
IMPROVING A BACKGROUND

MODEL FOR TRACKING AND

CLASSIFICATION OF OBJECTS

IN LIDAR 3D POINT CLOUDS

SEAMUS DOYLE, GUSTAV NILSSON

Master’s thesis
2022:E23

Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Abstract

This thesis studied methods of improving a background model for a data pro-
cessing pipeline of LiDAR point clouds. For this, two main approaches were
evaluated. The first was to implement and compare three different models for
detecting ground in a point cloud. These were based on more classical modeling
approaches. The second was to use Deep Learning for semantic segmentation of
point clouds and to use this information in a background filtering model with the
hope of achieving better filtering of dynamic background. These methods were
combined in a pipeline as an example of a possible application. The performance
of the ground models was primarily evaluated based on their ability of classify-
ing points as ground or non-ground. However, well performing ground models
have further uses. Of the three models studied, the Hybrid model achieved most
promising results. For semantic segmentation, RandLA-NET was used for its
ability to process large scale point clouds at high speeds. Variations of the
network was trained on simulated data for which all networks achieved similar
good performance for classes ground, vegetation and other. When testing do-
main transfer to point clouds produced by a Real Physical LiDAR, mixed results
were achieved with variations on a per-point-cloud basis. On a lot of instances
however, very promising results could be seen. A background subtraction model
based on a 3D Density Static Filter was extended to include semantic informa-
tion from the neural network. For this filter, voxels classified as vegetation and
their neighbours, heavily filtered out points. This was to avoid issues of false
detections caused by wind. The model was tested on parts of two LiDAR record-
ings and compared to the standard filter. Based on this, the extended model
was found to better filter out vegetation in windy conditions.

ii

Acknowledgements

We want to thank our supervisor Anders Heyden for continual support through-
out this thesis. We also want to thank Erik for his help with the CARLA
simulator and the Graphic LiDAR plugin.

iii

List of Acronyms

DBSCAN Density-Based Spatial Clustering of Applications with Noise . 15

GPR Gaussian Process Regression . 5

KNN k-nearest neighbours . 22

LiDAR Light Detection and Ranging . 2

LocSE Local Spatial Encoding . 19

RANSAC Random Sample Consensus 10

RLWR Robust Locally Weighted Regression 11

RP-LiDAR Real Physical LiDAR . 7

SGD Stochastic Gradient Descent . 18

iv

Contents

1 Introduction 2
1.1 Task . 3
1.2 Limitation . 4
1.3 Related Work . 4
1.4 Statement of Contribution . 5

2 Background 6
2.1 Background Model . 6
2.2 Ground Model . 6

2.2.1 Semantic Segmentation 6
2.3 LiDAR sensor . 7
2.4 Data . 7

2.4.1 RP-LiDAR data . 8
2.4.2 CARLA . 8

2.5 Semantic KITTI . 10

3 Theory 10
3.1 Plane Segmentation with RANSAC 10
3.2 Regression . 10

3.2.1 Robust Locally Weighted Regression 11
3.2.2 Gaussian Process Regression 13

3.3 Density-Based Spatial Clustering of Applications with Noise . . . 15
3.4 Background Filter . 15
3.5 Semantic segmentation . 16
3.6 Neural networks . 16

3.6.1 Loss function . 18
3.6.2 Optimizer . 18

3.7 RandLA-Net . 19
3.7.1 Local Spatial Encoding 19
3.7.2 Attentive Pooling . 19
3.7.3 Dilated Residual Block . 20
3.7.4 Inference . 20
3.7.5 K-d tree . 20
3.7.6 Possibility iteration . 21
3.7.7 Voting scheme . 21
3.7.8 Grid subsampling . 21
3.7.9 Network architecture . 22

3.8 Evaluation Metrics . 22
3.8.1 Confusion Matrix . 24

v

4 Method 25
4.1 Simulation of data . 25

4.1.1 CARLA LiDAR Data . 25
4.1.2 Graphic LiDAR Dataset 25
4.1.3 Ground model Dataset . 26

4.2 Ground Models . 28
4.2.1 Implementation of RLWR-based Model 28
4.2.2 Implementation of Hybrid Regression Model 29
4.2.3 Implementation of Plane Model 31

4.3 Test on Ground models . 32
4.4 Evaluation of Ground model on point clouds 33
4.5 RandLa-NET . 34

4.5.1 Data preprocessing . 34
4.5.2 Training of network . 34
4.5.3 Testing of the network . 35

4.6 Improvement to the Background Density Filter 35
4.7 Test on Background Subtraction 36

5 Results 38
5.1 Ground Models . 38

5.1.1 Hybrid Model on RP-LiDAR point clouds 44
5.2 RandLa-NET . 46

5.2.1 Training . 46
5.3 Background Filter . 54

6 Discussion 57
6.1 Ground Models . 57

6.1.1 Performance of Plane model 57
6.1.2 Performance of RLWR-based model 57
6.1.3 Performance of Hybrid model 58
6.1.4 Further analysis of Hybrid Model 59
6.1.5 Conclusions . 61

