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Abstract

The aim of the thesis is to evaluate solutions to the class imbalance problem using
real world data sets with varying degrees of class imbalance. The analysis is limited
to binary classification. Three large data sets relating to credit card fraud, vehicle
insurance and heart disease are used for the analysis.

Several methods are compared and evaluated. Logistic regression, SVC and deci-
sion trees are used as benchmark classifiers in order to compare these to imbalanced
learning techniques. Random undersampling and SMOTE are used to to evaluate
resampling techniques. Cost-sensitive versions of logistic regression, SVC and deci-
sion trees are used to evaluate cost-sensitive algorithms. The resampling techniques
are also used in combination with the cost-sensitive algorithms. The results are
evaluated using six measures: accuracy, recall, precision, F-measure, G-mean and
AUC.

The conclusion of the thesis is that none of the methods evaluated outperforms all
others. Depending on the data set used for analysis, the methods produced varying
scores for the different evaluation measures. As an example of this, the method used
to produce the highest precision score was not the same for the credit card fraud
detection data and for the heart disease data. The analysis further showed that
which evaluation measure to use depends on the goal of the analysis.

This shows that none of the evaluated techniques are optimal for all data sets.
Depending on the data set used and the goals of the analysis, different methods and
evaluation measures may be applied.

Keywords: Imbalanced data, cost-sensitive learning, SMOTE, random undersam-
pling
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Introduction

In the binary class setting, data sets with an imbalanced class distribution is charac-
terised by having a majority of the observations belonging to one class and a smaller
group of observations belonging to the other. In some cases the minority class can
be comprised of less than one percent of the total number of observations. This
can cause a problem when applying statistical learning methods as the models has
relatively few observations to learn from to accurately classify the minority class.

This can be illustrated by a simple example. Imagine a data set with two classes,
where one class accounts for 99 % of the observations, while the other only accounts
for 1 %. In this case, a model may predict all observations as belonging to the
majority class, leading to an accuracy score of 99 %. This is usually perceived as an
excellent accuracy score. In this context however, this is a very poor result seeing
as none of the samples from the minority class have been accurately classified.

Sun et al. (2007) note that in several real world applications imbalanced data
cause problems for classifiers in regards to correctly classifying the minority class.
This includes fraud detection, text classification and detecting rare medical condi-
tions. They further state that classification algorithms and techniques such as neural
networks, nearest neighbour, support vector machines and decision trees have been
reported to be subpar when dealing with imbalanced data. It is therefore important
to find and evaluate models that can handle this issue.

According to Sun et al. (2007) previous research has addressed the following aspects
of the class imbalance problem:

1. In which domains class imbalances pose a problem for classifiers,

2. Potential solutions to this problem, and

3. Finding measures for evaluating classifiers’ performance when dealing with
imbalanced data.

This thesis will focus on evaluating solutions to the class imbalance problem using
large real world data sets.
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1.1 Research Problem

The aim of this thesis is to compare and evaluate methods for classification applied
to large imbalanced real world data sets. The analysis is limited to binary classifi-
cation problems and thus avoids multi-class classification applications.

The overarching research question is formulated as follows:

“Which is the best method to handle the class imbalance problem?”

The research question is narrowed down to answer the following:

“Which differences exist in performance of methods used for class imbalance for dif-
ferent data sets with varying degrees of class imbalance?”

“Which method used for class imbalance outperforms the others?”

How to evaluate which method performs “best” depends on the purpose of the
analysis. Depending on whether it is important correctly classify as many as possible
from the minority class or if it is of interest to find the model that creates a good
balance between correctly classifying the minority and the majority class, different
evaluation measures can be used. This aspect is discussed in more detail in the
Methods chapter.

1.2 Aim and Scope

There are several aspects of the class imbalance problem that can be investigated.
Which method to choose depends on the goal of the analysis. Creating synthetic
data can be conducive for understanding which models perform best in different
situations. However, creating data that mimics real world data is a difficult task. In
this essay, the main goal is to evaluate how certain models behave in real world ap-
plications. Hopefully this can shed some light on which models to choose depending
on the problem at hand.

Past research studies related to this topic have to a large extent focused on finding
appropriate models to handle the class imbalance problem using either synthetic
data, small data sets or a combination of the two. In this thesis, the aim is to
evaluate existing models on large real world data sets in order to get an insight into
how these models behave in these situations. Finding data sets that can be seen as
typical for different applications is difficult. No attempts at stating which models
perform best in given applications are made. Instead, the goal is to evaluate how
models perform when applied to a number of real world data sets.

There are a variety of different approaches to the class imbalance problem. Only
a handful are studied in this thesis. No attempt is made of determining which
method is best of all available ones. Instead, a few are chosen and investigated. The
chosen models and approaches to the imbalance problem evaluated are described in
the Methods chapter.
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1.3 Outline of the Thesis

The thesis is divided into the following parts:

1. Introduction.

2. Theory. Methods evaluated by other researchers are presented to show the
context of the coming analysis.

3. Data. The data used in the analysis are introduced.

4. Methods. The scope of and the methods used in the analysis are presented.

5. Empirical analysis. The results from the analysis are displayed. Results are
discussed.

6. Conclusion. Conclusions of the analysis are presented. Future research areas
are proposed.
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Theory

2.1 Previous Research

Several researchers have approached the problem of class imbalance. This chapter
offers a brief overview of the class imbalance problem and some of the methods used
to handle this particular challenge.

2.1.1 The Problem of Class Imbalance

Below follows an overview of types of class imbalance and some of the most common
issues associated with classification tasks.

Types of class imbalance

Class imbalance can be categorised in different ways depending on the nature of the
data and how the data have been collected. Depending on the type of class imbal-
ance present in the data the difficulty of accurately distinguishing between classes
can differ.

High class imbalance
Any data set with an unequal class distribution is imbalanced. The severity of such
an imbalance can vary from minor to extreme. Some researchers have suggested
that extreme or high imbalance can be of the order 100:1, 1000:1 and 10 000:1 (He
and Garcia, 2009). However, this is not a strict definition. Others have suggested
that high class imbalance is any imbalance that contributes to challenges regarding
modelling and prediction of the minority class (Leevy et al., 2018).

Intrinsic class imbalance
Intrinsic class imbalance refers to imbalance that is a result of the nature of the data
(He and Garcia, 2009). An example of this is rare diseases that only a small pro-
portion of the population suffer from. This is thus a naturally occurring imbalance.

Extrinsic class imbalance
According to He and Garcia (2009) extrinsic class imbalance is not, as compared
to intrinsic class imbalance, a result of the nature of the data. The original data
may not be imbalanced, however, when the data is generated an imbalance can be
created. According to the authors an example of this is data that is acquired from
a stream of (balanced) data during some time interval, during which the transmis-
sion has random interruptions and some data fails to transmit. The data is thus
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not originally imbalanced, however, when it is collected an imbalance can be created.

