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Abstract

Osteoarthritis is a degenerative disease that will cause pain and stiffness
in the joint if not treated. One cause of early osteoarthritis in the hip
joint is pediatric hip deformities. Hip deformities can occur in different
stages of childhood and cause the bones to be misshapen or the hip joint
to be dislocated.

This thesis aimed to build subject-specific computer models of the
hip joint to find a biomechanical connection between pediatric hip de-
formities and osteoarthritis. The aim was approached through three
main tasks:

• Automatically detect anatomical landmarks on two-dimensional
X-ray images. This can be used to automate three-dimensional
reconstructions of the femur.

• Predict the effects of common loading scenarios in the hip joint
cartilage using subject-specific numerical models developed using
X-ray Computed Tomography (CT) images. The model can later
be customized to fit a reconstructed femur.

• Assess the feasibility of obtaining a three-dimensional subject-
specific numerical model of the hip joint from a two-dimensional
X-ray image to predict the mechanical effect of common loading
scenarios in the cartilage.

For the methodology, Dual-energy X-ray Absorptiometry images of hip
joints were used to evaluate and refine a machine learning based method
for automatic landmark detection. Additionally, a finite element model
was developed based on a CT image and it modeled one-leg-stance and
walking. Finally, three-dimensional reconstructions of the femur were
made based on automatically detected landmarks on two-dimensional
X-ray images and used to scale the finite element model to match the
size of each reconstructed femur.

Results showed that the method for automatic landmark detection
was able to identify eight anatomical landmarks in the hip joint with



an average error of 0.33 mm when compared to manually annotated
landmarks. The finite element model of the hip joint agreed well with
literature when calculating the contact pressure in the cartilage during
standing and walking. Finite element models scaled in three directions
based on reconstructed femurs were able to predict hip joint cartilage
mechanics.

As this project showed that the concept of creating a three-dimensional
finite element model based on two-dimensional X-ray images was suc-
cessful, future research should focus on automating the process further
and making it applicable to children to be more clinically relevant. This
could enable the possibility to gain information on how pediatric hip
deformities affects the cartilage in the hip joint without additional ra-
diation exposure.
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2D - two-dimensional

3D - three-dimensional

CNN - convolutional neural network

CT - computed tomography

DDH - developmental dysplasia of the hip

DXA - dual-energy x-ray absorptiometry

E - young’s modulus

FAI - femoroacetabular impingement

FE - finite element

FEA - finite element analysis

HOG - histogram of oriented gradients

LCPD - legg-calve-perthes disease

ML - machine learning

MRI - magnetic resonance imaging



OA - osteoarthritis

oML-morph - original ML-morph

SCFE - slipped capital femoral epiphysis

sML-morph - simple ML-morph

SSAM - statistical shape and appearance model

ν - poisson’s ratio
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Chapter 1

Introduction

Osteoarthritis (OA) is a disease that affects millions of people all over
the world and it is the most common form of arthritis [1]. One cause of
osteoarthritis is hip deformities that occur during childhood [2]. Certain
hip deformities occur before the child is born and others develop as the
child is growing [3]. Hip dysplasia is one type of hip deformity that
affects children and 3-5% of the population is affected. Hip dysplasia is
a progressing condition that can cause structural damage to the hip and
it is the number one cause of early osteoarthritis that occurs before 60
years of age [2]. In total, 15% of the adult population is affected by OA
and it is one of the leading causes of disability in the lower extremities
[4]. OA leads to degradation of the cartilage and can cause the patient
pain and discomfort as well as loss of flexibility. The progression of
the disease can be slowed down with treatment but as the condition is
irreversible, the treatment has to start as early as possible [1].

While the initial method of examining newborns in regards to hip
deformities is a physical examination, radiographs are the most used
method of examination when the child is older than six months [5].
One limitation of radiographs is that even though they can show ab-
normalities in the joint, it is not possible to show the exact location of
the irregularity or the shape of the joint. X-ray Computed Tomogra-
phy (CT), a three-dimensional (3D) X-ray imaging technique, can give
a better view of the tissues in the hip joint. Major downsides to cap-
turing CT images compared to two-dimensional (2D) X-ray images are
that it is more costly [6], and will subject the patient to a higher dose
of radiation, something that should be particularly limited in children
[7].
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2 CHAPTER 1. INTRODUCTION

Since the standard procedure when evaluating hip deformities is 2D
X-ray images, it would be beneficial to use the same images to model the
geometry and function of the joint. One possible alternative to this is
to reconstruct a 3D geometry of the hip from the 2D image. A method
for reconstructing femurs based on 2D X-ray images was previously de-
veloped by Väänänen et al. [8]. The input used for the reconstruction is
a Dual-energy X-ray Absorptiometry (DXA) image and corresponding
anatomical landmarks. To produce reconstructed femurs based on au-
tomatically detected landmarks would make it possible to reconstruct
a larger number of anatomies with minimum human interaction.

A 3D subject-specific finite element (FE) model of the hip joint can
assist in understanding how the forces acting on the hip are affecting the
different structures. It could then be used to determine the best route of
treatment and what intervention is necessary for the patient. To make
the FE models of the hip from 2D X-ray images would be beneficial as
it would lower the cost [6] and the dose of ionizing radiation [7].

1.1 Aim

This thesis aimed to build subject-specific computer models of the hip
joint to find a biomechanical connection between pediatric hip deformi-
ties and osteoarthritis. The aim was approached through three main
tasks:

• Automatic landmark detection: Automatically detect anatom-
ical landmarks on 2D X-ray images. This can be used to automate
3D reconstructions of the femur.

• Subject-specific FE model of the hip: Predict the effects of
common loading scenarios in the hip joint cartilage using subject-
specific numerical models developed using CT images. The model
can later be customized to fit a reconstructed femur.

• Reconstruction of DXA images and scaling of the FE
model: Assess the feasibility of obtaining a 3D subject-specific
numerical model of the hip joint from a 2D X-ray image to predict
the mechanical effect of common loading scenarios in the cartilage.
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1.2 Design of the study

This master’s thesis was comprised of three different sections: automatic
landmark detection, subject-specific FE modeling, and one section fo-
cused on reconstructing the femur from the DXA images and scaling of
the FE model. An overview of the thesis can be seen in figure 1.1.

DXA images previously annotated by Dr. Lorenzo Grassi were used
as a starting point of the automatic landmark detection. ML algorithms
were used and tests were performed to determine the accuracy of the
predicted landmarks. The second part of the thesis used a CT image
to develop a subject-specific FE model of the hip joint, modeling two
common loading scenarios. The two parts were combined to reconstruct
femurs based on the landmarks in the DXA images and scale the FE
model to be of the same size as the reconstructed femur.

Automatic landmark 
detection on 2D X-ray image

2D-to-3D reconstruction 
of femur based on the 

landmarks

Subject-specific FE model 
of the hip cartilage contact 

Scaled FE model based on 
the 2D-to-3D 
reconstruction 

Contact pressure in the 
acetabular cartilage

Figure 1.1: Schematic of the design of the master’s thesis project.

1.3 Authors’ contribution

The three parts of this thesis have been divided between the two authors.
The automatic landmark detection was performed by Jonna Fahrman
and the subject-specific FE model was developed by Klara Eriksson.
The reconstruction and scaling was done in equal parts by both au-
thors. Both authors have contributed equally to writing and revising
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this thesis. By dividing the project into two separate parts, the authors
have gained the possibility to help and assist each other in close collab-
oration while making the work efficient and taking advantage of their
different backgrounds.



Chapter 2

Background

In this chapter, general background about the anatomy and biome-
chanics of the hip joint, OA progression, and typical deformities during
childhood are described. The relevant theory for automatic landmark
detection in DXA images and subject-specific FE modeling from clinical
images is also presented.

2.1 Hip anatomy

The human hip joint is the connection between the pelvis and the femur
(see figure 2.1). It is a ball (femoral head) and socket (acetabulum)
joint and allows rotation in all directions. The joint is surrounded by
ligaments that connect the bones and restrict movement [9]. The surface
of the acetabulum and the femoral head is covered in cartilage which
lowers the friction between the two pieces of bone and dampens the
forces. There is also a piece of cartilage called the labrum, surrounding
the brim of the acetabulum. It deepens the socket and makes it more
stable [10].

2.1.1 Anatomical terminology

Anatomical terms can be used to describe parts of the body in relation
to each other, as shown in figure 2.2. Terms that are commonly used in
this thesis are [11]:

• Distal and Proximal: Used to describe how close or how far
something is from the origin in the torso. Proximal is closer to
the torso and distal is further away.

5



6 CHAPTER 2. BACKGROUND

• Lateral and Medial: Describes how close something is to the
midline of the body. Medial is closer to the midline and lateral is
further away.

• Anterior and Posterior: Used to describe how close something
is to the front or back of the body. Anterior is closer to the front
of the body and posterior towards the back.

• Superior and Inferior: Describes how close something is to the
top of the head. Superior is closer to the head and inferior is
further away.

Pelvis

Femur

Femoral head &
femoral cartilage Acetabulum & 

acetabular cartilage

Greater trochanter

Lesser trochanter
Ischium

Ilium

Pubis

Figure 2.1: Illustration and description of the hip joint including fe-
mur, pelvis, and cartilage. Adapted from [12].

Anatomical planes can be used to divide the body into different sections.
The three anatomical planes are, seen from the front as a person is
standing up [11]:

• Sagittal plane: Divides the body into a right and left side and
is a vertical plane.

• Coronal plane: Also a vertical plane, but divides the body into
anterior and posterior.

• Transverse plane: A horizontal plane that divides the body into
an upper and a lower part.

Anatomical terms can also be used to describe how parts of the body
are moving relative to each other [13]. The movements in the hip joint
are [9]:
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• Flexion and Extension: Describes the change of angle of one
part relative to another. Flexion occurs when the angle decreases
and extension when it increases.

• Medial rotation and Lateral rotation: Describes rotation in
relation to the midline. Medial rotation is towards the midline
and lateral rotation is away.

• Adduction and Abduction: Describes movement relative to
the midline. Abduction is a movement away from the midline and
adduction is towards it.

.

Proximal

Superior

Inferior
Distal

Lateral Medial

Proximal

Distal

AnteriorPosterior

Figure 2.2: Anatomical directions shown on the human body. Adapted
from [12].

2.1.2 Anatomy of the hip joint

Bone

Bone is a biological hard tissue that supports movements and protects
some organs [14]. It is built up of collagen, water, hydroxyapatite min-
erals, proteoglycans, and noncollagenous proteins [15]. Bone can be
divided into two types: cortical bone and trabecular bone. Cortical
bone is denser and can be found on the surface of the bone as a thin
shell or in the shaft of long bones. Trabecular bone is less dense, has a
higher porosity, and can be found in the ends of long bones and in the
vertebrae [14].
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The mechanical behavior varies between the two types of bone,
but has some similarities. Both cortical and trabecular bone have
anisotropic behavior, which means it varies in different directions. The
strength is greater in the longitudinal direction compared to the cir-
cumferential direction, and they are stronger in compression than in
tension. For cortical bone, the stress-strain curve when loaded in the
longitudinal direction can be approximated to be bilinear. It has a lin-
ear elastic region that ends with a distinct yield point before the linear
hardening starts. For trabecular bone, the stress-strain curve does not
have a clear linear region [14].

The bones in the hip joint are the femur and the ones making up
the pelvis [16]. The femur is the longest bone in the body and its main
function is to be weight-bearing and contribute to stability in the gait.
The most proximal part of the femur, the femoral head, is connected to
the acetabulum [17], a socket in the lateral part of the pelvis [16]. Close
to the femoral head are two bony parts where muscles are attached, the
greater trochanter and the lesser trochanter [17]. The pelvis consists of
the two hip bones and the sacrum that joins them together. The hip
bones consist of three parts each: the ischium, the ilium, and the pubis.
The ilium is located in the superior part, the ischium in the inferior
posterior part, and the pubis in the inferior anterior part [16].

A commonly used material model for bone in biomechanics is isotropic
elastic materials [18, 19, 20] This is a simplification of the behavior of
bone. An isotropic elastic material behaves the same in all directions
and the stress is proportional to the strain. It can be described by
Young’s modulus (E) and Poisson’s ratio (ν) [21]. The material param-
eters used in this thesis will be defined in chapter 3.4.3.

Cartilage

Cartilage is a soft tissue that mostly consists of water, collagen, and
large proteoglycans [22]. There are several types of cartilage in the
body with different functions. The type of cartilage found in the hip
joint is called articular cartilage and cover the ends of bone [23]. The
cartilage in the hip joint is made up of two parts, one that covers the
femoral head and one that covers the acetabulum [24]. Its purpose is
to provide a smooth surface and to be able to transfer loads with low
friction. The thickness of the articular cartilage is 2-4 mm [23] and it
decreases with age, beginning as early as school-age [25].

The structure and properties of cartilage, and the orientation of
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the collagen fibers is depth-dependent (see figure 2.3). In the superficial
zone, the collagen fibers are oriented parallel to the surface and make up
10-20% of the articular cartilage. In the middle zone, 40-60%, they are
oriented in random directions. In the deep zone, 30% of the cartilage,
the collagen fibers are perpendicular to the surface [22] and resists most
of the compressive forces [23]. The amount of proteoglycans also varies
with depth [22]. Below the deep zone, there is a thin layer called the
calcified layer, which is attaching the cartilage to the underlying bone
[23].

Superficial zone

Middle zone

Deep zone

Calcified layer

Figure 2.3: Cartilage is divided into zones, based on the orientation
of the collagen fibers and the local composition of the tissue.

The mechanical behavior of cartilage can be described as being both
non-linear and time-dependent [22]. It can be seen as a biphasic medium
that has a solid phase and a fluid phase. When a force is applied,
the interstitial fluid pressure increases, which causes the fluid in the
cartilage to flow out. When the force is removed and the pressure is
decreasing, the fluid moves back again. As the force is applied, the
articular cartilage is stiffened which changes its mechanical properties.
This produces a challenge in only having one set of material parameters
for the articular cartilage [23], and to use a material model to describe all
of its properties. Which material model is most suitable to use depends
on the situation, but it is often beneficial to choose the simplest model
possible that is still able to provide answers to the research question
asked [22].

