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Abstract

A hyperspectral image may be decomposed into component spectra and their distri-
bution in the image to simplify analysis by revealing underlying patterns and reducing
the dimensionality of the image; this may be achieved by the algorithm MCR-ALS.
However, the algorithm is time consuming, but could be accelerated by a data re-
duction. Data reduction can be done by using a clustering method. In this project,
the aim is to determine how clustering, k-means in particular, can be incorporated
with MCR-ALS to achieve an accelerated decomposition.

We measured how different losses and time consumption were influenced by different
parameter choices, e.g, initialization of the k-means. Clustering can result in a re-
duction in the time-consumption independently of the choice of parameters, but the
choices altered the decomposition substantially.

From the results, we concluded that k-means can be incorporated into MCR-ALS,
and that the method for selection of centroids is the most crucial step. Accordingly,
an optimal set of parameters could be determined.



Snabbare separation av ljus i sökande av livets
hemligheter

Att analysera livets biokemi, kemin bakom biologiska processer, är viktigt för att f̊a en
först̊aelse av livets mekanismer, speciellt för små längdskalor. Biokemin hos olika typer
av celler skiljer sig åt, vilket kan användas för att t.ex. skilja mellan elakartade och icke-
elakartade tumörer. Vilka ämnen som finns i en cell kan bli identifierade via deras respek-
tive absorptionspektrum. Ett absorptionsspektrum berättar hur stor andel av en specifik
v̊aglängd av ljus som har absorberats och är unik för varje ämne. S̊a kallade hyperspek-
trala bilder, bilder där pixlar representerar var sitt absorptionsspektrum, är tagna för att
sp̊ara ämnena. Dock finns det ett problem: ämnena i bilden är blandade och därför är
spektrumen fr̊an ämnena ocks̊a blandade. Det bildas en ‘soppa’ av kemikaliernas spektrum
som gör det sv̊art att särskilja olika ämnen.

Denna ‘soppa’ av spektrum kan ‘oblandas’ och uppdelas i ‘rena’ spektrum och bilder som
representerar hur de spektrumen är ‘blandade’ med diverse olika metoder. MCR-ALS är
en metod som gör just detta. Ett problem med MCR-ALS är att när en bild blir större
med högre upplösning hos dess spektra, tar det längre tid för algoritmen att ‘oblanda’
bilden. Det förekommer att större uppsättningar bilder ska analyseras samtidigt, vilket
ökar tids̊atg̊angen ännu mer. En tidsreduktion kan ske genom att utnyttja det faktum
att många spektrum är likadana och kan därmed representeras med ett spektrum, vilket
minskar mängden data som behövs arbetas med. En s̊adan gruppering kan göras med hjälp
av en klustrings-algoritm.

Klustring är ett begrepp som omfattar alla typer av data-reduktion som automatiskt
sorterar data i grupper. Dessa grupper kan sedan representeras av s̊a kallade centroider.
Dock, ett problem med klustring är att det inte bevarar data perfekt och kräver tid utöver
steget d̊a spektran ‘oblandas’, som beror p̊a det valda antalet centroider. Konsekvenserna
kan liknas med en sammanfattning av en film. Har man med för m̊anga detaljer hade
det tagit kortare tid att se filmen, men om man har för lite detaljer försvinner filmens
andemening. I v̊art arbete har vi utvecklat en metod när man arbetar med klustrad data i
MCR-ALS, namngiven CAM-A, och studerar vilka effekter uppst̊ar av olika val av parame-
trar.
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1 Background

A hyperspectral image is an image where each pixel in the image contains a spectrum
represented by a number of features, representing the intensity of a certain wavelength or
frequency of light at that pixel. Therefore, the image has a 3-dimensional structure where
its ’depth’ is governed by the number of features, see figure 1. There are many methods
to record such data, such as Raman and IR spectroscopy [1].

The hyperspectral image can be decomposed into constituent spectra and their respective
contributions at each pixel in the image, thus achieving a dimensional reduction of the data,
simplifying the analysis of the contents of the hyperspectral image, and possibly unraveling
faint physical patterns [1, 2]. The chemical composition of an object in a hyperspectral
image can then be analyzed to e.g., distinguish non-malignant from malignant tumors
[3]. Two examples of methods by which such a decomposition may be done are principal
component analysis (PCA) and Multivariate Curve Resolution–Alternating Least Squares
(MCR-ALS).

PCA can extract a set number of components and their respective contributions which
explain most of the variance within a dataset [4]. As such, it can efficiently describe the
spectra in spectral data using a few pure spectra and their concentration profiles. However,
PCA has two major shortcomings. The first is that PCA allows the contribution and
features of the constituent spectra to be negative. Whilst it is possible for an absorption
spectra to be negative in some cases, it is not possible have a negative amount of a chemical
compound. The second is that the spectra are orthogonal to each other, which there is
no physical precedent for. Consequently, the results are difficult to interpret in a physical
manner [5].

MCR-ALS also decomposes the data into spectra and contributions, but uses a non-
negative bilinear model. The decomposition is done by alternating between determining
the set of spectra or their contribution with only positive elements that minimizes the
square-error, based on respectively the contribution or spectra respectively found previ-
ously, and it is initialized by postulating either an initial set of constituent spectra or the
contributions [1, 5, 6]. Thus, the result is easier to interpret in a physical manner [5].
Despite the simpler interpretation of results, there may be different sets of spectra and
their contributions such that an image may be described nearly equally well by different
solutions which are rotations of each other [2, 7, 8], and a way to combat this is to allow
the spectra to have negative values. Furthermore, MCR-ALS treats the image as a matrix
where the rows and columns respectively correspond to features and pixel number, and
several images may be combined into one spectral data set and be analyzed in tandem [9].

A major problem with MCR-ALS is that it becomes slow and memory-intensive when
working with large amounts of data. In conversations with C. Troein (2022), Anderson
acceleration was brought up as a way to speed up MCR-ALS; the algorithm reduces the
number of times a time consuming step is taken by making a polynomial prediction, based
on previous steps, to predict subsequent steps. Another possibility is to utilize the fact
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that there are many spectra which are similar to other spectra in the spectral data. We call
groups of similar spectra ’clusters’. Thus, clusters may be merged into a single representa-
tive spectrum, reducing the amount of data in the data set. A way to systematically find
representative spectra is to use a clustering algorithm which tries find data points, cen-
troids, that minimizes a certain criterion such as distance or variance [6, 10]. K-means is
such an algorithm which also can be used for image segmentation [6, 11], where MCR-ALS
is run separately on each segment.

Despite the promise of less memory usage and quicker process, problems arise when clus-
tering on the data; there are several aspects we must consider apart from time and memory
requirement. These aspects are how the result can be translated to its original shape and
what the impact is compared to the original result. Regarding the aspect of time and
memory-usage, there is an important question: how well is the data preserved given an
original decomposition.

Consequently, we have developed a method of compression and reconstruction of spec-
tral data. The performance in several aspects for different choices of parameters has been
evaluated by using and modifying code from the OCTAVVS project [1] and writing comple-
mentary code. To have a reliable baseline, the goal of the method is to recreate the result
from MCR-ALS without clustering as closely as possible. Figure 1 depicts the essence
of the method we call clustering-accelerated MCR-ALS (CAM-A). In section 2, CAM-
A is presented along with descriptions and definitions for its different parts along with
corresponding parameters. The found effects on performance and time consumption are
presented and discussed in section 3. Lastly, we conclude the effects of different choices of
methods and present an optimal set of choices; further investigations on how to potentially
improve CAM-A are also discussed.

Figure 1: A schematic portraying the essence of the CAM-A method. p′ represents the number
of centroids used for reducing the dimensionality of the original hyperspectral image.
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2 Theory and method

2.1 MCR-ALS

Multivariate-Curve-Resolution (MCR) is a framework where spectral data, such as hyper-
spectral images, is attempted to be expressed as a distribution of underlying pure spectra
without any premises on the information in the images, and a variety of different MCR
methods are commonly used in chemistry [1, 2]. Mathematically, the hyperspectral data
can be represented by a matrix, D, with dimensions (pixels × features), the pure spectra
by a spectral matrix, S, with dimensions (features × components), and the pure spectra-
contributions by a contribution matrix, C, with dimensions (pixel × components). Using
these matrices, the bilinear MCR model can be described by the following equation:

D = CST + E, (1)

where E is a correction matrix which makes up for what the product CST misses [2].
Because we want to express the data as effectively as possible, we want to minimize the
loss, L, given by the square Frobenius norm of E:

L =
∑
ij

E2
ij = ||E||2 = ||D − CST ||2. (2)

There are several ways to achieve such a decomposition, and we use non-negative Multivari-
ate Curve Resolution-Alternating Least Squares (MCR-ALS). The non-negativity condition
is enforced on C and S, but may only need to be enforced on the spectral matrix. ”Alter-
nating Least Squares” in the name comes from the fact MCR-ALS is alternating between
updating the C and S matrix using a least squares method, expressed mathematically as

C = argmin
C

||D − CST || or S = argmin
S

||D − CST ||, (3)

to minimize (2) using the S or C matrix respectively. Because the minimization needs one
of the matrices, an initial postulation of either a Cinit or an Sinit is required. Consequently,
the loss is improved, or equal, after each update in MCR-ALS. The non-negativity condition
is fulfilled by setting the following non-negativity conditions on C and S when updating
them:

Sij ≥ 0 and Cij ≥ 0. (4)

The conditions given in equation (4) necessitates the use of a non-negative least squares
(NNLS) algorithm, and we use the scipy.optimize.nnls implementation. NNLS is iterative
and must be run for each pixel in the image separately [12]. Compared to standard least
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squares (LS), NNLS takes a substantially longer time. A dimensional reduction of the data,
fewer spectra, in a data set consequently reduces the time required for a decomposition.

MCR-ALS is an iterative method and can breifly be described as follows:

1. Postulate an initial C or S.

2. Find a new S or C using D and the current C or S by minimizing equation (2) as
dictated by equations (3) and (4).

3. Find a new C or S using D and the newly found S or C by the same process as for
step 2.

4. Repeat step 2-3 using the C or S found in step 3 until a stopping criterion has been
reached.

5. Return S and C from step 4.

Furthermore, a weakness of MCR methods overall, including MCR-ALS, is that new solu-
tions for C and S can be obtained by introducing an invertible transformation-matrix, A.
By defining C ′ = CA and S ′ = S(A−1)T , the product between C ′ and S ′T becomes:

C ′S ′T = CAA−1ST = CIST = CST , (5)

where the loss is consequently equal [2]. These kinds of solutions are, mathematically
speaking, rotations of each other in high-dimensional spaces [2, 7, 8], and are therefore
called rotations.