6.2 RandLA-NET . 61
6.2.1 Conclusion . 64

6.3 Background Filtering . 64
6.3.1 Conclusion . 65

7 Conclusion 65

8 Future Work 67

Appendices 71

vi

9 Appendix 71
A F1-scores and Skewed Datasets 71
B Gaussion Process Regression . 71

B.1 Including noise . 71
C Fitting a Gaussian Process Regression Model 72

C.1 Accounting for noise in Kernel 73
D Further Discussion of Ground models 74

D.1 Impact of specificity . 74
D.2 Further Discussion of RLWR-based model’s poor perfor-

mance . 74
D.3 How impact of sparse circles might have impacted GPR

fit to be more conservative 74

1

1 Introduction

Light Detection and Ranging (LiDAR) is a sensor that utilises pulses of light
to create a three-dimensional representation of its surrounding. This represen-
tation is commonly referred to as a point cloud and can be used for object
detection and tracking.

A new and promising application is that of detection and tracking of people,
animals etc. using a stationary LiDAR. Such applications have existed for some
time and have become quite well established for conventional cameras. While
these cameras have many advantages, they also have quite a few disadvantages.
These cameras require a well lit environment, have no depth perception without
adding multiple cameras and can struggle in differentiating where boundaries
between objects occur in their images. LiDAR-technology has the possibility of
solving all these problems. The sensor produces its own light-source and can
therefore be used in complete darkness. Depth perception is inherent to pro-
ducing point clouds and the LiDAR also saves the intensity in the reflected light
beam. All this can be used in order to better distinguish different objects.

For the purpose of point cloud processing in the context of object tracking and
detection, there are a few fundamental concepts that are needed for comprehen-
sion. Such a process (in this thesis referred to as a pipeline) typically follows a
set of four processing steps that are performed for each point cloud frame. These
are shown in Figure 1 as a flowchart. First, a raw point cloud is produced by
the sensor. The initial processing step is to remove background points, and
is thus called Background Subtraction. In the following Clustering step
the remaining points are divided into groups according to their vicinity to each
other and density. The purpose is for the points to be grouped into coherent
dynamic objects such as pedestrians, cyclists, animals etc. Thereafter Tracking
of each cluster between frames is done in order to impose continuity. This means
that information regarding position over time of a certain dynamic object can
be retained. Finally Classification is performed on each cluster, meaning that
each cluster is passed through an algorithm that produces a guess of what the
cluster represents, i.e. a pedestrian, cyclist and so on.

2

Figure 1: Flowchart of the main pipeline for processing point cloud data.

1.1 Task

The aim of this thesis was to study ways of improving background modeling in
the Background Subtraction step. The goals were threefold:

• Find a method of capturing information of the contents of the background
in a model for background subtraction.

• Find a method for performing semantic segmentation of large scale point
clouds.

• Compare different methods for detecting and modeling ground in point
clouds.

To complete these goals, the following was done. First, an attempt was made
to perform semantic segmentation on point clouds of the background in order
to encode information of the background such as ground, vegetation and other
objects into a scene. This was done using Deep Learning using neural networks
and incorporated into an existing background model. The second was to de-
velop models for finding and estimating the height of the ground mainly using
different regression methods. These two models were thereafter fused into a
joint background processing step, for which, further logic can be integrated that
is more specifically adapted for a given use case.

3

1.2 Limitation

Due to the wide array of possibilities in improving the background model, this
project was limited to studying two main approaches and weaving them to-
gether. These approaches were (1) semantic segmentation of point clouds with
an expanded background model to utilize the semantic information and (2) con-
structing ground models. Also, due to the lack of annotated data for real LiDAR
sensors, the study was mainly limited to, and driven by, quantifiable results from
simulated data. In the case of this thesis, a strong benefit of using simulated
data was the simplicity of scaling up the size of training, testing and validation
data. Among the disadvantages were the loss of the reflectance dimension and
the data being less realistic.

1.3 Related Work

The work in this thesis builds on a preexisting body of work in the form of
two previous master thesis projects, the first by Berntsson and Winberg [1] and
the second by Bernst̊ahle and Lind [2]. In these projects, the same technology
was studied in the same setting, but where different parts of the process were
focused on. In Berntsson and Winberg’s thesis, a complete pipeline consisting
of background filtration, clustering, tracking and classification was established
and multiple methods were considered for many of the different processes. For
all steps except the classification, classical statistical, methods were considered.
In Bernst̊ale and Lind’s project however, the main focus consisted of design-
ing and implementing trackers and classifiers based on Deep Learning models.
This leaves room for improvement for primarily the background and clustering
stages of the pipeline, and it is the background that this thesis aims to focus on
improving.

