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Abstract
This thesis considers an investigation into the possibilities of creating a reasonably
accurate multiscale material model for paperboard, with geometry based on X-ray scans
of small paperboard samples. The modeling takes place in the software Multiscale
Designer by Altair Engineering Inc. A representative volume element (RVE) is used
to capture the X-ray geometry and represent macroscopic mechanical properties. The
RVE consists of fiber and air phases, perfect fiber-fiber bonding assumed, where the
fiber phase is assigned transversely isotropic linear elasticity and isotropic hardening
plasticity. This model is considered to behave consistently across different tested X-ray
geometries. The results show that it is possible to achieve a reasonably good model fit
for in-plane uniaxial tensile tests in MD, CD and 45 degree loading directions.

Further, the model is also exported as a user material in Abaqus, where simulations
are performed to compare the multiscale model with a previously established continuum
based model. Although the simulation results do not agree completely, there are some
similarities, which is promising for further model development.

The multiscale modeling workflow can be automatized to some degree. For this,
one needs to ensure the correct content and format of text files used as input in the
modeling analyses.

The model may be further developed with additional features such as fiber-fiber
bonds, and calibrated towards other and more complex load cases.

Keywords: paperboard, micromechanics, multiscale, fiber, X-ray, RVE.
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1 INTRODUCTION

1 Introduction
Paperboard is a material widely used for packaging food and beverage, with hundreds
of billions of paperboard based packages being produced every year. With such high
production volumes, it is very important to increase the sustainability of the production;
to reduce consumption of raw material and energy. It is equally important to ensure
the durability of paperboard throughout its life cycle, including

• Forming of packages, when a consistent behavior during creasing and folding is
desired

• Transport and stacking of packages, when compressive stiffness is crucial

• Consumer use, when packages must stay intact to avoid leaking of the contents

Meeting both sustainability and durability requirements is challenging due to the nat-
ural variability in mechanical properties of paperboard fibers, making it difficult to
accurately predict local material damage and failure. The variability arises from many
factors: length, width, thickness, bend and orientation of fibers, the type and age of
wood used for extraction, as well as the position of extraction within the wood. Ex-
perimental tests can to some extent capture such phenomena, but it can be difficult to
draw conclusions from the tests, and eliminate measuring artifacts, such as erroneous
adhesive tractions captured in a shear loading experiment.

As an alternative to experiments, virtual models are a great tool to better under-
stand the mechanical behavior of paperboard, and can yield valuable predictions of the
response in complex load cases. It is particularly desirable to predict how the mech-
anics and physics of the material microstructure affect the macroscopic behavior. This
necessitates a material model on a microscopic scale. As experimental data from mi-
croscale tests is not yet widely available, micromodels are difficult to evaluate. There
is, however, a lot of experimental data at a macroscopic level to evaluate micromodels
against. Thus one may use a multiscale modeling approach, predicting the macroscopic
response based on a micromechanical model. In this work, such an approach is used
in the software Multiscale Designer, developed by Altair Engineering Inc. Thanks to a
model order reduction implemented in Multiscale Designer, multiscale models can be
resolved at the micro scale at a reasonable computation effort.

To accurately formulate a multiscale paperboard model, the microstructure of pa-
perboard must be considered. For this, imaging techniques, such as X-rays, can yield a
very accurate representation of the real geometry. In this work, such scans are used as
a base for a micromechanical material model.
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1.1 Problem Formulation 1 INTRODUCTION

1.1 Problem Formulation
The aim of this thesis is to investigate the possibilities of creating a reasonably accurate
multiscale material model for paperboard, with geometry based on X-ray scans of small
paperboard samples. The model is to be calibrated and evaluated at a macroscopic
scale. If a reasonably accurate model can be created, its abilities and limitations will
be discussed, and the modeling workflow will be determined. These objectives are
fulfilled by answering the following questions:

• Can a multiscale, X-ray scan based paperboard model capture the real material
response to uniaxial loadings?

• Is the model behavior consistent for different model geometries?

• Can a multiscale modeling workflow be established? If so, which aspects of the
workflow are important to consider?

1.1.1 Delimitations

The scope of this work is delimited in the following ways:

• The model aims to capture the response of in-plane uniaxial tensile loadings. Only
mechanical loads are considered.

• A single-layer geometry is considered.

• The model captures elastoplastic damage. Other paperboard characteristics, such
as dependency on moisture, temperature and strain rate, are not considered.

• Fibers are the smallest considered geometrical entities. No consideration is taken
for the physics occurring at lower scales, i.e. the behavior of microfibrills or
cellulose molecules.

1.2 Related Previous Work
In recent years, micro-mechanical modeling of paperboard has gained popularity. Some
previous works investigate how the response of a fiber network depends on the charac-
teristics of individual fibers (such as length, cross section shape, bend and stiffness), and
fiber-fiber bonds (such as bonding area and bond strength reduction during debonding).
For such purposes, the fiber network has been manually generated, with fibers with dif-
ferent properties, such as length and orientation, where these properties are generated
either randomly or according to some statistical distribution. Previous attempts have
also been made at describing the macroscopic behavior with a representative volume
element (RVE) ([1], [2]). In particular, [2] used a 1 mm3 RVE with 10×10×10 elements,
with each element being 159×159×40 µm3. Despite relatively few elements and coarse
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2 THEORY

resolution, this proved successful for their applications. Still, material parameters for
fibers’ nonlinear behavior or the fiber bonds are yet to be fully determined.