Relative class imbalance
Relative imbalance refers to data with a given proportion of the observations be-
long to the minority class (He and Garcia, 2009). An example of this is a data set
with a class imbalance of 100:1, where there are 100 observations in the minority
class if the size of the data set is 10 000 observations. If the number of observa-
tions is increased, the number of observations in the minority class is expected to
rise proportionately. Thus in a data set of 200 000 observations, it would be ex-
pected that there are 2000 observations in the minority class. Now, the minority
class might not be considered rare on its own, but rare relative to the majority class.

Class imbalanced due to rare instances
According to Weiss (2004) rare cases are comprised of “a meaningful but relatively
small subset of the data” (p.7). Weiss (2004) makes a distinction between relative
rarity (above described as relative class imbalance) and absolute rarity (here also
noted as imbalance due to rare instances). For data sets with absolute rarity the
number of observations from the minority class are very few, according to the author.
The author notes that when dealing with these types of data sets the classifiers
may have issues in distinguishing the two classes. A data set with relative class
imbalance may be considered to have class imbalance due to rare instances if the
data set includes only a few observations from the minority class. Thus in the
example above, a data set with 10 000 observations out of which only 100 belong to
the minority class, the class imbalance could still be regarded as imbalanced due to
rare instances.

Challenges related to classification tasks

There are issues that are related not only to the class imbalance problem, but also
to classification in and of itself. These are issues that are important to understand
for all classification tasks including tasks with imbalanced data.

Data complexity and separability
Although class imbalance may hinder a classifier to accurately distinguish between
the minority and majority class, this is not the only factor that causes such problems,
according to He and Garcia (2009). The authors note that for some data sets with
relative class imbalance, the classifier may still make accurate predictions of both
classes. Instead they suggest that what they call data complexity is the primary
reason why classifiers may fail at distinguishing the minority class. They further
note the issues of data complexity present in a data set can be amplified when
combined with relative class imbalance.

Data complexity entails a variety of issues such as small disjuncts and overlap-
ping, according to He and Garcia (2009). The authors explain that classifiers try
to create disjunct rules in order to accurately separate the classes. These rules are
often ones that can cover large clusters of the data. When faced with small disjuncts
there are several small clusters of the minority samples, making it difficult for the
classifier to accurately distinguish the two.

Sun et al. (2007) note that order for a model to distinguish the two classes the
classes need to be separable in some way. The more discriminative patterns an
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algorithm can find, the easier it is for it to accurately predict to which class an
observation belongs. A problem arises when the classes overlap and the algorithm
subsequently fails at distinguishing the two classes.

Previous research by Japkowicz and Stephen (2002) has shown that if two classes
are linearly separable, the class imbalance problem becomes much easier to solve.
They note that as complexity increases the sensitivity to class imbalance increases
as well.

Sample size
Sun et al. (2007) note that the more data that is available for training the model,
the easier it is for the model to find discriminatory patterns in the data. Thus a
smaller sample size can hinder a model’s ability to correctly classify the minority
class. A small sample size may also lead to issues regarding imbalance of rare in-
stances. Previous research has shown that, unsurprisingly, higher class imbalance
and complexity together with small training set makes classifier more sensitive to
the problem (Japkowicz and Stephen, 2002).

2.1.2 Possible Solutions to the Class Imbalance Problem

According to Sun et al. (2007), the solutions to the class imbalance problem can
be divided into two main categories: Data level approaches and Algorithm level
approaches. There are also possibilities to combine the two into what here will be
referred to as Hybrid methods.

Data level approaches

When faced with a data set with an uneven class balance a common approach is
to use methods that aim at balancing the class distribution. These methods solely
focus on the data distribution and are thus referred to as data level approaches.
There are two main ways of rebalancing the class distribution: Undersampling and
Oversampling.

According to Sun et al. (2007), undersampling is performed by eliminating ob-
servations from the majority class in order to create a more even distribution of
classes. Oversampling, on the other hand, aims at generating new examples from
the minority class. There are several ways to perform these resampling techniques.
Some examples of these techniques are described below.

According to He and Garcia (2009), random oversampling refers to randomly
adding replications of existing samples from the minority class to the data set. The
authors describe random undersampling as removing randomly selected observations
from the majority class. Undersampling can also be performed based on distance
criteria, according to Branco et al. (2016). However, the authors note, these methods
may be extensively time consuming when faced with large data sets. The authors
mention other undersampling techniques, such as Tomek links, that decide which ob-
servations to remove with regards to noisy observations or regions with overlapping
classes. The authors also mention oversampling techniques that generate synthetic
observations, such as the synthetic minority oversampling technique (SMOTE).

An advantage of data level approaches is that they are applicable to existing
classifiers, as it forces the model to become biased to correctly predict the minority
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class (Branco et al., 2016).
There are some drawbacks to using resampling techniques according to Sun et al.

(2007). They note that to find the ideal class distribution in the training data
can be difficult as this is most often unknown, it can cause loss of information
when the larger class is undersampled and overfitting can occur if the small class is
oversampled.

Algorithm level approaches

According to Sun et al. (2007), algorithm level approaches are essentially composed
of modifications of existing learning algorithms to accommodate to the class imbal-
ance problem. They state that to use this approach a thorough understanding of
the algorithms chosen is needed in order to tweak the algorithms to fit the problem
accurately for the task at hand. One of the most common ways to modify these al-
gorithms is to implement costs and/or benefits to show the usefulness of predictions.
This can be done by using cost-sensitive algorithms. Here, the goal is to minimise
the overall cost, knowing that misclassification of the smaller class is associated with
a higher cost.

Branco et al. (2016) claim that one advantage of the algorithm level approach
is that the goal of correctly classifying the smaller class is incorporated into the
chosen model and that this leads to that the models become more comprehensible
for the user. Some disadvantages noted by the authors are that the analyst becomes
restricted in terms of which models can be used and can be forced to develop specific
algorithms for the given problem. It also requires a high degree of knowledge of the
models implemented for the given task.

Sun et al. (2007) further state that the cost of misclassification is dependent on
the nature of the problem the analyst aims to solve. As an example they mention
fraud, where the amount of money involved will affect the importance of correctly
classifying a fraudulent case. Incorrectly classifying a valuable customer as fraudu-
lent could cost the bank or institution more than the opposite. The same goes for
correctly classifying a medical diagnosis, which depends on the patient and the sever-
ity of the disease. There are thus many complicating factors to take into account
given the nature of the problem the analyst is set to solve.

Hybrid methods

Hybrid methods simply creates a mix of the different approaches described above
in order to obtain optimal results. This can for example mean that the analyst uses
resampling techniques together with algorithms appropriate for the specific data at
hand.

