
Gunshot Detection from Audio Streams in
Portable Devices

Ellen Grane Linnea Bokelund
el6626gr-s@student.lu.se li5147bo-s@student.lu.se

Department of Electrical and Information Technology
Lund University

Supervisor: Pierre Nugues

Axis supervisors: Robin Olofsson and Housam Abbas

Examiner: Maria Kihl

June 13, 2022

© 2022
Printed in Sweden
Tryckeriet i E-huset, Lund

Abstract

Machine learning and artificial neural networks can be used to classify or detect
specific sound events in audio signals. Gunshot detection is one use case for such
networks and can be used to help law enforcement by alerting officers or triggering
camera recordings.

However, artificial neural networks with a high performance usually require
large amounts of computational power, meaning that they do not work on smaller
portable devices. This thesis shows that a small convolutional neural network
(CNN) can be used for real-time gunshot detection on a portable camera without
requiring too much memory, battery consumption, or CPU power.

We implemented a CNN with four layers and 100k trainable parameters to
detect gunshots. We could reach an average precision of 0.98 and an F1 score
of 0.95. We benchmarked the runtime performance of this architecture on the
Axis Body Worn Cameras (BWCs). For real-time gunshot detection, our system
uses 11.9 MB RAM and requires 4.9 MB persistent memory; it decreases the
battery time by only 8.4% and uses approximately 11.5% of the CPU. With our
configuration, the real-time detection has a latency of 3.6 seconds on the BWC.

The results of our Master’s thesis show that audio-based gunshot detection
on portable devices is indeed viable. We hope it will encourage the research on
simpler features for audio classification.

i

ii

Acknowledgments

We would like to thank our supervisors Pierre Nugues, Robin Olofsson and Housam
Abbas for all of their encouragement and guidance throughout our thesis work.
Pierre has been a great support with the academic writing and the machine learn-
ing work. Robin and Housam have been exceptionally helpful with everything
regarding the BWC.

This work would not have been possible without the help from everyone at
Axis Communications, and we would therefore like to express our gratitude to all
whom we have come in contact with who have provided useful input within their
respective areas of expertise. The existing knowledge within the organization has
been an invaluable resource during the course of our project. We would espe-
cially like to thank Pontus Nelderup, Peter Eneroth, Fredrik Hugosson and Stefan
Andersson for all of their valuable feedback and guidance, and for presenting the
opportunity for us to do this master’s thesis in the first place.

Furthermore, we want to express our gratitude to Lunds Pistolklubb, who were
very accommodating when allowing us to record gunshots in order to extend our
dataset. Thank you also to Ivan Kruzela and Gustav Strömberg, who provided
helpful feedback on our report already in early the stages.

iii

iv

Popular Science Summary

When a threatening situation sud-
denly arises, it may be difficult to
quickly get an opportunity to alert the
authorities. During such circumstances,
it would be beneficial if a nearby elec-
tronic device could be set to automati-
cally detect the threat, and trigger ap-
propriate actions to get help.

In this master thesis, we focus on
detecting gunshot sounds on the Axis
Body Worn Camera (BWC) that is used
by police officers and guards. It is
not hard to imagine that in a situa-
tion where shots are fired, the police
officer does not have the possibility to
start a recording manually. If the cam-
era could identify gunshots, it could
trigger a recording automatically and
thus ensure that evidence is captured.
The BWC has a prebuffer functionality
that allows the last 90 seconds before a
recording is started to be included in the
resulting video, meaning that the events
leading up to the gunshot will also be
included.

Gunshot detection has been done
before, but often the detection is per-
formed on a powerful device such as a
server. Our target device is a small,
portable camera with limited battery
life, CPU and memory. Therefore, our
main challenge was to find a solution
that uses as little energy and memory as
possible, while at the same time identi-

fies gunshots with a high accuracy.
Within machine learning, image

recognition has been researched and de-
veloped widely over the last decades.
Recognition of particular sounds in au-
dio recordings has not been explored to
the same extent. However, by trans-
forming the audio signals into spectro-
grams that can be viewed as image rep-
resentations of the signals, the advances
in image recognition can be applied to
sound identification as well. A common
technique used for image recognition is
convolutional neural networks (CNNs),
and this is what we use for our gunshot
detection.

A very important aspect of machine
learning is the data. Regardless of the
chosen technique, the model will need
a lot of data to train on. In our case,
we needed data in the form of sound
recordings containing gunshots. We also
needed other sounds, for the model to
learn what a gunshot does not sound
like. We used a public dataset called
FSD50K containing tens of thousands of
clips with sounds of people, traffic, an-
imals, and much more. However, this
dataset did not have enough gunshot
sounds. Therefore, we recorded our own
dataset in cooperation with a local pis-
tol club.

By implementing a small CNN that
we trained on the FSD50K dataset and

v

our gunshot sounds, we were able to
create a prototype that works on the
BWC. With a smaller CNN, the com-
putations needed to analyze one audio
clip is reduced and thereby also the en-
ergy consumption. We found that to de-

tect gunshot sounds in audio signals, a
small CNN is sufficient, and thus our
conclusion is that it is indeed viable to
implement a machine learning gunshot
detection on a small device such as the
BWC.

vi

Acronyms

ANN Artificial Neural Network
AP Average Precision
BNN Binarized Neural Network
BWC Body Worn Camera
CC Creative Commons
CNN Convolutional Neural Network
CPU Central Processing Unit
DFT Discrete Fourier Transform
EDA Exploratory Data Analysis
FFT Fast Fourier Transform
FN False Negative
FP False Positive
GAN Generative Adversarial Network
GDPR General Data Protection Regulation
GTCC Gammatone Cepstral Coefficients
KD Knowledge Distillation
mAP mean Average Precision
MFCC Mel-Frequency Cepstral Coefficient
MFNN Multilayer Feedforward Neural Network
ML Machine Learning
PCM Pulse Code Modulation
PSS Proportional Set Size
RAM Random Access Memory
RNN Recurrent Neural Network
SVM Support Vector Machine
TF TensorFlow
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate
USS Unique Set Size

vii

viii

Table of Contents

1 Introduction 1
1.1 Problem Definition . 2
1.2 Delimitations . 2
1.3 Thesis Outline . 2
1.4 Contributions . 3

2 Related Work 5
2.1 FSD50K . 5
2.2 Threat Detection . 7
2.3 Low Complexity Machine Learning Models 8
2.4 Gunshot Detection . 10

3 Dataset 13
3.1 Choice of Dataset . 13
3.2 Data Collection . 14
3.3 Exploratory Data Analysis . 16

4 Approach 21
4.1 Artificial Neural Networks . 21
4.2 Feature Extraction from Audio . 23
4.3 Classification Assessment Methods 24
4.4 Axis Body Worn Camera . 26

5 Experimental Setup 31
5.1 Networks . 31
5.2 Multilabel Classification . 31
5.3 Binary Classification . 33
5.4 Hardware Performance Evaluation Setup 33

6 Results 37
6.1 Multilabel Classification . 37
6.2 Binary Classification . 38
6.3 Hardware Performance Evaluation 41

ix

7 Discussion 47
7.1 Classification . 47
7.2 Hardware Performance . 47
7.3 Challenges of the Limited Capacity 48
7.4 Dataset . 48
7.5 Real-life Usage . 49
7.6 Multilabel Classification . 49

8 Conclusion and Future Work 51
8.1 Conclusion . 51
8.2 Future Work . 51

References 53

A Indoor Recording Setups 57

B More Information About FSD50K 59

x

List of Figures

2.1 An example of an ensemble of three networks using the average output
as result. 7

3.1 During the indoor recordings, ten shooters stood in shooting stalls
beside each other. The picture shows four of the shooting stalls. . . 15

3.2 The picture shows the room in front of the shooting stalls. The room
is 13 meters wide and the distance from the shooting stalls to the
target wall is 25 meters. 16

3.3 Audio clip length distribution in FSD50K before restricting the clip
length to less than 5 s. 17

3.4 Label distribution for the audio clips used from FSD50K. Labels are
combined into superclasses according to the Audioset ontology. . . . 18

3.5 Audio clip length distribution for gunshot sounds in the dataset. . . . 19
3.6 Audio wave and mel spectrogram of one of our indoor recordings with

three shots fired after each other. The colors in the mel spectrogram
indicate the amplitude of a certain frequency at a specific time. . . . 20

4.1 Comparison of an MFNN and an RNN. 22
4.2 The general structure of a convolutional neural network (CNN). . . . 23
4.3 The pipeline commonly used for feature extraction from audio. . . . 27
4.4 Figure showcasing the 4 possible prediction outcomes in a so-called

confusion matrix. 28
4.5 Axis Body Worn Camera (BWC). 29

5.1 Overview of the two networks we implemented; the baseline model to
the left, and the 1D-network to the right. 32

5.2 Setup of the live detection program, which was implemented on the
BWC. 34

6.1 Amount of training data versus F1-score per label for the classifiers
with 200, 163, 144, 131, and 120 labels. 38

6.2 Amount of training data versus F1-score per label for the classifiers
with 7, 9, and 6 labels. 39

6.3 Variance in F1 score depending on what training dataset was used. . 40

xi

6.4 Accuracy of gunshot prediction on the different types of gunshots,
compared to their training frequency. 41

6.5 Two numerical solutions . 42
6.6 Confusion matrix for the 1D-network. 42
6.7 RAM memory usage of the gunshot detection program. The top plot

shows the USS and the bottom PSS. The dashed lines show the pre-
processing and the prediction’s memory usage, while the solid lines
represent the audio collection. The data was collected once per hour
from three different BWCs. 44

B.1 The labels in FSD50K ordered according to the AudioSet ontology.
Labels with strike-through are not included in FSD50K, but have sub-
classes that are. This is shown in Figure B.1-3. 64

B.2 . 65
B.3 . 66

xii

List of Tables

2.1 Summary of different networks’ performances on acoustic gunshot de-
tection. Data for VGG16, InceptionV3, and ResNet18 from [3]. . . . 11

3.1 Number of audio clips with gunshots from FSD50K, our in- and out-
door recordings, and the clips created by mixing gunshot sounds with
other types of sounds from FSD50K. 18

6.1 Performance scores for the final model using different thresholds. The
highest performance per category is marked in bold. 40

6.2 This table shows the percentage of the CPU capacity the different
parts of the gunshot detection uses, as well as its impact on the de-
vices’ battery time. 43

6.3 Average RAM memory usage from the 10-hour tests, reported as PSS
in (a) and USS in (b). The averages were calculated from measure-
ments during the program startup and then once every hour, starting
1 hour after startup. 43

6.4 Size and mean execution time of the TF Lite models. 45

B.1 The table shows all labels in the FSD50K dataset with the number
of audio clips in the subset we used containing the sound. The table
also lists which AudioSet superclasses each label belongs to. The
superclasses are Sounds of things (SOT), Music (M), Animal (A),
Human sounds (HS), Source-ambiguous sounds (SAS), and Natural
sounds (NS) . 59

xiii

xiv

Chapter 1
Introduction

When a threatening situation suddenly arises, it may be difficult to quickly get
an opportunity to alert the authorities. During such circumstances, it would be
beneficial if a nearby electronic device could be set to automatically detect the
threat, and trigger appropriate actions to get help.