A simple material model for cartilage that is commonly used is a
neo-Hookean hyperelastic material. This material model does not take
into account all behaviors of cartilage, however, it has previously been
used for cartilage in several FE models of the hip joint [18, 19, 20, 26,
27, 28]. It is a simple material model that has been shown to agree well
with experimental studies [26]. A hyperelastic material has a non-linear
response for larger strains and an elastic behavior for smaller strains. A
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neo-Hookean hyperelastic material is based on the shear modulus (G)
and bulk modulus (K) of the material [21]. A neo-Hookean hyperelastic
material is described by equation 2.1, where C10 is half the bulk modulus
and D1 is twice the shear modulus. U is the strain energy per unit of
reference volume, I1 is the first deviatoric strain invariant, and Jel is
the elastic volume ratio [29]. The material parameters used for cartilage
will be defined in chapter 3.4.3.

U = C10(I1 − 3) +
1

D1

(Jel − 1)2 (2.1)

Ligament

Ligaments attach bones to each other to maintain the correct position.
They also restrict the relative movement between bones and are strong
in resisting tensile loads. Ligaments consist of dense fibrous connective
tissue that is built up by collagen, elastin and proteoglycans [15].

There are three major ligaments that form the hip joint capsule and
attach the femur to the pelvis [24]:

• Iliofemoral ligament: The strongest ligament in the body. It
limits extension and external rotation. It is attaching the anterior
inferior iliac spine to the intertrochanteric line of the femur.

• Ischiofemoral ligament: Connects the posterior surface of the
acetabular rim to the anterior aspect of the femur and limits in-
ternal rotation and adduction of the hip.

• Pubofemoral ligament: Attached to the anterior surface of the
intertrochanteric fossa of the femur and the anterior part of the
pubic ramus of the pelvis. This ligament limits the abduction and
extension of the hip.

2.2 Biomechanics of the hip joint

The hip joint is crucial for walking and the ability a person has to walk
depends on the anatomy and biomechanics of the hip. During gait and
other movements, several forces are acting on the hip. When the hip
is in motion, the conditions of static equilibrium are not fulfilled as the
muscles surrounding the joint are generating forces. The acceleration of
the moving parts during gait is relatively small compared to the forces
from the muscles and the impact of gravity. One way of modeling gait
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can therefore be by having the subject stand on one leg. A free body
diagram of the hip joint can be seen in figure 2.4. The force R is
the reaction force in the acetabulum, A is the force produced by the
abductor muscle, and B is the weight of the body without the standing
leg [15].

R

A ba
O

y

x

B

Figure 2.4: Free body diagram of a person standing on one leg, where
the left leg of the subject is not touching the ground. R is the joint
reaction force, A is the abductor muscle force and B is the weight of
the body minus the standing leg. O is the center point for the movement,
and a and b are moment arms. Adapted from [12].

Each of the lower extremities weighs approximately 1
6
of the total body

weight, which makes B ≈ 5
6
W where W is the entire body weight. With

the center of the movement in point O, the moment in the joint can be
described as in equation 2.2. The force in the acetabulum (A) is defined
by equation 2.3. a and b are moment arms from the point O to the point
where the forces A and B are acting [15].

ΣM = aA− bB = 0 (2.2)

A =
b

a
B =

5b

6a
W (2.3)

The forces acting on the joint are in equilibrium when standing on one
leg. Assuming that the x-direction is horizontal and the y-direction
is vertical, the total forces of the joint in the two directions can be
calculated as in equations 2.4 and 2.5 [15].
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ΣFx = Rx − Ax = 0 (2.4)

ΣFy = Ry − Ay −B = 0 (2.5)

2.3 Hip pathology

There are several hip deformities that can affect children. Some of the
most common hip deformities can lead to OA if not detected early and
treated properly [5, 30, 31, 32].

2.3.1 Osteoarthritis

Osteoarthritis is a degenerative disease where the articular cartilage
wears down over time. OA is most common in the hands, knees, hips,
and spine, but can affect any joint in the body. When the cartilage starts
wearing down, the person will experience pain, stiffness, tenderness,
and loss of flexibility. Bone spurs can form which are small pieces of
protruding bone along the cartilage. OA can also cause inflammation
in the joint and the surrounding tissue [1]. X-ray radiography is the
most commonly used technique for OA diagnosis. The condition can
be identified by the reduction of space between the acetabulum and the
femoral head or by the presence of bone spurs [33].

2.3.2 Pediatric hip deformities

One hip deformity that can occur during childhood is Developmen-
tal dysplasia of the hip (DDH). DDH is an umbrella term for several
anatomical differences in the acetabulum and the femoral head. A com-
mon representation of DDH is that the acetabulum is shallow or oriented
in an abnormal direction. It can cause dislocation of the hip, and if left
untreated, can lead to pain and OA during early adult years. Improving
the development of the hip and preventing these problems in adulthood
is therefore very important. The main risk factors for DDH are breech
positioning in utero, being firstborn, female sex, and family history [5].

Femoroacetabular impingement (FAI) is a form of hip deformity that
can occur as a child is growing. The basis of the condition is that extra
bone will form on either of the two bones making up the joint. This
will create an abnormal and irregular shape which can cause pain and
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stiffness in the joint. If not detected, the misshapen bones will rub
together unnaturally and may cause damage to the cartilage and labrum
[30].

Another disease that can affect the hips of children is Legg-Calve-
Perthes disease (LCPD). It occurs as the blood supply to the femoral
head is temporarily interrupted. This causes the tissue in the bone to
die and become necrotic. It will cause the bone to break apart and the
femoral head may lose its rounded shape. The interruption of the blood
flow will eventually be restored and the bone will start to regenerate.
If the femoral head was already misshaped, this can cause problems to
the joint and cause the child to limp, have pain, and become stiff in the
joint. LCPD is most common in boys aged 4-10 [31].

One abnormality that can affect adolescents is Slipped capital femoral
epiphysis (SCFE) and it is one of the most common hip disorders in the
age group. The head of the femur will slip backward at the growth
plate on the femoral neck. SCFE is more likely to appear in overweight
adolescents or in association with a growth surge. Different endocrine
disorders can also lead to an increased risk of developing SCFE. The
disease has symptoms such as limping and pain in the groin, knee, thigh,
or hip [32].

2.4 Medical imaging of the hip

DXA images, radiography images, and CT images were used in this
thesis. They are three types of medical images commonly used to depict
the hip. All techniques are using X-rays, but what images they produce
and the risk they entail are slightly different [7].

2.4.1 2D X-ray images

X-rays are electromagnetic radiation of higher energy than visual light,
which allows them to easily penetrate soft tissues. The amount of X-rays
absorbed in different types of tissue, dependent on their composition and
density, will create an image on a detector on the opposite side of the
body. This 2D image is referred to as radiography [34]. Two standard
projections can be produced when performing a radiography of a hip,
anteroposterior view and lateral view [35].

DXA is a method that is used to measure bone density. It is primar-
ily used for osteoporosis diagnosis and screening [36]. DXA uses X-rays
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of two different energies as they are absorbed in different amounts in
tissues of different densities. Based on this, an estimation of the density
in bone and other tissues can be given [37].

2.4.2 X-ray Computed Tomography

CT is a medical imaging technique that produces 3D images of the
subject, who is laying on a bed that moves during the scan. The X-
ray source and detectors are rotating around the patient to scan from
different angles. The scans are used to recreate a number of slices, using
a mathematical process. The thickness of the slices can vary depending
on the scanner used or be selected depending on what part of the body
is examined. The scanning process is repeated until the whole region
of interest is scanned. By adding all reconstructed slices together, it is
possible to recreate a 3D image [7].

CT images are especially useful to image bones. The dense struc-
ture of the bone absorbs most of the X-rays and it is therefore easy to
distinguish. It is also possible to examine other tissues using CT, but
depending on their ability to absorb the X-rays, it can be difficult to
separate them from each other. Contrast agents can be used to enhance
soft tissue contrast by increasing X-ray absorption in specific locations
[7].

The advantage of using CT compared to conventional X-ray radio-
graphy is that it produces a 3D image that contains more detailed in-
formation. However, there are some risks to using CT as the amount of
ionizing radiation reaching the patient is much higher in comparison to
conventional 2D X-ray imaging [7].

2.4.3 Radiation risks

All medical imaging that involves X-rays entails some risks to the pa-
tient. X-rays are ionizing radiation [7], that is, they have the ability to
free electrons from atoms due to their high energy. In living organisms,
this can lead to cell damage [38], and increase the risk of cancer [7].

Children are more sensitive to ionizing radiation compared to adults
and it is therefore especially important to be careful when exposing
them to ionizing radiation. They are also expected to live longer after
exposure and it is important to give low doses to children to reduce the
risk of developing cancer in the future [7].
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2.5 Machine learning

Machine Learning is a branch of artificial intelligence where algorithms
can be trained on sets of data to predict the result of new, unseen data
and thereby create new original answers. ML algorithms can be either
unsupervised or supervised [39].

Unsupervised ML has no known answers to the data, also known as
ground truth. Instead, it has to find patterns in the images to base the
prediction on. Unsupervised ML can for example be used for denoising
data or data comprehension. Sometimes, unsupervised ML can be used
before supervised ML to gain a better understanding of the data [39].

Supervised ML is more common in the field of object detection and
uses annotations to train the algorithm for their prediction. It can be
used for example to perform classification, regression, object detection,
and segmentation. Successful training of a supervised ML algorithm
requires input data, corresponding outputs, and a method to determine
the algorithms performance [39]. In this thesis, two methods for super-
vised learning have been used.

When using an ML algorithm, it will be trained, validated, and
tested. This is done by using different sets of the data, train, test, and
validation [40]. The training set is a portion of the actual data that
the algorithm sees and uses to learn what is of interest in the data.
The validation set is sometimes separated from the test set and is used
to fine-tune the ML algorithm. The validation set can see the original
data but does not learn from it. The test set is only used when the
ML algorithm is trained and is used to evaluate the accuracy of the
predictions [41].

2.5.1 Automatic landmark detection

A landmark is a point in an image that is of specific interest that con-
tains useful information and is stable when the image changes. Land-
marks can be divided into three categories [42]:

• Anatomical landmarks: Points in a morphological image that
are of interest due to the biological meaning of the position. They
will have the same position in images of different (healthy) speci-
mens.

• Mathematical landmarks: Landmarks placed based on math-
ematical properties of a feature in an image such as a curve or
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angle.
• Pseudo-landmarks: Constructed points located between anatom-
ical or mathematical landmarks, for instance, used to create more
sample points.

The type of landmarks used to annotate the images in this thesis is
anatomical landmarks.

2.5.2 ML-moprh for landmark detection

One case where ML has been used to automatically detect landmarks in
morphological images is presented in ML-morph: A fast, accurate and
general approach for automated detection and landmarking of biological
structures in images by Porto and Voje [40]. This manuscript describes
the development of a supervised ML algorithm for automatic predic-
tion of landmark placement. Its capabilities are illustrated through the
detection of biological structures in Drosophila wings, sea bass, and a
bryozoan colony.

ML-morph depends on a set of parameters to be tuned for optimal
performance in a specific application. ML-morph is divided into two
parts: object detection and shape recognition. Object detection is per-
formed to detect the position of the object of interest in the image. This
is done based on the manual annotations and thereby, the algorithm will
identify the object location in the image. ML-morph uses a histogram
of oriented gradients (HOG) to describe the image. Image regions are
randomly extracted in each training image using bounding box annota-
tion. The HOG features of the box are then extracted and a new set of
images is created. A structural support vector machine is then trained
on the new set of images to classify an image based on whether a region
is positive, contains the object, or negative, does not contain the object.
To detect the object, a sliding window is passed over the image and in
each position, based on a threshold value, determines if the window con-
tains an object. ML-morph then performs 10-fold cross-validation on
the object detector to prevent overfitting errors [40]. In the object de-
tection part of the algorithm, several parameters are possible to change
to fit the algorithm to the data:

• ϵ: Epsilon, ϵ, is the insensitivity parameter. It corresponds to a
zone where there is no penalty assigned to errors. This means that
a high value of ϵ will allow larger errors [40].
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• C parameter: The C parameter will determine the distance be-
tween the hyperplane that separates the two classes (object and
not object) and the closest data point. This can also be referred
to as the size of the margin [40].

• Upsample limit: To upsample the data means that artificially
generated data points are created from the minority class, the type
of data with least occurrences, to balance the class label. Upsam-
pling can be done in several different ways such as duplicating
existing points or using algorithms such as K-nearest-neighbors
[43].

• Window size: The sliding window will pass over the image and
whenever the image passes a threshold test, the output is that
there is an object. This is expressed as the height multiplied by
the width of the window [40]. The window must be large enough
to be able to detect the changes in intensities in the image but
small enough not to miss small details [44].

The next step of the ML-morph algorithm is shape detection. Object-
specific automated landmark detection is performed by a cascade regres-
sion algorithm. Iteratively, the cascade regression will find the shape of
the object from the sparse subset of pixel intensities in the image. If
object detection is used, only the area of the image where the object
is located will be used for cascade regression [40]. The shape detection
part of the algorithm also has several parameters that can be modified:

• Tree depth: The depth of the regression tree used in the method
[40]. A regression tree is a type of decision tree that can be used
to make quantitative predictions. A decision tree will recursively
make decisions at splitting nodes to eventually end at a singular
point where only one option is possible [45].

• Cascade depth: The cascade depth is the number of times the
shape is updated based on the local pixel patterns during the
prediction. The depth is hence the number of increments between
the initial ‘guess’ of the shape and the final predicted shape [40].

• µ: µ is a regularization parameter. Regularization means that the
algorithm will have a preference for one solution over the other
when deciding between two equal [46].

• Oversampling: Oversampling reduces the impact of an imbal-
anced datasets. This is done by generating synthetic samples of
the minority class to make the number of data points for each
class more balanced [47].
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The number of threads can be altered in both the object detection and
the shape detection to increase or decrease the time ML-morph takes
to run [40]. Using threads, several processes can be executed simulta-
neously and independently of each other, which allows some processes
to keep running even if another is performing an operation that takes a
long time [48].

There are two versions of the ML-morph available, ‘original ML-
morph’, oML-morph, and ‘simple ML-morph’, sML-morph [49]. The
difference between the oML-morph and the sML-morph is that the sim-
ple version assumes that there is only one object in the image and
therefore it does not do object detection, only shape detection. Both
the sML-morph and oML-morph were evaluated in this thesis.

2.5.3 Other ML algorithms for landmark detection

Another example of an algorithm where ML is used to automatically de-
tect landmarks, is the implementation of convolutional neural networks
(CNN) by Le et al., to detect anatomical landmarks in images of a bee-
tle [50]. CNNs have several layers that predict the outcome based on
the output of the last layer. Common types of layers are convolutional,
pooling, dropout, and full-connected layers [50]. Another example is
a manuscript by Mehryar et al. where 3D images of human faces are
used in automatic landmark detection. The algorithm in question uses
curvature-based landmark detection where the surface of a face is used
to find regions of interest by using Gaussian and mean curvatures [51].
In a third manuscript by Manacorda et al. Procrustes analysis was used
to perform shape analysis and landmark prediction in images of plants.
In this case, the specimens had a much larger deviation in appearance,
and therefore, performing shape analysis to out rule information that is
not relevant is highly beneficial [52].