2.1.3 Evaluation Measures

Accuracy measures the proportion of correctly classified observations. In highly
imbalanced data sets, classifiers may predict all observations as belonging to the
majority class. This can lead to a high accuracy that in a balanced data setting
would be considered good. However, this evaluation metric is not appropriate when
dealing with imbalanced data. This is due to that the accuracy metric fails to show
to what extent the classifier accurately predicts observations as belonging to the
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minority class. He and Garcia (2009) note that accuracy is a poor performance
metric due to that it is sensitive to the data distribution. If the class distribution
changes, so does the accuracy. This leads to problems when the goal is to evaluate
classifiers on different data sets, according to the authors. If the majority class
constitutes 99 % of the data in one data set, and 80 % in another, it would seem
as if the classifier performs better in the first data set. This, they claim, makes
a relative analysis inherently flawed when using the accuracy metric. Due to this,
several other evaluation methods have been proposed in previous research on the
topic. In this section, some of these measures are shown.

In order to find such measures a confusion matrix can be used (see Figure 2.1).
A confusion matrix offers a clear view of the possible outcomes of a classifier. The
vertical cells correspond to the values predicted by the classifier. In this context the
positive class refers to the minority class and the negative class refers to the majority
class. The horizontal cells correspond to the true values of the observations. If a
classifier performs a perfect classification there will only be values in the true positive
and true negative cells.

Predicted Value
Positive Negative

Actual Value
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Figure 2.1: Confusion Matrix

From the confusion matrix, appropriate measures for the class imbalance problem
can be created (Sun et al., 2007). In this section four such measures are described,
namely: recall, precision, F-measure and G-mean. Further, ROC-analysis is de-
scribed.

Recall

If the researcher is solely interested in the positive (minority) class prediction perfor-
mance recall can be used. Recall, or true positive rate, shows the proportion of the
observations in the positive class that are labelled accurately (He and Garcia, 2009).

Recall = TPrate =
TP

TP + FN
. (2.1)

Precision

Precision, or positive predictive value, measures exactness according to He and Gar-
cia (2009). It is thus a measure of the proportion of observations predicted as
positive that are actually positive.

Precision = PPvalue =
TP

TP + FP
. (2.2)
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F-measure

Recall and precision are useful in different situations according to He and Garcia
(2009). The authors claim that neither are perfect as an evaluation measure for
imbalanced data due to their respective flaws. Recall does not offer any information
about how many observations are incorrectly predicted as being positive and preci-
sion does not show how many of the positive observations are misclassified. In an
effort to combine the two measures the F-measure (see Equation 2.3) was created
by Rijsbergen (1979). This measure aims at measuring the effectiveness of a clas-
sification by combining recall (R) and precision (P) into an average and represents
the harmonic mean between the two (He and Garcia, 2009).

2RP

R + P
. (2.3)

G-mean

If the classification performance of both classes are of interest, the aim is that both
the true positive rate and the true negative rate (TNrate) are high (Sun et al., 2007).
In this case the geometric mean (G-mean) (Kubat et al., 1998) can be used, which
balances the performance of a model between the classes (see Equation 2.6). This
measure has the property of being robust when the distribution changes with time or
if the distribution differs between the training and test data sets (Kubat et al., 1998).

TNrate =
TN

TN + FP
. (2.4)

√
TPrate × TNrate. (2.5)

ROC Analysis

According to He and Garcia (2009) both the F-measure and the G-mean are in-
effective in terms of answering more generic questions in regards to classification
evaluation. Because precision, like accuracy, is sensitive to changes in data distri-
butions, so is the F-measure. Instead of these measures ROC (Receiver Operating
Characteristic) analysis can be performed.

According to Sun et al. (2007), in the case where a classifier outputs a proba-
bility score for the prediction the class prediction may be altered by changing the
threshold. In ROC analysis the TPrate and FPrate are plotted for different threshold
values. The ROC curve (see Figure 2.2) thus shows the relative trade-offs between
true positives (benefits) and false positives (costs) for different threshold values. A
perfect classifier will create a ROC curve that hugs the top left corner, as it ob-
tains a true positive rate of 1 and and a false positive rate of 0 (James et al., 2021,
p.150-151). The blue curve in Figure 2.2 represents this ideal. A classifier that is
as good as pure chance is a diagonal from the bottom left corner to the top right
corner (James et al., 2021, p.150-151), as is shown by the black line in Figure 2.2.
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Figure 2.2: Example of an ROC Curve. The blue line represents the best possible classifier.
The black line shows a classifier as good as pure chance. The orange curve shows how
different threshold values may create different false positive and true positive rates.

Although the ROC curve can provide a good summary of a classification model, it
can be difficult to use the ROC curves as a means of comparing different classifiers
(Provost and Fawcett, 1997). Instead, the Area Under the ROC Curve (AUC) can
be used according to Branco et al. (2016). According to the authors, the AUC
provides a single metric to evaluate a classifier’s performance on average.

AUC =
TPrate + TNrate

2
. (2.6)
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Data

Three data sets have been selected to test imbalanced learning techniques on real
world data (see Table 3.1). The data sets are publicly available at Kaggle.com. All
data sets are relatively large with varying degrees of imbalance. The number of ob-
servations in the minority class are also very different in the data sets. By comparing
the performance of the models on these data sets it can hopefully shed some light on
how class imbalance and number of observations affect the performance. This could
potentially give indications on which model to use under certain circumstances.

From what is known about the data sets they all have intrinsic and relative
class imbalance. There is nothing to suggest that the issues are extrinsic from the
information available. The credit data could be viewed as imbalanced due to rare
instances, given the very small number of observations in the minority class. How
separable and complex the data sets are is not known. There are no missing values
in any of the data sets.

Table 3.1: Data sets used for analysis

Data set name Number of
obs

Percentage
of minority
class

Number
of obs in
minority
class

Number of
variables

Credit Card Fraud
Detection Data

284 807 0.178 492 30

Imbalanced Insurance
Data

382 125 16.4 62 531 9

Personal Key Indica-
tors of Heart Disease

319 795 8.6 27 373 17

Credit Card Fraud Detection Data

The credit card fraud detection data set (Machine Learning Group - ULB, 2015) was
originally collected and used for analysis by the Machine Learning Group of Univer-
sité Libre de Bruxelles and Worldline. The data is comprised of 284 807 transactions
(observations) made by European cardholders’ credit cards in September 2013, out
of which 492 are fraudulent. This is thus deemed a highly imbalanced data set with
only 0.178 % of the observations belonging to the minority group. Several other
researchers have used this data (Dal Pozzolo et al.; Dal Pozzolo et al.; Dal Pozzolo
et al.; Carcillo et al.; Lebichot et al.; Lebichot et al.; Carcillo et al.; Lebichot et al.,
2015; 2014; 2017; 2017; 2019a; 2019b; 2019; 2021).
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28 out of the original variables have been masked because of privacy reasons.
The features are named V1, V2, . . . , V28 and consists of the principal components.
Two variables still have their original names and are not transformed via principal
component analysis (PCA): Time and Amount. Time refers to the seconds elapsed
between each transaction and the first transaction in the data set. Amount refers
to the transaction amount. The response variable is named “Class” and has value
1 if the transaction is fraudulent and 0 otherwise.