Since the LiDAR considered in this application is stationary, background mod-
els assuming stationary backgrounds have been considered. Such methods are
analyzed in [3], [4], [5], [6], [7]. In [3], researchers present a 3D density static fil-
tering (3D-DSF) for filtering static points in point clouds by accumulating point
densities in voxels and removing points when a threshold has been reached. In
[4], this work is further improved by making the threshold variable for different
distances and using histograms of point frequencies for different distances. This
is to take into account variable point density for different distances caused by
a LiDAR’s scan pattern. In [5], the authors perform clustering with DBSCAN
with different maximum distance between samples (ϵ) at different distances from
the sensor and then merges these to account for decreased point densities at fur-
ther distances. In [6], the authors develop a background filtering technique that
they call the Max-distance filter where the distance to the closest point regis-
tered for each angle is determined as the distance to the background. For every
such angle, any new points closer than this with an additional safety threshold
are considered foreground and are not removed. In [8], the authors propose
a background filtering method where mean background modeling is combined

4

with a background difference method. In the same article, a Hierarchical Maxi-
mum Density Clustering of Applications with Noise (HMDCAN) is proposed to
cluster points.

In [9], [10], [11] and [12] different methods of creating ground models are ex-
plored. In [9], Robust Locally Weighted Regression (RWLR) is utilized together
with down-weighting to estimate the ground level for slices in a point cloud
along x − z and y − z profiles. Points classified as ground in both directions
are determined as ground points. In [10], the authors combined Robust Locally
Weighted Regression (RLWR) with Gaussian Process Regression (GPR) to pro-
duce a ground surface filtering method designed to handle more sparse point
clouds with ground undulation and more occlusions. Projecting points into a
polar grid map is also introduced. The authors of [11] created a neural network
called GndNet that takes raw point clouds as input and produces ground level
estimation in a grid together with segmentation of all points in ground and
non-ground as output. In [12], the authors segment ground points by dynamic
section division, height-based conditional filter and multi-lines linear regression.

Semantic segmentation of point clouds is studied in [13], [14] and [15]. Well
established work within point cloud semantic segmentation, is the development
of pointnet and pointnet++, see [13]. Pointnet consists of a set of Multi-Layer-
Perceptrons (MLP:s) that produces a spatial encoding of each point in the point
cloud. Pointnet++ uses a hierarchical structure to encode feature-information
in local regions to progressively increase the receptive field. This structure con-
sists of several sampling, grouping and Pointnet-layers. The sampling used was
Farthest point sampling (FPS) which is useful to sample data with varying point
density. Voxnet, see [14], is a 3D convolution network that utilises 3D convolu-
tions over voxels to predict semantic labels. The point clouds are pre-processed
to create a voxelisation which the 3D kernels can iterate over. KpConv, see
[15], is a kernel point convolution network which uses convolutions over points
instead of voxels. The point convolution kernel has its area of influence deter-
mined by a correlation function. The network adjusts its shape depending on
the sparsity of a local points making it robust to varying point densities.

1.4 Statement of Contribution

Throughout the project, Seamus Doyle and Gustav Nilsson have been working
very closely together. The work was however divided in such a way that Gustav
focused on developing and evaluating methods for Semantic Segmentation using
Deep Learning and Visualisation, whereas Seamus focused on developing and
testing methods for a Ground Model and a framework for incorporating the
semantic information in a Bakground Model.

5

2 Background

2.1 Background Model

In the model from previous master thesis projects, there is no information of
what the different parts of the background are. Knowledge of this can greatly
help in different ways. This will be explored in this section.

2.2 Ground Model

In [1], a simple ground model was used, where a plane was fit to the point
cloud. This was done through a plane segmentation filter based on the RANSAC
algorithm, see [16]. Whereas this works in many cases, ground is not always
flat and so, more advanced models were constructed. The advantages of using
such ground models are several. The first is that a layer of logic that uses
the estimated ground for a given set of x and y coordinates can be applied.
This would be specific for every application. An example of this would be to
remove clusters with centroids far above the ground due to the only clusters of
interest being objects on the ground such as pedestrians, cyclists, cars and more.
Another example would be to remove clusters with centroids that are very close
to the ground with the motivation that these are small objects which might not
be of interest. These examples have different requirements on performance of
such a ground model. The second advantage is that height information can be
used as a feature in tracking and classification of clusters. The centroid of a
person or a car is likely higher than that of an animal. Other advantages is that
detection and possible removal of ground points could enhance other processes
such as semantic segmentation. Processing large point clouds is costly and
decreasing the sizes of these can lead to increased performance.

2.2.1 Semantic Segmentation

Using semantic segmentation for encoding information of the environment was
mainly driven by the fact that background models in the previous pipeline fail
to subtract points belonging to vegetation whenever there was wind. This is due
to the relative sparsity of the point cloud in combination with these objects hav-
ing dynamic parts (swaying branches etc.). A way to combat this, is to detect
where in a scene this vegetation is located, so that nearby points are subtracted
to a greater extent. Knowing whether points belong to other categories such as
ground or other is further useful. Being able to segment ground is useful for the
synergistic effects with the ground model. Further exploration of different cat-
egories can provide added benefits for visualisation and logic using information
of the scene. One example of this logic is removing the effects of LiDAR-beams
reflecting off reflective surfaces. Another example is using knowledge of a how
an object in a class usually looks to complete the backside of the object in the
point cloud.