Today, we are surrounded by electronic devices with the ability to capture au-
dio; which possibly could be used for such threat detection. The cellphone, which
almost everyone constantly carries in their pocket, is one example. For this kind
of device, it would be useful, in some situations, if the captured audio signal could
be automatically analyzed to predict if the current situation is threatening. This
information could then be used to trigger actions to protect, alert, or something
else. For example, while walking home at night, the cellphone could automatically
call an emergency number if it detects that a threatening situation has emerged.

The detection of threats in an audio signal is a ‘sound event detection’ prob-
lem. This field is increasingly popular in machine learning. Many state-of-the-art
solutions in this area achieve great results in terms of accuracy. However, most of
the models have high complexity and require a lot of memory and CPU usage to
execute the classification. This means that despite their high performance, they
are not well suited for less powerful devices.

In this work, we designed a system to detect threatening situations by identi-
fying gunshots from an audio signal. We implemented this real-time system on a
body worn camera from the Axis company. When detecting a gunshot, our system
triggers a video and sound recording on this camera. However, portable devices
usually have a limited battery, memory, and processing power. Therefore, we in-
vestigated the effect that such detection had on the devices’ energy, CPU, and
memory consumption. Furthermore, we measured the latency from audio signal
uptake to the finished prediction of a gunshot.

From our measurements, we concluded that using such a functionality on a
portable device such as the BWC indeed is possible. Whilst the real-time detec-
tion had some negative impact on the battery time and CPU usage, it was not
unreasonable. For future research, we suggest investigating other features for au-
dio analysis that are easier to compute, but still allow small networks to achieve
high performance.

1

2 Introduction

1.1 Problem Definition

The goal of our thesis was to develop a method using machine learning (ML) that
could accurately detect and classify gunshots from audio signals. In addition, it
had to be simple enough to work on a portable device, such as the BWC. To
evaluate our solution, we plan to use the following metrics:

• Accuracy of predictions;

• Latency from signal detection and prediction of a gunshot;

• Power consumption and memory usage when performing the prediction.

1.2 Delimitations

For a device such as the Axis BWC, it could be useful to create a system with the
ability to detect threats in general. For example, many times heated situations
start off with an argument. If a system were able to detect signs of aggressiveness
in speech or yelling, a threatening situation might identified at an early stage,
and countermeasures can be implemented to prevent it from escalating. An in-
depth threat detection like this would require a well-annotated dataset for emotion
recognition, and would furthermore entail an overall higher complexity. For this
reason, we have limited our research to regard only the detection of gunshot sounds.

To make predictions accurate, the data used to train the machine-learning
model should reflect real-usage situations as much as possible. In this work, the
detection is carried out on an Axis BWC. This means that the dataset used to
train the machine learning model would optimally be recorded on this device. We
then recorded gunshots using BWCs, and we used the resulting audio in both the
training and testing of our model.

Regarding other types of sounds, we did not have the time and resources to
create a sufficiently sizable and varied dataset with enough coverage. Instead, we
decided to use a publicly available dataset.

1.3 Thesis Outline

In the next chapter, previous research related to this thesis will be presented.
Chapter 3 describes the dataset that was used, and furthermore includes a de-
scription of how the collection of gunshot audio was done. In Chapter 4, relevant
concepts regarding machine learning, audio processing and common metrics that
are used to evaluate machine learning models are introduced. Chapter 5 contains
information about how the implementation and evaluation of performance were
executed.

The results of our work are presented in Chapter 6, and these are discussed
and analyzed in the following chapter. Finally, conclusions that may be drawn
from our study are summarized in Chapter 8.

Introduction 3

1.4 Contributions

Most parts of the report have been written by both Ellen and Linnea. In this
section, we will specify the parts where one of us has contributed a majority of
the writing. Both of us contributed an even amount to the implementation and
measurements.

Ellen has written Sections 3.2 describing how we collected data, 2.3 about
low complexity machine learning models, 2.2 about previous research on threat
detection, as well as 4.1 about artificial neural networks.

Linnea has written Sections 4.2 about audio processing, 3.3 about the ex-
ploratory data analysis, 2.1 about state-of-the-art solutions on FSD50K and 2.4
about previous work on gunshot detection. She also composed the abstract of the
report.

4 Introduction

Chapter 2
Related Work

In this chapter, we will describe previous research related to our project. First, we
will present two solutions for sound event recognition; the current and previous
state-of-the-art networks on the dataset we have used (FSD50K). The section
will give a brief introduction to present-day machine learning techniques for audio
processing in general. In addition, it will form a reference point for our experiments
on the dataset.

The second section will explore research on threat detection, and the third
describes earlier research in the field of implementing machine learning on less
powerful devices. Finally, we will close in on our task and look at previous work
on gunshot detection.

2.1 FSD50K

FSD50K [11] is a dataset for sound recognition with 200 labels and over 50,000
audio clips. Each clip is annotated with one or more labels describing what sounds
it contains. For a more thorough description, see Chapter 3. To compare different
networks’ performances on the dataset, the mean average precision (mAP) which
gives a summarized measure for the precision of the different labels. The mAP-
score is between 0 and 1, where 1 is a perfect score.

2.1.1 PaSST-S

At the time of writing, the Patchout faSt Spectrogram Transformer with Structured
patchout (PaSST-S) by Koutini et al. [22] is considered to be the current state-
of-the-art model for FSD50K. PaSST-S is a transformer-based model with 87M
parameters that uses ImageNet pretraining and Patchout for regularization. The
network takes mel-frequency cepstral coefficients (MFCCs) as input. MFCCs are
features which can be extracted from audio signals, specifically designed to mimic
the way humans perceive sound. PaSST-S achieves a mAP score of 0.653.

The transformer structure was first introduced by Vaswani et al. [35] to reduce
the computational complexity of machine learning algorithms for sequential prob-
lems such as language modeling. Prior methods to solve such problems have been
to use recurrent neural networks (RNN) or convolutional neural networks (CNN).

5

6 Related Work

However, to retain and use the sequential information of the input, the computa-
tional complexity increase with longer sequences. Instead, the transformer model
use a set of attention layers. Attention layers allow the model to focus only on
selected parts of the input data, and the layers learn to choose what parts to focus
on wisely [20].

In PaSST, Koutini et al. use these attention layers together with a novel
method they call Patchout. Patchout forces the model to train on incomplete data
by randomly dropping parts of the input sequence. The appended S in PaSST-
S, means that structured Patchout is used. Structured Patchout means that a
random frequency bin or time frame is picked, and the respective row or column
is removed from the MFCCs. Koutini et al. state that Patchout reduces the
computational complexity by reducing the input sequence length during training
and at the same time regularizes the model.

Transformer models need more data than CNNs to reach high performance
[9] but by using pretrained networks the amount of data needed can be reduced
[15]. Therefore, PaSST use ImageNet pretraining, meaning that they incorporate
a network that is already trained on a large dataset of images (ImageNet) and then
fine-tune the network for a specific task [22]. The pretraining extracts information
from images that are useful for classification and recognition in general, while the
fine-tuning targets the information that is specifically interesting for the task.

2.1.2 PSLA

Before PaSST-S, the previous state-of-the-art was PSLA by Gong et al. [16] with
a mAP score of 0.567. However, PSLA is considerably smaller than PaSST-S with
13.6M parameters. This model is CNN-based, takes a log mel filterbank feature
vector as input, and utilizes ImageNet pretraining as well as an ensemble method.

PSLA stands for Pretraining, Sampling, Labeling and Augmentation. The
pretraining is used in the same way as described for PaSST-S in the previous
section. Sampling is used to increase the balance between classes in the dataset by
randomly sampling the data with distributions related to how often a class occurs
in the dataset. In short, classes that are less frequent in the training data will be
upsampled while classes that are more frequent will be downsampled.

Labeling refers to the process of label enhancement, which addresses the issue
of errors in the dataset’s annotations. Human-made annotations naturally contain
mistakes that can impact the performance. Gong et al. apply a label enhancement
algorithm to the dataset to identify and adjust such mistakes.

Finally, augmentation is also a way to reduce the imbalance between classes by
creating new samples for the less frequently occurring classes. The augmentation
is done by adding frequency and time masks to the audio clips, as well as randomly
mixing clips from the dataset into one clip.

In addition to the techniques described above, Gong et al. test different en-
semble methods. Ensemble means that a set of networks are trained on the same
task, and then they are used together. A common way is to use the average out-
put from all networks as prediction, see a simple example in Figure 2.1. It is also
possible to use weighted average or intermediate results from the networks.

Related Work 7

Input

Ensemble
netwrok

Output

Network 2 Network 3Network 1

Input

0.2 0.5 0.3

0.33

1/31/31/3

Figure 2.1: An example of an ensemble of three networks using the
average output as result.

2.2 Threat Detection

In 2012, Glowacz and Altman [13] proposed a method to detect and classify threat-
ening sounds such as gunshots, screams, and acts of vandalism, by using a support
vector machine (SVM). The intended purpose of this audio-based threat classifi-
cation was to combine it with video-based analysis in order to implement a system
of intelligent monitoring. The feature extraction that was used produced MFCCs,
MFCC derivatives, signal frame energy and an energy derivative, which was then
used as input to the model. With this approach, they managed to reach an effi-
ciency of 79.17% in their threat classification.

A more specific type of sound which may indicate a threatening situation is
aggressive tendencies in human speech. In their report from 2007, Hengel and
Andringa [34] have presented an audio-based verbal aggression detection system
which is able to detect aggressive shouting. The system is intended to work in
situations with noisy backgrounds, and thus the first step includes the separation
of background and foreground sounds. The pitch of the foreground sounds is then

8 Related Work

analyzed as to conclude whether they contain a human voice. If a sound signal
is classified as speech, the distortion of the voice is examined and compared to
cues that are known to indicate stress and aggravation. This then generates an
overall probability of whether the sound signal contains verbal aggression. After
optimization, the system managed to reach a near-human performance.

Kooji et al. [21] expand upon this research by designing and implementing a
system, called CASSANDRA, which combines video and audio analysis to detect
human aggression. For the audio analysis part, they improve the foreground sound
processing by utilizing tonal signal components. This makes it possible to identify
and separately analyze foreground sounds that stem from different sources.

They tested their system by using three video cameras and a microphone set
up at a train station. To create the dataset, professional actors were ordered to
play out plausible scenarios which included exhibition of behavior ranging from
normal, to critically aggressive. The CASSANDRA system showed promising re-
sults, considering the high complexity of the task. Their evaluation results indicate
that combining audio and video has the potential to improve the estimation of ag-
gression. CASSANDRA ran on two PCs and had not been optimized for real-time
processing.

Jaafar and Lachiri [19] investigated the possibility of using deep neural net-
works to analyze complementary audio and video in order to classify the level
of human aggression in different situations. In addition to combining audio and
video predictions to make a final decision, they also take previous classifications
(history) into consideration. In cases where the audio and video predictions do not
agree, the history may provide context which helps in making a decision. With
this approach, they managed to receive improved accuracy for all classes compared
to previous studies. This shows that usage of deep neural networks in this area
is very promising. It further indicates that using meta-features such as history to
impact the fusion of predictions from audio and video may serve to improve the
classification performance.