Because of the possibility of rotations in the solutions, C and S vary depending on Sinit

and Cinit, but, due to the fact that the loss cannot increase each update, C and S are
also susceptible to getting caught in a local minimum. Thus, the loss may vary between
different initializations.

In this project, MCR-ALS is always initialized using an Sinit generated from the SIM-
PLISMA algorithm. SIMPLISMA is a widely used and deterministic algorithm for gen-
erating initial spectra [13]. Thus, the research carries relevance to actual usage and the
effects caused by rotations originating from the choice of initial Sinit are eliminated.

The implementations of both the SIMPLISMA and MCR-ALS algorithms used are taken
from the OCTAVVS project [1]. However, the code for the MCR-ALS algorithm is altered
to take a weight-vector as an argument to enable MCR-ALS to decompose a compressed
image correctly.
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2.2 Overarching description of CAM-A

CAM-A can be split into four different steps: the pre-processing, clustering, decomposition,
and reconstruction step, and their relation is depicted in figure 2. In the pre-processing
step, the image is represented as a matrix D where each row-vector corresponds to a pixel
in the image. The spectrum in each row may be L2-normalized, creating the normalized
matrix D̄. L2-norm is chosen to remove the importance of the intensity of the spectra
when clustering, and to make their shapes the critical feature. An initial spectral matrix
Sinit is generated from D using SIMPLISMA.

A matrix, Q, whose rows are equal to centroids obtained by clustering on the rows of D
(pixels) is constructed in the clustering step. A weight vector, w, whose elements are the
weights for each centroid is determined concurrently. How the weights are determined is
found in section 2.3. Q is then used to construct a new compressed image, D′, where the
rows in D′ are rows in Q weighted using the weights in w as described in section 2.4.

In the decomposition step, MCR-ALS is run on D′ to determine a contribution matrix
for the centroids, C ′, and a matrix of the component spectra, S ′. To recreate a C from
an original decomposition as accurately as possible, a Ĉ is constructed using C ′ with a
reconstruction method of choice presented in section 2.5; this is the reconstruction step.
A reconstruction method may use both the centroid matrix Q and image D to create a
reconstruction matrix V for reconstruction, if V is necessitated by the method. Ĉ and S ′

are multiplied to recreate a new image D̂ used to calculate the loss.

Figure 2: A flowchart of the CAM-A method illustrating the description of the steps in section
2.2

5



2.3 K-means clustering

In section 2.1, it was stated that we may be able to reduce the time required for decom-
position by reducing the dimensionality on a spectral data-set. The clustering algorithm
k-means is used for dimensional reduction as it can find so called centroids to represent
spectra in a spectral data-set efficiently using fewer spectra. K-means is chosen in particu-
lar due to its simplicity compared to other clustering algorithms [14]. The implementation
of k-means and its initializations are from the module sklearn.cluster.KMeans from the
scikit-learn library [15].

To explain k-means, define the set of all centroids, qk, and the set of all spectra, di,
respectively, in a spectral data set by:

Q = {qk},D = {di}, (6)

where qk and di are the row-vectors of Q and D, respectively. The objective function, ϕ,
for k-means is given by:

ϕ(C,D) =
∑
di∈D

min{(di − qk)
2, qk ∈ Q}, (7)

which measures how ’poorly’ a set of centroids correspond to the data. By iterative up-
dates, the k-means algorithm tries to minimize the value of ϕ for the given Q [10, 14].
Consequently, the update is as in equation (9), where a set, A, for each qk ∈ Q is by

Aqk
= {di : (di − qk)

2 = min{||di − qk||2,∀qk ∈ Q}. (8)

qk is updated each iteration as follows:

1

|Aqk
|

∑
di∈Aqk

di −→ qk, (9)

and new Aqk
are generated for the new qk as given in equation (8), and the updates

are repeated until a stopping criterion is reached. When the stopping criterion has been
reached, a weight-vector, w, is created. The weight-vector’s elements are defined as

wk = ||Aqk
||. (10)

There are several ways to choose an initial set of centroids, Q. The ‘Points’ initialization
works by sampling di from D with equal probability for each di to be chosen once at most.
‘++’ is found to improve the accuracy of K-means; the initialization starts by sampling one
q1 like as for ‘Points’ and then choosing a new qk from X with a probability proportional
to the square of the minimal distance from di to any qk ∈ Q until a specified amount
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of centroids has been chosen [10]. Because the initializations we chose are stochastic,
the compressed image, D′, is not equal each time it is compressed, resulting in different
solutions.

2.4 Weighting of centroids

When the centroid matrix, Q, has been found, we want an MCR-ALS decomposition on
D′ to be equivalent to a decomposition of D̃ where the spectrum in each pixel is replaced
by the centroid the pixel belongs to. To achieve the equivalence, the following weighting,
version of D′, and loss are used:

D′
k,j =

√
wkQk,j and (11)

L = ||E||2 =
∑
k,j

wk(Qk,j −C ′
k·S′

j)
2 =

∑
k,j

(D′
k,j −

√
wkC

′
k·S′

j)
2, (12)

where k and j respectively denote row and column number, and Ck and Sj are row and
column matrices respectively. In appendix A.1, the proof for equivalent loss betweenD′ and
D̄ is shown. It is used for convenience of implementation, but comes with the requirements
that we must take the weighting into account when determining C ′, and consequently we
must initialize MCR-ALS with Sinit.

2.5 Reconstruction methods

When we have found C ′ and S ′, the contribution matrix for the centroids and pure spectra
matrix, respectively, we used them with a reconstruction method to create a reconstruction
of C, Ĉ. The general formula for the construction of Ĉ is:

Ĉ = V C ′, (13)

and V is called a reconstruction matrix. An important property which V must abide by is
that Ĉi,j ≥ 0. Using V , the reconstruction loss is defined as:

Lrecon = ||Erecon||2 = ||D − V Q||2, (14)

which is a measure of how well the centroids represent the image given a certain recon-
struction method.
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For the simplest reconstruction method, ‘Simple’, the elements in V are defined as follow-
ing:

Vi,k =

{
1 if Di ∈ Aqk

0 else
or Vi,k =

{
||Di|| if D̄i ∈ Aqk

0 else
, (15)

where Di and D̄i are the i:th row vectors in respective matrices.

We assume that the pixels in the image consist of positive linear combinations of different
component spectra already when using MCR-ALS. By that assumption, the component
distributions describing the pixels should be possible to describe as linear combinations of
the distributions describing the centroids in the same way as the pixels can be described
by the centroids. Ergo, a reconstruction method ‘NNLS’ is created, and it finds a VNNLS,
given by minimizing the value:

V = argmin
V

||D − VQ|| : Vi,j ≥ 0, (16)

to ensure a positive contribution matrix. Another reconstruction method tested is what
we call ‘LSW’, short for ”least squares weighting”. It follows the same argument, but
allows the contribution from a pixel to be negative. Moreover, the negative contributions
are limited by the condition that Ĉ must be non-negative. How ‘LSW’ finds VLSW is now
described. VLS is be the V minimizing the square norm ||D−VQ||2 and VNNLS the matrix
minimizing the expression in equation (16). VLSW is accordingly given by

V LSW,i = (1− λi)V NNLS,i + λiV LS,i , (17)

where λi is the maximal inclusion of VLS,i which conserves the non-negativity condition on

Ĉ, and V LSW,i, V NNLS,i, and V LS,i are the i:th row vectors in the respective matrices. λi

is defined as follows:

λi,j =

{
− V NNLS,i·C′

j

(V NNLS,i−V LS,i)·C′
j

if (V NNLS,i − V LS,i) ·C′
j < 0

1 else
, (18)

λi = min({λi,j : 1 ≤ j ≤ J} ∪ {1}), (19)

where J is the number of components and λij is the maximal contribution of V LS,i in
V LSW,i allowed by component j. The derivation is found in appendix A, where it also is

shown that Ĉ always is positive by construction.
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Another reconstruction method, called ‘Strong’, is to find Ĉ is by taking a ‘half-step’ of
MCR-ALS:

Ĉ = argmin
Γ

||D − Γ(S ′)T ||, Γij ≥ 0. (20)

The disadvantage of using the ‘Strong’ reconstruction method is that no reconstruction
matrix V is created, and consequently a reconstruction loss cannot be determined, making
it difficult to measure how efficiently it preserves information in an image.

2.6 Comparison loss

An error measure we call ‘comparison loss’ is designed to measure how similar and rotated
the row vectors in Ĉ from CAM-A are compared to the row-vectors in Corig from the
original MCR-ALS process. A measure which ‘greedily’ determines the best comparison of
rows of Corig and Ĉ was implemented due to the number of possible permutations of the
rows being proportional to n!, where n is the number of components. The procedure is as
follows:

1. Divide all elements of the rows in Ĉ or Corig with the largest feature in the corre-
sponding row of S ′ or Sorig, respectively. Sorig is the spectra from MCR-ALS without
clustering.

2. Choose a random sequence, I, of the rows in Corig, with equal probability for each
sequence.

3. Pair the first row of the sequence that has not yet been paired with the row in Ĉ
with a row in Ĉ which minimizes ||Corig,i − Ĉk||, where i and k are row numbers,
and has not been paired with a row in C yet.

4. Repeat step 3 until all rows have been paired. Construct a new matrix Ĉopt where

Ĉopt,i is the Ĉk paired with Corig,i

5. The partial comparison loss is given by Lc,p =
1
|I|

∑|I|
i=1

||Corig,i−Ĉopt,i||2
||Corig,i||2 .

6. Repeat step 2-5, and calculate the the comparison loss as the mean value of all Lc,p

from each repetition, Lc =
1
P

∑P
p=1 Lc,p, where P is the number of repetitions.

The number of repetitions in step 4 is a parameter that must be set; the more repetitions,
the more precise the value becomes. Another thing to note is that the value of Lc is
punished by rotations. The reconstruction may produce a solution close to the loss from
an original MCR-ALS decomposition, ||Eorig||2, but a rotation between any components
may give rise to a large Lc,p despite that, increasing the value of Lc. Another aspect is
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that due to the stochastic nature of Lc, the measure fluctuates more between runs when
Lc is large, both caused by a greater discrepancy between Corig and Ĉ allowing for a wider
variety of pairings. Thus, it is a more qualitative measure when Lc is large, but can used
quantitatively when Lc is small due to steps 2 and 3 suppressing the stochastic nature
when Ĉk is similar to C.