ML-morph was used in this thesis as it is a complete algorithm, ready
to use, and developed to detect anatomical landmarks in morphological
images. It was also easy to adapt ML-morph to the data used in this
thesis.

2.6 Subject-specific FE modeling

The finite element method is a numerical method to obtain approximate
solutions for partial differential equations. It can be used for one-, two-,
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or three-dimensional regions. The basis for all calculations is that the
whole geometry is divided into small pieces, finite elements, for which
the calculations are made. By dividing the region into smaller elements,
it is possible to find an approximate solution for each element instead of
the entire region. By then adding the solution for all elements together,
it is possible to find a solution for the whole region. All the elements
form a FE mesh [53].

Finite element analysis (FEA) is a useful tool in biomechanics. It
can be used to model the response of the hip during various activities
to evaluate how the cartilage in the hip is affected [26].

The starting point of solving a FE formulation of a problem is known
as the strong form and it describes the physical system to be solved.
From the strong form, the weak form is obtained. The strong form is
multiplied by a weight function chosen following the Galerkin method
and integrated over the elements. In a simple one-dimensional mechan-
ical problem, this results in equation 2.6 [53].(∫ b

a

BTAEBdx

)
a = −[NTAϵ]ba +

∫ b

a

NT bdx (2.6)

B = dN
dx
, A is the cross-sectional area, E is Young’s modulus, a is the

nodal displacement, N is the shape function, ϵ is the strain, and b is
the forces acting on the body. From equation 2.6 the standard FE
formulation in mechanical problems is obtained:

Ka = f (2.7)

K is the stiffness matrix and is equal to K =
∫ b

a
BTAEBdx. f is

the force vector that is obtained by adding the boundary vector (fb =

−[NTAϵ]ba) and load vector (fl =
∫ b

a
NT bdx) together, and a is the

displacement vector. By solving this equation for each element, and
adding them together, a solution for the whole body is obtained [53].

In this thesis, Abaqus [54], a FEA software, is used to find the
solution to the standard FE formulation and perform the analysis of
the FE models of the hip joint.

2.6.1 Image Segmentation

In biomedical applications, the geometries of interest are often seg-
mented from clinical images such as CT images or images from magnetic
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resonance imaging (MRI). As tissues in the body have different densi-
ties, the image will have varying intensities and thus making tissues
possible to distinguish from each other. The segmentation can be made
either automatic or semi-automatic, depending on the type of tissue.
Especially the cartilage in the hip can be difficult and time-consuming
to segment since it consists of two parts, one on the femoral head and
one on the acetabulum, and they are very close together. Contrast
agents are often necessary to distinguish the cartilages in the hip joint
when CT images are used. Due to the difficulties in segmenting car-
tilage, attempts have been made to approximate the geometry of the
cartilage in different ways. This reduces the time it takes to perform the
segmentation, but the results do not correspond completely to results
from experimental studies [18].

In this thesis, CT images of the hip joint were used. The segmenta-
tion was performed using a semi-automatic approach.

2.6.2 Elements and mesh

A mesh consists of all finite elements needed to describe the geometry.
Various types of elements and element sizes can be used to produce
the mesh. Tetrahedral elements and hexahedral elements are two types
of elements that are commonly used in 3D FE models (see figure 2.5).
Tetrahedral elements can often be more easily generated for complex
geometries, like biological structures. In softer tissues, there can be a
problem with tetrahedral elements as they can be too stiff in large defor-
mations, it is therefore often preferred to use hexahedral elements. To
generate a hexahedral mesh is often more time-consuming compared to
a tetrahedral mesh. The reason is that there are many robust alterna-
tives for generating a tetrahedral mesh, and only some limited options
for generating a hexahedral mesh [22]. In this thesis, both four-noded
tetrahedral elements and eight-noded hexahedral elements were used.

Figure 2.5: The left figure is a four-noded tetrahedral element and the
right figure is an eight-noded hexahedral element.



Chapter 3

Materials & Methods

3.1 Material

In this thesis, 2D X-ray images and 3D X-ray CT images were used.
The images used are presented below. The images are of adults as this
thesis was a first attempt to develop the tool presented. It is also harder
to access images of children.

3.1.1 2D X-ray images

One set of images used were manually annotated DXA images of the
pelvis and femur. The images are from the MrOs Sweden study, cap-
tured in Malmö and Uppsala [55]. The images were collected in a study
of adult males affected by osteoporosis. The subjects in the images
were between 69 and 80 years old. The study included 2008 subjects
and in this thesis, 2042 images of one of the hips were used, some of
the right hip and some of the left, and mirrored to all face the same
direction. As the images are of different sizes, each image had been
padded to obtain a final image size of 295x212 pixels. Each pixel is 0.6
mm in the x-direction (lateral-medial) and 1.05 mm in the y-direction
(inferior-superior). As the images were in jpg format, the pixels in the
images were isometric. The manually annotated landmarks for each
image were used as a ground truth. There are eight landmarks in each
image, which are depicted in figure 3.1 and explained in table 3.1. The
images were annotated prior to the start of this thesis project by Dr.
Lorenzo Grassi as part of a separate, ongoing study.

21
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Figure 3.1: Manual annotations on a DXA image of the hip. 1: lesser
trochanter, 2: greater trochanter, 3: on the superior side of the femoral
head, 4: on the medial side of the femoral head, 5: on the inferior side of
the femoral head, 6: on the superior side of the brim of the acetabulum,
7: on the medial side of the brim of the acetabulum, 8: on the acetabular
labrum.

Table 3.1: Location of landmarks seen in image 3.1.

Landmark Explanation

1 On the medial point of the lesser trochanter
2 On the most lateral part of the greater trochanter
3 On the superior side of the femoral head
4 On the medial side of the femoral head
5 On the inferior side of the femoral head
6 On the superior side of the brim of the acetabulum
7 On the medial side of the brim of the acetabulum
8 On the acetabular labrum

Another type of images that were used in the automatic landmark de-
tection were radiography images. The dataset used is called Pelvis-X-
ray Segmen-tation Database (see figure 3.2), and was accessed through
GitHub, licensed under an MIT license [56]. The dataset was created
at the Center for Artificial Intelligence at Chang Gung Memorial Hos-
pital on the 5th of August 2020. Version 1.0.0 of the dataset was used.
The images in the database are anteroposterior pelvis radiograph as-
sessments of 400 subjects, captured at Chang Gung Memorial Hospital.
205 of the images were used in this thesis. The sizes of the images are
(1600 ∼ 2700) x (1600 ∼ 2700) pixels.
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Figure 3.2: A radiography image of the hip.

3.1.2 CT image

The CT image used for the subject-specific FE model came from a
cadaveric hip joint from a multiscale data collection (see figure 3.3)
[57]. The image is of an 81-year-old female who weighed 63 kg with no
history of musculoskeletal disease. The image includes the whole lower
body including the hip, leg, and foot. The size of each slice is 512x512
pixels and has an isotropic pixel size of 0.98 mm, and the image has
a total of 1120 slices. No contrast agent was used, which means that
the denser tissues such as bone were more prominent in the image while
softer tissues such as cartilage were harder to distinguish [7].

Figure 3.3: The CT image of the 81-year-old female used for the
subject-specific FE model. Sagittal view (left), transverse view (mid-
dle), and coronal view (right).

3.2 Overview of the methods

The first part of the thesis was focused on image analysis and ML and
the goal was to automatically detect landmarks in DXA images of the
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hip. In the second part of the thesis, the goal was to develop a CT-based
FE model of the hip cartilage contact. The two parts were then com-
bined to create FE models of the hip based on automatically detected
landmarks in DXA images.

3.3 Automatic landmark detection

This section of the thesis evaluated the possibility of using ML to au-
tomatically detect landmarks in DXA images of the hip joint. This has
been done by using an algorithm by Porto and Voje [40, 49] and by
researching the possibility to use other alternatives.

3.3.1 ML-morph

The output of the oML-morph that uses shape detection and object
detection, and the sML-morph that uses only shape detection, is the
coordinates of the predicted landmarks. Below, different ways ML-
morph has been used and how the images have been augmented will
be presented. An overview of the workflow of the automatic landmark
detection can be seen in figure 3.4.

Figure 3.4: Overview of the automatic landmark detection using ML.

Testing different parameters

To make the oML-morph and sML-morph applicable to the DXA images
used, several combinations of the parameters introduced in chapter 2.5.2
have been tested. Provided with the code for ML-morph was an example
of parameter values used on the images of drosophilid wings. These
parameters were initially used to test the ML-morph on the DXA images
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and were in this thesis used as a guide when investigating the parameter
space.

The parameter study was comprised of varying one parameter at a
time. The parameter values used in this thesis can be seen in table 3.2.
The parameters in oML-morph were evaluated first and started with the
parameters used for object detection. The window size parameter was
evaluated first as some values of the parameter would give errors and
some images would be excluded. Therefore, a value of the window size
that included all images was found, values above and below were tested
and the best value found was kept for the rest of the testing of object
detection. The number of threads, ϵ, and C were varied one at a time,
in the same manner as the window size. The up-sample limit for the
object detection was not investigated as the example from ML-morph
did not. The parameters in the shape detection were then evaluated for
oML-morph in the order seen in table 3.2, by increasing and decreasing
the value of each parameter and picking the value that gave the most
accurate predictions. The best parameter set was then used as a base
and each value was varied again in the order of table 3.2. This was then
done one more time for the new best set of parameters. In total, 85
different sets of parameters were tested for oML-morph.

Table 3.2: The parameters that was investigated as well as ranges
tested.

Parameter Tested values

Object detection Threads 1, 7, 10
Object detection ϵ 0.001, 0.01, 0.1, 1
Object detection C 1, 5, 10
Object detection Window size *103 2, 3, 4, 4.1, 5, 5.5, 6, 10

Shape detection Threads 1, 2, 4, 7, 10, 15
Shape detection Tree depth 1, 2, 3
Shape detection Cascade depth 1, 10, 20, 25, 30, 50
Shape detection µ 0.001, 0.01, 0.02, 0.03, 0.04, 0.05,

0.06, 0.07, 0.08, 0.09, 0.1, 1
Shape detection Oversampling 10, 25, 75, 100, 200, 500, 1000

All parameter sets for the shape detection used by oML-morph was
tested on the sML-moprh as well. The best set of parameters using
sML-morph was then used as a base and each of the parameters were
changed slightly, one at a time, to find the set with highest accuracy.
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In total, 87 different sets of parameters were tested for sML-morph.
When determining the best parameters, the same sets of images were

used for training and testing. Out of all the images, 80%, 1664 images,
were used for training and the other 20%, 408 images, were used for
testing and validation. The performance of each test of the automatic
landmark detection was evaluated in two ways: 1) the mean of the
euclidean distance between each automatically detected landmark, and
its corresponding manually annotated landmark for each image, ME
(Mean Euclidean), 2) the mean of the maximum, minimum, and mean
distance in the the distance in the x-direction (lateral-medial) and the y-
direction (inferior-superior), and the euclidean distance for each image,
MA (Mean All). ME was used to evaluate the mean performance of
the automatic landmark detection and MA to include the presence of
outliers. Euclidean distance was used by Porto and Voje as well to
determine the efficiency of the shape detector [40].

Attempts to improve the accuracy

Several ways of pre-processing and augmenting the images were per-
formed to see how the performance of the ML-based landmark annota-
tion would be affected.

When running the oML-morph, a larger deviation in the x-direction
(lateral-medial) was shown. To evaluate this, the DXA images were
rotated 90° counterclockwise. The rotated images were tested with three
different sets of parameters, twice each, giving a total of six runs. It
was tested on both the oML-morph algorithm and the sML-morph.

Another attempt at improving the performance of the algorithm was
to mask the images. This was performed to examine if the automatic
landmark prediction would be more accurate if the contrast between
different areas in the images was higher. This was done by creating
a binary, ‘masked’ version of the DXA image where any pixel above
20% of the intensity in an image was gray and the other was black.
The masked image was then tested on the sML-morph on a selection
of different parameters. The next step of the masking process was to
create a filled-in outline of the hip. This was done by a series of dilation
and erosion. When using the dilation command, all holes in the image
increased by one pixel in each direction. As the black background is
considered a big hole by python, the specks in the background of the
image were removed. The erosion command does the opposite of the
dilation and increased the size of the holes, removing the specks in the
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object in the image [58]. The outline of the femur was used as a template
to create a ‘double-masked’ image where the intensities of the original
image were saved in the bone regions but the noise in the background
was removed. An example of producing the masked images can be seen
in figure 3.5. This was tested on only the sML-morph on three different
sets of parameters.

Figure 3.5: Overview of how the masked images were created. Left:
masked image. Middle, top: binary image. Middle, bottom: original
image. Right: double-masked.

Radiography images

The images from the Chang Gung Memorial Hospital dataset were in-
teresting to use as they are radiography images. This will test the
robustness of sML-morph as they were captured with another imaging
method than the DXA images.

The images from the new dataset were tested and evaluated using
the six best parameter sets from the DXA images and used with the
sML-morph. The images in the radiography dataset were first split in
half to only contain one hip each, and half of the splits were flipped to
all face the same direction. Next, the radiography images were cropped
and padded to make the proportions of the radiographs the same as
the DXA images, though the size of the image would still be different.
Predictions of the landmarks in the cropped images were then done
by sML-morph, previously trained on only the DXA images. 205 of
the cropped radiography images were annotated and sML-morph was
trained and tested on the images. Using only the radiography images
was done to test the robustness and to see how well hips in radiography
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images would be predicted when trained on radiography images. Lastly,
the 205 radiography images were mixed into the DXA images and sML-
morph was trained and tested.

3.4 CT-based FE model of the hip joint

The methodology for the subject-specific FE models of the hip joint was
divided into three main parts: pre-processing, processing, and post-
processing. The pre-processing included segmentation to create a 3D
model of the geometry and generating a FE mesh of each part (pelvis,
femur, and both cartilages). The workflow for meshing bone (pelvis
and femur) and cartilage (acetabular and femoral cartilage) differed as
described in more detail in each section. Processing included the simu-
lation of the FE model, and post-processing was focused on analyzing
and comprehending the results. An overview of the workflow can be
seen in figure 3.6.