2.3 Low Complexity Machine Learning Models

Many machine learning models require large amounts of memory and computation
power to work. While most of the work is required during training, the classifica-
tion itself can also be quite demanding for very small devices. When such resources
are limited, it will be difficult to reach state-of-the-art performance, as more ad-
vanced deep learning techniques often correlate to higher usage of memory and
power [7]. For such devices, it is instead important to find a way of lowering the
complexity whilst preserving as much capability as possible.

Unfortunately, there is no standardized way of measuring the complexity of a
network. Instead, a variety of methods to estimate it has been used in different
articles. One reason why this is the case may be that the actual inference time,
memory usage, and CPU load highly depend on the target device. Additionally,
many articles focus on time and memory consumption during training rather than
during the actual classification.

During training, thousands of predictions have to be made, preferably at a

Related Work 9

fast pace. When the model is used, it is more common to execute one prediction
at a time. So for a model which is intended to run on a personal computer or a
larger server, the requirements for running the model should not be a huge issue.
However, for models meant to run on smaller devices, it is more critical. Usually,
the model is trained on a more powerful computer and then transferred to the
smaller device. Thus, the computational complexity of a single prediction is more
important. One way of estimating complexity that is used in literature is the num-
ber of parameters in the model. Furthermore, the number of operations required
to compute a prediction may be used to compare the complexity. Additionally,
the execution time and memory usage on a specific device can be used to evaluate
models.

Cerutti et al. [7] explain that one common strategy when approaching this
issue is to design and implement smaller networks, specifically created to fit the
particular hardware capacity. These are then trained and can be implemented on
a low-power microcontroller. Another possible approach is to compress a trained
model in order to create a network with lower complexity that produces similar
results as the original one. One way of doing this is with network pruning, meaning
finding and removing negligible weights from a trained model until a specified
condition is met.

It is furthermore possible to reduce the network’s persistent memory size by
using matrix/tensor factorization, which exploits the fact that networks have a
linear structure. These methods require much fine-tuning, and do not change the
RAM usage.

Another way of compressing a neural network is by quantization, i.e. to reduce
the number of bits needed to represent the weights and activations. An extreme
case of quantization is binarized neural networks (BNNs) which have weights and
activations that are constrained to be 1 or -1 [8]. BNNs drastically reduce the
memory size of the network and allow for bitwise operations, which lead to an
increased power efficiency [24].

2.3.1 Knowledge distillation

Cerutti et al. [7] further state that knowledge distillation (KD) can be used for
compressing. KD is done by using a complex model to train a simpler model. It
is also called Student-Teacher, as the smaller model (student) learns to mimic the
larger one (teacher). This is based on the idea that the output of the complex
model (soft labels) contains more information than the input labels (hard labels),
which facilitates the training.

Cerutti et al. [6] show that by applying KD, a CNN-based sound event de-
tection classification model can be compressed significantly without a notable loss
in accuracy. The large pre-trained network called VGGish that Cerutti et al.
use as teacher has approximately 7 · 107 parameters and requires 1.7 · 109 opera-
tions to perform classification and has an average accuracy of 74.7% on the ten
classes in the UrbanSound8K dataset. Something to note is that VGGish has been
trained on a different dataset, and this may affect the results. When distilling the
knowledge to a student network (M20k) with 3.06 · 104 parameters that require
2.11 ·106 operations, the accuracy is decreased to 69.7%, while only using 0.0424%

10 Related Work

of the number of parameters and 0.12% of the amount of operations compared to
VGGish.

In a later report, Cerutti et al. [7] divide the knowledge distillation into
two parts, predominantly to divide the domain adaptation and the parameter
reduction. Thus, they first train a network of similar size to VGGish, using VGGish
as teacher and the UrbanSound8k dataset for the training. This is done to fit the
domain. Then they use the student network in the previous step as a teacher and
train a small network of the same size as the previously described M20k to compress
it. By repeating the knowledge distillation to include domain adaptation, the
accuracy score was further improved to 72.62% while retaining the same amount
of compression.

2.3.2 Binary neural networks

By using a partly binarized convolutional neural network, Cerutti et al. [5] achieve
an accuracy of 77.9% on a dataset with 28 classes consisting of audio clips from
Freesound with a model that requires 262 kB memory in total for execution and
storage. Compared to a full-precision neural network, this reduces the memory by
a factor of 2.4 and decreases the accuracy by 7.3 percentage points. The network
Cerutti et al. propose uses binary values in all layers except the first and the last
ones, as these contribute with minimal computational cost.

2.4 Gunshot Detection

To the best of our knowledge, there is no task or dataset commonly used to mea-
sure and compare gunshot detection models. However, Bajzik et al. [3] have
evaluated the performance on acoustic gunshot detection for three CNNs, well-
established in the image recognition field. The three networks are ResNet18 [17],
VGG16 [29], and InceptionV3 [31], which Bajzik et al. set up to take MFCCs
as input and give as output whether the underlying audio signal contains a gun-
shot. The models were trained and tested on the non-gunshot sounds from the
dataset UrbanSound8K [28], as well as on gunshot sounds from a dataset called
The Free Firearm Sound Library - Expanded Edition which, unfortunately, is no
longer publicly available.

Finally, we have included two smaller networks that are specifically intended
for acoustic gunshot detection. The first network is proposed by Baliram et al.
[4] and consists of four convolutional layers, takes MFCCs of up to 0.6 seconds
of recordings as input, and has only 44,000 trainable parameters. This network
is trained and evaluated on the UrbanSound8K dataset. The second network
proposed by Morehead et al. [27] is also a CNN, but takes a plain audio signal
as input. The advantage of this network is that it does not need any feature
extraction, which all the other networks do. This network is trained and evaluated
on a dataset that the authors have constructed partly from free internet databases
such as Freesound, and partly from audio clips generated by a so-called Generative
Adversarial Network (GAN), which is a machine learning network that can be used
to generate new data similar to some already existing data.

Related Work 11

Table 2.1 shows a summary of all the available information about the networks’
performances on gunshot detection. As these measurements are not made on the
same datasets, the comparison is not entirely fair. However, it gives some sort of
indication of the performance of the different networks.

Table 2.1: Summary of different networks’ performances on acous-
tic gunshot detection. Data for VGG16, InceptionV3, and
ResNet18 from [3].

Model Params. Acc. Prec. TPR TNR F1
VGG16 138 M 0.977 0.996 0.959 - -
InceptionV3 23 M 0.957 0.995 0.919 - -
ResNet18 11 M 0.991 0.995 0.988 - -
Baliram [4] 44 K - 0.951 0.907 0.965 0.929
Morehead [27] 320 K 0.994 0.98 0.966 - 0.973

12 Related Work

Chapter 3
Dataset

3.1 Choice of Dataset

To get an accurate representation of the sounds the machine learning model is
intended to analyze, it is important to use an appropriate dataset. Virtanen et
al. [36, p. 149-150] have specified three properties that can be used to assess the
suitability of a given dataset:

Coverage – The dataset should preferably include all categories that may be
relevant.

Variability – The samples in each category should cover varied conditions (dif-
ferent voices, surroundings, etc.).

Size – Each category should consist of a sufficient number of samples.

To get a robust model that generates satisfying predictions, a combination of all
these properties is necessary. If the size of the dataset is too small, machine
learning algorithms tend to overfit the training data and perform worse on unseen
data [36, p.164].

Baliram et al. [4] show that the choice of dataset highly affects the network’s
ability to distinguish between similar sounds from different sources. They collected
a dataset with audio recordings of plastic bag pops and tested a gunshot detection
model trained on the UrbanSound8K dataset [28]. The model wrongly classified
75% of the plastic bag pops as gunshots. Finally, Baliram et al. proved that the
same type of model could be trained to distinguish between plastic bag pops and
gunshots by training a binary classification model on the two types of sounds and
reaching a sensitivity of 90% and specificity of 96%.

When training an ML model, it is common to divide the dataset into three
parts: one for training, one for validation, and another for testing. The training
and validation sets are both used during the training phase. In this stage, the
training set is the dataset the model trains on, while the validation set is periodi-
cally used to evaluate the model’s current performance, and the result is used to
determine how the training should be tuned. When the model is finished with its
training, the test set, which by then is unseen by the model, is used to evaluate
the final performance.

13

14 Dataset

3.1.1 Existing datasets

While choosing the main dataset, we analyzed three candidates: AudioSet, Ur-
banSound8K, and FSD50K.

1. AudioSet [12] was brought forth by Google and currently consists of 2 million
classified 10-second clips originating from YouTube. Due to the clips being
video rather than audio and thus requiring more preprocessing and more
considerations regarding GDPR, we decided against using AudioSet.

2. UrbanSound8k [28] consists of 8,732 labeled audio streams originating from
Freesound, and it contains 10 classes that can be found in an urban envi-
ronment. As UrbanSound8k is a smaller version of FSD50K, we chose to go
with the latter.

3. Freesound Dataset 50K (FSD50K) [11] was created to serve as the largest
open annotated audio dataset for the recognition of events from sounds.
The dataset includes over 100 hours of audio distributed over 51,197 human-
labeled audio clips. The dataset is multilabel meaning that each clip can
be labeled with one or more labels and there are in total 200 unique labels
including different human and animal sounds, noise, instruments, and more.
The dataset is open in the sense that the audio is collected from Freesound,
where sound clips are released under the Creative Commons (CC) licenses.
This is the dataset we chose to use, however, we have removed all samples
with CC-BY-NC and CC Sampling+ licenses, which leaves a total of 43,379
audio clips.

3.2 Data Collection

In addition to the FSD50K dataset, we created our own dataset of gunshot record-
ings. The recordings were done in two environments: indoors and outdoors. More
details around each of these recording sessions will be described in the next sec-
tions. In total, we collected more than 3000 audio clips, all containing at least one
gunshot. The BWC records in stereo, but for classification it is sufficient to use
mono. For this reason, we combined the channels of the audio clips afterwards, to
get audio clips with mono sound.

3.2.1 Indoor recordings

The indoor recordings were produced at a shooting range located in a basement
with concrete walls. The room had dimensions of 32.5x13m, and a ceiling height of
2.95 m. While recording, ten shooters stood beside each other and shot simultane-
ously, meaning that at times several gunshots overlapped. Figure 3.1 shows where
the shooters were standing, and Figure 3.2 shows the rest of the room. Drawings
of the different setups can be found in Appendix A.

The resulting recordings were automatically divided into clips of five or fewer
seconds containing one or several gunshots. A majority of the gunshots in these
clips are produced by the same kind of weapon, namely .22 caliber pistols. Most

Dataset 15

of the clips have little background noise, apart from echoes from gunshots and the
loading of weapons. Some clips have a background sound from an electrical fan.

Figure 3.1: During the indoor recordings, ten shooters stood in
shooting stalls beside each other. The picture shows four of
the shooting stalls.