2.7 Data and measurement

We chose 3 hyperspectral images containing infrared absorption spectra from measurements
using different spectroscopic methods on different biological samples as sources. A variety
of sources and methods allows for a greater generalizability of the results.

The loss, reconstruction loss, and comparison loss for a combination of choices is not equal
each run due to the stochastic nature of the initializations of k-means. Similarly, fluctu-
ations in time consumption could occur since the environment was not entirely isolated
from other processes. Hence, the average losses and time consumptions were averaged out
over 40 runs with the same parameter settings.

Furthermore, there were termination-conditions dictating when both k-means and MCR-
ALS should terminate for the measurements of the performance parameters presented in
section 3. k-means was set to terminate when either ||Qi−1−Qi|| ≤ 10−5 or reaching Q200,
where Qi is the ith iteration. MCR-ALS was also run for 200 iterations. Additionally, 100
different Lc,p were used to calculate Lc each run of CAM-A.
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2.8 Hardware and software

CAM-A was implemented in the programming language Python, version 3.6, and the code
for the implementation is found in appendix B.2. The modified MCR-ALS code is found in
appendix B.1. Libraries and their respective version used in the implementation are shown
in table 1. The CPU used is an AMD Ryzen Threadripper 3990X 64-Core processor.

Library Version

statsmodels 0.12.2
numpy 1.17.2
scipy 1.5.4

scikit-learn 0.24.2

Table 1: Python libraries used and their respective versions.

11



3 Results and discussion

CAM-A was run using different combinations of choices of pre-processing, number of com-
ponents, reconstruction methods, and hyperspectral images to investigate the interaction
between the choices and to isolate respective effects on rotations, loss, time consumption,
etc. The combinations of choices were tested for 3 images we named “Ex 90”, “Tumor”,
and “PAI”.

3.1 Reconstruction methods

We examined the effects on the loss and reconstruction loss using different reconstruction
methods and initializations of k-means to find which of respective choice gives the least
respective errors and why. The results of the examination when using 4 components and
the image “Ex 90” is presented in figure 3. “Ex 90” was selected because it exemplifies
the general behavior, and 4 components was chosen to more clearly display the difference
between the ‘LSW’ and ‘NNLS’ reconstruction methods. In section 3.4, how the number
of components and image influence ‘LSW’ is presented.

Among the reconstruction methods, ‘Strong’ reconstruction consistently yields the lowest
loss for a given number of centroids when chosen, meaning it reconstructed the original
image better than the other methods. The ‘LSW’ reconstruction method yields a loss like
the ‘Strong’ reconstruction for 4 components in figures 3C and 3D. In contrast, the ‘NNLS’
and ‘Simple’ reconstruction methods gave larger losses, of which ‘Simple’ yields the largest.

‘Strong’ reconstruction yields the lowest loss because of its construction. The reconstructed
contribution matrix, Ĉ, in equation (20); the equation yields the Ĉ minimizing the dif-
ference ||D − Ĉ(S ′)T ||2 within the boundary conditions, for a given spectra matrix after
decomposition, S ′, and an image D. The other reconstruction methods do not necessar-
ily give the same Ĉ. Consequently, the loss may only be equal or larger for the other
reconstruction methods.
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Figure 3: Loss and reconstruction loss of different reconstruction methods and intializations of
k-means, with 95% confidence intervals. The relative error is given by ||Erecon||2/||D||2 in (A)
and (B) and ||E||2/||D||2 in (C) and (D). ”PCA” in (A) and (B) is the unexplained variance
against number of components.
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‘Simple’ reconstruction performs poorly, compared to the other methods, in terms of both
the loss and reconstruction loss because k-means group spectra of varying intensities to-
gether. When Ĉ is constructed using ‘Simple’, it is presumed that all pixels belonging to
a centroid are built up by the constituent spectra the exact same way as the centroid is
in the compressed contribution matrix, C ′, including the amplitudes of the contributions
of component spectra. Consequently, many pixels in the reconstructed image, D̂, have an
incorrect intensity. Since the losses defined in equations (12) and (14) are dependent on the
absolute values of the features, the incorrect intensities cause the errors in representation.

The ‘NNLS’ reconstruction method generates a substantially larger loss and reconstruction
loss than ‘LSW’ and does so because of a more limited subspace of linear combinations
of centroids. Only positive linear combinations of centroids are allowed to be used for
reconstruction of the pixels, and the possible reconstructions are limited to a subspace
whose ‘borders’ are defined by the centroids, see figure 4. The reconstructions of pixels
lying outside the ‘borders’ of the subspace are projections of the pixels onto the subspace.

Moreover, because the centroids defining the borders are the mean-values of the pixels
belonging to them, some pixels will always be outside the ‘borders’ independently of how
many centroids are used. The same effect also causes an increment in the number of cen-
troids to give diminishing returns, as the ‘push’ the centroids exert on each other decrease
due to a screening-effect caused by the pixels belonging uniquely to their closest centroid.

Reconstruction using the ‘LSW’ method allows linear combinations of centroids represent-
ing pixels to contain negative contributions from centroids, as long as the contributions in
Ĉ are positive. How the subspace is expanded is depicted in figure 4. Thus, more of the
pixels lying close to the borders are captured, allowing for a more accurate representation
of the pixels; consequently decreasing the loss and reconstruction loss.

Figure 4 is an illustration of subspace created by positivity condition of the ‘NNLS’ recon-
struction method when only two features are present. Black lines indicating the span of the
subspace have their direction determined by the centroids, which the lines pass through.
A red line in the figure illustrates how ‘LSW’ can expand the subspace, and the green line
the new ‘border’ replacing the ‘border’ which the red line emerges from.
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Figure 4: An illustration of the limitation of ‘NNLS’-reconstruction (black lines) and how ‘LSW’-
reconstruction decrease the limitation (green dashed line). Centroids are represented by blue dots
with purple rings and spectra by yellow dots with blue rings.

3.2 Initialization of k-means

The ‘++’ initialization of k-means yields a smaller loss and reconstruction loss than ‘Points’
independently of number of components, reconstruction method, normalization, and im-
age. More of an image is captured by a centroids when using ‘++’, exemplified by the
steeper slope of reconstruction loss as a function of centroids in figure 3B compared to 3A
for all reconstruction methods. The loss also follows the same pattern, exemplified by a
comparison between figure 3D and 3C.

Compared to ‘Points’ initialization, ‘++’ initialization causes k-means to generally produce
better centroids in terms of minimizing the square-Euclidian distance [10]. Thus, the
spectra represented by the centroids are more similar each other, and can represent more
of the image, when initializing with ‘++’ rather than ‘Points’. MCR-ALS, consequently,
has more variation between the spectra to work with when ‘++’ is chosen, despite the
number of centroids not changing. Thus, Ĉ and S ′ from the decomposition represent the
image better since more nuances in the original image are caught.

Additionally, because the probability of choosing a pixel as an initial centroid is pro-
portional to the square distance to the closest centroid, the centroids are, on average,
spread out further from each other in spectra-space when using ‘++’ compared to ‘Points’.
Consequently, the greater spread causes the subspaces restricting the ‘NNLS’ and ‘LSW’
reconstruction methods to span a greater subspace in comparison. The centroids are also
more distributed according to their respective intensity, causing the pixels belonging to a
centroid to be more uniform in intensity, further decreasing the loss when using the ‘Simple’
reconstruction method.
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3.3 Normalization of spectral data

We investigated the difference in reconstruction loss and loss when normalizing the image
before clustering for all reconstruction methods to determine how normalization interacts
with the different steps of CAM-A. From the investigation, the result of CAM-A decom-
positions of image “Ex 90”, both normalized and unnormalized, using 4 components and
initializing k-means with ‘++’ is presented in figure 5. “Ex 90” was chosen to portray the
general case, ‘++’ because it is the most error-efficient initialization of k-means and does
not interact with normalization, and 4 components to differentiate ‘LSW’ from ‘NNLS’
more clearly, as further discussed in section 3.4. A peculiar difference between figure 5A
and 5B is that the reconstruction loss for the ‘LSW’ and ‘NNLS’ is smaller when the image
is normalized, but their loss is larger; the loss also is larger for the ‘Strong reconstruction
method. In contrast, ‘Simple’ reconstruction has a smaller loss and reconstruction loss
when the image is normalized.
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Figure 5: Loss and reconstruction loss when normalizing not normalizing D before clustering,
with 95% confidence intervals. The relative error on the y-axis is given by ||Erecon||2/||D||2 in
(A) and ||E||2/||D||2 in (B). Each color represent a reconstruction method, and dashed lines
represent losses when normalizing the image.
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The reason the reconstruction loss is smaller when normalizing is that the centroids have a
greater variety of shapes after k-means on the original image, D. k-means is very sensitive
to the intensity of the spectra due to it minimizing the square-Euclidian distance each
iteration. Therefore, it groups spectra after both shape and intensity. When clustering on
a normalized image, D̄, the intensities of all the spectra are the same, and they are only
grouped after their shapes. Therefore, a wider range of shapes of centroids are obtained
when clustering on D̄.

For the ‘Simple’ reconstruction, the shapes of the centroids are more like the shapes of the
pixels belonging to the centroid due the shapes being be less mixed. The centroids are
brought to an intensity of the same magnitude as respective original spectrum they repre-
sent in the reconstruction by the reconstruction method. Consequently, the reconstruction
loss is lower because the greater variety of shapes of centroids allows the reconstruction
methods to create spectra more similar to the original pixels in D′ and captures a greater
portion of the lower intensity spectra.

The normalization removes the importance of the image’s higher intensity spectra in MCR-
ALS. Thus, the MCR-ALS decomposition distributes the importance more evenly between
the spectra during decomposition. Therefore, C ′ and S ′ will be more adapted to explain
the lower intensity spectra more precise, but the higher intensity less precise. The loss, L, is
more susceptible for changes in high-intensity spectra and therefore is larger, demonstrated
by the graphs in figure 5B for ‘NNLS’, ‘LSW’, and ‘Strong’.

3.4 Components

An investigation on how whether using 8 or 4 components the loss for a CAM-A decom-
position compares to an original decomposition was conducted. Our aim was to uncover
how information in the image is distorted and to find interactions between the choice of
reconstruction method and number of components. The findings from the investigation are
presented in figure 6, for the case of ‘++’ k-means initalization. The ‘points’ initalization
gave similar but less clear results.