6

2.3 LiDAR sensor

In [17], LiDAR is described as an active sensor that has its own light source.
Compare this to passive sensors such as traditional cameras and human eyes.
This has advantages since the data produced is less dependent on external vari-
ables such as light conditions and certain types of weather. There are two com-
mon wavelengths for LiDAR sensors, 905nm and 1550nm, the latter of which is
less limited to how much light it can emit since the wavelength is further from
human visibility. The Real Physical LiDAR, which is used in this thesis uses
1550nm lasers. One way of aiming the laser is to use low-mass mirrors that
move in order to angle the outgoing light in different directions.

The recorded data, for which this thesis aims to improve the pipeline for, was
recorded with a LiDAR sensor mainly built for mounting onto cars. In this case
it was used attached to poles with a vantage point. Thus, they were used in a
stationary setting within the context of this thesis. The sensor contained two
sensor modules, each covering a little more than half of a total 120◦ field of
view and used scanning mirrors to angle the light. The input of each module
is stitched together with some overlap. Further specifications are detailed in
Table 2.3.

Maximum Range 500m
Horizontal FoV 120◦

Vertical FoV 30◦

Frames Per Second 1-30 fps
Minimum Horizontal Resolution 0.07◦

Minimum Vertical Resolution 0.03◦

Range Precision 0.01 m

It was possible for the LiDAR to use different vertical scan patters, meaning
that the angle between scan lines can vary. Whereas a constant scan-line-density
is common, most of the recordings utilized in this thesis used a trapezoidal
scanning pattern. This has the effect of objects nearby the sensor having roughly
the same point density as that of objects that are further away (often to about
100m away). This is due to the fact the trapezoidal maximum is aimed at the
horizon where the distant objects often appear. This LiDAR will be termed
the Real Physical LiDAR (RP-LiDAR) throughout this report to distinguish it
from the simulated LiDARs also used in this thesis.

2.4 Data

In this thesis project, data came from three sources: unlabeled data from the
RP-LiDAR, labeled data from a simulator called CARLA [18] and finally a la-
beled Benchmark dataset called Semantic-KITTI [19] from a spinning LiDAR
of a different type (Velodyne) on top of a car.

7

The data for the stationary LiDARs generally have the same structure. From
the LiDAR’s point of view, the z-axis is always the upwards direction, the x-
axis is always the forwards direction and thus, the y-axis always points in the
side-wise direction. Depending on the orientation of the LiDAR, the produced
point cloud might have to be rotated for the z-axis to point upwards. This is
usually the case as the LiDAR is generally mounted as to look down onto a
scene from a vantage point.

2.4.1 RP-LiDAR data

The RP-LiDAR data consisted of various recordings in the Sk̊ane region where
different settings were experimented with. Thus, the set of data contained dif-
ferent frame counts, frame rates, resolutions and scan patterns. This data was
used to test and validate models trained on the other labeled datasets and the
different settings were therefore useful in both deducing factors affecting domain
transfer and exploring different ways of including the background model. The
scenes mostly used from this dataset consisted of roughly 1000 − 3000 frames,
used a trapezoidal scanning pattern and had a frame rate of 10 frames per
second. It will be mentioned whenever other settings were used.

2.4.2 CARLA

CARLA is a simulation platform based on Unreal Engine 4 and is according
to their website, [20], developed to ”support development, training, and vali-
dation of autonomous driving systems”. It is open source and contains many
digital assets such as urban environments, vehicles and buildings and support
for autonomous agents with Reinforcement Learning. It also contains methods
of simulating sensors such as LiDAR in its environment and this could be lever-
aged through a Python API, see [18].

8

(a) CARLA view

(b) Graphic lidar view

Figure 2: Rendered view in CARLA vs the output point cloud from the Graphic
LiDAR plugin.

On top of providing its own LiDAR, CARLA as an Unreal Engine 4 based plat-
form also provides support for third party plugins, and thus a LiDAR called
”Graphics based UE4 LiDAR”, or ”Graphic LiDAR” for short, was also used
with the CARLA assets. The main difference between the simulated LiDARs
was that, whereas CARLAs LiDAR simulates beams that reflect off meshes, the
Graphic LiDAR takes see-through textures into account and thus more closely
resembles an actual LiDAR.

The LiDAR plugin was based on the rendering pipeline provided by Unreal
Engine 4. Here, a scene is rendered from the viewpoint of the LiDAR and a
post process shader is applied to encode depth, reflectance and object tag into
a 16 bit float RGBA texture. 3D-coordinates of points is thereafter computed
from data read from the texture. The CARLA lidar uses uniform scanning
pattern.

9

For the purpose of this thesis, CARLA’s environment assets together with the
LiDAR and the Graphic LiDAR plugin was used to simulate labeled data.