2 Theory
In this section, the basic mechanics and physics of paperboard is presented. Then
an introduction to multiscale modeling is given, followed by a description of the the
application of multiscale modeling for paperboard. Next, an overview is presented for
the multiscale modeling taking place in Multiscale Designer. This is split into linear and
nonlinear material characterizations, where the latter includes a model order reduction.
Lastly, some brief words are given on the integration of a multiscale material into CAE
interfaces, such as Abaqus.

2.1 Paperboard Physics
Paperboard is a highly anisotropic material. This behavior stems from the manufac-
turing procedure where cellulose fibers are sprayed on a rolling web, thus creating fiber
layers stacked on each other. Most of the fibers are aligned mainly in the longitudinal,
machine direction (labeled MD), while some are aligned mainly in the cross direction
(CD). The stacking occurs in the thickness direction (ZD). Orthotropy is commonly
assumed, defined with aforementioned directions, depicted by Figure 1. Compared to
metals, plastics and other industrial base materials, the degree of orthotropy is remark-
ably large. The stiffness along MD is typically 2-3 times larger than along CD, and
typically 100 times larger than along ZD. Fibers and air are the main constituents
of paperboard, with starch and other chemicals added. It is mainly the fibers which
contribute to the stiffness of the paperboard. Typically the overall density is 300-900
kg/m3.

Figure 1: Main orthogonal directions defined for paperboard.
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2.1 Paperboard Physics 2 THEORY

Paperboard possesses a large bending stiffness, making it suitable as a packaging
material. A multi-ply structure is often used, where a thick and weak middle ply is
surrounded by thin and stiff outer plies, distributing the stiffness towards the edges of
the structure, similar to an I-beam. Thus a high ratio of bending stiffness to material
use is achieved.

Paperboard is remarkable in its multi-physics behavior, including anisotropy, plasti-
city, damage evolution as well as dependency on load rate, loading history, temperature
and moisture. These characteristics are crucial to consider when formulating mater-
ial models. The large degree of anisotropy is perhaps the most important feature to
capture in models. Upon a closer examination, one sees that paperboard is a highly het-
erogeneous material with different composition and structure at multiple length scales.
The multi-physics behavior can be derived from these heterogeneities, and the relation
between them. The scales range from the macroscopic sheet scale down to the mi-
croscopic cellulose scale, as seen in Figure 2. To increase model accuracy, one must
consider the mechanics and physics taking place at smaller length scales.� CHAPTER �� INTRODUCTION

STRUCTURE
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NETWORK
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FIBRIL
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Figure ���� Characterization levels for mechanical properties of paper	 after G� A�
Baum ��
�Figure 2: Composition and structure of paperboard at different length scales [3].

Increasing model resolution is possible thanks to today’s high computation power
and methods of accurately reducing model orders, and thus also computation effort. In
recent studies, Models of individual fibers and fiber networks have been formulated. Iso-
tropic hardening is commonly used, with some attempts of even more complex models,
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2.2 Introduction to Multiscale Modeling 2 THEORY

e.g. orthotropic plasticity in [4]. A few model proposals are shown in Table 1.

Table 1: Material models for paperboard fibers, as proposed in literature.

Author(s) Linear model type Nonlinear model type

Borodulina et al 2016 [5] Isotropy Isotropic hardening
(bilinear SS-curve)

Brandberg et al 2020 [6] Transverse isotropy Linear elastic

Persson 2000 [4] Transverse isotropy Orthotropic
hardening

Nygårds & Bonnaud 2010 [2] Isotropy Isotropic &
kinematic hardening

Brandberg & Kulachenko 2017
[7] and 2020 [8],

Brandberg et al 2020 [6]
Isotropy Isotropic hardening

(bilinear SS-curve)

2.2 Introduction to Multiscale Modeling
In many industries of today, it is ubiquitous to use composite materials, such as fiber
reinforcements, multi-layers, weaves and lattices. Composites include different subma-
terials (denoted "phases") with desirable mechanical or physical properties, to obtain
improved overall behavior. A problem of significant industrial interest is to compose
and structure a composite, with certain mechanical and physical properties of included
phases, such that a target macroscopic behavior is achieved. For instance, multiscale
models have been used to predict failure in carbon fiber composites used in the airplane
industry [9]. As phases of composites commonly are dimensioned at the micro scale, a
micromodel of the composite is necessitated. As a compromise between model accuracy
and computation effort, geometries of these micromodels are as coarse and large-scaled
as possible while still capturing the macroscopic material behavior. The geometries are
commonly square or rectangular, and either of two types:

• Unit cell, with periodic geometry, as found in e.g. continuous fiber reinforcements.

• Representative volume element (RVE), with non-periodic geometry. This geo-
metry can capture more complex structures, such as non-periodic granular ma-
terials. In theory, there is no limitations for the RVE geometry.

The unit cell or RVE is discretized into finite elements, and each phase is assigned
a material model based on experiments performed on said phase. To validate the
composite model, available experimental data for the total composite is used. As this
data is predominantly captured at a macro scale, a multiscale model, connecting micro
and macro scale mechanics, is necessitated. The connection between length scales is
defined by two processes: homogenization, where large scale mechanics are derived
based on smaller scale mechanics, and localization, where small scale mechanics are
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2.3 Basic Multiscale Modeling of Paperboard 2 THEORY

derived based on larger scale mechanics. Homogenization is commonly performed as
a spatial average up to a larger scale. Localization, however, is a non-trivial task.
Clever localization methods have to the potential to reduce the model complexity, and
therefore also computation effort. This may make it feasible to run simulations which
are too computationally demanding using other methods.