More components yielded a lower loss invariably of the other choices. However, the dif-
ference in the relative error between the CAM-A loss and the original decomposition is
larger. Additionally, the loss using ‘LSW’ reconstruction is increasing with the number
of centroids in figure 6B; the increase is not present for 8 components. For all images,
the ‘LSW’ reconstruction method yields a loss close to the ‘NNLS’ reconstruction method
when decomposing the image into 8 consituent spectra.
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Figure 6: The relative error, ||E||2/||D||2, for different reconstruction methods, number of com-
ponents, and images. The confidence intervals are 95%.

The larger difference in relative error of the original MCR-ALS and reconstruction methods
with more components is a consequence of that the original MCR-ALS can account for
components constituting a smaller portion of the image. Thus, the decomposition can
account for more of the image when more components are used, reducing the loss. However,
when clustering, the subtler components are not necessarily conserved in D′, due to being
overshadowed in the clustering-step by the more prominent components. Therefore, MCR-
ALS cannot use the subtler components to describe the image, and the loss is larger.

The loss, L, using the ‘LSW’ method is more like the ‘NNLS’ method when using 8 com-
ponents compared to 4 due to an more constraints limiting the reconstruction. ‘LSW’
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reconstruction has an equal number of components and λi,j. The value λi is the smallest
λi,j, and λi is then likely be smaller with more components. Thus, the incorporation of
the VLS matrix into the VLSW matrix is also likely to be smaller with more components,
making the VLSW matrix increasingly alike the VNNLS matrix. Consequently, the ‘LSW’
reconstruction becomes more like the ‘NNLS’ reconstruction when increasing the number
of components.

3.5 Rotations

We examined whether rotations could occur when using CAM-A relative the original de-
composition, and which choices may cause rotations. A baseline is given when 4 compo-
nents are used, the image is not normalized, and the ‘++’ clustering initialization. This
baseline is chosen to study the effect on comparison loss, defined in section 2.6, when
changing either the number of components to 8, clustering on a normalized image, D̄,
or k-means initialized with ‘Points’. The choice of parameters in the baseline gave the
smallest reconstruction error. Any choice of reconstruction could not be determined to
influence the comparison more than the margin of error, and ‘Strong’ reconstruction was
therefore chosen as a representative reconstruction method in the baseline. The results for
2 different images is presented in figure 7 as the consequences for the comparison error of
changing different parameters may be different depending on the image.
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Figure 7: The comparison loss, measuring rotation relative original MCR-ALS decomposition, by
choice of parameters and image, with 95% confidence intervals. The baseline is a set of parameters
chosen because they give a low comparison loss in all images.
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Normalization causes a larger comparison loss compared to the baseline for the image
“Tumor” but not for the image “Ex 90”. Likewise, the comparison loss is larger when
initializing using ‘Points’ for image “Ex 90” but not for image “Tumor”, see figure 7.
A decomposition by CAM-A is more rotated with more components, exemplified by the
larger comparison loss decomposing an image into 8 components compared to the baseline
in figures 7A and 7B.

Normalization of D may cause a rotation in the data as the loss dictating how MCR-
ALS decomposes an image is sensitive to intensities of the spectra. Hence, changing the
intensities will alter the decomposition. However, normalization does not cause a rotation
for “Ex 90”, indicating that the effect is image dependent.

More components increase the probability of rotations in the MCR-ALS due to a greater
subspace of transformations. The compressed image, D′, consist of centroids and do not
represent the original image, D, perfectly. Thus, C ′ and S ′ will be rotated, and conse-
quently Ĉ to also be rotated. Thusly, the comparison error is larger with more components.

Also, the centroids from k-means clustering removes information about components ex-
plaining less of the image making it more difficult for MCR-ALS to properly distinguish
between them. Hence, the weak components are prone to be ‘mixed’ into other compo-
nents; this is equivalent to a rotation. More weak components are present when more
components are used, which increases this effect. Thus, more components results in a
larger comparison loss.

A larger number of centroids allows D′ to better represent D. Hence, the rotations and
comparison loss decrease with centroids, and do so invariably of choices for the steps of
CAM-A. The decrease in comparison loss with centroids is present in the data presented
in figure 7.
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3.6 Time consumption

CAM-A reduces the total time-requirement for decomposition of the images invariably of
the number of components used, etc, within the range of centroids used. The different parts
of CAM-A are also scaling differently with the number of centroids, see figure 8, where the
time-requirement for the different parts of CAM-A is represented using image ”Ex 90”. To
compare the total time-requirement of CAM-A and its individual segments, the quotient
between respective time-consumptions and the time-consumption for the original MCR-
ALS decomposition, T0, is presented in figure 8.
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Figure 8: Time-requirements for the whole CAM-A process and the different steps for some choices
of parameters. The confidence intervals are 95%. (A,B,D): 4 components. (A-C): Clustering is
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The time for MCR-ALS decomposition of the compressed image D′ scales linearly with the
number of centroids, exemplified in figure 8C, which has to do with the implementation of
NNLS. NNLS must be run on each pixel in D′ separately, and due to MCR-ALS being run
for 200 iterations, the average time required per centroid is about the same. Furthermore,
the reason the time for decomposition does not start at zero is an initial setup-time in the
implementation of MCR-ALS.

The time-requirement of the clustering step scales linearly for ‘++’ with centroids but
logarithmically for ‘Points’. The reason is that the probability of choosing a centroid must
be re-calculated each time. Their exact scaling is dependent on the implementation.

There is no practical difference in time consumption between the ‘LSW’ and ‘NNLS’ meth-
ods, and their time consumptions scales like O(n1+ϵ), ϵ < 1, with centroids. In contrast,
the time-requirements of the Strong’ and ‘Simple’ reconstruction methods do not scale
with the number of centroids. Moreover, the ‘Strong’ and ‘Simple’ reconstruction methods
also require considerably less time than the ‘LSW’ and ‘NNLS’ methods; of them, ‘Simple’
requires the least time.

The total time-consumption is dominated by the time taken to construct the reconstructed
contribution matrix, Ĉ, when using either the ‘LSW’ or ‘NNLS’ as the reconstruction
method. Aside from using those reconstruction methods, when using the ‘Simple’ or
‘Strong’ reconstruction method, the total time consumption is at most a tenth of the
original time, within the range of centroids used; the largest portion of time was used for
decomposition.

We also examined how efficient the methods are in terms of minimizing the loss against
relative time elapsed, because we want to accelerate the process as much as possible with
the least error possible. Examples on how the loss using CAM-A evolved as a function of
the time quotient between time required for all parts of CAM-A and the time required for
non-clustered MCR-ALS, T0, depends on the number of components and reconstruction
method are presented in figure 9 for the images “Tumor” and “Ex 90”; the initialization
of k-means is ‘++’, to minimize the loss per centroid. From the examination, we found
that the ’Strong’ reconstruction method is the most efficient reconstruction method.
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4 Conclusion

We have developed a method for accelerating MCR-ALS, CAM-A, which can reduce the
time requirement, but at a cost in accuracy compared to the original decomposition. How-
ever, the resulting decomposition is profoundly dependent on the choices made for the
different steps in CAM-A.

Of the four reconstruction methods presented in this project, the ‘Strong’ method is the
most efficient method in terms of loss as a function of time elapsed. The ‘Strong’ method
also yields the least loss per centroid, and, consequently, is the most memory-efficient
reconstruction method since fewer centroids are needed compared to the other methods.
It is also not found to exhibit any unfavorable behaviors, unlike the ‘LSW’-method which
can introduce an error increasing with the number of centroids.
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The preferable method to initialize k-means is ‘++’. The extra time-requirement for using
‘++’ instead of the ‘Points’ initialization is outweighed by its benefits. ‘++’ initialization
is also less prone to rotations and produces a smaller loss due to a better representation
of spectra. Thus, fewer centroids are needed to reach a better representation of an image,
reducing the time and memory required.

Spectral data should not be normalized. The intensity in a hyperspectral image is critical
to determine the importance of spectra. Without the information about the intensity, new
rotations may emerge because the lower-intensity spectra may be heavily influenced by
random linear fluctuations in the original hyperspectral image.

Overall, how well centroids from clustering can represent the original hyperspectral image
is crucial to MCR-ALS. The choices which allow the centroids to represent of the original
hyperspectral more accurately consistently yields a smaller loss. Thus, usage of other
clustering methods than k-means may be investigated, or other initializations, to see if the
representation can be improved comparatively.

The optimal set of parameters for CAM-A presented in this project, is initializing k-
means with ‘++’, using ‘Strong’ as reconstruction method, and not normalizing the image.
CAM-A subsequently produces a reliable decomposition and reduces both the time and
memory usage needed for decomposition. Nevertheless, there are further applications and
improvements.

The decomposition is the step which takes the most time, even when using the optimal
set of parameters for clustering. The time required by decomposition may be reduced
by utilizing Anderson acceleration [16]. It is a method to accelerate MCR-ALS which
does not care about the distribution of the spectra in the image and can straightforwardly
be implemented with clustering. Thus, MCR-ALS will be accelerated further. However,
there may be unintended consequences combining CAM-A with Anderson acceleration,
and further research is required.

CAM-A may also be useful when working with data sets consisting of several hyperspec-
tral images. CAM-A can be run on images or a subset of the images separately. The
centroids found from clustering are subsequently properly weighted and merged into one
matrix. The matrix is then decomposed into a spectral and contribution matrix. From the
decomposition, each image can be reconstructed using any of the reconstruction methods
proposed here.
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A Derivations

A.1 Derivation of weighting

To start with, define a matrix G as follows:

G = CST , (App.1)

where
S = argmin

S
||D − CST || or C = argmin

C
||D − CST ||. (App.2)

G′ = C ′(S ′)T for the compressed image, D′, by extrapolation. Also, define a set consisting
of the pixels corresponding to a centroid by

Ik = {i : di ∈ Aqk
}. (App.3)

The partial loss from a row,i, in a matrix D̃, where the each pixels are simply replaced
with the centroid representing it, D̃ij = Qkj : i ∈ Ik has the form:

||Ei||2 =
∑
j

(D̃ij − G̃ij)
2 =

∑
j

(Qkj − G̃ij)
2. (App.4)

Consequently, we can observe that G̃ij = Gpj := Gkj : i, p ∈ Ik due to the fact that they
should minimize the same total loss using the same centroid and S or C -matrix. Ergo,
the total loss becomes:

||Etot|| =
∑
ij

(Qij − G̃ij)
2 =

∑
ij

wk(Qkj −Gkj)
2 =

∑
kj

wk(Qkj −G′
kj)

2 =

=
∑
kj

(
√
wkQkj −

√
wkG

′
kj)

2 =
∑
kj

(
√
wkQkj −

√
wkC

′
k·S′

j)
2,

(App.5)

and we find that the same effective decomposition is conserved with proper weighting of
the loss or D′ as given in equation (12).