CT image
Segmentation

(3D Slicer)

Post-processing
(Meshmixer)

Post-processing
(MeshLab)

FE model
(Abaqus)

STLàSAT file
(MATLAB)

Mesh
(Hypermesh)

Mesh
(Abaqus)

Bone

Cartilage

Figure 3.6: The workflow for creating the FE model from the CT
image.

3.4.1 Segmentation

The CT image of the right hip joint was segmented using the software
3D Slicer [59]. The goal was to segment the proximal femur, pelvis, and



3.4. CT-BASED FE MODEL OF THE HIP JOINT 29

the gap between the bones as cartilage (see figure 3.7). The cartilage was
segmented as a single part due to the difficulty in separating them from
each other in the image. The goal was to later separate the cartilage
into two parts: femoral cartilage and acetabular cartilage. The labrum
was excluded as it does not provide a significant contribution to the
load support in the hip joint [60, 61].

Figure 3.7: Segmentation in 3D Slicer. Coronal, sagittal, and trans-
verse view. The green areas are the femur, yellow are the pelvis, and
red are the entire cartilage.

The segmentation was performed using a semi-automatic approach. The
pelvis and the proximal femur were mostly segmented using a threshold
tool that marked all pixels within an intensity interval. However, man-
ual segmentation was needed to segment the complete bones. When
segmenting the bone, both types were considered cortical bone as mod-
eling them separately has shown to have a small impact on cartilage
contact mechanics in FE models of the hip joint [27, 62].

The contrast between cartilage and other soft tissues in the image
was low, which made it difficult to use an automatic approach. Carti-
lage was mostly segmented by manually selecting all pixels in the gap
between the segmented pelvis and femur, carefully avoiding any over-
lap. The thickness of the segmented cartilage was later decreased to
be approximately half the thickness of the gap, to only correspond to
the acetabular cartilage. The femoral cartilage was made in the post-
processing of the surface mesh.

All parts that were segmented in 3D Slicer were exported separately
as STL files including a surface mesh consisting of triangular elements.
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Post-processing of the surface mesh

When doing post-processing of the segmented parts, Meshmixer [63]
and MeshLab [64] were used for bone and cartilage, respectively. In
both software, similar post-processing was performed. The main steps
included reduction of the triangular surface mesh by increasing the el-
ement size and smoothing the surfaces to remove small irregularities.
For the bones, the amount of reduction of the mesh varied between dif-
ferent parts of the geometry. In the areas that were in contact with
cartilage, the size of the elements was smaller than in parts that were
not in contact. The reason for that was to have an element size closer
to the one used for cartilage. The reduced and smoothed mesh for all
parts were exported as STL files.

To make the part representing the femoral cartilage, Meshmixer was
used. The segmented femur was cropped to only include the part of
the femoral head that is covered in cartilage. An offset of 1 mm from
the surface (approximately half the thickness of cartilage in a healthy
subject) was made to represent the femoral cartilage. Post-processing,
which included smoothing and reduction of the triangular surface mesh,
was performed in MeshLab.

3.4.2 Generating the mesh

Cartilage was modeled using hexahedral elements and bone using tetra-
hedral elements, which resulted in different pipelines for FE mesh gener-
ation. Tetrahedral elements are beneficial for more complex geometries
and hexahedral elements are preferred to use for softer tissues like carti-
lage, as mentioned in chapter 2.6.2. These types of elements have been
used previous to this thesis, modeling both bone and cartilage in several
FE models of the hip joint [18, 19, 20, 26, 62, 65]. Generating the mesh
for bone had a more automatic approach while generating the mesh for
cartilage required more manual work.

Bone

The mesh for the pelvis and femur was generated using HyperMesh [66]
(see figure 3.8). The element size in the tetrahedral mesh was based on
the size of the triangular elements in the surface mesh. The mesh for
both pelvis and femur was exported as Abaqus input files. The meshes
of the femur and pelvis had 86,451 and 129,400 tetrahedral elements.
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Figure 3.8: The tetrahedral meshes used for the femur and the pelvis.

Cartilage

An initial attempt was made to generate the mesh for cartilage in Hyper-
Mesh. Due to the complex geometry of cartilage, and that hexahedral
elements were used, it was more complicated to generate the mesh in
HyperMesh compared to the mesh for bone. Two methods for generat-
ing a hexahedral mesh in HyperMesh were explored, they either changed
the geometry or resulted in a highly unstructured mesh. Other options
were explored and resulted in a mesh generated using Abaqus.

When generating the hexahedral mesh, a guide by Paul Bolcos in
Simuleon FEA Blog was followed [67]. To generate the mesh in Abaqus,
the STL file including the triangular surface mesh from MeshLab, had
to be converted into an SAT file. The conversions were performed us-
ing MATLAB code for an STL to SAT converter by Adam H. Aitken-
head [68]. The SAT files were then imported as parts into Abaqus, one
part representing the acetabular cartilage and one part representing the
femoral cartilage. A small portion of the edges of each cartilage was
manually cut off, by marking and removing the edges after manual in-
spection, to receive straight edges. By cutting off the edges, the most
uneven parts of the cartilages that made it difficult to generate a mesh,
were removed. Since only a small portion of the edge was cut off, the
effect this simplification had on the model is minimal [67]. For both
cartilages, the mesh was generated using the sweep mesh technique in
Abaqus.
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The acetabular cartilage, that had the entire segmented cartilage as
a starting point, had to be reduced in thickness to only correspond to
half the gap between the bones. The mesh was created for the whole
segmented cartilage and later decreased in thickness. Both the element
size and the number of elements through the thickness were specified
before the mesh was generated. The element size used for the acetabular
cartilage was 0.7 mm. Initially, the thickness of the mesh was ten ele-
ments, increasingly smaller in thickness towards the center of the mesh.
The seven layers of elements closest to the femoral head were then re-
moved to only keep a thin slice of the mesh as the acetabular cartilage.
The thickness of the final acetabular cartilage was thus three elements
and varied in different parts in a range of 0.45-0.83 mm. The thickness
in mm of the final acetabular cartilage was later adjusted to fill the gap
between the femoral cartilage and the acetabulum. The mesh used for
the acetabular cartilage is shown in figure 3.9 and had a total of 70,201
elements.

X

Y

Z

(a) Acetabular cartilage

XY

Z

(b) Femoral cartilage

Figure 3.9: The hexahedral meshes used for the acetabular cartilage
and the femoral cartilage.

The mesh for the femoral cartilage was generated in the same manner as
the acetabular cartilage and had a total of 18,606 elements. The element
size used was 1 mm. Since the offset from the femoral head used to make
the femoral cartilage was slightly larger than half the average distance
between the femoral head and acetabulum, the thickness of the femoral
cartilage was also decreased by removing layers of elements. The initial
mesh was five elements thick, with the smallest elements in the center
of the mesh. The two layers of elements closest to the acetabulum were
removed which resulted in a mesh of the femoral cartilage that was
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three elements thick (see figure 3.9). The final thickness of the femoral
cartilage was approximately 0.6 mm which was approximately half the
thickness of the gap between the femoral head and the acetabulum.

3.4.3 FE model

Several FE models of the hip joint were developed using Abaqus/CAE
2020 [54]. The models can be divided into two groups, one that modeled
standing positions and one that modeled gait. A few options for ma-
terial parameters, constraints, and boundary conditions were used and
compared. The results from the different FE models of the hip were
also compared to the literature [20, 26, 27, 28, 65].

Material models and material parameters

In this thesis, bone was modeled as an isotropic elastic material. It is
a material model that is commonly used in FE models of the hip joint
[18, 19, 20]. The material parameters used for bone were the same in
all the models made in this thesis, and the parameters used were E =
17 GPa and ν = 0.29 [18, 19, 20, 26, 27].

As mentioned in chapter 2.1.2, cartilage has a complex behavior
and that makes it challenging to find a material model that includes
all its properties. In this thesis, cartilage was represented as a neo-
Hookean hyperelastic material. By using a hyperelastic material model,
the nonlinear stress-strain relationship of cartilage were included in the
models [69]. One part of the thesis was to evaluate different sets of
material parameters for cartilage to find what agreed the best with
experimental studies and previous FE models of the hip. This was
done by testing four sets of material parameters [20, 26, 28], as can be
seen in table 3.3. C10 and D1 are two parameters related to the shear
modulus and bulk modulus, as described in chapter 2.1.2, and were used
in Abaqus to describe the neo-Hookean hyperelastic material.

Table 3.3: Material parameters used for cartilage.

C10 [MPa] D1 [MPa−1]

Cartilage A [28] 2.043 0.051
Cartilage B [26] 3.4 0.029
Cartilage C [26] 3.4 0.003
Cartilage D [20] 6.8 0.0015
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Interactions and constraints

Interactions and constraints in Abaqus were used to define how the
different parts of the models interacted with each other and were con-
nected. A few different types of constraints were used for the FE models
[29]:

• Rigid body constraint: The movement of the region was con-
strained to a reference point. This means that the relative position
for the whole region was constant and there was no deformation
in the elements.

• Tie constraint: Made it possible to combine parts by tying the
surface nodes together.

• Coupling: Allowed to control the motion of a surface using a
reference point.

Either tie constraints or rigid body constraints were used between the
femur and femoral cartilage as well as the acetabulum and acetabular
cartilage. When tie constraints were used, coupling was also used for
the femur to connect the surface to a reference point in the center of
the femoral head. Tie constraints were used to model deformable bones
and rigid body constraints were used to model rigid bones.

In addition, a contact interaction, surface-to-surface, was used, which
was applied between the two cartilages. One surface was defined on
the femoral cartilage, the ‘master surface’, and one was defined on the
surface of the acetabular cartilage, the ‘slave surface’. The surface-
to-surface interaction was defined as a hard contact with frictionless
sliding. In the surface-to-surface interaction, the two surfaces were ad-
justed to fill the gap between the cartilages without overlaps. The nodes
on the surface of the acetabular cartilage were moved to the surface of
the femoral cartilage.

Hip joint coordinate system

The global coordinate system of the hip model was used for the pelvis
and acetabular cartilage. The x-axis was defined in the lateral-medial
direction, the y-axis in the inferior-superior direction, and the z-axis in
the anterior-posterior direction.

The local coordinate system for the femur was found by using four
coordinates in the femur, found by using a MATLAB function by Fischer
et al. [70]. To use the MATLAB function, the whole femur was needed.
Since only the proximal part of the femur was segmented, the previous
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segmentation was extended to include the complete bone. The segmen-
tation, post-processing, and generation of the mesh were performed as
previously described. The whole femur was only used to define the cen-
ter of the femoral head and to find the femoral coordinate system. In
the FE models, only the proximal part of the femur was used.

From the MATLAB function by Fischer et al., the coordinates of
the four points in the femur were obtained. In addition to a point in
the center of the femoral head, three other points were used to define
the local coordinate system for the femur. The local coordinate system
was defined by following the recommendation for the hip joint coordi-
nate system from the International Society of Biomechanics (ISB) [71],
and using the coordinate of the points of interest from the MATLAB
function. This resulted in an x-axis of the local coordinate system for
the femur that was parallel to the one in the global coordinate system,
using the point in the center of the femoral head, and another point on
the x-axis of the global coordinate system. The y-axis of the femoral
coordinate system was defined using two points on the femur, one on
the intercondylar notch and one in the middle of the shaft. The third
axis, the z-axis, was defined to be perpendicular to the x- and y-axis of
the femoral coordinate system.

One leg standing

The first loading scenario to be modeled was one leg standing. Five dif-
ferent models were developed and compared, which included different
material parameters and constraints. All four sets of material parame-
ters for cartilage were used, and cartilage A was used in two models, one
using rigid body constraints and one using tie constraints. All models
of one leg standing can be seen in table 3.4.

Table 3.4: A summary of all models that simulated one leg standing.

Cartilage Constraint

Model 1A A (C10 = 2.043 MPa, D1 = 0.051 MPa−1) Rigid body
Model 1B B (C10 = 3.4 MPa, D1 = 0.029 MPa−1) Rigid body
Model 1C C (C10 = 3.4 MPa, D1 = 0.003 MPa−1) Rigid body
Model 1D D (C10 = 6.8 MPa, D1 = 0.0015 MPa−1) Rigid body
Model 2 A (C10 = 2.043 MPa, D1 = 0.051 MPa−1) Tie
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Load When modeling one leg standing, a study by Bergmann et al.
[72] that measured the hip contact forces was used. The contact force
was measured in vivo using hip implants with telemetric data trans-
mission. The forces were measured in the x-, y-, and z-direction in the
femoral coordinate system. The hip contact forces were measured in
four subjects aged 51 to 76 years old. The data from all four subjects
were used by Bergmann et al. to define the load for an average subject
of 75 kg in one-leg-stance [72]. This is the load that was used in the
FE models of one leg standing. The load in all directions was scaled to
correspond to the subject of 63 kg used in this thesis and ended in a
load of 170 N, 1500 N, and 91 N, in the x-, y-, and z-direction, respec-
tively. The load used for one leg standing represented the peak force
when standing on one leg using the data from Bergmann et al. The
forces were applied in the reference point in the center of the femoral
head (see figure 3.10).

(a) Coronal view
of the hip.

(b) Sagittal view
of the hip.

(c) The reference
point in the pelvis
is located in the ac-
etabulum.

Figure 3.10: The load was applied in the center of the femoral head.
Subfigure a and b shows the direction of the forces and the center of the
femoral head, where the boundary conditions of the femur were applied.
Subfigure c show the reference point in the acetabulum.

Boundary conditions For the models using rigid body constraints,
displacement/rotation boundary conditions were defined in the refer-
ence points of the femur and pelvis. The reference point of the femur
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was located in the center of the femoral head (see figure 3.10), and the
reference point in the pelvis was located in the acetabulum (see figure
3.10). The center of the femoral head was free to translate in all di-
rections, but all rotations were constrained. The reference point in the
acetabulum was fully fixed for all movements.

When tie constraints were used, coupling was also used. This meant
that there was a reference point in the femoral head that could be used
for assigning boundary conditions to the femur. In the center of the
femoral head, the boundary conditions used were the same as when
rigid body constraints were used. For the boundary conditions of the
pelvis, two regions were assigned and fully fixed, both in translation and
rotation. These regions included nodes along the pubis joint and iliac
crest.

Walking

To further develop the model, the gait cycle was included. Different ma-
terial parameters were compared and how ligaments affected the model
were investigated to make the model more realistic. It resulted in a
total of six models representing gait, as seen in table 3.5. Based on
the results from the model of one leg standing, all the models including
the gait cycle used rigid body constraints. Four of the models included
different sets of material parameters for cartilage. The last two models
both included ligaments in the hip joint, and two different options for
boundary conditions were used. Material properties of articular carti-
lage (C10 = 2.043 MPa, D1 = 0.051 MPa−1) was the same for both FE
models including ligaments.