2.3 Basic Multiscale Modeling of Paperboard
To use paperboard in a multiscale modeling framework, both the microstructure and
micromechanics of paperboard needs to be captured. The microstructure can be rep-
resented very accurately with an X-ray image. As this microstructure is clearly unperi-
odic, an RVE is to be chosen over a unit cell. As paperboard fibers are typically tens
of micrometers wide and thick, the X-ray resolution needs to be smaller than this to
capture individual fibers and avoid undesired material homogeneity. The RVE size, i.e.
the amount of finite elements for a given resolution, may be chosen as a compromise
between computation accuracy and effort. Then, the anisotropic behavior can be cap-
tured by dividing the RVE into two phases, fiber and air, and assign an appropriate
anisotropic model for the fiber phase. Increasing model complexity, one might also con-
sider a third phase of fiber-fiber interfaces, as the bonding and sliding between fibers
heavily influence the macroscopic behavior. For this, cohesive elements and surface
interactions may be applied.

To expand the model, one may also consider other mechanical aspects of paperboard,
such as dependency on load rate, temperature and moisture. This is achieved with more
complex material models assigned to the RVE phases.

2.4 Multiscale Modeling in Multiscale Designer
The modeling in Multiscale Designer is structured into two steps: linear and nonlin-
ear material characterizations. In these steps, linear and nonlinear material models,
with corresponding parameter values, are assigned for each phase included in the RVE.
Virtual simulations can be performed to calibrate the multiscale material towards ex-
perimental data. With both steps completed, the multiscale material can be exported
to an external CAE interface. What follows next is the detailed description of each
characterization step, and some brief words on the material model export.
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2.4 Multiscale Modeling in Multiscale Designer 2 THEORY

2.4.1 Linear Material Characterization

In this step, we compute linear material parameters for the RVE, and thus also for the
macroscale material. A linear stress-strain relation holds

σ11

σ22

σ33

σ12

σ13

σ23


︸ ︷︷ ︸

σ

=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66


︸ ︷︷ ︸

C



ε11

ε22

ε33

ε12

ε13

ε23


︸ ︷︷ ︸

ε

for stresses σ, strains ε and stiffness matrix C. Six finite element simulations of the
RVE are performed, based on the chosen material models for each RVE phase. Each
simulation has different normalized strain boundary conditions, the only nonzero strain
components being

BC 1: ε11 = 1,aaaaBC 2: ε22 = 1,aaaaBC 3: ε33 = 1,

BC 4: ε12 = 1,aaaaBC 5: ε13 = 1,aaaaBC 6: ε23 = 1

where (·) = 1
V

∫
V (·)dV denotes spatial normalization over the volume of the RVE. With

the FE simulations, normalized stresses σ are yielded. This in turn yields the stiffness
matrix C. For instance, the first column of C is yielded by boundary condition 1

σ11

σ22

σ33

σ12

σ13

σ23


︸ ︷︷ ︸

σ

=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





1
0
0
0
0
0


=



C11

C21

C31

C41

C51

C61


=⇒



C11

C21

C31

C41

C51

C61


=



σ11

σ22

σ33

σ12

σ13

σ23



Given C elements, stiffnesses and Poisson ratios for the RVE, and thus the macroscale
material, are easily yielded from the compliance matrix S = C−1. As an example, for
a transversely isotropic material the format of S is

S =



1
E22

− ν23
E22

− ν12
E11

0 0 0
− ν23

E22
1

E22
− ν12

E11
0 0 0

− ν21
E22

− ν21
E22

1
E11

0 0 0
0 0 0 1

2G12
0 0

0 0 0 0 1
2G12

0
0 0 0 0 0 1+ν23

E22


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2.4 Multiscale Modeling in Multiscale Designer 2 THEORY

for Young’s moduli E11 and E22, shear modulus G12 and Poisson ratios ν12, ν21 and ν23,
where index 1 denotes axial direction, normal to the 23 plane.

2.4.2 Nonlinear Material Characterization with Reduced Order Model

In the nonlinear characterization, an undisclosed implicit analysis is performed by
Multiscale Designer to test the fully nonlinear model. The solution algorithm, based
on [10], is presented below.

Initialize macro stiffness C and stresses σ for each Gauss point
for each macro solver increment do

Update macro stresses σ

for each macro solver iteration do
for each macro Gauss point do

Compute macro strains ε = C−1σ

while not all phase strains {εphase} have converged do
Compute phase strains {εphase} with model order reduction
technique

Update phase stiffnesses {Cphase} based on nonlinear phase
model and the damage and plasticity state

end
Update macro stiffness C and assign to Gauss point

end
end

end

To save computation effort, a model order reduction is implemented in the program.
The main idea with this reduction is to compute micro strains εphase for every RVE
phase directly from macro strains ε. For this, phase strains are decomposed into elastic
strains and eigenstrains, arising from inelastic deformation, thermal changes, moisture
effects and oxidation. Further, a linear relation is assumed between micro and macro
strains, for both elastic strains and eigenstrains. The linearity is represented by strain
amplification matrices. Using this reduction, the approximate relation between micro
strains and macro strains can be stated on the format of