If MCR-ALS is initialized using S, the decomposition returns a C ′ whose components are
effectively weighted after importance due to the interaction between the construction of G′

in equation (App.1) and (App.5). Similarly, the interaction between the weighted C ′ and
equations (App.1) and (App.5) results in a non-weighted S ′, and the cycle repeats each
iteration. In contrast, initializing using an improperly weighted Cinit will cause a major
initial rotation of S ′, influencing the subsequent iterations.
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A.2 Derivation of expression of λi for LSW.

Define Ĉ from equation (13). Let VLSW be the reconstruction matrix, and its rows defined
as in equation (17). We know that VLS,i produces the lowest reconstruction loss of the two
matrices and VNNLS,i produces the lowest loss given positivity boundary-conditions. As
such, we want 0 ≤ λi ≤ 1 but as close to 1 as possible. Another condition on VLSW is that

Ĉij ≥ 0. (App.6)

By construction, VNNLS,i·C ′
j ≥ 0. Emerging from equations (13), (17) and (App.6), we find

the following limitation on λij:

((1− λij)VNNLS,i + λijVLS,i)·C ′
j ≥ 0 ⇒

⇒ (λij(VLS,i − VNNLS,i) + VNNLS,i)·C ′
j ≥ 0 ⇒

⇒


λij ≤ − C′

j·VNNLS,i

(VLS,i−VNNLS,i)·C′
j

≥ 0 if (VLS,i − VNNLS,i)·C ′
j < 0

λij ≥ − C′
j·VNNLS,i

(VLS,i−VNNLS,i)·C′
j

≤ 0 if (VLS,i − VNNLS,i)·C ′
j > 0

λij ∈ R if (VLS,i − VNNLS,i)·C ′
j = 0.

(App.7)

Thus, we find that we can let λij to be arbitrarily large when (VLS,i −VNNLS,i)·C ′
j ≥ 0, but

as λi is confined to the region [0, 1], we may set λij = 1 for simplicity in implementation.

Equation (18) arises as a result. Subsequently, because the elements of Ĉ are to be strictly
non-negative and we we are confined in the region [0, 1], we find the expression for λi given
in equation (19).
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B Code

B.1 Modified MCR-ALS code from the OCTAVVS project

1 #!/usr/bin/env python3

2 # -*- coding: utf -8 -*-

3 """

4 Created on Tue May 18 14:45:53 2021

5

6 @author: carl , eric (small modification)

7 """

8

9 import numpy as np

10 import scipy

11 import math

12 import time

13 from threadpoolctl import threadpool_limits

14

15 def simplisma(d, nr , f):

16 """

17 The SIMPLISMA algorithm for finding a set of ’pure’ spectra to serve

18 as starting point for MCR -ALS etc.

19 Reference Matlab Code:

20 J. Jaumot , R. Gargallo , A. de Juan , R. Tauler ,

21 Chemometrics and Intelligent Laboratoty Systems , 76 (2005)

101 -110

22

23 Parameters

24 ----------

25 d : array(nspectra , nwavenums)

26 input spectra.

27 nr : int

28 number of output components.

29 f : float

30 noise threshold.

31

32 Returns

33 -------

34 spout: array(nr , nspectra)

35 concentration profiles of ’purest ’ spectra.

36 imp : array(nr , dtype=int)

37 indexes of the ’purest ’ spectra.

38 """

39

40 nrow = d.shape [0]

41 ncol = d.shape [1]

42 s = d.std(axis =0)

43 m = d.mean(axis =0)

44 mf = m + m.max() * f

45 p = s / mf
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46

47 # First Pure Spectral/Concentration profile

48 imp = np.empty(nr , dtype=np.int)

49 imp[0] = p.argmax ()

50

51 #Calculation of correlation matrix

52 l2 = s**2 + mf**2

53 dl = d / np.sqrt(l2)

54 c = (dl.T @ dl) / nrow

55

56 #calculation of the first weight

57 w = (s**2 + m**2) / l2

58 p *= w

59 #calculation of following weights

60 dm = np.zeros((nr+1, nr+1))

61 for i in range(1, nr):

62 dm[1:i+1, 1:i+1] = c[imp[:i], :][:, imp[:i]]

63 for j in range(ncol):

64 dm[0, 0] = c[j, j]

65 dm[0, 1:i+1] = c[j, imp[:i]]

66 dm[1:i+1, 0] = c[imp[:i], j]

67 w[j] = np.linalg.det(dm[0:i+1, 0:i+1])

68 imp[i] = (p * w).argmax ()

69

70 ss = d[:,imp]

71 spout = ss / np.sqrt(np.sum(ss**2, axis =0))

72 return spout.T, imp

73

74 def clustersubtract(data , components , skewness =300, power =2):

75 """

76 Create initial spectra for MCR -ALS based on successively removing

77 what appears to be the strongest remaining component.

78

79 Parameters

80 ----------

81 data : array (nspectra , nfeatures)

82 Spectral data.

83 components : int

84 Number of components to return.

85 skewness : float , optional

86 Asymmetry between positive and negative residuals when computing

87 how much of the previous component to remove from the data.

88 The default is 100.

89 power : float , optional

90 The sum of residuals is raised to this power before summation to

91 determine the leading remaining component.

92

93 Returns

94 -------

95 initial_spectra : array (components , nfeatures)

96 """
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97 def typical_cluster(data , first):

98 # draw sqrt(n) random , r

99 # find closest in r for each s

100 # for r with most s, return mean of s (or iterate ?)

101 r = np.random.choice(len(data), math.floor(math.sqrt(len(data))))

102 rd = data[r]

103 #Cosine norm used to ignore difference in magnitude

104 nearest = scipy.spatial.distance.cdist(

105 rd, data , ’cosine ’).argmin(axis =0)

106 # Mean of those who are nearest the biggest cluster

107 if first:

108 selected = np.bincount(nearest).argmax ()

109 else:

110 sums = data.sum (1)** power

111 selected = np.bincount(nearest , weights=sums).argmax ()

112 return data[nearest == selected ].mean (0)

113

114 comps = []

115 for c in range(components):

116 tc = typical_cluster(data , c == 0)

117 tc = np.maximum(tc , 0)

118 tc = tc / (tc * tc).sum() ** .5

119

120 comps.append(tc)

121 sgn = np.ones_like(data , dtype=bool)

122 for i in range (10):

123 ww = 1 * sgn + skewness * ~sgn

124 a = (data * ww * tc).sum(1) / (ww * tc * tc).sum(1)

125 oldsgn = sgn

126 sgn = data > a[:, None] @ tc[None , :]

127 if np.array_equal(sgn , oldsgn):

128 break

129 data = data - a[:, None] @ tc[None , :]

130 return np.array(comps)

131

132 def numpy_scipy_threading_fix_(func):

133 """

134 This decorator for mcr_als prevents threading in BLAS if scipy’s NNLS

135 is used , because for some reason NNLS won’t be parallelized if called

136 shortly after lstsq or @. This makes a *massive* difference to the

137 time needed for Anderson acceleration , where the BLAS calls

themselves

138 take negligible time. For mixed NNLS/lstsq solving (of MCR -ALS on

139 derivatives) it’s less obvious whether NNSL or lstsq should be

allowed

140 to be parallelized.

141 Note: This issue is seen on

142 """

143 def check(*args , ** kwargs):

144 if np.any(kwargs[’nonnegative ’]):

145 with threadpool_limits (1, ’blas’):
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146 return func(*args , ** kwargs)

147 else:

148 return func(*args , ** kwargs)

149 return check

150

151 @numpy_scipy_threading_fix_

152 def mcr_als(sp , initial_A , *, maxiters , nonnegative =(True , True),

153 tol_abs_error =0, tol_rel_improv=None , tol_iters_after_best=

None ,

154 maxtime=None , callback=None , acceleration=None , normalize=

None ,

155 contrast_weight=None , return_time=False , weight_vector = None

, ** kwargs):

156 """

157 Perform MCR -ALS nonnegative matrix decomposition on the matrix sp

158

159 Parameters

160 ----------

161 sp : array(nsamples , nfeatures)

162 Spectra to be decomposed.

163 initial_A : array(ncomponents , nfeatures)

164 Initial spectra or concentrations.

165 maxiters : int

166 Maximum number of iterations.

167 nonnegative : pair of bool , default (True , True)

168 True if (initial , other) components must be non -negative

169 tol_abs_error : float , optional

170 Error target (mean square error).

171 tol_rel_improv : float , optional

172 Stop when relative improvement is less than this over 10

iterations.

173 tol_iters_after_best : int , optional

174 Stop after this many iteratinos since last best error.

175 maxtime : float , optional

176 Stop after this many seconds of process time have elapsed

177 callback : func(it : int , err : float , A : array , B : array)

178 Callback for every iteration.

179 acceleration : str , optional

180 None or ’Anderson ’.

181 Anderson acceleration operates on whole iterations (A or B

updates),

182 mixing earlier directions to step towards the fixed point. This

183 implementation restarts from basic updates when those would be

184 better.

185 normalize : str , optional

186 Which matrix to l2 normalize: None , ’A’ or ’B’

187 contrast_weight : (str , float), optional

188 Increase contrast in one matrix by mixing the other , named matrix

189 (’A’ or ’B’) with the mean of its vectors. If A is spectra ,

190 try contrast_weight =(’B’, 0.05) to increase spectral contrast.

191 See Windig and Keenan , Applied Spectroscopy 65: 349 (2011).
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192 return_time : bool , default False

193 Measure and return process_time at each iteration.

194 weight_vector: array(nfeatures ,1), default None

195 Vector containing the weigths corresponding to cluster. initial_A

must

196 be the initial spectra.

197

198 Anderson acceleration parameters in kwargs

199 -------

200 m : int , >1, default 2

201 The maximum number of earlier steps to consider.

202 alternate : bool , default True

203 Alternate between accelerating A and B, switching when restarting

.

204 beta : float , default 1.

205 Scaling factor for accelerated step length.

206 betascale : float , default 1.