Table 3.5: A summary of all models that simulated walking.

Cartilage Ligaments Allowed movements

Model 3A A No Flexion/extension
Model 3B B No Flexion/extension
Model 3C C No Flexion/extension
Model 3D D No Flexion/extension
Model 4 A Yes Flexion/extension
Model 5 A Yes Flex./ext., Abd./add.
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Load An average gait cycle, when walking at level ground at a speed
of 3.5 km/h, lasts for 1.1 seconds and starts at heel strike [72]. To model
the flexion and extension motion during the gait cycle, the femur was
rotated around the reference point in the femoral head and the rotation
angle varied over time. The maximum angle used was 25.1°and the min-
imum angle used was -11.1°[73]. The variation of the flexion/extension
angle over the gait cycle can be seen in figure 3.11.

To model the gait cycle, forces from a person of 75 kg that is walking
presented in the study by Bergmann et al. was used [72]. The force in
x-, y-, and z-direction were used and varied during the gait cycle. The
force in all directions was scaled to represent the weight of the subject
(63 kg) (see figure 3.12). The maximum force was 1459 N, which is
equal to approximately 236% of the body weight.

The analysis of all gait cycle models was divided into two steps. In
the first step, the femur was rotated from its initial position to the angle
at the start of the gait cycle, heel strike. Simultaneously, the initial force
in all directions was applied. In the second step, the varying rotation
and hip joint forces in the gait cycle were applied.
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Figure 3.11: The flexion/extension angle in the hip joint in the gait
cycle, starting at the heel strike. The vertical lines represent the first
peak in the load curve, mid-stance, second peak, and the lowest load in
the swing phase.
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Figure 3.12: Resultant reaction force and its components during the
gait cycle for the subject with a weight of 63 kg. The vertical lines
represents the first peak, mid-stance, second peak, and the lowest load
in the swing phase.

Boundary conditions Rigid body constraints were used for all mod-
els of the gait cycle and the boundary conditions were defined in the
reference points in the center of the femoral head and in the acetab-
ulum. The boundary conditions in the acetabulum were the same as
for the one leg standing models, completely fixed in both rotation and
translation. The boundary conditions in the femur were different from
the one leg standing models as the walking models included rotation
around the reference point. In the first version of the models, the refer-
ence point was free to translate in all directions and all rotations were
constrained except for the flexion/extension motion, where rotation was
applied. In the second version of the model, the center of the femoral
head was only fixed for internal/external rotations, and otherwise free to
move. The first option of boundary conditions was used for the models
without ligaments and all four sets of material parameters for cartilage
(model 3A-3D). It was also used for one of the models including liga-
ments (model 4). The second option of boundary conditions was used
for the second model including ligaments (model 5).
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Ligaments The ligaments included in the FE model were the three
ligaments in the hip joint capsule. They were modeled using several
spring elements in Abaqus, that connected nodes on the pelvis to nodes
on the femur. Several nodes in the area where each ligament is attached
were selected. Each ligament was modeled as 6-8 spring elements as
done by Zou et al. [74]. The number of springs used for each ligament
and the stiffness can be seen in table 3.6. Some of the ligaments included
in the FE model can be seen in figure 3.13.

Table 3.6: Ligaments used in the FE model, number of spring elements,
and stiffness of each spring element [74].

Ligament Number of elements Spring stiffness [N/mm]

Ischiofemoral 8 5
Pubofemoral 6 6
Inferior iliofemoral 6 17
Superior iliofemoral 6 16
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Figure 3.13: The model of the hip joint including ligaments. The
reference point in the center of the femoral head and the reference point
in the acetabulum are also visible in the figure.
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3.5 Reconstruction of DXA images and scal-

ing of the FE model

The focus of this section of the thesis was to use the DXA images with
previously automatically annotated landmarks to reconstruct a femur
with a similar shape. The FE model of the hip joint (model 5) was then
scaled based on the reconstructed femur to finally predict the cartilage
contact in the hip joint in the DXA image. An overview of the recon-
struction of DXA images and scaling of the FE model can be seen in
figure 3.14.

Annotated image Reconstruction

FE model

Scaled FE model to 
fit reconstruction

Figure 3.14: An overview of the reconstruction and scaling of the CT-
based FE model.

The reconstruction of the femur based on the annotated DXA images
was performed using a previously developed algorithm by Väänänen et
al. [8]. The reconstruction algorithm is based on a statistical shape
and appearance model (SSAM). It uses a number of DXA images of the
femur to create a model of the mean shape plus a variation in a number
of parameters. The reconstruction algorithm will take a simulated X-ray
of the SSAM model and compare it to the DXA image and landmarks
used as an input, change the variation slightly and compare it again.
This will be repeated until convergence.

Nine DXA images with automatically detected landmarks were re-
constructed. The images used were the three best predictions with the
highest accuracy, the three worst, and the three in the middle. The im-
ages used were selected to compare how well the reconstruction would
work in different grades of predicted landmarks. The landmarks in all
nine of the images were predicted with the same trained sML-morph. To
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evaluate the reconstructed femurs, both the manually annotated land-
marks and the automatically detected landmarks were used. In total,
18 femurs were reconstructed.

To investigate the effect different grades of predictions had on the
accuracy of the reconstruction, the reconstructions based on manually
annotated landmarks and predicted landmarks were compared using
CloudCompare [75]. The two meshes (prediction-based and manual-
annotation-based) were aligned and the cloud-to-mesh distance was cal-
culated. The cloud-to-mesh distance between the two meshes is the dis-
tance between a node on the prediction-based femur to anywhere on the
manual-annotation-based femur (a node or a triangular element) [76].

FE models from reconstructions

The second step of this part of the thesis was to scale the FE model of
the hip joint previously made to be of the same size as the reconstructed
femur.

The reconstructed femurs were rotated and aligned to the femur in
the CT-based FE model using CloudCompare [76]. The models were
scaled in the x-, y-, and z-direction by finding a ratio between the recon-
structed femur and the femur in the FE model. Two measurements on
the proximal femur were used, made up of four points (see figure 3.15):

• Point 1: On the top front of the femoral head.
• Point 2: On the lower back of the greater trochanter.
• Point 3: On the posterior side of the femoral head, where the
head meets the neck.

• Point 4: On the anterior side of the femoral head, where the head
meets the neck, opposite to point 3.

The node number corresponding to each of the four points was manually
picked in the meshes of the reconstructed femurs and the femur in the
CT-based FE model. This was not possible to do automatically as the
mesh of all the reconstructions was the same but the number of each
node was not. The points used were chosen as they describe the shape
of the entire proximal femur and, the most valuable part to this thesis,
the femoral head.

The distance between the points in measurement 1 (point 1 and 2)
and measurement 2 (point 3 and 4) for both the reconstructed femur
and the FE model was calculated in all three directions. The distance in
each direction of the two measurements in the reconstruction was then
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Figure 3.15: The four points used to obtain the ratios to scale the FE
model of the hip joint. Point 3 is on the anterior side of the femoral
head and point 4 is on the posterior side.

divided by the same distance in the FE model to obtain the ratios, one
in each direction. In the x- and y-direction the final ratio was calculated
as the mean of the ratios from the two measurements. In the z-direction,
only the ratio from measurement 1 was used due to measurement 2 being
parallel to the z-axis, making the distances in the z-directions close to
zero and the ratios very large.

In each column of nodes in the Abaqus input file of the FE model,
the coordinates of the femur, pelvis, acetabular cartilage, and femoral
cartilage, respectively, were multiplied with the ratio of the correspond-
ing axis. This acquired 18 FE models of the hip joint, scaled based on
the geometry of each reconstruction. All loads applied in each scaled
FE model were also adjusted to the weight of the subjects available in
the MrOS study. The 18 scaled FE models were otherwise unchanged
from the original FE model of the hip and run in Abaqus.

The difference in geometry between the femur in the scaled FE mod-
els based on reconstructions made from automatically detected land-
marks and manually annotated landmarks was compared. This was
done using CloudCompare. The femurs (prediction-based and manual-
annotation-based) were aligned and then the cloud-to-mesh distance
was calculated. This was done to evaluate the effect that the manually
annotated landmarks compared to automatically detected landmarks
had on the scaled shape of the femur.
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Chapter 4

Results

4.1 Automatic landmark detection

The performance results of the different tests done with oML-morph
and sML-morph will be presented in this section. This includes param-
eter space evaluation, data augmentation, variation of train-test data
ratios, and robustness tests with radiography images. The parameter
ME (mean of euclidean distance) and MA (mean of minimum, maxi-
mum and mean distance in the x-direction, y-direction, and euclidean
distance) introduced in section 3.3.1 was use to evaluate the two ML-
morph methods.

4.1.1 Improvement of the algorithm

The oML-morph made less accurate predictions compared to the sML-
morph. On average and with equivalent parameters, the value of MA
predicted with sML-morph was 25% more accurate thanMA when using
oML-morph.

The six best combinations of parameter sets and their performance
can be seen in table 4.1. The set of parameters with the lowest accuracy
gave predictions with a 67% larger deviation in total, that was a mean
of 1.1 pixels per landmark compared to 0.68 pixels per landmark for
the set that performed the best. The three best, three worst and three
middle predictions for the very best set of parameters (set 4) can be
seen in figure 4.1. The performance of each parameter is dependent on
the other parameters and therefore it was difficult to determine their
individual contributions. The parameter that made the largest differ-

45
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ence to the performance, regardless of the value of the others was the
Cascade depth. A cascade depth between 30-50 gave the most accurate
results. Values below and above that worsened the accuracy.

Table 4.1: The six best combinations of parameters used in sML-
morph as well as their performance. For all images, threads = 1, tree
dept = 1, and feature pool size = 10 was used.

Set Cascade µ Over- Deviation Deviation MA MA/
nbr depth sampling x-direction y-direction [pixels] MA(4)

[pixels] [pixels]

1 50 0.02 100 3.15 2.06 9.13 1.67
2 50 0.02 10 3.22 2.03 8.51 1.55
3 30 0.02 200 3.09 1.97 6.37 1.16
4 50 0.02 200 2.99 1.83 5.48 1.00
5 50 0.1 10 3.29 2.07 8.37 1.53
6 50 0.05 10 3.25 2.03 7.20 1.32

Figure 4.1: The best, middle, and worst predictions for sML-morph
run with the best set of parameters (set 4). Red plus (+) was manual
annotations and green cross (×) was predicted.

The performance histograms for each of the six best sets of parameters
can be seen in figure 4.2. The general distribution was centered around
the peak and only a few outliers were present. It was also visible that all
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predictions had a similar distribution with a high peak of approximately
five pixels.

Some parameters also had a larger impact on the time it took to
do the training. The computational cost scales with the oversampling
parameter which made set 2, 3, and 4 take approximately ten times
longer to train than parameter set 1, 5, and 6.

Figure 4.2: Histograms of the mean deviation using the six best sets
of parameters.

4.1.2 Attempts to improve the accuracy

The results from masking, rotating the images, and removing landmarks
are presented below.

Masking

The masked images gave predictions where ME was 8.4% worse than in
the original DXA images and MA was 5.3% worse. The double-masked
images gave predictions where ME was 1.5% worse and MA was 35%
worse.

Rotating the images

When doing the parameter testing on oML-morph, a larger deviation
in the x-direction (lateral-medial) was observed. ME was up to 59%
larger in the x-direction than in the y-direction with a mean difference of
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43%. A comparison of the results for the original images and the rotated
images can be seen in table 4.2. oML-morph had a smaller difference in
the deviation in the x- and y-direction compared to sML-morph when
using non-rotated images. It was also possible to see that the rotated
images gave far larger differences in the x-direction compared to the
y-direction than the non-rotated ones for both oML-morph and sML-
morph.

Table 4.2: Deviation in the x-direction compared to the y-direction
of rotated images and non-rotated images for sML-morph and oML-
morph.

Non-rotated Non-rotated Rotated Rotated
simple original simple original
(x/y) (x/y) (y/x) (y/x)

Mean of ME 1.63 1.42 3.51 5.99
Max of ME 1.66 1.40 3.85 6.07
Mean of MA 1.26 1.33 3.79 6.93

Removing landmarks

The oML-morph method had some variation when predicting the differ-
ent landmarks as can be seen in figure 4.3 that shows the performance
histograms for the prediction of each of the individual landmarks. It
showed that landmark 1 and 2 were better predicted than landmark
3-8. When any of the ML-morph methods (sML-morph or oML-morph)
were used to predict different groups of landmarks, the results were
generally worse with the exception of landmark 1 and 2, which per-
formed 10% better (see table 4.3). Therefore, it was decided to keep
the prediction of all landmarks at once, instead of splitting and doing
the prediction in several steps.

Different ratios of train and test

The performance of sML-morph using different ratios of images to do
training and to test it can be seen in table 4.4. There was a pattern
where the mean value of MA was higher when a larger portion of the
images were used for training, except for when 60% were used.
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Figure 4.3: Histogram of prediction of the different landmarks.

Table 4.3: The performance of different sets of landmarks.

Landmarks Mean Mean of MA for landmarks
included of MA included / mean of

[pixels] MA for all landmarks

All 5.84 1.00
1,2,3,4 7.15 1.22
5,6,7,8 53.04 9.08
1,3,5,7 37.58 6.43
2,4,6,8 54.95 9.41
1,2 5.25 0.90
3,4,5,6,7,8 62.10 10.63
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Table 4.4: Performance of different ratios of images in the test set
and the training set. Also compared to the ratio used in the rest of the
thesis (0.8).

Ratio of images Mean Compared
in the training set of MA to MA(0.8)

[pixels]

0.5 13.39 1.75
0.6 4.59 0.60
0.8 7.66 1.00
0.9 5.80 0.76
0.95 3.90 0.51
0.99 3.20 0.42

4.1.3 Robustness to other types of images

Using only the 205 radiography images, the predictions had a low ac-
curacy compared to using all of the DXA images. When mixing the
two, the performance increased compared to when only the radiography
images were used, but the predictions of the DXA images became less
accurate (see table 4.5). An example of a prediction of a radiography
image can be seen in figure 4.4, where sML-morph was trained on both
DXA and radiography images.

Table 4.5: Deviation of predictions in radiography images compared
to DXA images, annotated using sML-morph.

