 : 6 ] , dep
= param [ 7 ] , mar1 =c ( 1 , 1 , 1 ) ,mar2 = c ( 1 , 1 , 1 ) ) )

53 }
54 else i f ( t a i l . type == 3) {
55 return ( pgev (x .F [ 2 ] , l o c = 1 , scale = 1 , shape = 1) −

pbvevd (x .F ,model = BPD$model , asy = param [ 5 : 6 ] , dep
= param [ 7 ] , mar1 =c ( 1 , 1 , 1 ) ,mar2 = c ( 1 , 1 , 1 ) ) )

56 }}
57 }

One-level bootstrap KS test for bimodal distribution

1 l ibrary ( mixtoo l s )
2 pmixnorm <− function (x , mixmodel ) {
3 # d i s t r i b u t i o n func t i on o f mixture o f two normal r . vs , mu,

sigma , lamb are ve c to r s o f l ength 2
4 lamb <− mixmodel$lambda
5 mu <− mixmodel$mu
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6 s i g <− mixmodel$sigma
7 return ( lamb [ 1 ] ∗pnorm(x ,mu[ 1 ] , s i g [ 1 ] ) + lamb [ 2 ] ∗pnorm(x ,mu

[ 2 ] , s i g [ 2 ] ) )
8 }
9

10 Mixmodelks . t e s t . boot <− function (data , n ,mu0 , s ig0 , lamb0 , k0 ) {
11 # the boots t rap es t imate o f ks t e s t s t a t i s t i c s . n i s the

number o f boots t rap t r i a l s ; k0 i s the t e s t
12 #s t a t i s t i c s o f ks t e s t when the mixmodel i s app l i ed to the

same the data from which i s est imated .
13 N <− length (data )
14 ks . boot <− rep (0 , n )
15 mu <− mu0
16 s i g <− s i g 0
17 lamb <− lamb0
18

19 f o r ( i in 1 : n ) {
20 z <− rbinom(N, 1 , lamb )
21 x . boot <− length ( z==1)/N∗rnorm(N,mu[ 1 ] , s i g ) + (1−length (

z==0)/N)∗rnorm(N,mu[ 2 ] , s i g [ 2 ] )
22 mixmodel . boot <− normalmixEM(x . boot , maxit=500 , lambda=

lamb , mu=mu, sigma=s i g )
23 ks . boot [ i ] <− ks . t e s t ( x . boot , pmixnorm , mixmodel . boot )$

s t a t i s t i c
24 mu <− mixmodel . boot$mu
25 s i g <− mixmodel . boot$ s i g
26 lamb <− mixmodel . boot$lambda [ 1 ]
27 }
28

29 return (mean( ks . boot >= k0 ) )
30 }

jbowman [https://stats.stackexchange.com/users/7555/jbowman]
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