2.5 Semantic KITTI

Semantic Kitti is a dataset released by scientists from the University of Bonn. It
contains over 20 000 point cloud LiDAR scans from a velodyne LiDAR attached
to a car driving in a city/suburb environment, see [19]. The data is recorded
continuously at 10 Hz in a 360 degree horizontal field of view. The data has
been annotated with 19 different classes and is often used as a benchmark to
test different networks for semantic segmentation of point clouds.

3 Theory

3.1 Plane Segmentation with RANSAC

Random Sample Consensus (RANSAC) is a method of modeling data that con-
tains a large amount of errors or outliers and finding the best possible fit. Thus,
it can be used to find certain features in data such as ground planes in point
clouds. In essence, the method works by fitting a model given a randomly se-
lected small subset n of points in the point cloud. From this, all data within an
error tolerance δ of the model are considered part of an inlier/consensus set, see
[16]. Depending on the implementation, this is either repeated a fixed number
of iterations t and the best fit is selected, as in [21]. Otherwise it is repeated
until the inlier set is greater than some specified threshold, as in [16]. For the
sake of plane segmentation, this corresponds to fitting a plane given n points,
considering all points within distance δ of the plane as inliers and selecting the
best such plane. Open3D ’s implementation of RANSAC for plane segmentation
uses the iteration procedure of a fixed number of t iterations and selects the
best fit, see [21].

Such a plane is specified in Equation 1.

ax+ bx+ cz + d = 0 (1)

The scalars (a, b, c) form together the normal vector of the plane and (x, y, z) is
any point in the plane that satisfy the equation.

3.2 Regression

Regressions are supervised learning methods where continuous variables (depen-
dent variables) are predicted from other quantities (independent variables). In
this thesis, regressions were used for modeling ground in two of the ground mod-
els. The RLWR-based model used solely Robust Locally Weighted Regression,
whereas the Hybrid model used both.

10

3.2.1 Robust Locally Weighted Regression

Robust Locally Weighted Regression, or RLWR for short, introduced by Cleve-
land in [22] is a method that locally smooths a scatterplot (xi, yi), i = 1, ..., n in
such a way that values are polynomial fits to data using weighted least squares.
The weights are chosen with respect to the point distances. RLWR uses a ro-
bust fitting procedure that prevents outliers from having too great an impact
on the fit. The procedure consists of computing a locally weighted scatterplot
smoothing (LWR or sometimes lowess) and then following this by iteratively
performing a step that makes the method more robust. Together, these two pro-
cedures form the robust locally weighted regression (Robust Locally Weighted
Regression (RLWR)).

The method is designed to fit data in the form of Equation 2.

yi = g(xi) + ϵi (2)

Here, yi are dependent variables, xi are independent variables, g is a smooth
function and ϵi are zero-mean random variables with constant variance. Assum-
ing smoothness means that points in the neighborhood of (xi, yi) can be used
to estimate ŷi which is a an estimate of g(xi), see [22]. According to [9], it can
also be assumed that g(x) can be estimated well by a family of simpler para-
metric functions and any differentiable function can be locally approximated by
a straight line according to Taylor’s theorem. The scatterplot is assumed to
consist of n points, i.e. i = 1, ..., n.

The LWR step is performed by first defining a fraction of points 0 < f ≤ 1
to which every fitted point (xi, yi) is to be compared to and r is the number
of neighbours that it translates to (r = round(fn)). Thus, a large fraction
(f) corresponds to a smoother fit. For every point, the local neighborhood
(N(xi)) is defined as the r closest points in x-space. The weight function used
in the LWR-regression is the tri-cube weight function with j = 1, ..., n is seen in
Equation 3.

ωi(xj) =

(1− (
|xi−xj |

max
k∈N(xi)

|xi−xk|)
3)3 j ∈ N(xi)

0 j /∈ N(xi)
(3)

In the equation max
j∈N(xi)

|xi−xk| is the distance to r:th nearest neighbor. Thus all

points further than this from xi will not affect the local fit. The tri-cube weight
function is chosen since it ”enhances a chi-squared distributional approximation
of an estimate of the error variance” (Belton et al., 2016, p. 2184) and also, it
provides smooth results in most situations, see [9].

For every (xi, yi) g(x), is fit (ĝi) by weighted least squares with weight ωi(x) by
estimated fitted values ĝi(xk) that minimizes Equation 4.

11

n∑
k=1

ωi(xk)(yk − ĝi(xk))
2 (4)

Since ĝi(xk) are approximated as d-order polynomials, this equates to, for each i,

computing the weights β̂l(xi), l = 0, ...d of possible βl:s that minimize Equation
5.

n∑
k=1

ωi(xk)(yk − β0 − β1xk − ...− βdx
d
k)

2 (5)

Finding the minimizing set of β̂l, l = 0, ...d for every i means having estimated
every ŷ = ĝ(xi) and thus having smoothed the scatterplot with LWS.

Thereafter follows the robustification step. B is the bisquare weight function,
which is defined in Equation 6 where z is an arbitrary scalar.