DXA Mix of DXA and Radiography
images Radiography images images

ME [pixels] 4.21 5.77 26.00
MA [pixels] 4.75 19.07 29.28
MA/ 1.00 4.01 6.16
MA of DXA



4.2. CT-BASED FE MODEL OF THE HIP JOINT 51

Figure 4.4: Radiography image with predicted landmarks made by
sML-morph trained on a mix between radiography images and DXA
images. Red plus (+) are manual annotations and green crosses (×) are
predictions.

4.2 CT-based FE model of the hip joint

Firstly, the results for the five FE models of standing are presented
and secondly, the results from the six models including walking are
presented.

4.2.1 One leg standing

First, the results from the comparison of the two types of constraints
used, rigid body and tie constraints (model 1A and 2), are presented.
Then, the results for when different material parameters for cartilage
were used (model 1A-1D).

When comparing the two models that evaluated the effect of includ-
ing deformable bones (model 1A and 2), the maximum contact pressure,
the maximum von Mises stress, the maximum major principal strain,
and run time were compared. When tie constraints were used (model
2), the maximum contact pressure was approximately 2.0% lower com-
pared to when rigid body constraints were used, the maximum von
Mises stress was 7.5% higher, and the maximum major principal strain
was 13% higher (see table 4.6). The run time when using tie constraints
was 54% longer compared to when rigid body constraints were used.
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Table 4.6: Maximum contact pressure, maximum von Mises stress,
and maximum major principal strain in the acetabular cartilage, as
well as the run time for the models of one leg standing using rigid
body constraints (model 1A) and tie constraints (model 2). Cartilage A
(C10 = 2.043 MPa, D1 = 0.051 MPa−1) was used in both of the models.

Maximum Maximum Maximum major Time
contact pressure von Mises principal [sec]

[MPa] stress [MPa] strain

Model 1A 2.47 1.47 0.08 590
Model 2 2.42 1.58 0.09 911

The four models that used different material parameters (model 1A-1D)
were compared by studying the contact pressure (see figure 4.5), the von
Mises stress (see figure 4.6), and the major principal strain (see figure
4.7), in the acetabular cartilage. Overall, the results for model 1A and
1B were similar, and model 1C and 1D were similar. The most visible
difference could be seen between model 1A and 1D for both contact
pressure, von Mises stress, and major principal strain.

Model 1A-1D were also compared by studying the maximum values
of the contact pressure, the von Mises stress, and the major principal
strain (see table 4.7). The largest difference in maximum contact pres-
sure between the models was 3.6% when comparing models 1A and 1D.
Both the maximum von Mises stress and the maximum major principal
strain were decreasing as a stiffer cartilage was used. The maximum
von Mises stress was 18% lower in model 1D compared to model 1A
and the maximum major principal strain was 63% lower in model 1D.

(a) Model 1A (b) Model 1B (c) Model 1C (d) Model 1D

0 MPa 2.5 MPa

Figure 4.5: Contact pressure [MPa] in the acetabular cartilage in the
model of one leg standing using rigid body constraints and all four sets
of material parameters for cartilage (A-D).
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(a) Model 1A (b) Model 1B (c) Model 1C (d) Model 1D

0 MPa 1.5 MPa

Figure 4.6: Von Mises stress [MPa] in the acetabular cartilage in the
model of one leg standing using rigid body constraints and all four sets
of material parameters for cartilage (A-D).

(a) Model 1A (b) Model 1B (c) Model 1C (d) Model 1D

0 0.1

Figure 4.7: Major principal strain in the acetabular cartilage in the
model of one leg standing using rigid body constraints and all four sets
of material parameters for cartilage (A-D).

Table 4.7: Maximum contact pressure, maximum von Mises stress,
and maximum major principal strain for the models of one leg standing
with the four sets of material parameters for cartilage (A-D).

Maximum contact
pressure [MPa]

Maximum von
Mises stress [MPa]

Maximum major
principal strain

Model 1A 2.47 1.47 0.08
Model 1B 2.48 1.46 0.05
Model 1C 2.56 1.20 0.05
Model 1D 2.56 1.21 0.03
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4.2.2 Walking

The results for the models of walking begin with the ones that used the
different material parameters for cartilage (model 3A-3D). Additionally,
the models that included ligaments (models 4 and 5) are presented and
compared to model 3A. Model 3A, 4, and 5 all used the same material
parameters for cartilage (Cartilage A: C10 = 2.043 MPa, D1 = 0.051
MPa−1). All results for the models of walking are presented at four
time points in the gait cycle: the first peak of the load curve, mid-
stance, second peak, and at the lowest load in the swing phase. These
time points corresponds to 17%, 34%, 42%, and 85% of the gait cycle
(see figure 3.12).

Model 3A-3D was compared to each other by studying the contact
pressure, the von Mises stress, and the major principal strain in the
acetabular cartilage. By studying the pattern of the contact pressure
in figure 4.8 it can be seen that it was changing between the four time
points of the gait cycle (first peak, mid-stance, second peak, and swing
phase). Both the pattern and the location of the contact pressure were
changing when the load and the flexion/extension angle changed. Differ-
ences in the contact pattern between the models with different material
parameters can also be seen in the figure. The changes in contact pat-
tern over the gait cycle were similar between the models. However, at
the first peak (upper left in each subfigure), a notable difference in how
large the area that was in contact can be seen. The contact area de-
creased when a stiffer material was used, but the area with the values in
the higher part of the spectrum, or above the limit of 8 MPa, increased.

Not only did the contact pattern change over the gait cycle, and
between the four models, there was also a change in the maximum
contact pressure (see table 4.8). In all of the four time points, the
maximum contact pressure was increasing when a stiffer material was
used, where cartilage D was the stiffest. When comparing model 3A
and 3D, the maximum contact pressure was 160% higher in model 3D
at the first peak. At the three other time points, the maximum contact
pressure was 180%, 260%, and 96% higher in model 3D compared to
model 3A.

By instead evaluating the difference in the von Mises stress in model
3A-3D (see figure 4.9), it can be seen that values in the higher part
of the spectrum (≈ 8 MPa or higher) were not present in model 3A.
Especially by studying the first peak (upper left in each subfigure) in
all four models, it can be seen that using a stiffer cartilage was leading
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to higher von Mises stress, and the highest values can be found at the
first peak. When comparing model 3A and 3D, the maximum von Mises
stress was 160%, 180%, 240%, and 110% higher in model 3D at the four
different time points (see table 4.9).

Table 4.8: Maximum contact pressure [MPa], for all models of the gait
cycle, at the first peak of the load curve, mid-stance, second peak, and
at the lowest load in the swing phase.

First peak Mid-stance Second peak Swing phase

Model 3A 11.7 3.16 6.28 5.74
Model 3B 16.6 4.05 10.5 7.32
Model 3C 23.2 5.47 13.5 8.10
Model 3D 30.5 8.85 22.7 11.2
Model 4 11.1 3.16 6.51 6.67
Model 5 11.2 3.08 6.89 4.62

Table 4.9: Maximum von Mises stress [MPa], for all models of the
gait cycle, at the first peak, mid-stance, second peak, and in the swing
phase.

First peak Mid-stance Second peak Swing phase

Model 3A 9.13 1.60 4.45 4.38
Model 3B 13.2 2.01 7.27 5.44
Model 3C 17.9 2.62 9.31 6.14
Model 3D 23.3 4.42 15.3 9.39
Model 4 8.77 1.60 4.49 7.35
Model 5 8.19 1.82 4.76 11.6
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(a) Model 3A (b) Model 3B

(c) Model 3C (d) Model 3D

0 MPa 8 MPa

Figure 4.8: Contact pressure [MPa] in the acetabular cartilage in the
model including the gait cycle. Each subfigure shows a model that used
one of the four sets of material parameters for cartilage (A-D). The
upper left figure in each subfigure represents the first peak in the load
curve, the upper right is the mid-stance, the lower left is the second
peak and the lower right is at the lowest load in the swing phase.
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(a) Model 3A (b) Model 3B

(c) Model 3C (d) Model 3D

0 MPa 8 MPa

Figure 4.9: Von Mises stress [MPa] in the acetabular cartilage in the
model including the gait cycle. Each subfigure shows a model that used
one of the four sets of material parameters for cartilage (A-D). The
upper left figure in each subfigure represents the first peak, the upper
right is mid-stance, the lower left is the second peak, and the lower right
is at the lowest load in the swing phase.
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The last results produced for the models comparing the four sets of ma-
terial parameters (model 3A-3D) were the major principal strains. By
visually comparing the major principal strain in the acetabular cartilage
seen in figure 4.10, there was no pattern that showed how it changed as
a more stiff material was used. This was more distinct as the maximum
values for the models were compared (see table 4.10). The difference
was the largest between models 3B and 3C, and the maximum major
principal strain was 70% higher at the first peak in model 3C.

Table 4.10: Maximum major principal strain, for all models of the
gait cycle, at the first peak of the load curve, mid-stance, second peak,
and swing phase.

First peak Mid-stance Second peak Swing phase

Model 3A 0.35 0.09 0.22 0.21
Model 3B 0.33 0.07 0.22 0.17
Model 3C 0.56 0.11 0.34 0.24
Model 3D 0.41 0.09 0.29 0.18
Model 4 0.34 0.09 0.22 0.53
Model 5 0.33 0.10 0.24 0.73
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(a) Model 3A (b) Model 3B

(c) Model 3C (d) Model 3D

0 0.4

Figure 4.10: Major principal strain in the acetabular cartilage in the
model including the gait cycle. Each subfigure shows a model that used
one of the four sets of material parameters for cartilage (A-D). The
upper left figure in each subfigure represents the first peak, the upper
right is mid-stance, the lower left is the second peak, and the lower right
is at the lowest load in the swing phase.
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The results for the models that included ligaments (models 4 and 5) were
compared to model 3A by looking at the translation in the center of the
femoral head, the maximum contact pressure, the maximum von Mises
stress, the maximum major principal strain, and lastly the reaction force
in the reference point in the acetabulum.

The translation in the center of the femoral head for model 3A and 4
was overall more similar in all directions compared to model 5 (see figure
4.11, 4.12 and 4.13). The difference in translation between the models
was larger in the inferior-superior direction and the anterior-posterior
direction, and was the largest at 85% of the gait cycle.

At the first peak of the load curve the maximum contact pressure
in model 4 was 4.7% lower compared to model 3A, and model 5 was
4.3% lower (see table 4.8). At mid-stance, models 3A and 4 gave the
same maximum contact pressure, and model 5 was 2.5% lower. At the
second peak, the maximum contact pressure in model 4 was 3.7% higher
compared to model 3A, and in model 5 it was 9.7% higher. In the swing
phase, the difference between the models was more prominent and was
16% higher in model 4, and 20% lower in model 5, compared to model
3A. The von Mises stress and the maximum major principal strain also
followed the pattern that the first peak, mid-stance, and second peak
were similar while the difference was larger in the swing phase (see table
4.9 and 4.10). The difference in the maximum von Mises stress between
the models at the first peak, mid-stance, and the second peak ranged
from 0-12%. At the swing phase, model 4 had a maximum von Mises
stress that was 68% higher compared to model 3A, and 170% higher
for model 5. The difference in maximum major principal strain ranged
from 0-11%, at the first peak, mid-stance, and at the second peak. The
difference at the swing phase was as large as 150% for model 4, and
250% for model 5, compared to model 3A.

The last result for the CT-based FE models was the reaction force
in the reference point in the acetabulum, presented in figure 4.14. The
reaction force was the same for both models 3A, 4, and 5, and can be
seen in figure 3.12.
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Figure 4.11: Translation [mm] in the lateral-medial direction in the
reference point in the center of the femoral head for model 3A, 4, and
5.
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Figure 4.12: Translation [mm] in the inferior-superior direction in the
reference point in the center of the femoral head for model 3A, 4, and
5.
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Figure 4.13: Translation [mm] in the anterior-posterior direction in
the reference point in the center of the femoral head for model 3A, 4,
and 5.
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Figure 4.14: Reaction forces [N], all components and resultant force, in
the reference point in the acetabulum over the gait cycle. The reaction
force was the same for both model 3A, 4, and 5.
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4.3 Reconstruction of DXA images and

scaling of FE model

The results of reconstructing the 3D models of the femur based on man-
ually annotated landmarks and automatically detected landmarks in
DXA images are presented in this section. Results of the scaled FE
models based on the reconstructions are also presented.

Nine of the DXA images predicted using automatic landmark de-
tection were used for reconstruction, the three best predictions, three
worst predictions, and three in the middle (figure 4.1). For all images,
both the manually placed landmarks and the predicted landmarks were
used to reconstruct a femur.

The mean cloud-to-mesh distance and the standard deviation be-
tween the reconstructions based on manually annotated and predicted
landmarks differed between the images used (table 4.11), but the mean
of the absolute values of the mean distances was very similar for each
group of images. In the three best predictions, it was 0.67 mm, in the
middle three it was 0.70, and in the worst three it was 0.70. In the worst
three, the meshes for the automatic annotation based reconstructions
were all smaller than the manual annotation based ones while both the
best three and the middle three were generally larger. A visualization
of the cloud-to-mesh distances for the nine sets of reconstructed images
can be seen in figure 4.15. It is possible to see that the largest differ-
ences were in the femoral head with some variation in the top of the
greater trochanter and in the lesser trochanter.

Table 4.11: Cloud-to-mesh distance for reconstructions based on the
manual annotations and the predictions.

Mean distance Standard deviation
[mm] [mm]

Best 1 0.86 1.34
Best 2 -1.10 0.98
Best 3 0.04 0.28
Middle 1 0.51 1.03
Middle 2 -0.26 0.69
Middle 3 1.33 1.22
Worst 1 -0.45 0.66
Worst 2 -1.28 1.37
Worst 3 -0.36 0.85
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Figure 4.15: Visualization of the cloud-to-mesh distances between the
reconstructed femurs based on automatically detected landmarks and
manually annotated landmarks. Blue regions represents parts where
the predictions were smaller than the manually annotated ones and red
regions where they were larger.

4.3.1 Scaling the FE models

The ratios between the reconstructed femurs and the femur in the CT-
based FE model ranged from 0.86-1.24 in the x-direction, 0.77-1.25 in
the y-direction, and 0.86-1.17 in the z-direction (see table 4.12). Most of
the reconstructions had a similar ratio in all three directions, but some
stood out and had a more deviant ratio in one direction.

The mean cloud-to-mesh distance between the femurs in the scaled
models varied (see table 4.13). The mean of the absolute values of the
mean distances varied more between the grades of predictions when
comparing the scaled femurs to each other. For the three best predic-
tions it was 1.07, for the three in the middle it was 1.51, and for the
three worst it was 1.09. A visualization of the cloud-to-mesh distance
for each of the nine predicted images can be seen in figure 4.16 where it
is clear that the scaled femurs had the largest differences in the femoral
head and that the models based on prediction were generally smaller
than those based on manually annotated landmarks.