207 Reduction factor for beta after each restart.

208 bmode : bool , default False

209 Start with accelerating B instead of A.

210

211 Returns

212 -------

213 A : array(ncomponents , nfeatures)

214 Spectra (at lowest error)f

215 B : array(ncomponents , nsamples)

216 Concentrations at lowest error

217 error : list(float)

218 Mean square error at every iteration

219 process_time : list(float)

220 Time relative start at each iteration , only if return_time is

True.

221 """

222 if normalize not in [None , ’A’, ’B’]:

223 raise ValueError(’Normalization must be None , A or B’)

224 unknown_args = kwargs.keys() - {

225 ’m’, ’alternate ’, ’beta’, ’betascale ’, ’bmode’}

226 if unknown_args:

227 raise TypeError(’Unknown arguments: {}’.format(unknown_args))

228

229 nrow , ncol = sp.shape

230 nr = initial_A.shape [0]

231 if normalize == ’A’:

232 #L2 -norm

233 norm = np.linalg.norm(initial_A , axis =1)

234 A = np.divide(initial_A.T, norm , where=norm!=0,

235 out=np.zeros(initial_A.shape [:: -1]))

236 else:

237 #Transpose od A-matrix already done

238 A = initial_A.T.copy()

239 B = np.empty ((nr, nrow))
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240 errors = []

241 errorbest = None # Avoid spurious warning

242 # prevA , prevB = (None , None)

243 newA = newB = None

244 error = preverror = None

245

246 if weight_vector is not None:

247 pass

248 #print(’Warning: You must initalize using spectra.’)

249

250 cw = 0

251 if contrast_weight is not None:

252 if contrast_weight [0] == ’A’:

253 cw = contrast_weight [1]

254 elif contrast_weight [0] == ’B’:

255 cw = -contrast_weight [1]

256 else:

257 raise ValueError("contrast_weight must be (’A ’|’B’, [0 -1])")

258

259

260 if acceleration == ’Anderson ’:

261 ason_Bmode = kwargs.get(’bmode ’, False)

262 ason_alternate = kwargs.get(’alternate ’, True)

263 ason_m = kwargs.get(’m’, 2)

264 ason_beta = kwargs.get(’beta’, 1.)

265 ason_betascale = kwargs.get(’betascale ’, 1.)

266 ason_g = None

267 ason_G = []

268 ason_X = []

269 elif acceleration:

270 raise ValueError("acceleration must be None or ’Anderson ’")

271

272 starttime = time.process_time ()

273 if return_time:

274 times = []

275 tol_rel_iters = 10

276

277 for it in range(maxiters):

278 ba = 0

279 retry = False

280 while ba < 2:

281 if not retry:

282 preverror = error

283 if ba == 0:

284 if newA is None:

285 newA = A

286 prevA = newA

287 if cw > 0:

288 newA = (1 - cw) * newA + cw * newA.mean (1)[:,None]

289 if nonnegative [1]:

290 error = 0
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291 if not retry:

292 B = np.empty_like(B)

293 for i in range(nrow):

294 B[:, i], res = scipy.optimize.nnls(newA , sp[i,

:])

295 error += res * res

296 else:

297 B, res , _, _ = np.linalg.lstsq(newA , sp.T, rcond=-1)

298 error = res.sum()

299 if normalize == ’B’:

300 norm = np.linalg.norm(B, axis =1)

301 B = np.divide(B.T, norm , where=norm!=0, out=B.T).T

302 newA = None

303 else:

304 if newB is None:

305 newB = B

306 prevB = newB

307 if cw < 0:

308 newB = (1 + cw) * newB - cw * newB.mean (1)[:,None]

309 if nonnegative [0]:

310 error = 0

311 if not retry:

312 A = np.empty_like(A)

313 for i in range(ncol):

314 A[i, :], res = scipy.optimize.nnls(newB.T, sp[:,

i])

315 error += res * res

316 else:

317 A, res , _, _ = np.linalg.lstsq(newB.T, sp , rcond=-1)

318 A = A.T

319 error = res.sum()

320 if normalize == ’A’:

321 norm = np.linalg.norm(A, axis =0)

322 np.divide(A, norm , where=norm!=0, out=A)

323 newB = None

324

325 if acceleration is None:

326 pass

327 elif ba == ason_Bmode:

328 if retry:

329 retry = False

330 if ason_alternate:

331 ason_Bmode = not ason_Bmode

332 ason_beta = ason_beta * ason_betascale

333 elif len(ason_X) > 1 and error > preverror:

334 ason_X = []

335 ason_G = []

336 retry = True

337 ba = ba - 1

338 else:

339 pass
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340 elif ason_Bmode == 1 and it == 0:

341 pass

342 else:

343 prevg = ason_g

344 ason_g = ((A - prevA) if ba else (B - prevB)).flatten ()

345 if len(ason_X) < 1:

346 ason_X.append(ason_g)

347 else:

348 ason_G.append(ason_g - prevg)

349 while(len(ason_G) > ason_m):

350 ason_G.pop (0)

351 ason_X.pop (0)

352 Garr = np.asarray(ason_G)

353 try:

354 gamma = scipy.linalg.lstsq(Garr.T, ason_g)[0]

355 except scipy.linalg.LinAlgError:

356 print(’lstsq failed to converge; ’

357 ’restart at iter %d’ % it)

358 # print(’nans ’, np.isnan(Garr).sum(),

359 # np.isnan(ason_g).sum())

360 ason_X = []

361 ason_G = []

362 else:

363 gamma = ason_beta * gamma

364 dx = ason_g - gamma @ (np.asarray(ason_X) + Garr)

365 ason_X.append(dx)

366 if ba:

367 newA = prevA + dx.reshape(A.shape)

368 if nonnegative [0]:

369 np.maximum(0, newA , out=newA)

370 else:

371 newB = prevB + dx.reshape(B.shape)

372 if nonnegative [1]:

373 np.maximum(0, newB , out=newB)

374 ba = ba + 1

375 # error = error / weight_vector.sum()

376

377 curtime = time.process_time () - starttime

378 if return_time:

379 times.append(curtime)

380 errors.append(error)

381 if not it or error < errorbest:

382 errorbest = error

383 Abest = A

384 Bbest = B

385 iterbest = it

386 if it:

387 if error < tol_abs_error:

388 break

389 if tol_rel_improv and it > tol_rel_iters:

390 emax = max(errors[-tol_rel_iters -1: -2])
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391 if (emax - errors [-1]) * tol_rel_iters <= \

392 tol_rel_improv * emax:

393 break

394 if tol_iters_after_best is not None:

395 if iterbest + tol_iters_after_best < it:

396 break

397 if it and maxtime and curtime >= maxtime:

398 break

399 if callback is not None:

400 callback(it, errors , A.T, B)

401 if weight_vector is not None:

402 Bbest = ((( weight_vector)**( -1/2)) * Bbest.T).T

403 if return_time:

404 return Abest.T, Bbest , errors , times

405 return Abest.T, Bbest , errors

B.2 Code used for implementations of k-means and reconstruc-
tion methods

1

2 import numpy

3 import scipy

4 import numpy

5 import random

6 import time

7 from scipy.cluster import hierarchy

8 import matplotlib.pyplot as plt

9 import sklearn.cluster

10

11 def normalize(A,labels , init_centroids , trgt_nrm , message ,

centroids_from_labels = False):

12 ’’’

13 centroids_from_labels: bool

14 Added to solve problem of possible inconsistency between labels and

centroids

15 ’’’

16

17 nrow = labels.shape [0]

18

19 centroids_mapping = [l for l in set(labels)]

20 centroid_pixel_arrs = [A[labels == l] for l in set(labels)]

21 centroid_weights = numpy.array([item.shape [0] for item in

centroid_pixel_arrs ]).reshape(len(centroids_mapping) ,1)

22

23 square_sums = numpy.array ([( item **2).sum(axis = 0) for item in

centroid_pixel_arrs ])

24 means = numpy.array ([item.mean(axis = 0) for item in

centroid_pixel_arrs ])

25

26
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27 if trgt_nrm == ’mean’:

28 sums = numpy.array ([item.sum(axis = 0) for item in

centroid_pixel_arrs ])

29 normalization = (centroid_weights **( -1/2)) * sums

30 errors_tot = (square_sums - means*sums).sum()

31 if centroids_from_labels:

32 return centroids_mapping , centroid_weights , normalization ,

errors_tot , means

33 else:

34 return centroids_mapping , centroid_weights , normalization ,

errors_tot

35

36 elif trgt_nrm == ’square ’:

37 normalization = square_sums **(1/2)

38 square_means = square_sums/centroid_weights

39 sqrt_square_means = square_means ** (-1/2)

40 error_coeffs = numpy.true_divide(square_means -( means **2) ,(

sqrt_square_means+means),where = square_means != 0, out = numpy.

zeros_like(means))

41 if centroids_from_labels:

42 return centroids_mapping , centroid_weights , normalization ,

error_coeffs , means

43 else:

44 return centroids_mapping , centroid_weights , normalization ,

error_coeffs

45

46 elif trgt_nrm == ’nnls’:

47 membership_coeffs = numpy.empty ((nrow ,len(centroids_mapping)))

48 for i in range(nrow):

49 membership_coeffs[i:] = scipy.optimize.nnls(init_centroids.T,A[i

,:].T)[0]. reshape ((1,len(centroids_mapping)))

50 centroid_weights = membership_coeffs.sum(axis = 0).reshape(len(

centroids_mapping) ,1)

51 normalization = (centroid_weights **(1/2)) * init_centroids

52 if centroids_from_labels:

53 return None ,centroid_weights , normalization , None , means

54 else:

55 return None ,centroid_weights , normalization , None

56

57 else:

58 raise Exception(’trgt_nrm must either be mean , square or nnls’)

59

60 def kMeans_old(A, maxit , thresh , nclus = ’sqrt’, minit = ’points ’,

check_finite = False , trgt_nrm = ’mean’, message = False):

61 ’’’

62 Currently , thresh does not have any functionality

63 ’’’

64 time1 = time.time()

65 npixels = A.shape [0]

66 if nclus == ’sqrt’:

67 nclus = int(numpy.sqrt(npixels))
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68

69 init_centroids , labels = scipy.cluster.vq.kmeans2(A,nclus , maxit ,

thresh = thresh , minit = minit , check_finite = check_finite)

70

71 if message:

72 print(’Clustering done!’)