εphase = εphase
elastic + εphase

eigen = Aphaseεelastic + P phaseεeigen

where εphase
elastic are phase elastic strains, amplified from macro elastic strains εelastic by

the elastic strain amplification matrix Aphase. Similarly, εphase
eigen are phase eigenstrains,

amplified from macro eigenstrains εeigen by the eigenstrain amplification matrix P phase

[11]. Prior to the nonlinear analysis, these strain amplification matrices are computed

8



3 METHOD

by undisclosed finite element simulations of the RVE. For these simulations, the RVE
behavior is based on the linear material models assigned to each phase. Strain boundary
conditions with only one non-zero component are applied, as in the linear characteriz-
ation. Strain amplification matrices are only computed once, and can then be stored
indefinitely for future nonlinear analyses of the same model [12], either in Multiscale
Designer or in external CAE interfaces if the multiscale material is exported. The same
strain amplification matrices can be used for any choice of nonlinear material model.
Although the computation of strain amplification matrices carries a computation pen-
alty, the total solution time is far shorter than for the opposed brute force approach;
solving micro strains directly for each macro solver iteration [13]. For a full in-depth
description of the reduced order model and general model order reduction, the reader
is referred to [12].

2.4.3 Multiscale Material Model Export to CAE Interfaces

A finished multiscale material model can be exported to multiple CAE interfaces, e.g.
Abaqus, Ansys and LS-Dyna, where it acts as a user defined material. In this work,
the material model is integrated into Abaqus.

3 Method
A multiscale material model of paperboard is constructed based on X-ray images of
paperboard. Used material models, and associated properties, are chosen to fit mac-
roscopic experimental data as good as possible, given the constraints of the Multiscale
Designer software. The multiscale modeling is carried through on a Windows operating
system, as conditioned by Multiscale Designer.

To begin this section, the X-ray derived geometry is described. This geometry forms
the basis of the definition of a representative volume element. Then a description is
given for the characterization of linear and nonlinear material properties. The complete
model is evaluated with virtual simulations. For more details regarding the modeling
and simulation, see Appendix A.1.

9



3.1 X-ray Imaging and Definition of Representative Volume Element 3 METHOD

3.1 X-ray Imaging and Definition of Representative Volume
Element

An X-ray 3D scan is performed on a sample of single-ply paperboard. From the yielded
image a small volume element is extracted, aiming to represent the macroscopical in-
plane mechanical behavior of the paperboard. The volume element is discretized into
solid 3D finite elements, with a 2 µm resolution to accurately capture the fiber geometry.
Each solid element represents either fiber or air (the RVE must be completely meshed to
function within Multiscale Designer). Thus, perfect bonding between fibers is assumed.
To find an RVE with consistent model behavior, RVE:s with different sizes are tested.
For this, fiber element sets are for sake of simplicity modeled isotropic, with stiffness
30 GPa and Poisson ratio 0.3. To motivate the need of an anisotropic model for in-
plane calibration, an isotropic, rate independent plastic model is calibrated towards
MD and simulated for both MD and CD. Given the need for an anisotropic model, a
transversely isotropic model is evaluated. This is carried through by partitioning all
fiber elements into disjunct element sets and assign one orientation to each set. For each
set, a geometrical point within the set is chosen to evaluate the structure tensor, from
which an approximate orientation vector is computed (for details, the reader is referred
to [14]). This orientation vector defines the longitudinal direction of the transverse
isotropy of the fiber. The effect of different number of orientations (and thus also fiber
element sets) is investigated to further establish a consistent model behavior. The model
consistency is measured with macroscopic properties; MD and CD elastic moduli Ex

and Ey, and in-plane shear modulus Gxy. These moduli are obtained from Multiscale
Designer. The size and number of orientations for a consistent RVE is assumed to yield
consistency regardless of assigned material model.

3.2 Linear Material Characterization
In agreement with literature models of fiber (see [4] and [6]), fiber element sets are in
this work modeled as transversely isotropic. The parameters describing this micromodel
type are three moduli and two Poisson ratios. The moduli used are axial and longit-
udinal elastic moduli Efib

11 and Efib
22 , and in-plane shear modulus Gfib

12 . The Poisson
ratios used are out-of-plane, νfib

12 , and in-plane, νfib
23 . All fiber element sets are assigned

identical parameter values. Air elements are modeled as isotropic, with properties given
by Table 3. Parameter values to fiber and air elements are assigned, followed by a linear
analysis in Multiscale Designer. This analysis is initiated in a batch file, with commands
given by the Multiscale Designer user manual [15]. Due to limitations of the program,
for this model the analysis has to be run in a forward motion, yielding macroscopic
properties based on microscopic ones. The analysis is once again evaluated by compar-
ing macro stiffnesses Ex, Ey and Gxy with experimental values. The analysis is rerun
with different values of linear fiber parameters until a reasonably good fit against exper-
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3.3 Nonlinear Material Characterization 3 METHOD

imental moduli is reached. The final fiber parameters are compared to those adapted
in a similar transversely isotropic fiber model by [8]. To assess the spread of behavior
for the established linear model, the model is assigned to 50 RVE:s, each created from
different spatial positions within the X-ray sample. Each RVE is then run in a forward
analysis, and the spread of yielded stiffnesses is measured.