Imbalanced Insurance Data

The data (Möbius, 2020) has been uploaded by a user on Kaggle.com. The source
of the data is unknown. According to the contributor the data comes from an
insurance company. With this data it is possible to predict if a customer is interested
in purchasing Vehicle Insurance. The variables “id” and “region code” have been
removed in the analysis. The variables used in the analysis are shown in Table 3.2.

Table 3.2: Insurance Data Variables

Variable Type Description
Gender Dummy (Male/Female) Gender of customer

Age Numerical Age of customer

Driving License Dummy (Yes/No) Indicates if customer has a
driver’s license

Region Code Numerical Region code of customer

Previously Insured Dummy (Yes/No) Indicates if customer is pre-
viously insured

Vehicle Age Dummy (< 1 year, 1 - 2
years, > 2 years)

Age of customer’s vehicle

Vehicle Damage Dummy (Yes/No) Indicates if the customer’s
vehicle is damaged

Annual Premium Numerical Value of customer’s
premium

Vintage Numerical Days insured until now

Personal Key Indicators of Heart Disease

The data (Pytlak, 2022) is provided by the American governmental agency Centers
for Disease Control and Prevention (CDC). The data was collected in 2020 from
the Behavioral Risk Factor Surveillance System (BRFSS), which conducts annual
telephone surveys regarding the health of U.S. citizens. The original data set con-
tained 401 958 observations and 279 variables. In the data set on Kaggle.com the
data has been reduced to 319 795 observations and 17 variables. The purpose of this
data set is to predict whether respondents have had coronary heart disease (CHD)
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or myocardial infarction (MI). In the available data 8.6 % of the respondents have
reported having had heart disease. The variables used in analysis can be found in
Table 3.3

Table 3.3: Heart Disease Data Variables

Variable Type Description

Sex Dummy (Male/Female) Gender of respondent

Age Category Categorical (14 categories) Age of respondent

BMI Numerical BMI of respondent

Smoking Dummy (Yes/No) Indicates if respondent has
smoked 100 cigarettes in
their life

Alcohol Drinking Dummy (Yes/No) Indicates if patient is a
heavy drinker

Stroke Dummy (Yes/No) Indicates if a respondent
has had a stroke

Physical Health Numerical How many days the past
month the physical health
was bad

Mental Health Numerical How many days the past
month the mental health
was bad

Difficulty Walking Dummy (Yes/No) Indicates if respondent has
a difficulty walking

Race Categorical Indicates race of respondent

Diabetic Dummy (Yes/No) Indicates if respondent
is/have been diabetic

Physical Activity Dummy (Yes/No) Indicates if respondent has
been doing physical activity
the past 30 days

General Health Categorical Indicates the respondent’s
general health

Sleep Time Numerical Indicates how many hours
per day respondent sleeps

Asthma Dummy (Yes/No) Indicates if respondent
has/have had asthma

Kidney Disease Dummy (Yes/No) Indicates if respondent
has/have had kidney
disease

Skin Cancer Dummy (Yes/No) Indicates if respondent
has/have had skin cancer
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Methods

In this chapter, the methods used for the experimental study are described. An
overview of statistical learning is provided. Next, an outline of the empirical analysis
is shown. The programming tools used for analysis are described. Data preprocess-
ing and classification methods are accounted for.

4.1 Statistical Learning

The goal of statistical learning is to in one way or another understand data. Statis-
tical learning techniques are divided into two groups: Unsupervised and Supervised
Learning (James et al., 2021, p.1). In this thesis only supervised learning techniques
are investigated.

In supervised learning the goal is to predict some kind of outcome or output based
on a number of features or inputs (Hastie et al., 2009, p.1-2). The outcome can be
quantitative or in the case of classification, categorical. The data used to create
the prediction model (learner) is the training data. The trained learner can then be
used to predict outcomes on previously unseen data, referred to as test data. Before
commencing the analysis available data is divided into training and test data. The
models are trained on the training data to find distinguishing patterns. Next, this
trained model is tested on the remaining data to evaluate the model’s performance.

In this thesis the focus lies on supervised learning with categorical outcomes.
There are a number of classification methods included in the statistical learning
framework such as Linear Discriminant Analysis (LDA); Logistic Regression; Sup-
port Vector Machines; Tree Based Methods; and Deep Learning. Only a handful of
the available methods will be investigated in the experimental study.

The learning tasks can be described as using an input vector X to make predic-
tions of the output Y , denoted Ŷ (Hastie et al., 2009, p.10-11). When prediction
concerns binary classification, Ŷ will lie in {0, 1}, i.e. either take on a value of 0
(majority class) or 1 (minority class).
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4.2 Outline of empirical analysis

Figure 4.1 displays a flowchart of the empirical analysis. The different aspects of
the analysis is further presented in this section.

Data Preprocessing

Resampling

Benchmark Classifier Classifier Modified Classifier

Comparing results

Figure 4.1: Method for empirical analysis

The analysis is broken down into the following steps:

1. The three data sets are preprocessed in order to function with the chosen
models.

2. Three benchmark classifiers are used to evaluate how the classifiers behave
with the imbalanced data sets.

3. Two resampling methods are used on the training data. The resampled train-
ing data is then used to train the classifiers.

4. Modified classifiers that take into account the class imbalanced is used on the
original data.

5. A combination of resampling and modified classifiers are used.

6. Finally, the outcome of these techniques are compared and discussed.
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4.2.1 Overview of the methods used

The methods evaluated in the empirical analysis are:

• Benchmark classifiers: linear SVM (SVC), logistic regression and classification
trees

• Resampling methods: random undersampling and SMOTE in combination
with benchmark classifiers

• Cost-sensitive versions of the classifiers (SVC, logistic regression and classifi-
cation trees)

• Resampling methods in combination with cost-sensitive classifiers

The methods have been chosen in order to see how a few of the existing methods
used for imbalanced learning behave. There a numerous ways to tweak and change
the chosen algorithms in order to create more powerful classifiers. Such improve-
ments will not be attempted here. Instead, the “out-of-the-box” classifiers will be
used to get an overview of relatively simple classifiers. This is done in order to limit
the scope of the thesis and also to see how the standard versions of these classifiers
behave. In a real world application, these classifiers would need to be tweaked in
order to create the best possible outcomes for the specific data at hand.

The aim of the empirical analysis is twofold:

1. First, the aim is to compare and contrast how resampling and cost-sensitive
learning behave.

2. Second, the aim is to evaluate how these methods behave on different data set
types with varying class imbalance.

Limitations of the method

As noted in the Theory chapter, there are numerous classification methods for im-
balanced learning. The scope of the analysis needs to be narrowed down in order
to be able to make some sort of evaluation of such methods. Here, methods that
have similar approaches are compared. Both cost-sensitive versions of classifiers and
resampling techniques aim at taking the imbalance found in the data into account.
Of course, it would be interesting if other types of methods were investigated. In
order to limit the scope of the thesis, this is not attempted here, which can be viewed
as a limitation. However, hopefully, this analysis may still provide some interesting
insights for the community.