3.2.2 Outdoor recordings

During the outdoor recording, several types of weapons and ammunition were used
to increase the diversity of the audio clips. The shooting range was located in an
area with little background noise, apart from the wind. One of the cameras used
for recording was worn by a person moving around within 10 meters of the shooter,
to mimic real-life usage. Two other cameras were placed at different distances from
the shooter.

3.2.3 Mixed gunshot clips

To increase the variance among the gunshot audio clips, we decided to create an
augmented dataset by layering the gunshot clips we collected with other sounds
from FSD50K. The original sounds were not modified in terms of signal strength
or likewise. Background sounds to overlap with gunshots were chosen at random
from the categories ‘Animal’, ‘Music’, ‘Human sounds’, ‘Sounds of things’, and
‘Source-ambiguous sounds’.

We used background and gunshot sounds from the training set to create the
mixed audio clips for the training set, and did the same for the validation and

16 Dataset

Figure 3.2: The picture shows the room in front of the shooting
stalls. The room is 13 meters wide and the distance from the
shooting stalls to the target wall is 25 meters.

testing sets. In this way, the training, validation, and testing sets were kept
separate.

3.3 Exploratory Data Analysis

To get a better understanding of the dataset, we used, we made an exploratory
data analysis (EDA), examining its composition and trying to detect eventual
problems with regard to coverage and variability. In the following section, we will
outline the most important outcomes of it.

3.3.1 FSD50K

FSD50K is a large and diverse dataset with audio clips of length 0.3 to 30 seconds,
each annotated with one or more labels out of the 200 labels defined for the
dataset [11]. As already mentioned, we excluded all clips with CC-BY-NC and
CC Sampling+ licenses, leaving a total of 43,379 audio clips. Furthermore, we
chose to limit the clip length to 5 seconds and exclude all clips longer than that.
We primarily did this to decrease the computational requirements. After this,
22,062 audio clips remained. Figure 3.3 shows the clip length distribution before
and after removing clips longer than 5 seconds.

The amount of labels and the multilabel nature of FSD50K makes it difficult
to get an overview of the content. However, the annotations follow the AudioSet
ontology, which organizes sound event classes into a hierarchy. The AudioSet on-
tology superclasses which are represented in FSD50K are Human sounds, Animal,
Source-ambiguous sounds, Sounds of things, Natural sounds, and Music. To make
the data more comprehensible, we collapsed all annotations into these superclasses

Dataset 17

when performing the EDA, except the label Gunshot and gunfire as it is of most
interest in this project. For the interested reader, more information about the 200
classes and the hierarchy between classes can be found in Appendix B.

Figure 3.3: Audio clip length distribution in FSD50K before restrict-
ing the clip length to less than 5 s.

Figure 3.4 gives an overview of the distribution between the superclass labels
and the gunshot label. Each clip that has at least one label from a certain su-
perclass is counted for that superclass except Gunshot and gunfire. Sounds of
gunshots are underrepresented in the dataset and are only present in 1.45% of
the 22,062 audio clips. On the other side of the spectrum, Music is the most
represented superclass sound, with 35.6% of the clips.

3.3.2 Gunshot audio clips

We combined the subset of FSD50K described in the previous section with the
audio recordings we collected ourselves. In this section, we will deep dive into the
characteristics of the gunshot audio clips in the resulting dataset. As can be seen in
Table 3.1, the audio clips from the indoor recordings and the mixed gunshot clips
make out the vast majority of the gunshot clips. This makes the gunshot sounds in
our dataset heavily biased towards the settings of the indoor recordings, as many
of the gunshot sounds in the mixed clips are taken from the indoor recordings.
In particular, all the clips from the indoor recordings are recorded in the same
room with the same acoustic characteristics, with a relatively small distance to
the weapon, and most of the shots were fired from the same kind of weapon.

The audio clips containing gunshot sounds range from under 1 second to 5
seconds. However, most of them are between 1 and 2 seconds long (see Figure 3.5).
Some clips contain only one gunshot, while others contain two or more gunshots
fired after each other. Figure 3.6 shows the audio wave and mel spectrogram of
one of the clips we recorded indoors. In this clip, three shots were fired shortly

18 Dataset

Figure 3.4: Label distribution for the audio clips used from FSD50K.
Labels are combined into superclasses according to the Audioset
ontology.

after each other, and it is very clear in both the wave and the spectrogram at what
time it happens.

Table 3.1: Number of audio clips with gunshots from FSD50K,
our in- and outdoor recordings, and the clips created by mixing
gunshot sounds with other types of sounds from FSD50K.

Source Number of clips
FSD50K 322
Indoor 2,754
Outdoor 315
Mixed 2,388
Total 5,779

Dataset 19

Figure 3.5: Audio clip length distribution for gunshot sounds in the
dataset.

20 Dataset

Figure 3.6: Audio wave and mel spectrogram of one of our indoor
recordings with three shots fired after each other. The colors
in the mel spectrogram indicate the amplitude of a certain fre-
quency at a specific time.

Chapter 4
Approach

Previous research in the area of sound classification has shown that convolutional
neural networks (CNNs) which take MFCCs as input can be used to achieve high
scores in performance. In addition to this, Cerutti et al. [6] have shown that the
complexity of a CNN can potentially be reduced by applying knowledge distilla-
tion, which was previously discussed in Section 2.3.

Furthermore, Cerutti et al. [7] state that one common method to create low
complexity models is to use smaller networks specifically designed for the task
and hardware. Following this strategy, we decided to start off by implementing a
rather small CNN which would serve as a baseline. More specifically, we decided
to use the design suggested by Baliram et al. [4] as our baseline, as they have
proved that this network works well for identifying gunshots. In the following
chapter, different tools, techniques, and methods of assessment that were used in
our approach will be described in further detail. The last section of the chapter
gives an overview of the technical details of our target device, the BWC.

4.1 Artificial Neural Networks

One way of tackling complex machine learning tasks that require processing of
substantial amounts of data is by using deep learning, or more specifically, artificial
neural networks (ANNs). Zhang [37] explains that ANNs are inspired by the
human nervous system, and consist of a large number of nodes (also called artificial
neurons, or simply neurons) with the ability to receive input signals, process them
and generate an output signal. The inputs to an ANN are some measurements or
properties, and the output is usually a classification or prediction. As an example,
assume the network’s task is to predict if it is going to rain today. Then the input
could be today’s date, whether it was raining yesterday and if it is cloudy. The
output could be a number indicating if the network predicts that it is going to
rain.

There exist two rather distinct categories of network architectures, and these
are multilayer feedforward neural networks (MFNN) and recurrent neural networks
(RNN) [37]. The MFNN consists of nodes arranged in different layers. More
specifically, it consists of one input layer of source nodes, one or more hidden
layers, and lastly an output layer of nodes. A node in a layer has connections (also
called edges) to the nodes in the previous layer, and the different connections may

21

22 Approach

have different weights or strengths, which affects the way the node processes the
input data. During training, the weights are modified to fit the training data, and
this is how the network "learns". As the name implies, data is only sent forward,
meaning that there are no edges between nodes in the same layer [37]. This can
be seen in Figure 4.1.

(a) A feedforward neural network (MFNN). (b) A recurrent neural network (RNN).

Figure 4.1: Comparison of an MFNN and an RNN.

Recurrent neural networks are constructed in the same way as feedforward
neural networks, with the difference that RNNs contain at least one self-feedback
loop [37]. The feedback loops consist of connections that span over adjacent time
steps, allowing the model to consider the notion of time. According to Lipton
et al. [25], the feedback loops make RNNs powerful since they allow them to
process sequences of data. The feedback loops make it possible to take the order
of, and dependencies between, the samples into consideration. This makes RNNs
especially suitable for processing data samples that may depend on each other,
such as video frames, audio snippets, and words [25].

4.1.1 Convolutional neural networks

A special type of feedforward neural network is the convolutional neural network
(CNN). Commonly used for image recognition, CNNs divide an image into smaller
areas and subsequently extract features from every frame [2]. Examining frames
rather than separate pixels allows for analysis that retains spatial information.
Albawi et al. [2] further describe that to reduce the risk of missing something,
there should be an overlap between the extracted frames. This way, the placement
of interesting objects in an image does not matter. Various filters (or convolution
matrices) can then be used on the frames in different layers to extract features
that will be used in the learning process. Figure 4.2 shows an overview of the
typical architecture of a CNN. According to Dörfler et al. [10], CNNs can be
applied to audio, if the audio is preprocessed properly. One of the most common
preprocessing techniques is to convert the audio files into mel spectrograms that are
then fed as input to the network. In the report, they examine an alternative to the
mel spectrograms and show that the mel-frequency cepstral coefficients (MFCCs)
can also be collected by using adaptive filters for particular window lengths.

Approach 23

Figure 4.2: The general structure of a convolutional neural network
(CNN).

4.1.2 Machine learning tool: TensorFlow

TensorFlow is a reliable open-source platform which can be used to implement
machine learning models. TensorFlow provides an abundance of different tools,
with one high-level abstraction alternative for constructing ML models being the
Keras API [1]. Furthermore, TensorFlow offers a tool (TF Lite converter) that
compresses trained models into more lightweight versions, better suitable for mo-
bile devices. The generated TF Lite model consists of an optimized FlatBuffer.
TF Lite includes tools for further reducing the size and execution time of models,
but this may reduce the accuracy as well.

4.2 Feature Extraction from Audio

Virtanen et al. [36, p. 20] describe feature extraction as a way to convert an
acoustic signal into a numerical representation more suitable for machine learning
algorithms. Gold et al. [14, p. 107] emphasize the importance of a good feature
extraction process by stating that in some cases “the pattern classification can be
solved trivially if the features are good enough”. A good set of features are such
that the samples from the same class have a low variability, while the distinction
between samples from different classes is high [14].

Feature extraction from audio can be done in numerous ways, but often the
same steps are taken: frame blocking, windowing, spectrum calculation, and sub-
sequent analysis [36, p. 20]. This process is pictured in Figure 4.3 and each step
will be further explained in the following sections.

In the frame blocking step, the signal is divided into segments of fixed size,
called analysis frames [36, p. 20]. Virtanen et al. state that the length of the
analysis frames is commonly between 20 and 60ms and can be overlapping by at
least 50%.

When the signals are cut, abrupt changes can occur at the frame boundaries,
which can disturb the classification process. To reduce the risk of this, the signal
is smoothed in the windowing step [36, p. 21].

Before extracting the final features, each windowed analysis frame is trans-
formed into a spectrum. The most common practice is to transform the signal into
frequency domain using the discrete Fourier transform (DFT) [36, p. 20]. The
DFT representation X[f] of a signal x[n] is calculated as

24 Approach

X[f] =

∞∑
n=−∞

x[n]ei2πfn,

where f = fs
2 with fs being the sampling frequency [36, p. 74]. To increase

the efficiency of the calculations, this can be implemented using the fast Fourier
transform (FFT) [36, p. 75].