B(z) =

{
(1− z2)2 for |z| < 1

0 for |z| ≥ 1
(6)

Define ei as the residual for current fitted values in Equation 7.

ei = yi − ŷi (7)

Let s be defined as the median of |ei|. Thus, robustness weights δi can be defined
as in Equation 8.

δi = B(
ei
6s

) (8)

Given these definitions, the robustification step consists of refitting a d-th de-
gree polynomial with weighted least squares using the new weight function of
δiωi(x) for each (xi, yi). Thus, the robustification step consisting of finding the

parameters β̂l that minimize Equation 9.

n∑
k=1

B(
ek
6s

)ωi(xk)(yk − ĝi(xk)
2
) (9)

This robustification process is repeated a predetermined number of t times. In
total, this amounts to 3 hyperparameters in need of specifying: the fraction f ,
number of iterations t and the polynomial order, see [22]. According to [9], the
choice of weight function ωi(x) can also be chosen freely, however, the tri-cube
is the most common choice.

12

3.2.2 Gaussian Process Regression

A Gaussian process can be viewed as a distribution over functions and can be
formally defined as ”a collection of random variables, any finite number of which
have a Gaussian distribution” (Rasmussen et al., 2006, p. 13)[23]. All content in
this section is retrieved from this source. Such a process f(x) is described fully
by its mean function m(x) and covariance function k(x, x′) as seen in Equation
10.

f(x) ∼ N (m(x), k(x, x′)) (10a)

m(x) = E[f(x)] (10b)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (10c)

Here, N(∗, ∗) denotes a Gaussian distribution, E[∗] is the expectation and x
and x′ are independent variables for which f(∗) is the function value. Often,
the data is adjusted to be mean zero, providing notational simplicity. In fur-
ther descriptions, a collection of independent variables will be represented as
X ∈ Rn×d, signifying both that every independent variable element may be
multi-dimensional (dimension d) and that there are many (n) such variables.

Specifying a covariance function implies a distribution over functions and so,
choosing a number of input points X∗ and writing out a corresponding co-
variance matrix K(X∗, X∗) by comparing covariance functions elementwise, a
random Gaussian vector can be drawn. This represents values from a possible
function from the distribution of functions which is the Gaussian process. This
can be done according to Equation 11.

f∗ ∼ N (0,K(X∗, X∗)) (11)

Plotting the values generated as a function of inputs will provide a graph which
will seem smooth when choosing a covariance function that is sufficiently differ-

entiable. A squared exponential covariance function k(x, x′) = σ2exp
(

||x−x′||2
2l2

)
is infinitely differentiable which causes the process to be infinitely mean-square
differentiable. An example with three such samples are displayed in Figure 3a
and are referred to as priors.

13

(a) Three samples of functions drawn
from a Gaussian process with squared
exponential covariance function where
l = σ = 1.

(b) Posterior for a Gaussian
process with same kernel given
Xtrain = [−4,−3,−2,−1, 1] and
ytrain = sin(Xtrain). The red line is the
mean value for the posterior and the
gray area marks ± 2 standard deviations

Figure 3: Examples of priors and posteriors for Gaussian processes with same
squared exponential covariance kernel with l = σ = 1.

These functions are seen as priors in a Bayesian framework, since they are sam-
ple functions without any previous draws or data to compare with. A posterior,
on the other hand, takes into account previous draws, i.e. given data, and fits
the drawn function to these values. Thus, deriving a conditional distribution for
predictions, given previous observations, gives the main equations for Gaussian
Process Regression (GPR).

In the case when previous observations {(xi, fi)|i = 1, ..., n} (also referred to as
training inputs/outputs) are known, the joint distribution for training and test
inputs/outputs becomes that of Equation 12.[

f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
(12)

Test inputs/outputs (X∗/f∗) refer to those drawn from the distribution given
previous observations. Given n training points and n∗ test points K(X,X∗) is
the resulting n × n∗ covariance matrix evaluated between all respective pairs
according to the covariance function and the other combinations of X and X∗
follow the same structure.

The posterior distribution given the training data, consists of functions that
agree with these observations. This can be likened to generating functions
from the prior and disregarding those that do not agree with the observations.
Conditioning the joint Gaussian prior distribution on the observations provides
Equation 13.

14

f∗|X∗, X, f ∼ N (K(X∗, X)K(X,X)−1f ,

K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗)
(13)

From this joint posterior, functions f∗ for corresponding test inputs X∗ can be
sampled. The mean value of this posterior is sometimes referred to as the linear
predictor (f̄∗) and represents the best guess of f(x) for a given x. The vari-
ance is simultaneously useful for representing uncertainty of fit. An example of
such a posterior is seen in Figure 3b where the mean is marked in red and ±2
standard deviations are represented by the gray area. Note, that in the figure,
the mean follows the sinusoidal shape, which is the true function that produced
the observations, close to the observations. Also, the mean value function f∗(x)
returns to zero further from these.