4.2.2 Programming

The analysis is performed using the open software program Python. The library
mainly used is scikit-learn (Pedregosa et al., 2011). For decision trees the Decision
Tree Classifier in scikit-learn is used. For the resampling tasks, scikit imbalanced-
learn (Lemâıtre et al., 2017) is used.
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To implement SVM in scikit-learn (Pedregosa et al., 2011) there are two libraries
that can be used: LIBLINEAR (Fan et al., 2008) and LIBSVM (Chang and Lin,
2011). The chosen library is LIBLINEAR, seeing as it is efficient in when dealing
with large-scale data. The library supports linear SVM (SVC) and logistic regres-
sion, which is what is used in this research.

4.2.3 Data Preprocessing

In order to use the chosen classifiers some data preprocessing need to be performed.
All categorical variables are coded into dummy variables. Further, all continuous
variables are scaled. This is done in order to speed up the computations as the large
data sets require a substantial amount of computing power in the case of logistic
regression. Support vector classification requires scaled variables.

4.2.4 Algorithm level methods

In this section the classifiers used are briefly described. The modifications of the
classifiers are also described.

Logistic Regression

Logistic regression uses a set of training observations (x1, yz)...(xn, yn) to build a
classifier. The model determines a probability of an observation belonging to a
particular category (James et al., 2021, p.134). This probability can be written as
p(X) = Pr(Y = 1|X), i.e. the probability that Y belongs to class 1 given X. The
probability ranges between 0 and 1. In the most common case, a probability larger
than 0.5, i.e. p(X) > 0.5, means that the observation will be classified as belonging
to class 1. Other threshold values can be used with different results as shown by the
ROC curve in Figure 2.2.

In order to achieve outputs between 0 and 1 the logistic function (James et al.,
2021, p.134) is used:

p(X) =
eβ0+β1X

1 + eβ0+β1X
. (4.1)

The maximum likelihood method is used to fit the model 4.1. The goal is to find
the parameters β that maximizes the likelihood (James et al., 2021, p.135). This
is equivalent to minimizing the negative log likelihood, which is the cost function
of logistic regression according to li Zhang et al. (2021). The authors further note
that the negative log likelihood can be divided into two parts: the costs for mis-
classifying majority observations and costs for misclassifying minority observations.
The model assumes that both costs are equal, leading to the model maximizing the
overall accuracy.

Cost-sensitive logistic regression
Logistic regression in its original form is not optimal for class imbalance problems,
seeing at it is biased towards the majority class. In order to combat this problem,
penalty weights can be added to the log likelihood function, ensuring that misclassi-
fication of the minority class has a higher cost than the reverse (li Zhang et al., 2021).
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LIBLINEAR offers a setting to choose the penalty weights (called class weights) in
logistic regression. In the analysis, the weights are set to be balanced, i.e. take into
account the class imbalance in the training data.

Support Vector Machines

The SVM algorithm was originally developed for binary classification. The classes
are called the positive and negative class with class labels 1 and -1 respectively (Lin
et al., 2002).

In order to understand support vector classifiers, the hyperplane must first be
understood. The hyperplane in p-dimensional space refers to a flat affine subspace
of dimension 1 − p (James et al., 2021, p.368). For p = 2, i.e. two dimensions, the
hyperplane can be described by the following equation:

β0 + β1X1 + β2Xx = 0. (4.2)

for parameters β0, β1 and β2. Equation 4.2 defines the hyperplane such that if a
point X = (X1, X2)

T satisfies 4.2 then X is on the hyperplane (James et al., 2021,
p.368). However, if X does not satisfy 4.2 and instead is larger than or smaller than
zero, X does not lie on the hyperplane.

β0 + β1X1 + β2Xx > 0. (4.3)

β0 + β1X1 + β2Xx < 0. (4.4)

The hyperplane creates a dividing border between two halves of the p-dimensional
space. By calculating the sign of 4.2 it is thus possible to decide at which side of
the hyperplane a point lies (James et al., 2021, p.368). Depending on which side of
the hyperplane an test observation lies, it is classified as belonging to one of the two
classes.

If the classes in the data can be perfectly separated by a hyperplane there will
exist an infinite number of such hyperplanes. The best choice of such hyperplanes is
commonly referred to as the maximal margin hyperplane (James et al., 2021, p.371),
see Figure 4.2. This is the separating hyperplane that lies farthest from the training
observations. The margin is the distance between the training observations on either
side of the hyperplane and the hyperplane. These training observations are shown
in red in Figure 4.2 and the hyperplane is shown by the straight black line. The
maximal margin hyperplane is the one that creates the largest margin of all possible
hyperplanes. The training observations that are on the border of the margin (the
dashed lines) are referred to as support vectors (James et al., 2021, p.368).
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Figure 4.2: Maximal margin hyperplane. The black diagonal line shows the hyperplane.
The filled points refer to points in one class and the circles refer to points in the other
class. The red circles and filled points lie on the dotted lines (the margins) and refers to
support vectors.

In most situations, the maximal margin hyperplane cannot fit a line that separates
all observations of the two classes. There is thus needed some acceptance of misclas-
sification. The support vector classifier (or soft margin classifier) allows for some
observations to be placed on the wrong side of the margin and hyperplane (James
et al., 2021, p.373-375).

Support vector machines is a classifier that allows for non-linear decision bound-
aries (James et al., 2021, p.379). In this thesis, the linear support vector classification
(SVC) is used by implementing the LIBLINEAR library in scikit-learn.

Cost sensitive SVC
An assumption of SVM is that the cost of misclassification is the same for both
classes (Lin et al., 2002). However, as have been pointed out, that may not be the
case. Much like in cost-sensitive logistic regression, the cost of misclassification can
be altered by taking into account the class imbalance in the data. LIBLINEAR
allows for changing the class weight in order to increase the accuracy of prediction
of the minority class.

Classification Trees

Tree based methods can be used for both classification and regression tasks. Here,
classification trees are described.

The aim of the classification tree is to find a systematic approach to predicting
classes given some set of measurements. The decision tree algorithm applied in
scikit-learn is the CART-algorithm (Classification and Regression Trees) (Breiman
et al., 2017). The CART decision splits the data into smaller parts by asking “yes”
or “no” questions. In the example in Figure 4.3 the first question is: “Is the patient
younger than 85 years old?” Depending on the answer to this question, the tree
can either end up in a terminal node, where a classification is made, or continue to
another question or node. The algorithm searches the available variables to find the
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optimal split in the data. The optimal split is one that divides the data into two
parts with the highest possible homogeneity (Razi and Athappilly, 2005).

Age < 85?

No Heart Disease BMI > 40?