Finally, features are extracted from each of the spectrum representations of the
frames. Humans perceive sound based on the magnitudes of frequency components
in a nonlinear way, which is why feature extraction is typically done with mel-band
energies and mel-frequency cepstral coefficients (MFCCs) [36, p. 21]. These tech-
niques provide compact, smooth representations of the spectrum, mimicking the
human auditory perception by using non-linear frequency scaling (mel-frequency
scaling) and non-linear representations of magnitude [36]. Virtanen et al. [36, p.
81] define MFCCs as

mfcc(t, c) =
√

2

Mmfcc

Mmfcc∑
m=1

log

(
X̃m(t)

)
cos

(
c(m− 1

2)π

Mmfcc

)
.

The formula gives the inverse discrete transform of the log energy in mel
frequency bands, where Mmfcc is the number of mel frequency bands, X̃m(t) the
energy in the mth frequency band and c ∈ {1, 2, ...,Mmfcc} is the index of the
coefficient [36, p. 81].

Although MFCC is the overall most common technique for feature extrac-
tion from audio spectra, it was first designed for speech recognition. Valero and
Alias [33] show that using Gammatone cepstral coefficients (GTCCs) can improve
the performance of non-speech audio classification models without increasing the
computational complexity.

One advantage of using MFCCs as features is that they can be treated as
images. Image detection using machine learning is arguably more researched and
developed than audio detection and, with MFCCs, we can take advantage of the
techniques developed for image detection.

4.3 Classification Assessment Methods

4.3.1 Confusion matrix

Tharwat [32] describes that for a binary classification system, there are four pos-
sible prediction outputs that can be represented in a confusion matrix, see Figure
4.4.

Suppose the binary classes are called P, for positive class, and N, for negative
class. If a sample is correctly classified as positive, the output would be a True
Positive (TP). If a positive sample is classified as negative, it would be a False
Negative (FN). For a negative sample, accurately classifying it as negative gives
a True Negative (TN), while a positive classification would be considered a False
Positive (FP) [32].

Approach 25

4.3.2 Performance metrics

To evaluate the performance of a classification algorithm, some commonly used
metrics are accuracy, sensitivity, specificity, and precision.

Using the terms described in the previous section, Sokolova et al. [30] define
the measurements; accuracy, sensitivity, specificity, and precision as follows:

accuracy =
TP + TN

TP + FP + TN + FN
. (4.1)

The accuracy measures how effective an algorithm is by giving the ratio between
correctly classified samples and the total number of samples [30]. Equation 4.1
shows how to calculate the accuracy.

sensitivity =
TP

TP + FN
specificity =

TN

TN + FP
. (4.2)

Tharwat [32] explains that sensitivity (also recall, true positive rate (TPR) or hit
rate) describes the accuracy for positive samples, while the specificity (also true
negative rate (TNR), or inverse recall) describes the accuracy for negative samples.
They represent the proportion of positive (sensitivity) and negative (specificity)
samples that have been correctly classified. These can be calculated as specified
in 4.2.

precision =
TP

TP + FP
. (4.3)

Precision is used to measure the performance of the algorithm’s prediction, for
computation see Equation 4.3. This is done by calculating the proportion between
true positives and the total amount of positive predictions [30].

4.3.3 F1-score

F1-score =
2TP

2TP + FP + FN
. (4.4)

The F1-score (also F-measure) is the harmonic mean between the sensitivity
and the precision and ranges from 0 to 1 [32] and is calculated as in Equation 4.4.
An F1-score close to 1 indicates a high performance.

To gain an understanding of the impact of frequency for a label in the test set,
one can plot the relation between label frequency and the label’s F1-score. This
is done by Lewis et al. [23]. They use a local linear regression to approximate
the relationship between the two aspects and use the resulting plots to compare
different classifier methods.

4.3.4 Mean average precision

Following Fonseca et al. [11], we will also use the mean average precision, mAP,
to measure the performance of our model. mAP is calculated as the mean across
classes of the average precision (AP) [18]. The AP is a common way to summarize
the precision-recall curve [11] which is achieved by plotting the precision versus
the recall for a varying threshold. Usually, multilabel and binary models output

26 Approach

a score between 0 and 1 for a given class, and the threshold is the decision point
for positive or negative classification. As an example, if the threshold is set to 0.5
and the model outputs 0.7 for the label ‘Gunshot and gunfire’, it is interpreted
that the clip includes a gunshot.

4.4 Axis Body Worn Camera

The gunshot detection prototype produced in this project was primarily designed
for the Axis Body Worn Camera (BWC), model W100, and tested on it. It is
a wireless, wearable camera, primarily intended to increase security by offering
portable surveillance to the user. Depending on the use case, it may serve to
provide evidence, documentation, protection, and more. Figure 4.5 shows a picture
of the BWC.

The BWC has the following technical specifications:

Processor type: ARM Cortex-A53 (1.0 GHz)

Number of cores: 4

Memory card size: 64 GB

DRAM capacity: 512 MB

Flash memory: 256 MB

Audio encoding: AAC-LC 48kHz 64/128 kbps (mono/stereo)

Typical power consumption: 1w

Battery: Li-ion, 3600 mAh

Operating system: Linux

The user can activate an audio and video recording. In addition, s/he can
optionally enable a prebuffer functionality, where the buffer may have a size of
up to 90 seconds. In this case, this means that the camera is always recording,
and keeps the last 90 seconds of recording. Thus, when a recording is started, the
content in the prebuffer will be added to the beginning of the video.

Approach 27

Figure 4.3: The pipeline commonly used for feature extraction from
audio.

28 Approach

Figure 4.4: Figure showcasing the 4 possible prediction outcomes in
a so-called confusion matrix.

Approach 29

Figure 4.5: Axis Body Worn Camera (BWC).

30 Approach

Chapter 5
Experimental Setup

5.1 Networks

We implemented a CNN similar to the one Baliram et al. [4] describe, and this
network was intended to serve as the baseline for our project. The network uses
MFCCs as features and consists of four convolutional layers. We chose this archi-
tecture as it is simple to implement, has relatively few parameters, and Baliram et
al. [4] show that it performs well on gunshot detection. Furthermore, we assumed
that using a CNN is suitable for the task, as we found that many state-of-the-art
solutions for audio classification use this technique.

Each of the convolutional layers consists of a 2D convolution, a max-pooling
and a drop-out layer to decrease overfitting. The convolutional layers have 16, 32,
64, and 128 filters respectively of size 3x3, and all drop-out layers use a drop-out
rate of 0.2. Figure 5.1 shows a schematic overview of the network structure. We
implemented the model in Keras and later converted the model to TensorFlow
Lite.

In addition to the baseline model, we implemented a network similar to the one
Morehead et al. [27] designed. This is a CNN that takes pulse-code modulation
(PCM) data as input, structured as a 240,000x1 vector. The network has four
convolutional layers as well, but each layer consists of two 1D convolutions followed
by a max-pooling and a drop-out layer, see Figure 5.1. We will refer to this network
as the 1D-network.

During training, we used the official division of training, validation, and evalua-
tion sets provided for the audio clips in FSD50K. For the audio clips, we collected
on our own, we randomly divided the audio into three parts; 50% for training,
25% for validation, and 25% for testing and used the same division throughout
the project. All clips shorter than 5 seconds were padded with zeroes such that
all input data had the same length.

5.2 Multilabel Classification

To compare our baseline model with the existing state-of-the-art solutions for
FSD50K, we set up the network to be a multilabel classifier. The classifier consists
of 200 binary classifiers, one for each label, that output a score between 0 and 1.

31

32 Experimental Setup

Conv 2D (64 3x3)

Max pooling

Dropout (0.2)

Conv 2D (32 3x3)

Max pooling

Dropout (0.2)

Conv 2D (128 3x3)

Max pooling

Dropout (0.2)

Max pooling

Dropout (0.2)

Conv 2D (16 3x3)

MFCCs

Dense layer

Output

Global average pooling

PCM data

Dense layer

Output

Max pooling

Dropout (0.25)

Conv 1D (16 1x9)

Conv 1D (16 1x9)

Max pooling

Dropout (0.25)

Conv 1D (32 1x3)

Conv 1D (32 1x3)

Max pooling

Dropout (0.25)

Conv 1D (32 1x3)

Conv 1D (32 1x3)

Global max pooling

Dropout (0.5)

Conv 1D (256 1x3)

Conv 1D (256 1x3)

Dense layer (1028)

Dense layer (64)

Figure 5.1: Overview of the two networks we implemented; the
baseline model to the left, and the 1D-network to the right.

A high score for a specific class means that the input is considered likely to include
sounds from this class.

We trained the model on the data from FSD50K described in Section 3.3 for
40 epochs, with a learning rate of 10−4, and a batch size of 12. We extracted
MFCCs from the audio clips with window length 2048 and hop length 512, i.e. 75
% overlap. For each window, we extract 40 MFCCs. This results in an MFCC
matrix of dimension 214x40 and a network with 98,313 trainable parameters. We
applied a threshold of 0.3, meaning that clips get tagged with all labels that receive
a score of 0.3 or higher. If none of the labels has a score above 0.3, we tag the clip
with the label with the highest score.

To investigate what sounds the model easily confused with gunshots, we col-
lapsed some classes into larger groups. To begin with, we collapsed all subclasses
of Music into their superclass (Music). The FSD50K has a wide variety of labels

Experimental Setup 33

for different music instruments, and by collapsing this group into one, the remain-
ing amount of labels was reduced to 163. We trained the model on this data in
the same way as previously. We continued to collapse different classes with their
subclasses such as ‘Vehicle’, ‘Liquid’, and ‘Bird’, trained and analyzed the models’
performance. Lastly, we collapsed all superclasses described in Section 3.3 except
‘Gunshot and gunfire’ and trained the model on the resulting dataset.

5.3 Binary Classification

After experimenting with multilabel classification, we modified the code to provide
binary classification; with the two labels indicating whether a given audio clip
contains a gunshot or not. We trained the model on the FSD50K dataset combined
with our gunshot dataset using batches of 12, a learning rate of 10−4, and 40
epochs. For the binary classification, we used a window length of 1024 and hop
length of 512, i.e. 50 % overlap. For each window, we extracted 40 MFCCs
resulting in an MFCC matrix of the dimension 467x40. This network has 97,281
trainable parameters.

To test out this baseline model in a real-time manner, we wrote a program
that collected audio from the microphone using PyAudio and sent the PCM data
to the model for classification. We then used a speaker to play audio clips from
the unseen part of our dataset to test the accuracy of the prediction.

To simplify the implementation of the real-time detection on the BWC, we
implemented the feature extraction as a part of the model. Thus, the model
takes raw audio signals (PCM) as input, takes care of the feature extraction, and
performs the classification. Next, we converted the entire model into a TF Lite
model. Using a TensorFlow Lite Interpreter created specifically for Axis’ cameras,
we were able to run the TF Lite model and make predictions from the PCM input
on the BWC.

In the next step, we implemented a program in C/GLib that collected audio in
real-time and ran the TF Lite model to generate a prediction, meaning the BWC
could be tested in a real-time manner as well. The program was multithreaded,
with one thread designated to collect audio and another that runs it through the
model. As Figure 5.2 shows, the program continuously collects audio from the
microphones, and every 2.5 seconds sends the audio data from the last 5 seconds
to the model for prediction.