As a necessary preparation for the nonlinear material characterization, reduced or-
der model files are written for RVE:s on the established format. These model files will
activate the model order reduction for the nonlinear simulations in Multiscale Designer.
Note that these model files are based on a specific linear material model, with corres-
ponding specific parameter values. Changing linear model type and/or parameter values
without generating a new reduction file might decrease the accuracy and efficiency of
the reduction.

3.3 Nonlinear Material Characterization
Air elements are modeled as completely linear elastic, with the same parameters as
in the linear regime. For the fiber elements, only a few nonlinear material models are
available, as conditioned by Multiscale Designer. In the context of this work, it is found
that the best fit to experimental data is given by a isotropic linear hardening model. As
previously mentioned, this choice of material model has been used in previous studies.
For this model, the parameters are yield stress σfib

0 , strain at ultimate stress εfib
1 and

strain to failure εfib
2 . Additionally, Multiscale Designer needs the ultimate stress σfib

1
as input. However, for easier model interpretation, the tangent stiffness Efib

t is chosen
instead. The ultimate stress is then computed as

σfib
1 = σfib

0 + Efib
t

(
εfib

1 −
(

σfib
0

Efib
11

))

The fiber behavior is assumed symmetric in tension and compression. The resulting
stress-strain curve is shown in Figure 3.

11
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Figure 3: Stress-strain curve for the adapted nonlinear fiber model. For axial and
transverse loading, the stiffness E takes values Efib

11 and Efib
22 , respectively.

With nonlinear parameters assigned to air and fiber element sets, a nonlinear ana-
lysis is run in Multiscale Designer. Similar to the linear analysis, the nonlinear analysis
is initiated in a batch file, with commands given by the Multiscale Designer user manual
[15]. As previously mentioned, this analysis is practically limited to a forward motion,
due to limitations of the program for this model. The nonlinear analysis also enables
common macroscopic simulations, one of which is uniaxial loading. Tensile tests are
performed in MD, CD and 45 degree directions of loading, and the resulting stress-strain
curves are compared with experimental data. The analysis is rerun with different values
of nonlinear fiber parameters until a good fit against experimental moduli is reached.
The final fiber parameters are compared to those adapted in a similar nonlinear elastic
fiber model by [5]. To further evaluate the complete model, the σ11-σ22 yield surface
is computed, with uniaxial loading for multiple directions in the MD-CD-plane. Yield
stress for each load case is defined as the stress at which 0.1 % plastic strain occurs.

3.4 Abaqus Simulations
The multiscale material model is exported into Abaqus where it acts as a user defined
material. For these purposes, the continuum based material model developed by [16]
(which has been previously validated) is used as comparison. In [16], a plate with
a hole geometry under uniaxial tension is simulated (see Figure 4a) with dimensions
2L = 80 mm, 2w = 50 mm and R = 10 mm. Due to the symmetry, only a quarter of
the geometry is considered for the simulation. The quarter plate is meshed into 1092
four-node plane stress elements (see Figure 4b). To reproduce the results from [16], two
simulations are run: with either the material MD or CD parallel with the longitudinal
direction of the plate. For the MD case, a displacement ux = 0.75 mm is applied,
whereas for the CD case, the displacement is ux = 1.25 mm. In both cases, the largest
principal Lagrangian strain is evaluated. To minimize solution divergence, the Riks
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4 RESULTS AND DISCUSSION

path following algorithm is used with parameters given by Table 2.

(a) (b)

Figure 4: a) Plate with a hole problem used for multiscale model evaluation. Due to
the symmetry, only a quarter of plate is used for simulations. The quarter plate mesh
is shown in b).

Table 2: Parameters for the Riks path following algorithm, used for the simulations in
Abaqus [17].

Total arc length (-) 1.0
Initial arc increment (-) 10−4

Minimum arc increment (-) 10−12

Maximum arc increment (-) 1.0

4 Results and Discussion

4.1 RVE Analysis
To begin with, we study the size dependent response of the RVE as given by Figure 5a.
The RVE size is measured with number of solid elements per RVE edge, where each
element is 2 µm × 2 µm × 2 µm. There appears to be no clear convergence in macro
stiffnesses as the RVE size is increased. At around size 40 sudden jumps in stiffnesses
occur, perhaps due to a computational anomaly of some kind. Even larger RVE:s can be
used, although with increased computation time. As an indication of time complexity
for this analysis, the computation time is about 10 seconds for size 15, about 45 seconds
for size 30 and about 600 seconds for size 50. To this end, RVE size might be a major
modeling bottleneck, as it is currently unclear to what extent the Multiscale Designer
analysis can be optimized for speed. As a compromise between computation accuracy
and effort, a 30×30×30 element RVE format is chosen as a base for the modeling.
Further, for the isotropic RVE:s tested, Ex ≈ Ey and Ex ≈ 2.5Gxy, as given by Figure
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5b. This is inaccurate as experiments suggest Ex should be at least 2 times larger
than Ey and 4 times larger than Gxy. However, as proved by [2], it is possible to
achieve macroscopic anisotropy with and isotropic fiber model. This approach, with
a similar RVE size and resolution, was tested, but no distinct macroscopic anisotropy
was yielded. An anisotropic material model therefore seems like a reasonable approach
for this study. This is further suggested by Figure 6, where an isotropic material model
will not yield reasonable fits in MD and CD simultaneously.

(a) (b)

Figure 5: a) Macroscopic stiffnesses for different sizes of RVE:s used. The stiffnesses
are obtained from Multiscale Designer. Size denotes number of solid elements per RVE
edge, where each element is 2 µm × 2 µm × 2 µm. b) Stiffness ratios based on a).