No Heart Disease Heart Disease

no yes

no yes

Figure 4.3: Example of a classification tree

Cost sensitive decision trees
In the decision tree classifier in sci-kit learn, the cost of misclassification can be
changed, much like in the LIBLINEAR library described earlier.

4.2.5 Data level methods

Random Undersampling

There is a long list of methods used for undersampling the majority class. In the
coming analysis random undersampling is used. Random undersampling simply
randomly removes observations belonging to the majority class in order to create a
more balanced distribution (He and Garcia, 2009). In the analysis scikit imbalanced-
learn’s RandomUnderSampler is used.

SMOTE

Oversampling by replication (random oversampling) can lead to overfitting. In order
to improve generalization SMOTE was created. SMOTE (Synthetic Minority Over-
sampling TEchnique) (Chawla et al., 2002) is an oversampling method where the
minority class is oversampled by generating synthetic samples. The oversampling is
done by taking the minority class sample and creating synthetic examples by means
of interpolation of neighbouring minority class observations (Fernández et al., 2018).

There are numerous extensions and modifications of the SMOTE algorithm. In
the empirical analysis the regular SMOTE algorithm is used.
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Analysis

In the this chapter the results of the analysis are presented. In all of the analyses
the data are randomly divided into training and test data sets with 75 % of the data
belonging to the training data and 25 % to the test data. The classifiers are applied
to the training data in order to learn a classification rule that is then applied to
assign class labels to new unseen observations in the test data. The classifications
are evaluated using the metrics accuracy, precision, recall, F-measure, G-mean and
AUC. The results of these metrics are presented in tables below. The presentation
of the results are followed by a discussion of the findings.

The different evaluation metrics are shown in order to compare and contrast
these measures. Depending on the goal of the analysis, different measures may be
appropriate. The aim of visualising several metrics at once is also to show how these
measures are related to one another.

In Table 5.1 the number of observations and the proportion of the majority class
in the test data sets are presented. This information can aid in understanding how
the models behave.

Table 5.1: Proportion of majority class in the test data used for analysis

Data set name No of observations Proportion of majority
class

Credit Card Fraud
Detection Data

71 202 0.9984

Imbalanced Insurance
Data

95 004 0.8344

Personal Key Indica-
tors of Heart Disease

79 949 0.9131

5.1 Results

5.1.1 Benchmark classifiers

In order to get a view of how the classifiers behave without any changes on data-
or algorithm level, three benchmark classifiers are applied to the training data sets.
The results are shown in Table 5.2.
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Table 5.2: Results: Benchmark Classifiers

Decision Trees (Unmodified)
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9993 0.8316 0.6991 0.7596 0.8360 0.8494
Insurance Data 0.8352 0 0 0 0 0.5000
Heart Data 0.9136 0.5466 0.0312 0.0591 0.1765 0.51438

Logistic Regression (Unmodified)
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9992 0.8500 0.6018 0.7047 0.7757 0.8008
Insurance Data 0.8347 0.4927 0.1007 0.1673 0.3141 0.5401
Heart Data 0.9142 0.5346 0.1000 0.1686 0.3150 0.5458

SVC (Unmodified)
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9993 0.8404 0.6991 0.7633 0.8360 0.8495
Insurance Data 0.8339 0.4700 0.0601 0.1066 0.2436 0.5234
Heart Data 0.9143 0.5996 0.0403 0.0756 0.2005 0.5189

The results of the benchmark classifiers for the credit data shows that the accuracy
is higher than the proportion of the majority class in the test data. It can also
be seen that the true positive rate, recall, is between ca 0.6 and 0.7. This shows
that the models have succeeded in correctly predicting a relatively high proportion
of the observations in the minority class. It can also be noted that precision, F-
measure and G-mean are relatively high, indicating that there is a decent balance
between correctly predicting both classes. It can also be noted that the G-mean is
consistently higher than the F-measure and that the AUC scores are quite high.

The same high values are not obtained for the remaining two data sets. Here,
the accuracy rate is very close to the proportion of the majority class. This indicates
that the model has simply predicted most of the observations as belonging to the
majority class. This can further be shown if looking at recall, which have values
close to or equal to zero. This shows that a low proportion of the observations in the
minority class are correctly labelled. The decision tree algorithm for the insurance
data is shows the extreme case where all observations are predicted to belonging to
the majority class, leading to that precision, recall, G-mean and F-measure all have
values of 0.

The classification tree has the worst performance for the heart and insurance
data sets. It seems as this classifier is very sensitive to imbalanced data. In contrast,
logistic regression seem to perform slightly better.

5.1.2 Data level methods

The results of the data level methods is shown in Table 5.3 and 5.4. Again, there
is an obvious distinction in how these methods behave depending on the data set
used.
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Table 5.3: Results: Random Undersampling

Classifier: Decision Tree
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9451 0.0255 0.9027 0.0496 0.9237 0.9236
Insurance Data 0.7586 0.3995 0.9240 0.5578 0.8190 0.8250
Heart Data 0.7524 0.1991 0.6122 0.3005 0.6847 0.6890

Classifier: Logistic Regression
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9706 0.0480 0.9292 0.0912 0.9497 0.9499
Insurance Data 0.7040 0.3540 0.9649 0.5180 0.7935 0.8087
Heart Data 0.7501 0.2266 0.7774 0.3509 0.7623 0.7625

Classifier: SVC
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9718 0.0500 0.9292 0.0948 0.9503 0.9506
Insurance Data 0.7021 0.3538 0.9776 0.5196 0.7957 0.8127
Heart Data 0.7479 0.2252 0.7794 0.3494 0.7620 0.7622

Table 5.4: Results: SMOTE

Classifier: Decision Tree
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9157 0.0174 0.9381 0.0341 0.9268 0.9269
Insurance Data 0.7457 0.3865 0.9249 0.5452 0.8105 0.8176
Heart Data 0.7031 0.1705 0.6255 0.2680 0.6667 0.6680

Classifier: Logistic Regression
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9736 0.0531 0.9292 0.1005 0.9511 0.9514
Insurance Data 0.7040 0.3537 0.9624 0.5173 0.7927 0.8077
Heart Data 0.7252 0.2000 0.7214 0.3132 0.7235 0.7235

Classifier: SVC
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9787 0.0645 0.9204 0.1206 0.9491 0.9496
Insurance Data 0.7020 0.3537 0.9773 0.5195 0.7956 0.8125
Heart Data 0.7204 0.1978 0.7258 0.3109 0.7229 0.7229

SMOTE and random undersampling performs similarly for all three data sets and
models. For the credit data, the accuracy is lowered slightly compared to the bench-
mark classifiers. The precision has gotten close to zero and the recall rate has in-
creased to above 90 % for all models. This indicates that the models predict many
more observations as belonging to the minority class. However, this is done at a great
cost. The false positive rate has increased tremendously, meaning that the model
predicts a large number of observations as being fraudulent, that are in fact not. As
an example see Figure 5.1. The figure depicts the confusion matrix for classification
trees with random undersampling for the credit data. Here, the model accurately
predicts 102 of the fraudulent cases as fraud. However, the cost of increasing the
true positive rate is that now 3 939 observations are incorrectly classified as fraud.
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This kind of misclassification can cause a large cost to the bank or institution if
these many non-fraudulent cases are deemed fraud.