For the 1D-network, we trained on the same dataset in batches of 32 and with
a learning rate of 10−4. We used early stopping during training using a patience
of 15, meaning that if the performance on the validation data does not improve
for 15 epochs, the training stops. The network had 319,353 trainable parameters.

5.4 Hardware Performance Evaluation Setup

Finally, we measured how the real-time predictions affected the BWC with regard
to battery time, memory consumption, and CPU usage as well as the latency from
signal to prediction.

34 Experimental Setup

Figure 5.2: Setup of the live detection program, which was imple-
mented on the BWC.

5.4.1 Battery time

To test the real-time prediction’s impact on the device’s battery time, a BWC
was fully charged, started, and then set in a position that would provide similar
conditions (darkness and silence) in every test. We then measured the time before
the battery ran out. By doing this once with the gunshot detection and once
without it, we could calculate how the detection affected the battery time. To get
a more generalized result, we did this with three different BWCs and repeated it
three times for each mode.

5.4.2 CPU usage

To measure the CPU usage of the real-time predictions, we let the program run
for ten hours and then calculated how much time the CPU spent on it. The
measurement was done once on three different BWCs in the same environment.

5.4.3 Memory usage

To measure the RAM usage, we let the program run for ten hours. We took note
of the memory usage of the audio collection and the TF Lite model interpreter
at startup, and then once every hour throughout the test. The memory usage
was measured using built-in Linux tools, and the properties considered were USS
(Unique Set Size) and PSS (Proportional Set Size). The USS reports all memory
that is unique to a specific process [26]. In our case, the sum of the USS from
both processes gives how much extra memory usage the gunshot detection is con-
tributing with. The PSS is expected to be equal to or larger than USS, as it also
includes a proportional part of any resource that is shared with other processes
[26]. Furthermore, we measured the size of the TF Lite models. This gives how
much persistent memory the models require, but of course also affects the RAM
usage as it is loaded during runtime.

Experimental Setup 35

5.4.4 Latency

The latency between a gunshot audio signal reaching the camera, and the triggering
of a recording depends on a few different things:

1. First off, preprocessing of the audio signal is required to extract the MFCCs
which will be sent as input to the gunshot prediction model.

2. Next, the actual prediction will also take some time.

3. Lastly, the frequency of predictions also needs to be taken into consideration.
As an example: if a prediction is performed every 2 seconds, and a gunshot
is heard at the beginning of this time slot, this will potentially add latency
of at most 2 seconds.

To measure the maximum latency of our prototype, we let the BWC run 100
inferences and measured the execution time. We did this for the entire model as
well as for the feature extraction and the classifier separately. We then added the
potential maximum delay caused by the prediction frequency.

36 Experimental Setup

Chapter 6
Results

In this chapter, we present the results we obtained with the two types of classifi-
cation, as well as with the implementation on the BWC.

6.1 Multilabel Classification

Our multilabel classifier using all the 200 labels reached a macro F1 score (mean
F1 between all labels) of 0.197 and mAP of 0.183. Figure 6.1 shows a plot of the
number of clips with a certain label in the training set, versus the F1 score for
this label for the classifiers with 200, 163, 144, 131, and 120 labels. As mentioned
before, the classifier with 163 labels has the same labels as the one with 200 labels,
except for all subclasses to ‘Music’. In the classifier with 144 labels, we have also
collapsed all subclasses to ‘Vehicle’. In the classifier with 131 labels, subclasses
to ‘Water’ and ‘Liquid’ are also collapsed into their respective superclasses and in
the one with 120 we have additionally collapsed ‘Fowl’, ‘Thunderstorm’, ‘Engine’,
‘Glass’, and ‘Bird’. What we can see in the plot of these classifiers is that a higher
amount of training samples generally gives better performance.

Figure 6.2 shows the results from the classifiers with 7, 9, and 6 labels. The
classifiers with 6 labels have only the superclasses; ‘Music’, ‘Human sounds’,
‘Sounds of things’, ‘Natural sounds’, ‘Animal’, and ‘Source-ambiguous sounds’.
This model with only superclasses, i.e. 6 labels, had a mAP of 0.518. In ‘7’ we
have separated ‘Gunshot and gunfire’ from its superclass and in ‘9’ we have divided
‘Natural sounds’ into ‘Wind’, ‘Fire’, ‘Thunderstorm’, and ‘Water’, but included
‘Water’ in the class ‘Sounds of things’.

Although our goal with the investigations of different arrangements of the
labels was to see if the model was prone to mix up gunshots with some particular
sound, we could not find any such patterns. However, one pattern that we did
identify was that the classifiers with 6 and 7 labels, often classified ‘Natural sounds’
as ‘Sounds of things’. When looking into this, we realized that there was at least
one obvious reason for this. The majority of clips with ‘Natural sounds’, have some
sort of water sound such as ‘Rain’ or ‘Stream’ while ‘Sounds of things’ includes
labels such as ‘Liquid’, ‘Bathtub (filling or washing)’, and ‘Water tap and faucet’.

37

38 Results

Figure 6.1: Amount of training data versus F1-score per label for
the classifiers with 200, 163, 144, 131, and 120 labels.

6.2 Binary Classification

We tested the model on a dataset that included unseen data from FSD50K and
the gunshots recordings made by us. Figure 6.3 shows the result after training
our baseline model with different subsets of the available data. The best result
was achieved when including all available gunshot audio clips. Table 6.1 shows the
performance measures of the model when using different thresholds, and Figure
6.5 shows the corresponding confusion matrices. Independent of threshold choice,
the average precision of the model is 0.984.

We also tested the model on the different gunshot datasets (FSD50K, indoor,
outdoor and mixed) separately. The results from this experiment can be seen
in Figure 6.4. The y-axis shows the performance score, while the x-axis gives
the training frequency, i.e. the amount of clips in the training set for the given
category. As can be seen, the model performs the worst on the gunshots from
FSD50K. The clips from FSD50K include a wide variety of gunshots, and due
to the multilabel nature of the dataset, most of the clips furthermore contain

Results 39

Figure 6.2: Amount of training data versus F1-score per label for
the classifiers with 7, 9, and 6 labels.

background sound. The diversity, in combination with the comparatively low
training frequency, makes it more difficult for the model to learn to identify this
type of gunshots.

The outdoor gunshots do not seem to follow the assumption that a lower
training frequency should yield a lower score. This is however most likely due
to the outdoor gunshots having similar acoustic features to the indoor gunshots;
they were recorded using the same device, with little background sound apart
from the wind. Due to this similarity, and the fact that the indoor clips have a
very high training frequency, the outdoor clips have an advantage. Apart from
this outlier, there seems to be a strong correlation between training frequency and
performance.

When testing the model in real-time on the computer, a few different overlaps
and audio uptakes frequencies were tested and compared. The combination which
produced the best result was using an overlap of 67%, and classifying audio every
0.8 seconds. In other words, every 0.8 seconds, the last 2.4 seconds of audio data
was sent to the model for feature extraction and classification.

40 Results

Figure 6.3: Variance in F1 score depending on what training dataset
was used.

On the BWC, using the same classification frequency was not feasible due
to the feature extraction and prediction needing more than 0.8 seconds to be
computed. For this reason, we instead used an overlap of 50% and a classification
frequency of 2.5 seconds. This gave the program enough time to compute the
gunshot prediction before the next prediction would occur, allowing the gunshot
prediction service to run without introducing a steadily increasing delay.

During live testing, the BWC could detect gunshots from the indoors-test set
with high accuracy. It did however have a harder time detecting gunshots when
there were also other background sounds. We believe this to be due to sending
5-second clips to the model, as we had seen 2.4 second clips produce the best
results on mixed gunshot audio while testing different lengths and overlap rates in

Table 6.1: Performance scores for the final model using different
thresholds. The highest performance per category is marked in
bold.

Threshold Acc. Prec. TPR TNR F1
0.3 0.957 0.899 0.967 0.952 0.931
0.5 0.968 0.939 0.958 0.972 0.948
0.7 0.970 0.957 0.947 0.981 0.952

Results 41

Figure 6.4: Accuracy of gunshot prediction on the different types of
gunshots, compared to their training frequency.

the live detection on the computer.
For the 1D-network, we received an average precision of 0.978, and an F1-score

of 0.818 when using a threshold of 0.5. The resulting confusion matrix can be seen
in Figure 6.6. Due to a long execution time (2.9 s) and lower performance scores,
we did not proceed with any further assessments of this model.

6.3 Hardware Performance Evaluation

6.3.1 Battery time

As can be seen in Table 6.2, the gunshot detection lowered the BWCs’ battery
time by an average of 8.41%.

6.3.2 CPU usage

Table 6.2 shows how much of the CPU capacity the different parts of the live
gunshot detection use. In total, the live detection uses 11.5 % of the CPU’s four
cores’ capacity, whereof 10.5 percentage points are used for the feature extraction
and classification.

42 Results

Figure 6.5: The resulting confusion matrices for a threshold of 0.3,
0.5, and 0.7, in that respective order.

Figure 6.6: Confusion matrix for the 1D-network.

Results 43

Table 6.2: This table shows the percentage of the CPU capacity
the different parts of the gunshot detection uses, as well as its
impact on the devices’ battery time.

Device Audio Preproc. and Total CPU Difference in
coll. prediction usage battery time

BWC 1 0.97 % 10.54 % 11.51% -8.94 %
BWC 2 0.98 % 10.50 % 11.48 % -8.51 %
BWC 3 0.98 % 10.52 % 11.50 % -7.79 %
Mean: 0.98 % 10.52 % 11.50 % -8.41 %

6.3.3 Memory usage

Figure 6.7 shows the RAM usage of the audio collection and the preprocessing
and prediction on each camera at setup and during the preceding ten hours. An
average between the cameras for setup and normal run time is shown in Table
6.3b. On average, the real-time detection uses an additional 19.3 MB during setup
and 11.9 MB otherwise.

Regarding persistent memory, the size of the model is shown in Table 6.4.
The CNN makes up less than 10 % of the total size, while the feature extraction
constitutes a clear majority.

Table 6.3: Average RAM memory usage from the 10-hour tests,
reported as PSS in (a) and USS in (b). The averages were
calculated from measurements during the program startup and
then once every hour, starting 1 hour after startup.

(a) PSS

Process During setup After 1h
Preproc. and prediction 13.9 MB 10.1 MB
Audio collection 5.4 MB 3.0 MB
Total 19.3 MB 13.2 MB

(b) USS

Process During setup After 1h
Preproc. and prediction 13.1 MB 9.6 MB
Audio collection 3.8 MB 2.3 MB
Total 16.9 MB 11.9 MB

6.3.4 Latency

The feature extraction takes up a clear majority of both time and space. By
using the classification frequency of 2.5 seconds and adding the mean execution
time of the full model (see Table 6.4), the maximum latency is approximately
2.5 + 1.14 = 3.64s.

44 Results

Figure 6.7: RAM memory usage of the gunshot detection program.
The top plot shows the USS and the bottom PSS. The dashed
lines show the preprocessing and the prediction’s memory usage,
while the solid lines represent the audio collection. The data
was collected once per hour from three different BWCs.