4.3. RECONSTRUCTION AND SCALING 65

Table 4.12: The ratios between the reconstructed femurs and the femur
in the CT-based FE model in the x-, y-, and z-direction.

x y z

Best 1 (manual) 1.24 1.22 1.17
Best 1 (predicted) 1.24 1.25 1.04
Best 2 (manual) 0.95 0.95 0.98
Best 2 (predicted) 1.09 0.77 0.86
Best 3 (manual) 1.00 1.00 0.95
Best 3 (predicted) 1.01 0.97 0.92

Middle 1 (manual) 1.03 1.05 1.12
Middle 1 (predicted) 0.99 0.97 0.96
Middle 2 (manual) 1.08 1.11 1.04
Middle 2 (predicted) 1.00 1.04 1.02
Middle 3 (manual) 0.96 1.05 0.93
Middle 3 (predicted) 0.93 0.95 0.90

Worst 1 (manual) 0.98 0.97 0.94
Worst 1 (predicted) 0.86 0.84 0.90
Worst 2 (manual) 1.05 1.13 1.02
Worst 2 (predicted) 1.06 1.16 1.04
Worst 3 (manual) 1.00 1.08 1.12
Worst 3 (predicted) 1.00 1.06 1.04

13 out of the 18 scaled FE models of the hip joint were completed, from
which five pairs of models using manual and predicted landmarks were
obtained (Best 3, Middle 1, Middle 2, Worst 1, and Worst 3). For these
models, the maximum contact pressure in the acetabular cartilage at
the first peak of the load curve was analyzed (see table 4.14). The dif-
ference in percentage between the scaled FE models based on predicted
landmarks and manual landmarks was the lowest for Best 3, where the
difference was only 1.7%. The highest difference was in Worst 3 which
had a 20% difference in the maximum contact pressure.

The contact pressure for the five sets of models that were completed
can be seen in figure 4.17. The contact pressure for the two models of
Best 3 (manual and predicted) were similar, whereas Middle 1, Worst
1, and Worst 3 varied in a non systematic way.
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Table 4.13: Cloud-to-mesh distance for the femurs scaled based on the
manually annotated landmarks and the automatically detected land-
marks.

Mean distance Standard deviation
[mm] [mm]

Best 1 -0.47 1.31
Best 2 2.38 2.02
Best 3 -0.39 0.41
Middle 1 -1.94 1.42
Middle 2 -1.27 1.03
Middle 3 -1.31 0.93
Worst 1 -2.26 1.74
Worst 2 0.53 0.51
Worst 3 -0.50 0.83
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Figure 4.16: Visualization of the cloud-to-mesh distances between
the scaled FE models based on automatically detected landmarks and
manually annotated landmarks. Blue regions represents parts where
the predictions are smaller than the manually annotated ones and red
regions where they were larger.



4.3. RECONSTRUCTION AND SCALING 67

Table 4.14: Maximum contact pressure at the first peak in the gait
cycle for all reconstructed and scaled FE models.

Maximum contact Difference
pressure [MPa] between manual

and predicted [%]

Best 1 (manual) 12.45
Not complete

Best 1 (predicted) Error
Best 2 (manual) 11.08

Not complete
Best 2 (predicted) Error
Best 3 (manual) 13.46

1.7
Best 3 (predicted) 13.69

Middle 1 (manual) 12.34
12.6

Middle 1 (predicted) 13.89
Middle 2 (manual) 12.97

2.4
Middle 2 (predicted) 13.28
Middle 3 (manual) Error

Not complete
Middle 3 (predicted) 14.43

Worst 1 (manual) 14.27
-3.7

Worst 1 (predicted) 13.74
Worst 2 (manual) Error

Not complete
Worst 2 (predicted) Error
Worst 3 (manual) 11.45

20.9
Worst 3 (predicted) 13.84
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Step: GaitCycle
Increment     24: Step Time =   0.1918
Primary Var: CPRESS
Deformed Var: U   Deformation Scale Factor: +1.000e+00

(a) Best 3
(manual)

Step: GaitCycle
Increment     24: Step Time =   0.1918
Primary Var: CPRESS
Deformed Var: U   Deformation Scale Factor: +1.000e+00

(b) Best 3
(predicted)

Step: GaitCycle
Increment     24: Step Time =   0.1918
Primary Var: CPRESS
Deformed Var: U   Deformation Scale Factor: +1.000e+00

(c) Middle 1
(manual)

Step: GaitCycle
Increment     24: Step Time =   0.1918
Primary Var: CPRESS
Deformed Var: U   Deformation Scale Factor: +1.000e+00

(d) Middle 1
(predicted)

Step: GaitCycle
Increment     24: Step Time =   0.1918
Primary Var: CPRESS
Deformed Var: U   Deformation Scale Factor: +1.000e+00

(e) Middle 2
(manual)

Step: GaitCycle
Increment     24: Step Time =   0.1918
Primary Var: CPRESS
Deformed Var: U   Deformation Scale Factor: +1.000e+00

(f) Middle 2
(predicted)

Step: GaitCycle
Increment     24: Step Time =   0.1918
Primary Var: CPRESS
Deformed Var: U   Deformation Scale Factor: +1.000e+00

(g) Worst 1
(manual)

Step: GaitCycle
Increment     24: Step Time =   0.1918
Primary Var: CPRESS
Deformed Var: U   Deformation Scale Factor: +1.000e+00

(h) Worst 1
(predicted)

Step: GaitCycle
Increment     24: Step Time =   0.1918
Primary Var: CPRESS
Deformed Var: U   Deformation Scale Factor: +1.000e+00

(i) Worst 3
(manual)

Step: GaitCycle
Increment     24: Step Time =   0.1918
Primary Var: CPRESS
Deformed Var: U   Deformation Scale Factor: +1.000e+00

(j) Worst 3
(predicted)

0 MPa 8 MPa

Figure 4.17: Contact pressure [MPa] in the acetabular cartilage at the
first peak of the load curve (17%) for all the reconstructed and scaled
FE models that were completed in pairs.



Chapter 5

Discussion

This thesis aimed to develop and evaluate tools that potentially can be
used to assess hip deformities that occur during childhood. Methods
to automatically detect anatomical landmarks in DXA images of the
hip was evaluated, and FE models of the cartilage contact in the hip
joint was developed. Together, the tools can be combined to automat-
ically obtain 3D FE models of the hip joint from DXA images. A first
implementation of this combined approach was made in the thesis.

5.1 Automatic landmark detection

The results from the investigation of the parameter space showed that
it was possible to use ML-morph to predict the position of landmarks
in a DXA image of the hip with a mean deviation of 0.68 pixels per
landmark as can be seen in figure 4.1.

5.1.1 ML-morph

The performance metric used for ML-morph was based on pixels, which
were 1.05 mm in the x-direction (lateral-medial) and 0.60 mm in the
y-direction (inferior-superior). This gave a mean deviation in the x-
direction of 0.22 mm per landmark and in the y-direction 0.24 mm per
landmark. A combined accuracy in the x- and y-direction is thus 0.33
mm. As the thickness of healthy articular cartilage is 2-4 mm, the pre-
diction requires high accuracy to be reliable. A difference of 0.33 mm
per landmark is quite low compared to healthy adult cartilage thick-
ness, but as the final application is to use it on pathological children,

69
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the accuracy should be as high as possible. One of the ways to make
this error smaller is to improve the resolution of the images. If the
resolution is higher, the error in pixels that is allowed to obtain as ac-
curate of predictions can be higher. The effects of having images with a
higher resolution have not been investigated and would be an interesting
approach to keep researching.

The performance of the ML methods was based on the difference be-
tween automatically detected landmarks and manually annotated land-
marks. One question that this raised is whether the manual annotations
are always correctly placed. As the manual annotations were made by
hand there is a possibility of human error. The ML-morph method is
more consistent and does not become tired or biased. As can be seen in
figure 4.1 two of the worst images had landmarks in the manual anno-
tations that were far from where they should be, particularly landmark
3 and 6. This gave lower MA and ME and was therefore considered less
accurate while the predictions were more correct. This is important to
keep in mind when analyzing the performance. The annotations were
done by only one person which is also a possible mean of error. If all
the images were independently annotated by several people at different
times, the effect of the human error could be reduced and it could be
more accurate to the anatomy.

Another aspect that can improve ML-morph is to have a larger train-
to-test ratio. As seen in table 4.4, the accuracy became higher with more
images in the training set. One outlier in that result was when using
60% to train sML-morph. Which of the images that were used for train-
ing and testing made a big impact on the parameter MA and ME when
evaluating the performance, and very lucky splits could be the cause of
this. The reason that one split could give MA and ME of higher accu-
racy is because some images, regardless of the performance, will have
predictions with low accuracy as they look different from the others.
The inaccuracies were thus because of limitations in the evaluation and
not in the predictions. Images can be harder to use for prediction if
they contain more of the pelvis, artifacts or noise, or if the manually
annotated landmarks are in the wrong location. If a lot of images with
annotations of lower accuracy or images that can be hard to predict are
used for training, the errors will not affect the results and the value of
MA and ME. The same split of testing and training data was therefore
used for the entirety of the investigation of the parameter space.

The deviation in the x-direction compared to the deviation in the
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y-direction was larger in sML-morph than in oML-morph, which would
suggest that the oML-morph is better, but as the actual distances were
smaller in sML-morph (sML-morph was 25% better), MA and ME were
lower. As the deviation was larger in the y-direction than in the x-
direction for the rotated images, it is hard to make a conclusion of
which of the ML-morph methods handled the different deviations the
best and it is likely that it depends on the images used.

When using the masked images, ME was 8.4% less accurate com-
pared to when the original DXA images were used. When using the
double-masked images, ME was 1.5% less accurate compared to the
original DXA images. This showed that the performance of the three
versions of images was similar and that more extensive testing would be
needed to see if it improved the accuracy or not.

In conclusion, it is possible to do automatic prediction of landmark
placement on DXA images with an accuracy of 0.33 mm. However,
images of higher resolution would be needed to further improve the
performance. Some of the landmarks used for training were inaccurate
but it will not affect the performance as there were too few images to
make a difference. It can also be said that augmenting the images would
need to be further investigated in regards to improving the accuracy.

5.1.2 Limitations and Future perspectives

There are several limitations affecting the performance of ML-morph
when automatically detecting anatomical landmarks. One discussed
previously is the resolution of the images. A higher resolution would
give more space for error and could make predictions closer to the truth.
It was hard to distinguish the femur from the pelvis in the DXA images
used and ML-morph thus had to depend on the spacing of the landmarks
in the training data. This can pose a problem as the final application
is to use it on pathological anatomies. Another limitation is that ML
algorithms cannot learn something that it is not explicitly taught, and it
can not make connections on its own. If there are errors in the placement
of the manually annotated landmarks, the ML algorithm will make the
same error. Using a large number of images was in this thesis positive as
the impact of the errors was small. Predictions of high accuracy could
thus be obtained even though the manual annotations in some images
were in the wrong place.

One limitation to the use of radiography images was that the number
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of radiography images was much lower than the number of DXA images
used. The results presented are thus slightly misleading. More accurate
would be to use the same number of images of both DXA and radiogra-
phy when doing the comparison. However, one interesting result from
the test with radiography images was that the predictions of the DXA
images became worse when mixing them and thus implying that one
single trained ML algorithm for several types of 2D X-ray images of the
hip might be inefficient. Another mean of error to keep in mind when
working with the radiography images is the higher resolution and hence
a larger error in pixels for the same deviation in the image compared to
the DXA images. In spite of this, using radiography images would be
highly interesting and relevant to this project as the DXA images used
are from adult males while radiography is more common to assess hip
deformities in children. As the final goal of the project is to use au-
tomatic landmark detection to reconstruct hip joints of children, using
radiography images would need further testing and development.

One downside to the DXA images used is that they are of hips with
no history of hip deformities. Investigating how accurate sML-morph is
when working with pathological images would thus be important. When
training ML algorithms for pathological hips there are several possible
approaches. Either there could be several specialized ones based on
different abnormalities, or there could be one that is very robust and
can predict the landmark positions in several types of abnormalities.
Another thing to take into consideration is if images of hips from peo-
ple of different stages of life should be trained together or separately.
These are all possible developments of the project that would be worth
investigating.

Only two ML algorithms for automatic landmark detection were
tested in this thesis, oML-morph and sML-morph. There are plenty of
other similar algorithms using other methods of ML to process images,
a selection was presented in chapter 2.5.3. Investigating additional ML
algorithms and comparing those results with the results from this thesis
could be an interesting approach for the future.

5.2 CT-based FE model of the hip joint

The FE models of the hip joint were developed to model the hip cartilage
contact using a subject-specific geometry from a CT image. Models of
two loading scenarios, one leg standing and walking, were developed.
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Models using different material parameters, constraints, and ligaments
were made to find the best solution for this application.

5.2.1 One leg standing

The one leg standing model was developed as a simple model of a com-
mon loading scenario in everyday life. When using two types of con-
straints (rigid body or tie), it was possible to evaluate how the model
was affected by including deformable bones. As seen in table 4.6, there
was a large difference in the run time between the two models, using tie
constraints (model 2) took 54% longer to run. However, the difference
in the maximum contact pressure, the maximum von Mises stress, and
the maximum major principal strain was not as prominent between the
models. Using rigid body constraints was the preferred option for this
application.

Model 1A-1D was used to evaluate how the different material pa-
rameters for cartilage affected the results. As presented in table 4.7,
the maximum contact pressure, the maximum von Mises stress, and the
maximum major principal strain were all changing as the stiffness of
the cartilage increased. The maximum contact pressure in model 1D
was only 3.6% higher than in model 1A. However, figure 4.5 showed a
notable change in the contact pattern in the acetabular cartilage when
the cartilage stiffness increased. A previous FE model of the hip car-
tilage contact by Li et al. that modeled one leg standing using a load
of 2130 N, resulted in a maximum contact pressure of 2.7-4.1 MPa [65].
In comparison with that, the maximum contact pressure using all four
sets of material parameters gave results that were only 5.2-8.5% lower.
The higher maximum contact pressure in the FE model by Li et al.
is reasonable since the load used was higher than the one used in this
thesis.