Figure 5.1: Confusion Matrix: Credit data, decision trees with Random Undersampling

An interesting observation to make here is the relationship between the F-measure
and the G-mean. The values for the F-measure in the credit data is close to zero for
the resampled credit data. The G-mean on the other hand has increased from around
0.8 up to over 0.92. The F-measure reflect the low precision values, whereas the G-
mean does not. This may be due to that the false positive rate does not influence
G-mean to the same extent as it influences the F-measure. Thus, if the false positive
rate is of great interest to the analyst, the F-measure may be appropriate to use for
evaluation.

For the remaining data sets all measures except for accuracy and precision has
increased. Again, the G-mean is higher than the F-measure.

Undersampled decision trees seem to have the best overall performance for the
insurance data. Logistic regression and SVC perform relatively similar for the insur-
ance data. For the heart data, the best overall performance is obtained by logistic
regression and SVC.

5.1.3 Algorithm level methods

In this section, modifications of the algorithms are made in order to account for the
class imbalance. The modified algorithms are then applied on resampled training
data to see how this further affect the results. The modifications made to the
algorithms are that they are cost-sensitive, i.e. that they take into account the class
imbalance present in the data when creating classification rules.

Modified Decision Trees

The results of the cost-sensitive decision trees can be found in Table 5.5. For the
credit data, it can be noted that the results vary depending on if the modified
decision tree is used on resampled training data or not. Without resampling, the
modified decision trees lead to a good overall performance. Precision and recall are
both relatively high, which is shown by the high F-measure value. The G-mean is still
higher than the F-value and the AUC value is also high. However, when combined
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with random undersampling something changes. The precision is lowered, leading
to a low F-measure value. The recall is suddenly much higher leading to both a high
G-mean and AUC value. When combined with SMOTE the precision is also lower,
but not as low as with random undersampling. It seems, for modified decision trees,
the best option is to avoid resampling for the credit data in order to get the best
overall performance.

The same does not hold for the other two data sets. Here the F-measure is
actually lower for the modified decision tree without any resampling. The G-mean
and AUC values are also lower. For these data sets the best overall performance is
given by the cost-sensitive decision trees together with random undersampling.

Table 5.5: Results: Cost-sensitive Decision Tree

Without Resampling
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9990 0.6860 0.7345 0.7094 0.8568 0.8670
Insurance Data 0.8051 0.4089 0.4086 0.4087 0.6008 0.6460
Heart Data 0.8638 0.2228 0.2281 0.2254 0.4616 0.5762

With Random Undersampling
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.8846 0.0120 0.8850 0.0238 0.8848 0.8848
Insurance Data 0.7563 0.3772 0.7352 0.4986 0.7477 0.7478
Heart Data 0.6749 0.1632 0.6641 0.2619 0.6700 0.6700

With SMOTE
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9977 0.3909 0.7611 0.5165 0.8716 0.8796
Insurance Data 0.7998 0.4016 0.4382 0.4191 0.6178 0.6547
Heart Data 0.8236 0.1894 0.3139 0.2362 0.5232 0.5930

Modified Logistic Regression

The results of applying cost-sensitive logistic regression to the data sets can be found
in Table 5.6. In regards to the credit data, cost-sensitive logistic regression behave
similarly with and without resampling. For all of these methods the precision is
very low and recall very high, leading to a low F-measure. Interestingly, both the
G-mean and the AUC are much higher than for the cost-sensitive decision tree, at
values around 0.95.

The results of cost-sensitive logistic regression combined with SMOTE and ran-
dom undersampling are almost exactly the same as regular logistic regression with
these resampling techniques for all data sets. It thus seems as if cost-sensitive logis-
tic regression behave much in the same way as regular logistic regression combined
with resampling. Thus it seems unnecessary to combine these techniques.

However, there is a difference between regular logistic regression and cost-sensitive
logistic regression. For the credit data, regular logistic regression outperforms all
cost-sensitive logistic regression and logistic regression combined with resampling
techniques. For the heart and insurance data, there the cost-sensitive logistic re-
gression outperforms the regular logistic regression (without resampling).
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Table 5.6: Results: Cost-sensitive Logistic Regression

Without Resampling
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9758 0.0571 0.9204 0.1075 0.9477 0.9481
Insurance Data 0.7035 0.3536 0.9653 0.5176 0.7932 0.8086
Heart Data 0.7490 0.2257 0.7775 0.3499 0.7617 0.7619

With Random Undersampling
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9706 0.0480 0.9292 0.0912 0.9497 0.9499
Insurance Data 0.7040 0.3540 0.9649 0.5180 0.7935 0.8087
Heart Data 0.7501 0.2266 0.7774 0.3509 0.7623 0.7625

With SMOTE
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9736 0.0531 0.9292 0.1005 0.9512 0.9514
Insurance Data 0.7040 0.3537 0.9624 0.5173 0.7927 0.8077
Heart Data 0.7252 0.2000 0.7214 0.3132 0.7235 0.7235

Modified SVC

Just as with cost-sensitive logistic regression, cost-sensitive SVC result in very simi-
lar measures when combined with SMOTE and random undersampling, respectively.

For the credit data, cost-sensitive SVC result in lower precision and higher recall
than regular SVC. G-mean and AUC are also higher for cost-sensitive SVC, however,
F-measure is slightly lower. Precision is lower when SVC (both cost-sensitive and
regular) is combined with either random undersampling and SMOTE. G-mean and
AUC are both close to 0.95.

For the other two data sets the cost-sensitive SVC and SVC combined with
random undersampling and SMOTE yield similar results. It is hard to state a clear
winner among these. The only thing that is clear is that cost-sensitive SVC or SVC
used on resampled data outperform the regular SVC classifier.

Table 5.7: Results: Cost-sensitive SVC

Without Resampling
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9992 0.7177 0.7876 0.7511 0.8873 0.8936
Insurance Data 0.7021 0.3540 0.9791 0.5200 0.7962 0.8133
Heart Data 0.7471 0.2246 0.7793 0.3486 0.7614 0.7616

With Random Undersampling
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9718 0.0499 0.9292 0.0947 0.9503 0.9505
Insurance Data 0.7021 0.3538 0.9776 0.5196 0.7957 0.8127
Heart Data 0.7479 0.2252 0.7794 0.3495 0.7620 0.7622

With SMOTE
Data set name Accuracy Precision Recall F-measure G-mean AUC
Credit Data 0.9789 0.0651 0.9204 0.1216 0.9492 0.9497
Insurance Data 0.7020 0.3537 0.9773 0.5194 0.7956 0.8125
Heart Data 0.7204 0.1978 0.7258 0.3109 0.7229 0.7229
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5.2 Discussion

In this section some of the results found in the empirical analysis are discussed.
Below, the highest measurements of recall, precision, F-measure, G-mean and AUC
for the different data sets are presented.