Figure 6: Stress-strain curves for an isotropic rate independent plastic material model
under uniaxial loading. The model is calibrated for loading in MD, and the model
response is shown for both MD and CD.
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By choosing a transversely isotropic fiber model, we will consider how many dif-
ferent orientations should be used. Judging by Figure 7, there is a clear convergence
in macro stiffnesses as the number of orientations are increased. This appears reas-
onable, since with more orientations, mainly oriented in MD, loads are carried in MD
to a larger degree. Thus the response is stabilized. As the orientations are mainly in
MD, i.e. in-plane, the in-plane shear response and stiffness is barely affected by the
number of orientations used. There is no clear difference between using 26 or 212 ori-
entations, indicating that assigning about 30 different orientations may be enough to
obtain consistent RVE behavior.

Figure 7: Macroscopic stiffnesses when using different number of orientations for
transversely isotropic fiber element sets in the RVE. The stiffnesses are yielded from
Multiscale Designer. Model parameters are as presented in Table 4.

A typical geometry of the RVE:s used is presented in Figure 8. Judging by this,
the 2 µm resolution appears fine enough to capture individual paperboard fibers. One
can distinguish a stacking of fibers in ZD, similar to the real life structure. Judging
by the different ZD layers depicted in figures 9 a)-d), the fibers appear oriented mostly
towards MD, with some alignment towards CD. It is important to capture both ZD
stacking and MD dominated fiber orientation in the geometry, as it more accurately
reflects the real life structure and therefore makes the calibrated model more relevant
to use in simulations.
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Figure 8: Typical geometry of the RVE:s used for modeling. The RVE consists of
30×30×30 elements, with each element being 2 µm × 2 µm × 2 µm. Fiber elements
are colored yellow, air elements are colored blue.

(a) (b)

(c) (d)

Figure 9: The same RVE as presented in Figure 8, viewed in the MD-CD-plane, with
MD upwards and CD to the left. The views are equally spaced in the thickness direction,
with (a) as the topmost layer and (d) as the bottommost layer (compare with Figure
8). Fiber elements are colored yellow, air elements are colored blue.
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Another aspect which might influence the RVE behavior is boundary effects due
to erroneous boundary conditions. However, it is found that whether the RVE is as-
signed periodic or fix boundary conditions (the only two BC:s applicable in Multiscale
Designer), the model response is consistent. One may assume that the degree of peri-
odicity for the RVE is large enough to justify a periodic assumption. To ensure strict
periodicity, the RVE can be mirrored in 3D. However, this means only an eighth of
the X-ray geometry can be captured for a constant RVE size (and computation effort).
This approach, with retained RVE size, was tested briefly, and indicated a increased
variability in macroscopic stiffnesses compared to non-mirrored RVE:s. One might as-
sume higher model accuracy is obtained with larger, not completely periodic geometry,
than with smaller, strictly periodic geometry.

The RVE does not capture two important mechanisms, which heavily influence the
behavior of paperboard, particularly for large deformations. These mechanisms are
fiber-fiber bond separation and friction between fibers sliding against each other. A
conventional approach would be to include cohesive elements and surface interactions
in the RVE, but, to this end, these features are not implemented and Multiscale De-
signer. Until these features have been implemented, cohesive and sliding effects could
potentially be modeled with solid elements with suitable anisotropic properties.

4.2 Linear Material Characterization
The isotropic model of air is very simple. The air stiffness is set relatively close to
the fiber axial stiffness (compare tables 3 and 4), to avoid numerical instability. This
approach is also adopted by [2]. With high stiffness, air elements carry a relatively big
fraction of the total load, and fiber stiffnesses must be erroneously reduced to decrease
macroscopic stiffness and fit better with experimental data. Even so, the chosen fiber
parameters, as presented in Table 4, are similar to those proposed by [6]. As fiber
densities differ with only one order of magnitude, one can assume that the paperboard
types calibrated against for both models are not too dissimilar. In the multiscale model
there is a greater difference between axial and transverse fiber stiffness, relative to the
model by [6]. This might be explained by the relatively few fibers captured within an
RVE; for the few fibers captured, the anisotropy of the fibers has to be amplified to
yield the target macroscopic anisotropy.

Table 3: Numerical values of linear elastic air properties. In SI units the density value
is 1.29 kg/m3.

Material parameter Value
E (GPa) 2.0

ν (-) 0.3
ρ (tonnes/mm3) 1.35 · 10−12
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Table 4: Numerical values of linear elastic fiber properties, for the multiscale model
and for a similar transversely isotropic fiber model by [6]. The Poisson ratios have no
major impact on the RVE behavior and are therefore set as zero. For the multiscale
model, the density value is 90 kg/m3 in SI units.

Material parameter Multiscale
model

Brandberg
et al 2020 [6]

Efib
11 (GPa) 30 30

Efib
22 (GPa) 0.75 3.0

Gfib
12 (GPa) 2.0 3.0
νfib

12 (-) 0 0
νfib

23 (-) 0 0
ρfib (tonnes/mm3) 10−10 1.58·10−9

Given the fiber model in Table 4, the RVE behavior appears consistent. Across
the 50 transversely isotropic RVE:s tested, solidity (volume fraction of solid material)
ranges between 43 % and 72 %. Despite this variability, macro stiffnesses do not spread
more than 20 %, as seen in Table 5. The solidity dependence of stiffnesses is most
prominent in MD, causing a greater variability compared to CD stiffness. The in-plane
shear stiffness varies only 6 % due to the weak solidity dependence. Also, the simulated
stiffnesses are relatively close to experimental ones. An even better calibration can be
achieved with more analysis iterations. Due to time constraints, this is not considered
in this work.