The results for the one leg standing models using different material
parameters made it difficult to conclude what parameters for cartilage
were the most suitable. The maximum contact pressure was similar for
all models and agreed well with the FE model by Li et al. The maximum
von Mises stress (18% lower in model 1D compared to 1A) and the
maximum major principal strain (63% lower in model 1D compared to
1A) varied more between the models. Due to the lack of previous FE
models of the hip joint that presented the von Mises stress and the
major principal strain in the hip joint cartilage, they could not be used
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to evaluate the material parameters.
In conclusion, the one leg standing models showed that the rigid

body constraint was the preferable option to use. It also showed that it
was difficult to select suitable material parameters for cartilage by only
modeling one leg standing.

5.2.2 Walking

To further develop the FE model of the hip joint cartilage contact, the
load and the flexion/extension angle of the gait cycle were included.
The focus of these models was to further evaluate the four options of
material parameters used for cartilage and investigate how including
ligaments affects the model.

That the maximum values of the contact pressure in the models
using different material parameters (model 3A-3D) were observed at
the first peak of the load curve (see table 4.8) was expected since that
is the time point of the gait cycle where the applied load is the largest
(see figure 3.12). At mid-stance, the maximum contact pressure had
decreased for all models, which also is reasonable since the load was
lower. At the second peak, the maximum contact pressure increased
again, as expected. However, in the last time point, the swing phase,
the maximum contact pressure did not follow the same pattern and it
was expected to see the lowest contact pressure in the swing phase due
to the low load. Instead, the maximum contact pressure was higher
than at mid-stance for all models. One explanation for this can be the
slightly uneven surface of the femoral head which affected the results
more when the rotation angle increased.

The maximum contact pressure in the four models (3A-3D) ranged
from 11.7 MPa in model 3A to 30.5 in model 3D. In previous FE models
of the hip joint modeling the gait cycle by Harris et al., Anderson et al.
2008, Anderson et al. 2010, and Abraham et al., the maximum contact
pressure ranged from 6.2-12.7 MPa [20, 26, 27, 28]. All the previous
FE models mentioned used the load from Bergmann et al. but different
weights of the subjects were used. Experimental studies had a maximum
contact pressure that ranged from 9-10 MPa, measured using pressure-
sensitive films [26, 27]. Out of the four sets of material parameters
used for cartilage, the maximum contact pressure when using cartilage
A (D1 = 2.043 MPa, C10 = 0.051 MPa−1) agreed the best with the
previous studies. The material parameters in cartilage A were used in
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the manuscript by Abraham et al. [28]. The FE model in the article by
Abraham et al. had a maximum contact pressure of approximately 8
MPa, which is 31% lower than the maximum contact pressure in model
3A. The difference to the FE model by Abraham et al. can be due to
several reasons, for example, that a different body weight of the subject
was used, and how the geometry of the cartilage was approximated. It
may also be because the thickness of the cartilage in the subject used
in this thesis was thin in comparison with a healthy subject.

In the comparison of the models including ligaments (model 4 and
5) and model 3A, which did not include ligaments, some differences
could be seen. The greatest difference in the translation in the center
of the femoral head could be seen between the models with restricted
abduction/adduction motion (model 3A and 4), and model 5 (see figure
4.11, 4.12 and 4.13). This is reasonable as more movement was al-
lowed. It also showed that the ligaments fulfill their function to restrict
movements since a model without ligaments did not complete when the
abduction/adduction motion was not restricted.

To conclude the model of walking, the most suitable parameters for
cartilage for this application were D1 = 2.043 MPa and C10 = 0.051
MPa−1, and the ligaments should be included to make the model more
realistic.

5.2.3 Limitations and Future perspective

The FE model of the hip joint had several limitations that may affect the
results. One of the limitations is that the labrum was not included. As
mentioned in chapter 3.4.1, the labrum does not make a big difference
in the load support in the hip joint. However, it still takes up some of
the load and it can therefore be of interest to include it in a future FE
model.

Another limitation of the model is the way the cartilages were made.
Since the cartilage was segmented as the gap between the bones, and
later separated into two parts, the thickness of each cartilage does not
necessarily correspond to reality. To validate the simple approach for
making the cartilage, a comparison to segmented cartilage from an MRI
image could be made. An attempt of this was made in this thesis, using
an MRI image of the same subject as in the CT image, without success.
The reason for that was limited resolution and contrast in the MRI
image, which was taken in 2006. It could also be of interest to use and
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compare different approaches for generating the geometry and thickness
of the two cartilages.

Both cartilage and bone were modeled using relatively simple mate-
rial models. The FE model could be made more realistic by taking more
material behaviors into account. For cartilage, a more complex material
model could include the biphasic behavior of cartilage, including both
the solid and fluid phases. It could also be of interest to include depth-
dependent behavior. For bone, the main improvements of the model
could be to include both trabecular and cortical bone. The ligaments
used in the model could also be made more realistic by including the
ligament pre-strain.

Evaluating whether having deformable bones would affect the result
for the FE model of walking could also be of interest. When modeling
standing there was no major difference between using rigid body and
tie constraints except for the run time (see table 4.6). Even though the
difference was small, it could also be valuable to implement deformable
bone in the model of gait to further strengthen the choice of using rigid
body constraints. The FE models including the gait cycle could also
be made more realistic by including all movements in the hip joint (see
chapter 2.1.1).

Finally, the CT image used for the subject-specific FE model was
from an adult female. The goal of the project is to use the final ap-
plication on children with hip deformities. Using a CT image from a
child could make the model more applicable to the final application of
this project since the geometry may differ. While this is true, it can be
difficult to obtain CT images of children since they are more sensitive
to ionizing radiation (see chapter 2.4.3).

5.3 Reconstruction of DXA images and scal-

ing of FE model

The aim of the reconstruction and the scaling of the CT-based FE model
was to present the concept of creating a FE model of the hip joint from a
2D X-ray image of the hip. This aim was fulfilled and resulted in 18 FE
models based on nine reconstructed DXA images, 13 of the FE models
were completed. Since the workflow to obtain the scaled FE models was
executed in a relatively simple way, there were some sources of errors
and limitations that needs to be addressed.
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When comparing the mean cloud-to-mesh distances of reconstruc-
tions based on automatically detected landmarks and manually anno-
tated landmarks to the FE models (table 4.11 and 4.14) it was possible
to see that better predictions did not always have smaller distances. It
can also be seen that in all cases where the mean distance was large
(0.86 or higher), the FE model did not complete. It is not possible
to find the same connection between the mean cloud-to-mesh distances
of the scaled femurs (table 4.13) when comparing the models that did
or did not run. Based on this, the geometrical accuracy of the 2D-to-
3D reconstruction does not seem to be directly affected by the errors
in landmark prediction made by sML-morph. This could be because
the reconstruction algorithm is complex and based on several factors,
and therefore may be influenced by more than the exact location of the
landmarks. vv

When examining the cloud-to-mesh distances for the reconstructions
based on automatically detected landmarks compared to the manually
annotated landmarks (see figure 4.15), it is possible to see that there
was no pattern to the size differences but that the largest deviations
were in the femoral head. This is problematic as the femoral head is
the region of highest interest to this project. The differences in the
top of the greater trochanter and the lesser trochanter do not make as
big of a difference as they are not as valuable in this application. In
the cloud-to-mesh visualizations of the scaled femurs (see figure 4.16),
there was a more clear pattern of the sizes where the femoral head was
smaller in the automatically detected landmark based femurs in all but
two cases. The larger deviations in the femoral head were not consistent
between the reconstructed femurs and scaled femurs which shows that
the scaling changed the geometry of the FE model in inconsistent ways
between two reconstructions of the same image.

As the FE models did not use the reconstructed femurs but scaled
a CT-based FE model to match the size, in future work, it would be of
interest to use the reconstructed femur instead of a scaled version. The
reason for not using the reconstructed femurs were that the reconstruc-
tions only provided the femur, and did not include the pelvis or any of
the two cartilages.

The numbering of the nodes in the different reconstructed meshes
were not the same and the four points used to measure the distances
for scaling the FE models needed to be manually picked. This was
time-consuming and could lead to faults due to human error making
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the scaling a part of the thesis that could be improved. Another pos-
sible improvement is to change the measurements and nodes used for
scaling or to change the method for scaling entirely. As the femoral
head is the part of the femur that is of the highest interest, using more
measurements of that part could give a more accurate reconstruction.
One issue that was encountered was that scales were inaccurate when
the measurement used was parallel to an axis. This could be addressed
by possibly changing the coordinate system in the reconstructed femur
or picking points on the diagonal instead of in the anterior-posterior
direction. Another possible way to improve the scaling is to scale the
models based on the volume. The reason this was not further inves-
tigated was that the CT-base FE model and the reconstructed femurs
did not include the same amount of the proximal femur. Using volume
would also scale the femur isometrically, not taking the geometry of the
femur into account. Therefore, it would be hard to predict cartilage con-
tact, especially in pathological hips. In conclusion, a better method of
scaling is needed that is complex enough to take anatomical differences
in both shape and size of the proximal femur into account.

The limitation of this simple approach to reconstructing, scaling,
and running new FE models can especially be highlighted by studying
the five FE models that did not run completely. One pattern that can
be seen in table 4.12 is that the scaling factors used for the models
that completed were similar in the x-, y-, and z-direction for most of
the femurs. The models with errors had larger deviations in the scaling
factors. One example of where both models did not complete is Best
1 where the mean cloud-to-mesh distance between the automatically
annotated landmarks and the manually annotated ones is -0.47 mm.
The two scaled femurs of Best 1 were very similar but did not run
as the difference between the biggest and smallest ratio in the manual
annotation based femur was 5 percentage points and in the predicted
annotation based was 20 percentage points. In general, a difference
between one axis and another larger than 11 percentage points resulted
in models that did not complete. The large difference between the ratios
changed the shape of the FE model in an inaccurate way, which lead to
problems in the cartilage contact area. Most of the contact was close to
the edges causing large distortion in the elements. The problem with the
deviating ratios can either be caused by taking the wrong measurements
or that the size of those reconstructed femurs differed that much from
the CT-based FE model. The conclusion of this is that the scaling
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makes the largest impact on weather a model completes, specifically
how large the difference between the ratios in different directions is.
Possible alternatives to scaling could be to use a statistical shape model
or do mesh morphing.

When comparing the results for the five pairs of models that were
completed (Best 3, Middle 1, Middle 2, Worst 1, and Worst 3), it was
possible to see that the smallest difference in maximum contact pressure
between the reconstruction based on automatically detected landmarks
and manual annotations, was in the best model (Best 3), and the largest
difference was seen in the worst (Worst 3) (see table 4.14). However,
there was no pattern that showed that the difference was always larger
for the models with less accurate predictions. More models would be
necessary to compare to draw a conclusion on the performance. In figure
4.17, it can also be seen how the contact pattern in the acetabular
cartilage was more similar in the models with a smaller difference in
the maximum contact pressure, and vary more between the ones with
a larger difference. All the models from predictions were more similar,
compared to the five from manually placed landmarks. This indicates
that the shape of the femoral head becomes similar in all models from
predictions.

In conclusion, it is possible to make 3D FE models of the hip joint
based on automatically detected landmarks in DXA images. However,
the workflow requires some improvements such as exploring additional
methods for scaling the model.

5.4 Future perspective

The bigger picture of this project aims to use an automatic approach to
assess hip deformities in children. Using and combining the automatic
landmark detection and the CT-based FE model requires manual work.
In future work, this requires improvements to make it more automatic
and to remove the sources of error mentioned in each section. Improving
these tools and making the process more automatic would make it possi-
ble to evaluate hip deformities in children using images that are already
being captured without exposing them to additional radiation. It could
also give a better understanding of the link between hip deformities and
OA progression.
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5.5 Ethics

All the clinical images used in this thesis came from earlier performed
studies and were therefore not collected for this specific project. This
means that no subjects were exposed to additional radiation due to this
thesis.

This project would enable modeling of the hip cartilage contact in
children with pediatric hip deformities based on 2D X-ray images. As
the images are already used for diagnosing, no additional radiation ex-
posure would be needed. This project would thus gain the patient and
medical professional valuable information about the state of the disease,
without further tests or radiation exposure. This is especially valuable
for children as they are more sensitive to radiation.

The methodologies investigated in this thesis would need additional
evaluation to be ready for clinical implementation. The ambition is that
this tool can be used to predict the effects hip deformities have on the
cartilage and thus limit the risk for osteoarthritis as well as unnecessary
intervention. But what if the tool suggests unnecessary intervention?
Machine learning or a tool based on numerical modelling should never
replace a knowledgeable professional but be used as a tool in addition to
the evaluations done today to make an educated diagnosis. In addition,
a limitation to ML and numerical modelling is that it only knows what
it has been told. This tool would be based on a single 2D X-ray image
of the patient and do not take other aspects of the patients life and
circumstance into consideration, something that is of importance when
making a diagnosis. However, if the method could assess the risk of
developing osteoarthritis, it could be valuable in the eyes of both the
patient and the welfare system. It could contribute to higher well-being
for children with hip deformities through several stages of their life.
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Conclusions

During this thesis, methods for automatic landmark detection were eval-
uated, a subject-specific FE model of the hip joint was developed, and
the two parts were combined to create a FE model based on a 2D X-ray
image of the hip. This was done using a previously developed recon-
struction algorithm based on anatomical landmarks to present a concept
of a tool that can use DXA images to create a 3D FE model of the hip
joint cartilage. The main conclusions that could be drawn were:

• Performing automatic landmark detection on DXA gave predic-
tions with an average accuracy of 0.33 mm per landmark in images
with a resolution of 1.05 mm per pixel in the x-direction and 0.60
mm per pixel in the y-direction. The sML-morph predictions were
of high enough accuracy to be used by the reconstruction algo-
rithm without major differences. To further improve the accuracy
of sML-morph, images of higher resolution would be needed.

• The CT-based FE model can be used to predict the hip cartilage
contact in two common loading scenarios, one leg standing and
walking. The most suitable material parameters for cartilage when
using a neo-Hookean hyperelastic material were C10 = 2.043 MPa
and D1 = 0.051 MPa−1 and it was not necessary for the model
to have deformable bones. The ligaments of the hip joint capsule
were included to make the FE model more realistic. Future work
could include the use of a more complex material model.

• It was possible to reconstruct femurs based on the automatically
detected landmarks in DXA images and scale the FE model of the

81
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hip joint to obtain a subject-specific size. The scaling had several
limitations that in the future need to be improved.

Finally, the developed tool that uses automatic landmark detection of
DXA images to model the hip cartilage contact using numerical meth-
ods can potentially give valuable information regarding the connection
between hip abnormalities in children and OA progression. Combining
the FE model of the hip joint with reconstructions of the femur based
on predicted anatomical landmarks is a promising method but needs
further development to be clinically applicable.
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