The covariance function is often called a kernel due to it being a symmetric
function of two arguments mapping a pair if inputs x,x′ ∈ R to R. A common
choice of kernel is the squared exponential kernel. This is a kernel in the form
of Equation 14.

k(xi, xj) = σ2
fexp

(
− (xi − xj)

2

2l2

)
+ σ2

nδij (14)

This covariance function has three hyperparameters: length-scale l, signal vari-
ance σ2

f and noise variance σ2
n.

For further information of how noise is included in the model and how the
hyperparameters are tuned using an optimizer, see Section B in the Appendix.

3.3 Density-Based Spatial Clustering of Applications with
Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is an
algorithm that clusters spatial data based on their density, see [24]. The cluster-
ing method can cluster arbitrary shapes but requires that clusters have similar
densities. One use of this algorithm is that it can be used to filter out noisy
and sporadic points. There are two main parameters for the algorithm: ϵ is the
maximum distance between samples for for them to be in the same neighbour-
hood and minPTS is the minimum number of samples in a neighbourhood for
a point to be considered a core point. For a more in depth explanation, see [2].

3.4 Background Filter

There are many different methods for filtering out background, which is evident
in Section 1.3. One such filter is the 3D Density Static filter (also referred to
as Density Filter), introduced in [3] and expanded on in [4] and [5]. The filter
works by dividing volumetric space into cubes/voxels, for which all points in a

15

frame are mapped. Points are filtered based on the frequency of points in that
3D space. The idea is that space which contains many points tends to belong to
the background and thus points appearing in this space is likely also background.

The Density Filter has to be trained to gain information of the point density
statistics. This is done by aggregating point counts for every cube for a number
of initial frames. The number of frames f necessary depend on a lot of different
factors such as the side length of cubes l and the type of background. This
produces a grid with accumulated point counts which can thereafter be used for
filtering. Filtering is done by removing points in voxels that have a count over
a threshold T .

Points are kept or removed on the basis of counts in 3D cubes. This means that
side length l implies a certain resolution to the filtering. Herein lies a tradeoff:
large side lengths cause lower spatial resolution, meaning that points that do
not belong to background might be filtered out when close to the actual back-
ground. Short side-lengths however, require more memory for the model and
are more affected by the LiDARs scanning pattern.

3.5 Semantic segmentation

Semantic segmentation is the task of determining the unique label of all elements
in a set of data. This could be for a RGB-image to determine the specific label
for each pixel. For point clouds, semantic segmentation instead means deciding
what class each point belongs to. This is done using features such as spatial
relations, RGB-values and reflectivity. The task is usually very computationally
heavy due to the large amount of points, added depth dimension and the sparsity
of point clouds. In this thesis, semantic segmentation was performed by a neural
network called RandLA-Net.

3.6 Neural networks

Multilayer perceptrons (MLP) or feedforward neural networks are frequently
used networks within data science with the goal of approximating some function.
The following content on neural networks, loss functions and optimizers is from
[25]. The idea is to map an input x to an output y (ground truth). This is
done using a function f(x:θ) where θ are weights which are iteratively updated
during training to minimize the difference between y and f(x:θ). The name
neural networks comes from the fact that the networks are loosely inspired by the
human brain. As the name suggest the model is a network, the network consists
of several layers which are visualised as a directed acyclic graph describing the
relationships between nodes in different layers. The different layers correspond
to the depth of the model.

16

Figure 4: Layers of an multilayer perceptron shown as nodes in a directed acyclic
graph.

Each component within a layer is a node that has an input and an output. The
relationship between input xj and output zi can be seen in Equation 15 and
Figure 5. The input to a node is multiplied with a weight wi, j added with a bias
bi and passed through an activation function g. A commonly used activation
function is the ReLU-function (shown in Equation 16). The activation functions
used in this thesis is the leaky ReLU-function in Equation 17 and the softmax
function in Equation 18. In equation 17, the coefficient α is generally small
(α << 1).

zi = g(

N∑
j=1

wi,jxj + bi) (15)

Figure 5: A single perceptron with weights and activation function.

g(xi) =

{
xi for xi ≥ 0
0 for xi < 0

(16)

17

g(xi) =

{
xi for xi ≥ 0

αxi for xi < 0
(17)

σ(z)i =
ezi∑K
j=1 e

zj
(18)

3.6.1 Loss function

As a deep learning network tries approximate the function f(x:θ) with respect
to y, the way to measure the difference is by using a loss function L(x:θ).
RandLA-NET utilizes a loss function called weighted cross entropy, seen in
Equation (19).

Lwce = − 1

N

N∑
n=1

k∑
k=1

wk · ykn · log (hθ (xn, k)) (19)

In Equation 19, from [26], wk corresponds to the class weight, ykn true label
value, hθ (xn, k) model with neural weights. The class weights correspond to
the inverse of the class frequency which gives a larger penalty for missclassifying
points that are unusual. This makes the weighted cross entropy loss function
useful when there is a large class imbalance. This is the same in this case with
point clouds to enforce more correct predictions on the vegetation class.