Table 5: Macroscopic stiffnesses and spread of these parameters across the 50 simulated
RVE:s. The stiffnesses are yielded from Multiscale Designer.

Macro
stiffness

Mean value
(GPa)

Coeff. of
variation (-)

Experimental
value (GPa)

Ex (GPa) 5.47 0.20 6.60
Ey (GPa) 3.03 0.14 3.06
Gxy (GPa) 1.51 0.06 1.63
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4.3 Nonlinear Material Characterization
For each RVE used in the nonlinear analysis, the generation of model order reduction
files took about 90 minutes. As previously mentioned, this computation penalty is
worth taking, as the model order reduction allows for drastically shorter simulation
times.

As seen in Table 6, the multiscale model applies a fiber model with lower yield stress
and less hardening compared to the isotropic hardening model developed by [5]. It is
possible that the geometry of RVE:s used amplifies the plastic stiffness, which has to be
compensated with the model parameters. Still, the set of parameters yield reasonable
fits for MD, CD and 45 simultaneously, as seen in Figure 10a, 10b and 10c. It is found
that, by changing model parameter values, the response in CD is most affected, followed
by the 45 degree direction and MD. Thus, the CD response to some degree conditions
the response in MD and 45 degrees. For each load case, the three different simulations
all behave similarly and do not spread too much, which is a further sign of consistent
RVE behavior. Some erratic oscillations occur when loading in 45 degrees (Figure 10c)
and, more prominently, in CD (Figure 10b). These oscillations are not caused by failure
of fiber element sets, as the oscillations persist even when the strains at ultimate stress
and failure are set arbitrarily large, prolonging the failure regime. This is then likely
a case of material instability. As the material is weakest in CD it makes sense that
material instability arises most prominently in this direction. Another sign of unstable
response in CD is the onset of plasticity, which is very sudden compared to 45 degrees
and MD.

Table 6: Numerical values of nonlinear fiber properties, for the multiscale model and for
a similar isotropic hardening model by [5]. The model in [5] does not consider damage
accumulation.

Material parameter Multiscale
model

Borodulina
et al 2016 [5]

Yield stress σfib
0 (MPa) 65 150

Tangent stiffness Efib
t (GPa) 0.3 10

Strain at ultimate stress εfib
1 (-) 0.2 -

Fracture strain εfib
2 (-) 0.2 -
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(a) (b) (c)

Figure 10: Stress-strain curves for uniaxial loading in MD (a), CD (b) and 45 (c) degree
direction, experimental and simulated for three different RVE:s.

Another important model aspect is that failures do not occur at the points measured
experimentally. It is extremely difficult to calibrate the model such that it captures both
the nonlinear response and failure point in MD, CD and 45 degrees simultaneously.
With model parameter values according to Table 6, failure strains are found to be
roughly 3.5 %, 9 % and 6 % in MD, CD and 45 degrees, respectively (i.e., in Figure 10,
the model is yet to fracture). These strains are larger than in experiments, although
the ratios between these strains are similar to those in experiments. To conclude, the
nonlinear response is prioritized, at the sacrifice of inaccurate failure points. Thus, the
model may not be used to predict material failure.

On an additional note, other nonlinear material models available in Multiscale De-
signer have been tested. A fiber damage model allegedly captures the complex com-
pressive failure of fibers, and is linear elastic in tension until a sudden failure. For the
RVE:s tested, this model yields a very good fit in MD, but plastic softening in CD and
practically ideal plasticity in 45 degrees, regardless of parameters used. This model may
be considered for modeling of compressive load cases, where the real material response
is very different in character compared to tensile loading. Moreover, an orthotropic
hardening plasticity model has also been tested. For the RVE:s tested, this model car-
ries an immense computational effort. Runtimes are at least an hour long, even when
parameters are chosen such that the hardening becomes isotropic. It remains to be ex-
amined whether or not the model accuracy for tensile loading is higher for orthotropic
plasticity than for isotropic plasticity.
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As the macroscopic model response agrees well with experimental data, the model
fulfills its purpose. This is further solidified by Figure 11, showing similarities between
the yield surfaces given by the multiscale model and continuum based model in [16].
Both surfaces can be crudely approximated as rounded squares, and stresses are in
similar ranges. This also justifies the multiscale model as a base for further model
development.