Results 45

Table 6.4: Size and mean execution time of the TF Lite models.

Model Size Mean exec. time
Baseline (feature extraction) 4.5 MB 958 ms
Baseline (CNN classifier) 0.4 MB 180 ms
Baseline (combined) 4.9 MB 1140 ms
1D-network 1.3 MB 2859 ms

46 Results

Chapter 7
Discussion

7.1 Classification

The final version of the baseline model received great scores. Depending on what
feature is considered to be most important, different thresholds for when to classify
an audio clip as a gunshot may be chosen. In Table 6.1, we can see that the higher
threshold of 0.7 has the best results in all but one category, so at first sight, it
may be the obvious choice.

However, given the potential graveness of the situation where this feature may
be used, it might be deemed more important that no gunshot is missed rather than
to decrease the number of false alarms. In such a case, it may be more desirable
to maximize the sensitivity (TPR), which measures the ratio of correctly guessed
actual gunshots. This score received the best result for lower thresholds, such as
0.3.

7.2 Hardware Performance

The results on how the live gunshot detection program affects the BWC’s battery
time, CPU, and memory usage indicate that such a feature is possible to add
without limiting other functionalities.

The battery time is decreased by less than 10% which would still allow usage
for a complete workday. Using 11.5% of the BWC’s CPU is within reasonable
limits, but could potentially cause problems if other features would also require
much from the CPU.

The memory usage is increased by 11.9 MB, i.e. approximately 2% of the
BWC’s RAM. The persistent memory needed for the model, 4.9 MB, is negligible
on the BWC’s 64 GB memory card. Decreasing the size of the model would of
course also decrease the required RAM during execution. If the RAM usage is
critical and considered too high, this is one possibility to improve the prototype.
However, decreasing the size of the model generally means that the performance
will also decrease.

An interesting aspect to examine further, regarding the hardware, is to what
extent the increased CPU usage affects the camera’s product lifetime.

47

48 Discussion

7.3 Challenges of the Limited Capacity

One of the most limiting capabilities seems to be the long execution time of the
feature extraction, which limits the possible classification frequency and eliminates
the possibility of using the rate we found to be most efficient at detecting gunshots.
Possible solutions to this would be to use a faster CPU or execute the predictions
in more than one thread, allowing multiple predictions to be run concurrently. It
might also be possible to decrease the execution time of the feature extraction
by implementing it hardware-optimized, instead of implementing it in TensorFlow
and then converting it to TF Lite.

These changes would furthermore positively affect the maximum latency, as it
is bounded by the classification frequency and the prediction speed. If one or both
of these variables were changed, the latency could decrease. Since the current goal
of the classification is to make the BWC trigger a recording when a gunshot is
detected, the calculated maximum delay of 3.64 seconds is not a huge issue due
to the BWC’s built-in prebuffer. If the classification should be used for something
else, such as to alarm or to send a request for reinforcement, decreasing the latency
would have a much higher priority.

The 1D-network did not require any preprocessing at all but in return, it
had lower performance and the network in itself was larger resulting in a longer
execution time. It would be interesting to explore other features to find something
that is less complex to compute than MFCCs but still allow small networks to
achieve good results.

7.4 Dataset

Adding more gunshot audio clips to the dataset greatly improved the F1-score.
Something to keep in mind is however possible bias; as the large majority of the
gunshot clips are comprised of either indoor gunshots, or the automatically mixed
gunshot/background clips, the model is bound to perform better on audio clips
with similar acoustics. This was highlighted when testing the model on gunshot
sounds from the different parts of the dataset – the model performed the worst on
the gunshot sounds from FSD50K.

A solution to this problem would be to acquire or find more diverse data to
add to the training of the model. As described, the dataset currently contains a
lot of gunshots from pistols with .22 mm ammunition in a relatively small room.
It would be beneficial to add audio clips of gunshots from other types of guns and
ammunition, as well as in more varied environments.

Another suggestion could be to use augmentation and sampling, as described
for the PSLA network by Gong et al. [16]. The less frequent types of gunshots,
such as the outdoor recordings, could be up sampled and augmented such that the
indoor recordings are not as dominating. Furthermore, inspired by Morehead et
al. [27], Generative Adversarial Networks (GANs) could be used to generate more
audio clips.

Discussion 49

7.5 Real-life Usage

Although the model performs well on the given dataset, a more comprehensive
evaluation would be required to guarantee that the gunshot detection is reliable
in a real-life situation. A suggestion for further testing of the real-time detection
is to expose it to environments similar to the expected use case.

Should such a test not give sufficiently good results, then we suggest improving
the dataset by increasing the diversity of gunshot sounds. As repeated throughout
the report, a large and diverse dataset is essential for good performance. For the
real-life usage this is even more important as the more diverse the training dataset
is, the more likely it will contain sounds that are similar to what will occur in
reality.

In addition, adjusting the classification frequency and the length of the signals
sent to the gunshot detection could improve the results. When experimenting with
different configurations of this on the live detection on a computer, we found that
it influenced how well the detection identified gunshots when there was a lot of
background noise. We believe this is because a gunshot generates a relatively short
sound, a small portion of the 5-second sound signals we send to the classifier. If
there are a lot of other sounds during those 5 seconds, a majority of the clip will
not be a gunshot and thus over weigh towards a negative prediction.

One aspect that might affect the real-time performance negatively is that the
large majority of the audio clips which were used in the model training have not
been recorded by BWCs. Although the clips in FSD50K come from a variety of
sources, it would presumably be beneficial if the model trained on recordings with
similar acoustic properties to the BWC’s microphones. A possible solution for
this would be to record an entire dataset with the BWC. Alternatively, the sounds
from FSD50K could be altered to resemble BWC recordings.

7.6 Multilabel Classification

The small network implemented in this Master’s thesis did not compare well to
the state-of-the-art solutions for the multilabel task of FSD50K. This was however
expected as it is less than 1% the size of PSLA and almost 0.1% the size of
PaSST-S. When simplifying the task to only regard the superclasses, the network
performed relatively well, especially on the labels with larger training frequencies.

The exploration with the different variations of label combinations underlined
the fact that performance is highly dependent on the training frequency. In addi-
tion, we saw that well-separated classes are beneficial, with the example of ‘Water’
and ‘Liquid’ belonging to different superclasses.

50 Discussion

Chapter 8
Conclusion and Future Work

8.1 Conclusion

According to our measurements, it does indeed seem viable to use gunshot detec-
tion with a simple CNN on a portable device such as the BWC. While the battery
time and memory usage were somewhat affected, it was not considered to be so by
an excessive amount. The live detection program’s CPU usage was also, depending
on what other things need to be executed, within reasonable bounds.

We show that a CNN with four layers and 100,000 parameters is able to identify
gunshots in audio signals. Our network achieved an accuracy of 0.970 and F1-score
of 0.952. Our conclusion is that larger, more complex networks are not necessary
for this specific task, especially not if the target device has limited resources.

In addition, we found that real-time detection of gunshots in small, portable
devices is applicable, although it may be difficult to avoid having some latency
between the audio signal and the finished detection. We did our implementation
and tests on the BWC, but the results can be generalized to devices with similar
hardware properties.

Our implementation increased the RAM usage by 11.9 MB, decreased the
battery time with 8.4% and uses 11.5 % of the CPU. The latency is approximately
3.6 seconds. We could see that the most demanding part of the detection is to
extract the MFCCs from the audio signal, which uses 10.5% of the CPU and takes
more than 5 times longer than the prediction.

8.2 Future Work

As the preprocessing, i.e. extracting MFCCs, was the most demanding part of our
gunshot detection, we think this is the most interesting area to investigate further.
Both by looking at how the extraction can be optimized for the hardware and by
exploring other features.

If the MFCCs are extracted separately, instead of as a part of the TF Lite
model, we believe that there is a potential improvement in efficiency. Some
portable devices have specific hardware particularly fast for calculations related to
audio processing. In these cases, it would most certainly be beneficial to do the
extraction separately. However, the BWC does not have such a chip, but it might
still be possible to increase the computational cost of the extraction.

51

52 Conclusion and Future Work

By decreasing the number of mel bands, the frame size, and the overlap used
when extracting the MFCCs, it might be possible to decrease the execution time
without decreasing classification performance. Additionally, it would be interesting
to investigate other, less complex, features that could be used.

Another area that is interesting to examine further is the dataset. Is it bene-
ficial to use recordings that are recorded on the target device? Would the classifi-
cation performance improve if the mixed clips were created manually? Is there an
optimal division between pure gunshot clips and mixed clips? Would it be better
to have fewer gunshots from the same environment (the indoor recordings), i.e. to
use less data in order to decrease the bias? It would also be interesting to see how
our model performs if we had a greater variety of gunshot sounds.

We hope that our work will encourage research on sound event detection on
portable devices, where the hardware performance is evaluated and disclosed.
Moreover, we hope that our results can inspire the development of efficient ma-
chine learning programs for devices with limited resources to make them accessible
for embedded usage, as this study proves it can be done.

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kud-
lur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensor-
flow.org.

[2] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of
a convolutional neural network. In 2017 International Conference on Engi-
neering and Technology (ICET), pages 1–6, 2017.

[3] Jakub Bajzik, Jiri Prinosil, and Dusan Koniar. Gunshot detection using
convolutional neural networks. In 2020 24th International Conference Elec-
tronics, pages 1–5, 2020.

[4] Rajesh Baliram Singh, Hanqi Zhuang, and Jeet Kiran Pawani. Data collec-
tion, modeling, and classification for gunshot and gunshot-like audio events:
a case study. Sensors, 21(21):7320, 2021.

[5] Gianmarco Cerutti, Renzo Andri, Lukas Cavigelli, Elisabetta Farella, Michele
Magno, and Luca Benini. Sound event detection with binary neural networks
on tightly power-constrained iot devices. Proceedings of the ACM/IEEE In-
ternational Symposium on Low Power Electronics and Design, Aug 2020.

[6] Gianmarco Cerutti, Rahul Prasad, Alessio Brutti, and Elisabetta Farella.
Neural network distillation on iot platforms for sound event detection. In
Interspeech, pages 3609–3613, 2019.

[7] Gianmarco Cerutti, Rahul Prasad, Alessio Brutti, and Elisabetta Farella.
Compact recurrent neural networks for acoustic event detection on low-energy
low-complexity platforms. IEEE Journal of Selected Topics in Signal Process-
ing, 14(4):654–664, 2020.

53

54 References

[8] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks: Training deep neural networks
with weights and activations constrained to +1 or -1, 2016.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale, 2020.

[10] Monika Dörfler, Roswitha Bammer, and Thomas Grill. Inside the spectro-
gram: Convolutional neural networks in audio processing. In 2017 Inter-
national Conference on Sampling Theory and Applications (SampTA), pages
152–155, 2017.

[11] Eduardo Fonseca, Xavier Favory, Jordi Pons, Frederic Font, and Xavier Serra.
Fsd50k: an open dataset of human-labeled sound events. arXiv preprint
arXiv:2010.00475, 2020.