73

74 centroids_mapping , centroid_weights , new_target , error = normalize(A,

labels , init_centroids , trgt_nrm , message)

75

76 return new_target , centroid_weights , init_centroids , centroids_mapping ,

labels , error , time.time()-time1

77

78 def kMeans(A, maxit , thresh , nclus = None , minit = ’points ’,check_finite

= False , trgt_nrm = ’mean’, message = False):

79

80 time1 = time.time()

81 if minit == ’points ’:

82 minit = ’random ’

83 elif minit == ’++’:

84 minit = ’k-means++’

85

86 if nclus is None:

87 raise Exception(’You must designate a number of centroids ’)

88

89

90 cluster_data = sklearn.cluster.KMeans(nclus ,init = minit ,max_iter =

maxit ,tol = thresh ,n_init = 1).fit(A)

91

92 labels = cluster_data.labels_

93 init_centroids = cluster_data.cluster_centers_

94 centroids_mapping , centroid_weights , new_target , error , init_centroids

= normalize(A,labels , init_centroids , trgt_nrm , message ,

centroids_from_labels = True)

95

96 return new_target , centroid_weights , init_centroids , centroids_mapping ,

labels , error , time.time()-time1

97

98 def fuzzy(data ,nclusters ,maxiter ,m = 2, tol = None , seed = None ,

initalization = ’simple ’ ,trgt_nrm = ’fuzzy ’,init_clusters = None ,

e_rel_tol=None):

99 ’’’

100 Implmentation proposed by (Qian Liu , et.al, https ://doi.org /10.1016/j.

tcs .2021.06.035)

101

102 Inputs:

103 data: ndarray

104

105 nclusters: int

106

107 seed:

39



108

109 ’’’

110 if m <= 1:

111 return ValueError(’m must be larger than 1’)

112

113 fuzzy_constant = 1/(m-1)

114

115 time1 = time.time()

116 ##### Definitions of useful functions #####

117 def memberships(data ,clusters):

118

119 ’’’

120 It was hell to code this section so that it would not be too resource

intensive

121 ’’’

122 distances_to_cluster = []

123 for i in range(clusters.shape [0]):

124 # This loop is expensive , but easier to implement than using a 3-

tensor and cheaper than iterating over the objects

125 cluster = clusters[i,:]. reshape(1,clusters.shape [1])

126

127 distance = (((data -cluster)**2).sum(axis =1))

128 distances_to_cluster.append(distance)

129

130 distances_to_cluster = numpy.array(distances_to_cluster)

131 distances_untouched = distances_to_cluster.copy()

132 #Distances defined in square euclidian measure

133 #Matrix used for handling of points on top of clusters

134 locations = (distances_to_cluster == 0).any(axis = 0)

135 distances_to_cluster = numpy.power(distances_to_cluster ,-(

fuzzy_constant),where = distances_to_cluster != 0,out = numpy.

zeros_like(distances_to_cluster))

136 distances_to_cluster [:, locations] = (distances_to_cluster [:, locations

] == 0)*1.0

137

138 total_membership = distances_to_cluster.sum(axis = 0).reshape(data.

shape [0],1).T

139 membership_degrees = numpy.true_divide(distances_to_cluster ,

total_membership)

140

141 potential = (( membership_degrees **m) * distances_untouched).sum()

142

143 return membership_degrees ,potential

144

145

146 def phi(data ,clusters ,membership_degrees=None):

147 ’’’

148 Outdated function , used for verification

149 ’’’

150 distances_to_cluster = []

151 for i in range(clusters.shape [0]):
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152 # This loop is expensive , but easier to implement than using a 3-

tensor and cheaper than interating over the objects

153 cluster = clusters[i,:]. reshape(1,clusters.shape [1])

154 # Distances is defined in the square -euqlidian norm for convenience

155 distance = (((data -cluster)**2).sum(axis =1))

156 distances_to_cluster.append(distance)

157 distances_to_cluster = numpy.array(distances_to_cluster)

158

159 if membership_degrees != None:

160 potential = ( distances_to_cluster * membership_degrees **m).sum()

161 else:

162 locations = (distances_to_cluster == 0).any(axis = 0)

163 distances_to_cluster [:, locations] = 0.0

164 distances_to_cluster = numpy.power(distances_to_cluster ,-1,where =

distances_to_cluster != 0,out = numpy.zeros_like(

distances_to_cluster))

165 total_membership = distances_to_cluster.sum(axis = 0).reshape(data.

shape [0],1).T

166 total_membership = numpy.power(total_membership ,-1,where =

total_membership != 0,out = numpy.zeros_like(distances_to_cluster))

167 potential = total_membership.sum()

168

169 return potential

170

171 #### Initialization step ####

172 if nclusters > data.shape [0]:

173 raise ValueError(f’number of objects must be less or equal to

clusters. {nclusters} > {data.shape [0]}’)

174

175

176 rng = numpy.random.default_rng(seed)

177

178 if initalization == ’points ’:

179 indicies = rng.choice(data.shape [0],size =nclusters , replace = False)

180 clusters = data[indicies ,:]

181

182 elif initalization == ’choice ’:

183 clusters = init_clusters

184

185 elif initalization == ’++’:

186 unpicked_data = data.copy()

187 ncolumns = unpicked_data.shape [1]

188 index = rng.integers(0, unpicked_data.shape [0])

189 clusters = unpicked_data[index ,:]. reshape ((1, ncolumns))

190 unpicked_data = numpy.delete(unpicked_data ,index ,axis = 0)

191

192 #new_data_pool = data[numpy.arange(data.shape [0]) != index ,:]

193 count = 0

194 for _ in range(nclusters -1):

195 full_weight = memberships(unpicked_data ,clusters)[-1]

196 while True:
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197 index = rng.integers(0, unpicked_data.shape [0])

198 choice = unpicked_data[index ,:]. reshape(1,ncolumns)

199 small_weight = memberships(choice ,clusters)[-1]

200 if rng.random () < small_weight/full_weight:

201 clusters = numpy.vstack ((clusters ,choice))

202 unpicked_data = numpy.delete(unpicked_data ,index ,axis = 0)

203 break

204 #new_data_pool = data[numpy.arange(data.shape [0]) != index ,:]

205

206 else:

207 raise Exception(’Must initalize using either points ,choice or ++’)

208 #### Clustering loop ####

209

210 it = 0

211 membership_matrix ,loss = memberships(data ,clusters)

212 while maxiter > it:

213 old_loss = loss

214 if tol is not None:

215 if tol > loss:

216 break

217 clusters =numpy.array ([(( membership_matrix[i,:].T.reshape(

membership_matrix.shape [1] ,1)**m) * data).sum(axis = 0) / (

membership_matrix[i,:]**m).sum() for i in range(nclusters)])

218 membership_matrix ,loss = memberships(data ,clusters)

219

220 it += 1

221 if e_rel_tol is not None:

222 if old_loss -loss < e_rel_tol:

223 break

224

225

226 normalization , norms = fuzzy_normalization(data ,clusters ,

membership_matrix ,m,trgt_nrm)

227

228 return normalization ,norms ,clusters , membership_matrix , loss , time.time

()-time1

229

230 def fuzzy_normalization(data ,clusters ,membership_matrix ,m,trgt_nrm = ’

fuzzy ’):

231

232 nrows = data.shape [0]

233 nclus = clusters.shape [0]

234

235 if trgt_nrm == ’nnls’:

236 membership_coeffs = numpy.empty ((nrow ,nclus))

237 for i in range(nrow):

238 membership_coeffs[i:] = scipy.optimize.nnls(init_centroids.T,

objects[i,:].T)[0]. reshape ((1, nclus))

239 norms = membership_coeffs.sum(axis = 0).reshape(nclus ,1)

240 normalization = (norms **(1/2)) * init_centroids

241 else:
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242 norms = numpy.array ([( membership_matrix[i,:]).sum() for i in range(

clusters.shape [0])])

243 print(norms ,norms.sum())

244 new_targets = clusters * norms.reshape(norms.shape [0] ,1) **(1/2)

245 return new_targets , norms.reshape(norms.shape [0] ,1)

246

247 def fuzzy_reconstruction(A,membership_degrees ,m):

248 time1 = time.time()

249 D = (membership_degrees.T) @ A

250 #print(D.shape)

251 return D, time.time()-time1

252 #D = membership_degrees @ pixels per cluster or contributions per

cluster

253

254 def reconstruct_image(A,B,init_centroids ,centroids_mapping ,labels):

255

256 D = numpy.empty_like(A)

257 B = B.T

258 for i in range(len(labels)):

259 l = labels[i]

260 D[i,:] = B[centroids_mapping.index(l) ,:]

261 return D

262

263 def reconstruct(A,B,centroids ,centroids_mapping = None ,labels = None ,

version = ’nnls’,limit = None ,objects = None ,norm_data = None ,

return_time = False ,V = None):

264 time1 = time.time()

265 membership_coeffs = V

266 if version == ’simple ’:

267 if centroids_mapping is None or labels is None:

268 raise TypeError(’centroids_mapping must be a one to one mapping of

the centroids ’)

269 B = B.T

270 D = numpy.empty_like(A)

271 nrow , nclus = objects.shape[0], centroids.shape [0]

272 membership_coeffs = numpy.zeros ((nrow ,nclus))

273 for i in range(len(labels)):

274 l = labels[i]

275 membership_coeffs[i,l] = 1

276 D[i,:] = B[centroids_mapping.index(l) ,:]

277

278 elif version == ’nnls’:

279 if type(objects) == None:

280 raise Exception(’you must define the original set of objects

clustered on \n when using NNLS’)

281 nrow , nclus = objects.shape[0], centroids.shape [0]

282 if membership_coeffs is None:

283 membership_coeffs = numpy.empty ((nrow ,nclus))

284 for i in range(nrow):

285 membership_coeffs[i:] = scipy.optimize.nnls(centroids.T,objects[i

,:].T)[0]. reshape ((1, nclus))
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286 if limit == None:

287 D = membership_coeffs @ B.T

288 else:

289 raise Exception(’not yet implemented ’)

290 elif version == ’lstsq’:

291 if membership_coeffs is None:

292 membership_coeffs = scipy.linalg.lstsq(centroids.T,objects.T)[0].T

293 if limit == None:

294 D = membership_coeffs @ B.T

295 else:

296 raise Exception(’not yet implemented ’)

297 elif version == ’invL2sq ’:

298 distances_to_cluster = []

299 for i in range(centroids.shape [0]):

300 # This loop is expensive , but easier to implement than using a 3-

tensor and cheaper than iterating over the objects

301 cluster = centroids[i,:]. reshape(1, centroids.shape [1])

302

303 distance = ((( norm_data -cluster)**2).sum(axis =1))

304 distances_to_cluster.append(distance)