(a)

(b)

Figure 11: Simulated yield surfaces; a) in the σ11-σ22 plane as derived from the
multiscale model, b) in the τ11-τ22 plane as presented in [16] (reworked). Note that
different types of stress measures are used. This makes the different stresses differently
scaled to some degree, but does not affect the shapes of the yield surfaces.
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4.4 Abaqus Simulations
The Abaqus simulations do not perform as intended, as the finite elements become
heavily distorted before the full loads are applied. Thus, the maximum simulated loads
are 0.41 mm and 0.14 mm for MD and CD respectively. This erroneous behavior can
be explained neither with the load increment size, as this is kept relatively small, nor
with material failure, as the model fails at larger strains than shown experimentally.
A more likely explanation is material instability, as previously discussed. Still, even
with lower load levels than intended, there are some similarities between the strain
fields produced in this work and by [16]. The best agreement is in MD, as shown in
Figure 12, where the strain field distribution is very similar between 12a and 12b. With
comparable load levels, the maximum strain in 12a is 3 times greater than in 12b.
This is a relatively good agreement considering the relative simplicity and black box
character of the multiscale model. There is a greater discrepancy in Figure 13, where
maximum strains are higher in 13a than 13b despite five times lower displacement load.
Also, strains are more localized in 13a than in 13b. It is unclear if a equal load levels
would yield similar strain field distributions, as in Figure 12. Still, the similarities
between the models are promising for further development of the multiscale model.
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(a)

(b)

Figure 12: Largest principal Lagrangian strain for the plate with a hole problem, when
the material MD is parallel with the longitudinal direction of the plate. (a) Multiscale
material model simulation (0.41 mm displacement load), (b) Continuum based material
model simulation from [16] (0.45 mm displacement load) (reworked).
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(a)

(b)

Figure 13: Largest principal Lagrangian strain for the plate with a hole problem, when
the material CD is parallel with the longitudinal direction of the plate. (a) Multiscale
material model simulation (0.14 mm displacement load), (b) Continuum based material
model simulation from [16] (0.75 mm displacment load) (reworked).

4.5 Multiscale Modeling Workflow
As the multiscale model appears reasonably accurate for in-plane uniaxial tensile loads,
the workflow may be discussed. It turns out that a large part of the modeling can be
automatized, with text files written based on the material model chosen, and used as
input in the linear and nonlinear analyses, which are called by batch file commands. The
main challenge is to understand the function of each text file, and ensure it contains the
desired model information in a correct format, as conditioned in the Multiscale Designer
manual [15]. It is particularly important to correctly implement the file containing RVE
mesh data, as this forms the base of the multiscale model. Given a material model,
different parameter values can easily be tested in a forward analysis manner. Hopefully,
future versions of Multiscale Designer will also allow inverse characterization for models
similar to this work. Alternatively, one might try to self implement an external inverse
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optimization function.
Within the time frame of this work, it is found that Abaqus simulations with

multiscale materials are difficult to fine-tune and automatize. The basic steps required
to get such simulations to run at all have been established, but more work needs to
done to achieve a smoother integration into more complex simulations.

4.6 Future Work
This project shows that accurate multiscale modeling of paperboard is possible, using
Multiscale Designer. Whether or not more complex and accurate models can be built
is a matter of implementation limits in the software. Ideally, one would like to capture
paperboard behavior at additional and more complex load cases. It would also be
interesting to see how the model behavior changes by implementing fiber-fiber bonds,
as these heavily influence the real material response. Other possible factors to consider
are temperature and moisture dependency.

Retaining the objective of in-plane model calibration, it would be interesting to fur-
ther investigate how the model behavior changes if a non-equilateral RVE is used. This
was briefly tested when trying to reproduce the results by [2]. For in-plane calibration,
it seems likely that a fine in-plane resolution and coarse ZD resolution would increase
model accuracy.

Further, it would be interesting to obtain a more reasonable behavior when the
multiscale model is integrated into an Abaqus simulation. Then, it would be interest-
ing to do a more detailed comparison between the multiscale modeling approach and
conventional continuum based models. For this comparison one might use field output
for each element set defined in the model. This output is provided by Multiscale De-
signer. Using this, quantities such as plastic strains and damage parameters may be
localized within the model.

Another interesting aspect is trying to apply the methodology of this work for
multiscale analysis of other types of paper, e.g. writing and printing paper.

5 Conclusions
To summarize this thesis, it is concluded that it is possible to create a reasonably
accurate multiscale material model of paperboard, and capture the experimental be-
havior at in-plane uniaxial tensile loads. This model consists of a bi-phase RVE, with
fiber and air phases. Perfect fiber-fiber bonding is assumed. The fibers are modeled
as transversely isotropic elastic in the linear regime, and with isotropic hardening in
the nonlinear regime. A model behavior regarded as consistent is given by an RVE
with 30×30×30 solid 3D elements, 2 µm resolution and at least 30 orientations defined
for the transversely isotropic fiber element sets. The model is reasonably accurate for
nonlinear deformations, although it fails at predicting material failure points.
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The model can also be exported as a user material in Abaqus. As a model eval-
uation, simulations are performed to compare the multiscale model with a previously
established continuum based model. Strain fields for the different models are used for
comparison. Although these fields differ, there are some similarities, which is promising
for further model development.

The multiscale modeling workflow can be automatized to some degree. For this,
one needs to ensure the correct content and format of text files used as input in the
modeling analyses.

In future works one can consider more complex models, calibrated towards additional
and more complex load cases.
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A Appendix

A.1 Summary of Workflow

Start
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foo_model.dat

Run forward nonlinear
material analysis

abaqus_v6.env file foo_mdsMAT.dat file
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End

Figure 14: Summarizing flowchart for the multiscale modeling workflow of this work.
The input files required for the linear and nonlinear analyses are created, whereafter the
analyses are performed. The output files of the analyses are integrated into an existing
Abaqus job where homogeneous materials can be replaced with the yielded multiscale
material. The file foo_model.dat contains the elements of the strain amplification
matrices Aphase and P phase for each phase in the RVE. This file only needs to be
created once.
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