Recall
Recall shows the proportion of observations in the minority class that are correctly
labelled. It takes into account the true positives and the false negatives. The more
false negatives present, the lower the recall will be. A high recall score thus show
that there are relatively few observations in the minority class that are labelled as
belonging to the majority class.

The best method for the credit data in terms of recall is decision trees combined
with SMOTE with a value of 0.94. For the insurance data the methods that gave the
highest recall score of around 0.98 was cost-sensitive SVC and SVC combined with
SMOTE and random undersampling. For the heart data, the best recall measure
was about 0.78 with similar results found using cost-sensitive SVC, cost-sensitive
logistic regression, and undersampled SVC and logistic regression. This shows that
using the methods chosen in the analysis the heart data obtained relatively more
false negatives than the other data sets.

Precision
The precision score shows the proportion of observations predicted as belonging
to the minority class that actually belong to the minority class. The fewer false
positives present, the higher the precision score will be.

The best precision score of 0.85 for the credit data was obtained when using
unmodified logistic regression. The other unmodified classifiers gave similar results
of above 0.83. For the insurance data the best precision score was 0.49 which
was obtained using unmodified logistic regression. The worst however, was the
unmodified decision tree, leading to a precision score of 0. The best precision for
the heart data was almost 0.6. This was obtained from the unmodified SVC.

This shows that the highest precision rates were all given by an unmodified ver-
sion of the classifiers. However, which classifier that performed best related to this
measure differs. These scores further show that both the heart data and the insur-
ance data had relatively higher false positive values than the credit data.

F-measure
Seeing as the F-measure combines recall and precision into one score, it accounts
for both the issue of false negatives and false positives. Both of these values are
important. An example of this is fraud detection, where it is important to avoid false
negatives (i.e. that classifying a transaction that is fraudulent as non-fraudulent)
and false positives (i.e. classifying non-fraudulent transactions as fraudulent). Both
of these of types misclassification can cause harm to individuals and institutions.

The best F-measures for the credit data is the unmodified SVC and classifica-
tion tree at a value of about 0.76. This is also the highest F-measure value for all
data sets. The highest value for the F-measure for the insurance data was around
0.55 which was obtained for resampled versions of classification trees. The best F-
measure for the heart data was around 0.35 obtained with undersampled versions
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of logistic regression and SVC. When looking at these results, it seem that none of
the models used for the heart and insurance data sets were very successful.

G-mean
The G-mean takes into account both the true negative rate and the true positive rate.
The true negative rate measures the proportion of observations in the minority class
that is correctly predicted (see Equation 2.4). Like precision, the true negative rate
includes false positive values. Thus, both the G-mean and the F-measure accounts
for false positives to some extent. The F-measure scores are low when precision
values are low. However, when precision values are low, the G-mean scores are still
high compared to the F-measure. Seeing as precision is low when there are many
false positives present, it seems as if the G-mean is more sensitive to false positives
than the F-measure. Thus, if it is important to avoid false positives it may be better
to use the F-measure.

The highest G-mean scores for the credit data were obtained from resampled ver-
sions of SVC and logistic regression and cost-sensitive logistic regression at around
0.95. The best G-mean value for the insurance data was obtained from resampled
versions of decision trees with values around 0.81. The best heart data results for
the G-mean came from undersampled SVC and logistic regression and cost-sensitive
logistic regression and SVM, with values at around 0.76.

AUC
Seeing as both the AUC and the G-mean include the true negative rate and the true
positive rate, it is not surprising that they give similar results. Both the AUC and
the G-mean have higher scores than the F-measure for all data sets and methods.

The highest AUC values for the credit data were obtained from resampled ver-
sions of SVC and logistic regression and cost-sensitive logistic regression at around
0.95. The best AUC value for the insurance data was obtained for undersampled
decision trees at a value of 0.83. The best values of AUC for the heart data come
from cost-sensitive SVC and logistic regression and undersampled SVC and logistic
regression at values around 0.76.
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Conclusion

The aim of this thesis was to compare and evaluate methods for classification ap-
plied to large imbalanced real world data sets. The overarching research question
was chosen to be:

“Which is the best method to handle the class imbalance problem?”

The question was further narrowed down to the following questions:

“Which differences exist in performance of methods used for class imbalance for dif-
ferent data sets with varying degrees of class imbalance?”

“Which method outperforms the others?”

The answers to these questions are:

• Out of the methods evaluated in this thesis, none proved to outperform all
others.

• There are several differences in performance between methods and data sets
used for analysis.

The results of the analysis show that the different data sets have obtained varying
results depending on which methods have been used. The F-measure stands out,
as neither of the heart nor the insurance data obtain any high values for this mea-
sure. However, all data sets obtained relatively high values for recall, G-mean and
AUC when applying some models. Regarding precision, all data sets but the heart
data obtained high scores. There is no model or resampling technique that clearly
outperformed the rest.

The analysis further shows how the evaluation measures differ. The G-mean
and the AUC fails to show the cost of false positives. Seeing as false positives are
important to measure in many imbalanced data situations these measures may not
be appropriate to use. The F-measure, on the other hand, shows the cost of both
false positives and false negatives simultaneously. For those data sets with low F-
measure scores the analyst may need to choose which cost is worse: false positives
or false negatives. The analysis shows that when one increases the other decreases,
leading to low overall F-measure scores across the board.

It seems as if the models’ performances are dependent on the data set used.
The data set that performed best was the credit data. Here several models were
able to distinguish the two classes. It is unclear why the performance differ to this
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extent between the data sets. The number of observations in the minority class
or degree of class imbalance does not seem to be the reason for the difference, as
the credit data had the best performance. One possible reason for the difference
could be differing degrees of data complexity, such as issues regarding overlapping
or small disjuncts. However, this is something that for now is unknown, and thus
no conclusion regarding this hypothesis can be drawn.

The analysis shows that the issue of class imbalance is a complicated one. De-
pending on the data set used for analysis with its structure, number of observations,
class separability, variables etc. different approaches to the problem yield varying
results. There is not one size fits all when it comes to solutions to this problem.
Which evaluation measures to use is further a complex task and depends to a large
extent on the purpose of the analysis as the cost of misclassification can differ widely
between different applications.

6.1 Future Research

This thesis have been able to show some results on three specific data sets. However,
the results cannot be generalized to certain areas of study, such as fraud detection or
health in general. Further research is needed in order to understand why the models
behave differently in separate data sets. What would be interesting to understand
is how data complexity and separability changes the performance of methods used
for imbalanced learning. Perhaps there could be some rule of which method to use
depending on the complexity of the given data.
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