305

306 distances_to_cluster = numpy.array(distances_to_cluster)

307 #Distances defined in square euclidian measure

308 #Matrix used for handling of points on top of clusters

309 locations = (distances_to_cluster == 0).any(axis = 0)

310 distances_to_cluster = numpy.power(distances_to_cluster ,-1,where =

distances_to_cluster != 0,out = numpy.zeros_like(distances_to_cluster

))

311 distances_to_cluster [:, locations] = (distances_to_cluster [:, locations

] == 0)*1.0

312

313 total_membership = distances_to_cluster.sum(axis = 0).reshape(A.shape

[0] ,1).T

314 membership_coeffs = numpy.true_divide(distances_to_cluster ,

total_membership)

315 membership_coeffs = membership_coeffs.T

316

317 D = membership_coeffs @ B.T

318

319 elif version == ’exponential ’:

320 var_of_data = norm_data.var(axis = 0).sum()

321 nclusters = centroids.shape [0]

322 distances_to_cluster = []

323 for i in range(centroids.shape [0]):

324 # This loop is expensive , but easier to implement than using a 3-

tensor and cheaper than iterating over the objects

325 cluster = centroids[i,:]. reshape(1, centroids.shape [1])

326

327 distance = ((( norm_data -cluster)**2).sum(axis =1))

328 distances_to_cluster.append(distance)

329 distances_to_cluster = numpy.array(distances_to_cluster)/var_of_data
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330 weight_matrix = nclusters **-( distances_to_cluster)

331 partition_array = weight_matrix.sum(axis = 0)

332 partition_array = partition_array.reshape(1,A.shape [0])

333 membership_coeffs = weight_matrix / partition_array

334 D = membership_coeffs.T @ B.T

335 membership_coeffs = membership_coeffs.T

336

337 elif version == ’LSWeighting ’:

338 if type(objects) == None:

339 raise Exception(’you must define the original set of objects

clustered on \n when using LSWeighting ’)

340 nrow , nclus = objects.shape[0], centroids.shape [0]

341 membership_coeffs_nnls = numpy.empty ((nrow ,nclus))

342 if V is not None:

343 membership_coeffs = V

344 D = membership_coeffs@B.T

345 else:

346 for i in range(nrow):

347 membership_coeffs_nnls[i:] = scipy.optimize.nnls(centroids.T,

objects[i,:].T)[0]. reshape ((1, nclus))

348 membership_coeffs_ls = scipy.linalg.lstsq(centroids.T,objects.T)

[0].T

349

350 numerator = -1* membership_coeffs_nnls@B.T

351 denominator = (membership_coeffs_ls - membership_coeffs_nnls)@B.T

352 #sign_bools = numpy.where(denominator >0)

353 Coeff_matrix = numpy.true_divide(numerator ,denominator ,where =

denominator < 0, out = numpy.ones_like(numerator)*numpy.Inf)

354 Coeff_matrix = numpy.where(denominator == 0,0,Coeff_matrix)

355 min_coeffs = Coeff_matrix.min(axis =1)

356 min_coeffs = numpy.where(min_coeffs <1, min_coeffs ,1).reshape(

min_coeffs.shape [0],1)

357

358 membership_coeffs = membership_coeffs_nnls + min_coeffs *(

membership_coeffs_ls -membership_coeffs_nnls)

359 D = membership_coeffs@B.T

360 D[numpy.logical_and(D > -1e-11, D<0) ] = 0

361 if (D<0).any():

362 print(D[ D<0 ])

363 raise Exception(’Negative values not explained by truncation

errors present in the reconstructed matrix ’)

364 else:

365 raise Exception(’must define version ’)

366 if return_time:

367 return D,membership_coeffs , time.time()-time1

368 return D,membership_coeffs

369

370 def reconstruct_from_spectra(D,spectra):

371 time1 = time.time()

372 C = numpy.empty ((D.shape [0], spectra.shape [0]))

373 print(D.shape)
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374 print(spectra.shape)

375 for i in range(D.shape [0]):

376 C[i,:] = scipy.optimize.nnls(spectra.T,D[i,:].T)[0].T

377 return C, time.time() - time1

378

379 ##### Hierarchial clustering method ######

380 def hierachial(data ,sigma_tol ,trgt_nrm = ’mean’,message = False ,left_tol

=0):

381 time1 = time.time()

382 class cluster:

383 def __init__(self ,features = None ,index = None ,sigma = 0):

384 self.features = features

385 self.sum = features

386 if index != None:

387 self.pixel_indicies = [index]

388 else:

389 self.pixel_indicies = []

390 self.count = 1

391 self.sigma = sigma

392

393 def __add__(self ,other):

394 new_clus = cluster ()

395 new_clus.sum = self.sum + other.sum

396 new_clus.pixel_indicies = self.pixel_indicies + other.

pixel_indicies

397 new_clus.count = self.count + other.count

398 return new_clus

399

400 cluster_list =[ cluster(data[i,:],i) for i in range(data.shape [0])]

401 random.shuffle(cluster_list)

402

403 sigma_tol = sigma_tol ** 2

404

405 total_length = len(cluster_list)

406 failcount = 0

407 while total_length > failcount+left_tol:

408 total_length = len(cluster_list)

409 print(total_length)

410 failcount = 0

411 fresh_clusters = []

412 length = total_length

413 while length > 1:

414 cluster1 = cluster_list [0]

415 minimal_sigma = None

416 sum_sigma = 0

417 found = False

418

419 for i in range(1,length):

420 cluster2 = cluster_list[i]

421 count1 = cluster1.count

422 count2 = cluster2.count
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423 new_mean = (cluster1.sum + cluster2.sum)/( count1+ count2)

424

425 new_sigma = (( cluster1.sigma*count1 + cluster2.sigma*count2)+

count1 *( cluster1.sum/count1 - new_mean)**2 + count2 *( cluster2.sum/

count2 - new_mean)**2)/( count1+count2)

426

427 if minimal_sigma is None:

428 if (new_sigma <= sigma_tol).all() :

429 sum_sigma = new_sigma.sum()

430 minimal_sigma = new_sigma

431 min_index = i

432 found = True

433 else:

434 continue

435 if (new_sigma <= sigma_tol).all():

436 new_sum = new_sigma.sum()

437 if sum_sigma > new_sum:

438 sum_sigma = new_sum

439 minimal_sigma = new_sigma

440 min_index = i

441 found = True

442

443 if found:

444 cluster2 = cluster_list[min_index]

445 fresh_clusters.append(cluster1+cluster2)

446 fresh_clusters [-1]. sigma = minimal_sigma

447 del cluster_list[min_index]

448 del cluster_list [0]

449 length -= 2

450 #print(length ,total_length)

451 else:

452 fresh_clusters.append(cluster1)

453 del cluster_list [0]

454 failcount += 1

455 length -= 1

456 if len(cluster_list) == 1:

457 fresh_clusters.append(cluster_list [0])

458 cluster_list = fresh_clusters

459 failcount += 1

460

461 cluster_list = fresh_clusters

462

463

464 init_centroids = []

465 labels = numpy.empty(data.shape [0])

466 for i in range(len(fresh_clusters)):

467 centroid = fresh_clusters[i]

468 init_centroids.append(centroid.sum/centroid.count)

469 for item in centroid.pixel_indicies:

470 labels[item] = i

471
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472 init_centroids = numpy.array(init_centroids)

473 centroids_mapping , centroid_weights , new_target , error = normalize(data

,labels ,init_centroids ,trgt_nrm , message)

474

475

476 return new_target , centroid_weights , init_centroids , centroids_mapping ,

labels , error , time.time()-time1

477

478 def hierarchial2(data ,thresh ,criterion = ’distance ’,method = ’ward’,

metric = ’euclidean ’,trgt_nrm = ’mean’,optimal_ordering = True ,

show_dendrogram = False , message = False ,):

479

480

481 time1 = time.time()

482 Z = hierarchy.linkage(data ,method=method ,metric=metric ,optimal_ordering

= optimal_ordering)

483 if show_dendrogram:

484 hierarchy.dendrogram(Z)

485 plt.show()

486 plt.clf

487 labels = hierarchy.fcluster(Z, t=thresh ,depth = 2,criterion=criterion)

488 ncolumns = data.shape [1]

489 nclus = len(set(labels))

490 clusters = numpy.zeros ((nclus ,ncolumns))

491 cluster_counts = numpy.zeros((nclus ,1))

492 for i in range(data.shape [0]):

493 cluster_index = labels[i]

494 clusters[cluster_index -1,:] += data[i,:]

495 cluster_counts[cluster_index -1] += 1

496 init_centroids = clusters / cluster_counts

497

498 centroids_mapping , centroid_weights , new_target , error = normalize(data

,labels ,init_centroids ,trgt_nrm , message)

499 return new_target , centroid_weights , init_centroids , centroids_mapping ,

labels , error , time.time()-time1

500

501 def greedy_best_match(target_spectra ,target_comp ,spectra2 ,comp2 ,runs):

502 nrow = target_spectra.shape [0]

503 sg = numpy.random.SeedSequence ()

504 rg = [numpy.random.Generator(numpy.random.MT19937(s)) for s in sg.spawn

(runs)]

505 losses = numpy.zeros ((nrow ,runs))

506 for irun in range(runs):

507 norm_target = target_spectra.max(axis = 1).reshape(nrow ,1).copy()

508 target_c = norm_target*target_comp

509

510 norm_spectra2 = spectra2.max(axis = 1).reshape(nrow ,1).copy()

511 comp2_c = comp2*norm_spectra2

512

513 rng = rg[irun]

514 order = rng.choice(target_comp.shape [0],size = target_comp.shape [0],
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replace = False)

515 manipulated_matrix = comp2_c.copy()

516

517 indices_correspondence = numpy.zeros(target_comp.shape [0])

518

519 for index in order:

520 distances = (( manipulated_matrix - target_c[index ,:]) **2).sum(axis

= 1)

521 temp_index = numpy.argmin(distances)

522 indices_correspondence[index] = temp_index

523 manipulated_matrix[temp_index ,:] = numpy.Inf

524

525 indices_correspondence = indices_correspondence.astype(’int’)

526 norms = (target_c **2).sum(axis =1).reshape(nrow ,1)

527 losses[:,irun] = ((( target_c - comp2_c[indices_correspondence ])**2)/

norms).sum(axis =1)

528 return losses.mean(axis =1).mean(), losses.std(axis =1).mean()

529

530

531

532

533

534

535

536

537

538

539

540

541
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