[12] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade
Lawrence, R Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set:
An ontology and human-labeled dataset for audio events. In 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 776–780. IEEE, 2017.

[13] Andrzej Glowacz and Grzegorz Altman. Automatic threat classification using
multiclass svm from audio signals. In Proceedings of 2012 IEEE 17th Inter-
national Conference on Emerging Technologies Factory Automation (ETFA
2012), pages 1–6, 2012.

[14] Ben Gold, Nelson Morgan, and Dan Ellis. Speech and Audio Signal Processing:
Processing and Perception of Speech and Music. John Wiley & Sons Inc.,
United States, 1st edition, 1999.

[15] Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram trans-
former, 2021.

[16] Yuan Gong, Yu-An Chung, and James Glass. PSLA: Improving audio tagging
with pretraining, sampling, labeling, and aggregation. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, 29:3292–3306, 2021.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

[18] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke,
Aren Jansen, R. Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous,
Bryan Seybold, Malcolm Slaney, Ron J. Weiss, and Kevin Wilson. Cnn ar-
chitectures for large-scale audio classification, 2017.

[19] Noussaiba Jaafar and Zied Lachiri. Audio-visual fusion for aggression de-
tection using deep neural networks. In 2019 International Conference on
Control, Automation and Diagnosis (ICCAD), pages 1–5, 2019.

[20] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M. Rush. Structured
attention networks, 2017.

References 55

[21] J.F.P. Kooij, M.C. Liem, J.D. Krijnders, T.C. Andringa, and D.M. Gavrila.
Multi-modal human aggression detection. Computer Vision and Image Un-
derstanding, 144:106–120, 2016. Individual and Group Activities in Video
Event Analysis.

[22] Khaled Koutini, Jan Schlüter, Hamid Eghbal-zadeh, and Gerhard Widmer.
Efficient training of audio transformers with patchout, 2021.

[23] David D Lewis, Yiming Yang, Tony Russell-Rose, and Fan Li. Rcv1: A new
benchmark collection for text categorization research. Journal of machine
learning research, 5(Apr):361–397, 2004.

[24] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate binary convolutional
neural network, 2017.

[25] Zachary C Lipton, John Berkowitz, and Charles Elkan. A critical re-
view of recurrent neural networks for sequence learning. arXiv preprint
arXiv:1506.00019, 2015.

[26] Matt Mackall. Smem(8) – linux manual page, 2008.

[27] Alex Morehead, Lauren Ogden, Gabe Magee, Ryan Hosler, Bruce White,
and George Mohler. Low cost gunshot detection using deep learning on the
raspberry pi. In 2019 IEEE International Conference on Big Data (Big Data),
pages 3038–3044, 2019.

[28] Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A dataset and
taxonomy for urban sound research. In Proceedings of the 22nd ACM inter-
national conference on Multimedia, pages 1041–1044, 2014.

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition, 2014.

[30] Marina Sokolova, Nathalie Japkowicz, and Stan Szpakowicz. Beyond accu-
racy, f-score and roc: a family of discriminant measures for performance eval-
uation. In Australasian joint conference on artificial intelligence, pages 1015–
1021. Springer, 2006.

[31] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer vision,
2015.

[32] Alaa Tharwat. Classification assessment methods. Applied Computing and
Informatics, 2020.

[33] Xavier Valero and Francesc Alias. Gammatone cepstral coefficients: Biologi-
cally inspired features for non-speech audio classification. IEEE Transactions
on Multimedia, 14(6):1684–1689, 2012.

[34] P.W.J. van Hengel and T.C. Andringa. Verbal aggression detection in complex
social environments. In 2007 IEEE Conference on Advanced Video and Signal
Based Surveillance, pages 15–20, 2007.

56 References

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

[36] Tuomas Virtanen, Mark D Plumbley, and Dan Ellis. Computational analysis
of sound scenes and events. Springer, 2018.

[37] Zhihua Zhang. Artificial neural network. In Multivariate time series analysis
in climate and environmental research, pages 1–35. Springer, 2018.

Appendix A
Indoor Recording Setups

This section includes drawings of the different setups used when recording gunshot
audio indoors, as described in Section 3.2.1. The red dots listed as 1, 2, 3 and 4
are BWCs, while 5 is a cellphone with a microphone attached to it.

57

58 Indoor Recording Setups

Appendix B
More Information About FSD50K

Table B.1: The table shows all labels in the FSD50K dataset with
the number of audio clips in the subset we used containing
the sound. The table also lists which AudioSet superclasses
each label belongs to. The superclasses are Sounds of things
(SOT), Music (M), Animal (A), Human sounds (HS), Source-
ambiguous sounds (SAS), and Natural sounds (NS)

Label Count Superclass
Accelerating and revving and vroom 275 SOT
Accordion 102 M
Acoustic guitar 672 M
Aircraft 272 SOT
Alarm 1864 SOT
Animal 4357 A
Applause 550 HS
Bark 536 A
Bass drum 339 M
Bass guitar 400 M
Bathtub (filling or washing) 204 SOT
Bell 1184 SOT, M
Bicycle 311 SOT
Bicycle bell 129 SOT, M
Bird 1729 A
Bird vocalization and bird call and bird song 961 A
Boat and Water vehicle 139 SOT
Boiling 102 SOT
Boom 204 SOT
Bowed string instrument 2064 M
Brass instrument 1035 M
Breathing 658 HS
Burping and eructation 311 HS
Bus 285 SOT
Buzz 156 SAS, A
Camera 376 SOT

59

60 More Information About FSD50K

Car 999 SOT
Car passing by 232 SOT
Cat 435 A
Chatter 454 HS
Cheering 326 HS
Chewing and mastication 256 HS
Chicken and rooster 173 A
Child speech and kid speaking 255 HS
Chime 268 SOT, M
Chink and clink 433 SOT
Chirp and tweet 548 SAS, A
Chuckle and chortle 111 HS
Church bell 141 SOT, M
Clapping 566 HS
Clock 349 SOT
Coin (dropping) 529 SOT
Computer keyboard 223 SOT
Conversation 126 HS
Cough 385 HS
Cowbell 235 SOT, M, A
Crack 187 SOT, SAS
Crackle 327 SAS, NS
Crash cymbal 285 M
Cricket 276 A
Crow 111 A
Crowd 435 HS
Crumpling and crinkling 291 SAS
Crushing 276 SAS
Crying and sobbing 151 HS
Cupboard open or close 153 SOT
Cutlery and silverware 400 SOT
Cymbal 903 M
Dishes and pots and pans 479 SOT
Dog 930 A
Domestic animals and pets 1365 A
Domestic sounds and home sounds 6658 SOT
Door 1522 SOT
Doorbell 144 SOT
Drawer open or close 220 SOT
Drill 211 SOT
Drip 331 SOT
Drum 1514 M
Drum kit 401 M
Electric guitar 687 M
Engine 1408 SOT
Engine starting 220 SOT
Explosion 1388 SOT

More Information About FSD50K 61

Fart 630 HS
Female singing 207 HS
Female speech and woman speaking 640 HS
Fill (with liquid) 148 SOT
Finger snapping 199 HS
Fire 509 NS
Fireworks 469 SOT
Fixed-wing aircraft and airplane 146 SOT
Fowl 281 A
Frog 110 A
Frying (food) 123 SOT
Gasp 110 HS
Giggle 188 HS
Glass 1241 SOT
Glockenspiel 143 M
Gong 278 M
Growling 123 A
Guitar 2232 M
Gull and seagull 104 A
Gunshot and gunfire 482 SOT
Gurgling 234 NS
Hammer 234 SOT
Hands 870 HS
Harmonica 223 M
Harp 234 M
Hi-hat 604 M
Hiss 289 SAS, A, NS
Human group actions 1423 HS
Human voice 5653 HS
Idling 213 SOT
Insect 598 A
Keyboard (musical) 1804 M
Keys jangling 251 SOT
Knock 373 SOT, SAS
Laughter 1186 HS
Liquid 1601 SOT
Livestock and farm animals and working animals 635 A
Male singing 150 HS
Male speech and man speaking 858 HS
Mallet percussion 427 M
Marimba and xylophone 210 M
Mechanical fan 119 SOT
Mechanisms 1534 SOT
Meow 250 A
Microwave oven 206 SOT
Motor vehicle (road) 1986 SOT
Motorcycle 250 SOT

62 More Information About FSD50K

Music 14739 M
Musical instrument 14703 M
Ocean 332 NS
Organ 348 M
Packing tape and duct tape 130 SOT
Percussion 3977 M
Piano 855 M
Plucked string instrument 2350 M
Pour 323 SOT
Power tool 214 SOT
Printer 163 SOT
Purr 128 A
Race car and auto racing 123 SOT
Rail transport 836 SOT
Rain 708 NS
Raindrop 194 NS
Ratchet and pawl 111 SOT
Rattle 300 SAS, A
Rattle (instrument) 317 M
Respiratory sounds 1202 HS
Ringtone 169 SOT
Run 332 HS
Sawing 173 SOT
Scissors 165 SOT
Scratching (performance technique) 309 M
Screaming 377 HS
Screech 154 SAS
Shatter 510 SOT
Shout 393 HS
Sigh 136 HS
Singing 717 HS
Sink (filling or washing) 407 SOT
Siren 132 SOT
Skateboard 135 SOT
Slam 552 SOT
Sliding door 295 SOT
Snare drum 886 M
Sneeze 125 HS
Speech 2254 HS
Speech synthesizer 120 HS
Splash and splatter 518 SOT
Squeak 606 SOT, SAS
Stream 317 NS
Strum 233 M
Subway and metro and underground 387 SOT
Tabla 97 M
Tambourine 300 M

More Information About FSD50K 63

Tap 384 SOT, SAS
Tearing 386 SAS
Telephone 685 SOT
Thump and thud 470 SOT, SAS
Thunder 583 NS
Thunderstorm 601 NS
Tick 109 SOT, SAS
Tick-tock 170 SOT
Toilet flush 279 SOT
Tools 1004 SOT
Traffic noise and roadway noise 279 SOT
Train 449 SOT
Trickle and dribble 304 SOT
Truck 154 SOT
Trumpet 637 M
Typewriter 102 SOT
Typing 430 SOT
Vehicle 3710 SOT
Vehicle horn and car horn and honking 183 SOT
Walk and footsteps 580 HS
Water 1925 NS
Water tap and faucet 458 SOT
Waves and surf 245 NS
Whispering 245 HS
Whoosh and swoosh and swish 372 SOT, SAS
Wild animals 2392 A
Wind 428 NS
Wind chime 119 SOT, M
Wind instrument and woodwind instrument 2653 M
Wood 432 SOT
Writing 343 SOT
Yell 199 HS
Zipper (clothing) 395 SOT

64 More Information About FSD50K

Figure B.1: The labels in FSD50K ordered according to the Au-
dioSet ontology. Labels with strike-through are not included in
FSD50K, but have subclasses that are. This is shown in Figure
B.1-3.

More Information About FSD50K 65

Figure B.2

66 More Information About FSD50K

Figure B.3