3.6.2 Optimizer

An optimizer is a rule of how to minimize the loss function with respect to the
weights θ. A commonly used optimizer is Stochastic Gradient Descent (SGD)
which updates the weights by the gradient of the loss function using a randomly
selected subset of the data. This can be seen in Equation 20 where η is a
parameter that decides the size of the update step and ∇L(θ) is the gradient of
the loss function.

θt = θt−1 − η∇L(θ) (20)

RandLA-NET uses the Adam optimizer that uses estimations of first and second
degree moment to smooth the stochastic gradient descent updates, see [27]. The
update steps can be seen in Equation 21 wheremt and vt are the first and second
order moments which are calculated from the gradient ∇L(θ).

θt = θt−1 − η
m̂t√
v̂t + ϵ

(21)

The gradients of a loss function with regards to the trainable parameters are
calculated through an algorithm called backpropagation. Here, information
flows backwards through the network by recursively applying a chain rule to
elements in a computational graph.

18

3.7 RandLA-Net

RandLA-Net, described in [28] is a point cloud segmentation network that out-
performed many other networks in speed and accuracy when it originally was
invented in 2019. The key to the effectiveness of the network is the use of ran-
dom sampling to down-sample the point cloud in several iterations. This make
the network both memory and computationally efficient and able to run the
point cloud in a single pass as the random sampling has time complexity O(1).
However random sampling induces loss of information, especially on very sparse
point sets. To compensate for this, a local feature aggregation module is added
that retains spatial information of neighbouring points. This local feature ag-
gregation consists of a local spatial encoding, attentive pooling and a dilated
residual block.

3.7.1 Local Spatial Encoding

Local Spatial Encoding (LocSE) is introduced to find spatial relationships and
dependencies between points in the point cloud. For a point cloud P, where each
point pi has a set of features, the nearest neighbours are found using K-nearest
neighbours (KNN). For each neighbouring point (pk

i) encoded point features
(rki) are collected using an MLP on the relative point positions. This can be
seen in Equation (22). Thereafter the encoded point positions rki are concate-
nated with the local point features to output an augmented feature f . These
augmented features are further used to create a set of neighbouring features

F̂i =
{
f̂1i · · · f̂ki · · · f̂Ki

}
.

rki = MLP
(
pi ⊕ pki ⊕

(
pi − pki

)
⊕
∥∥pi − pki

∥∥) (22)

3.7.2 Attentive Pooling

Attentive pooling aims to find an attenuation score for all features which is
used to weight each feature based on its importance. This is shown in Equation
23 where Equation 23a finds the attention score using the function g which is
an MLP (with trainable parameters W) followed by a softmax function. In
Equation (23b) the features are ultimately received using the attention score.

Here, ski are the unique attention scores for each feature and f̂ki are the learnt
attention scores through weighted summation.

ski = g
(
f̂ki ,W

)
(23a)

f̃i =

K∑
k=1

(
f̂ki · ski

)
(23b)

19

3.7.3 Dilated Residual Block

A dilated residual block is the concatenation of several LocSE and attentive
pooling layers to greatly increase the receptive field of each point. According
to the authors of RandLA-NET this residual block, for a point pk

i , with K
nearest neighbours, increases the receptive field with K2 points. More blocks
increase the sphere of reach of each point, but it also makes the network more
computationally heavy and likely to overfit. In [28], the authors advised using
only two LocSE and attentive pooling layers in a block. Figure 6 shows the steps
of random sampling and point information passing within a dilated residual
block.

Figure 6: Random sampling and point features passing during two random
sampling steps.

3.7.4 Inference

In RandLA-NET, inference is conducted by iteratively choosing center-points
w to originate from. From each center-point, it computes a subset of the point
cloud corresponding to the N closest points to the center point by using a k-d
tree. This cloud of N points is then passed through the network. Depending on
if the network is training or testing, the choice of center point w varies. Whilst
testing, it is important to ensure that all points in the original point cloud are
passed through the network at least once. Therefore, RandLA-NET uses a pos-
sibility iteration scheme, see Section 3.7.6. During training these center points
are randomly selected. This procedure ensures that the sub-point-clouds that
pass through inference remain the same size.

3.7.5 K-d tree

K-d trees are a data structure used to partition and store k-dimensional data
into binary trees. They use hyperplanes in k-dimensions to divide the data in
each node so that points in the left hyperplane are under the left child-node and
respectively, points in the right hyperplane are in the right child node. K-d trees

20

are used in RandLA-NET to effectively select the sub-point-cloud consisting of
the N closest points from a center point.

3.7.6 Possibility iteration

The center point w is selected using the previously mentioned possibility itera-
tion scheme where at each iteration, the point with lowest possibility is chosen
as the center point. Then a sub-point cloud is selected from this center point
using the k-d tree and an inference is done. The possibility of all points in the
sub-point-cloud is updated following Equation 24 where w is the center point,
Pi is the sub-point cloud of index i and ∆di is an array of all point distances to
the center point in sub-point cloud i and possibility is an array of possibilities
for every point. Inference is repeated until all points in the total point cloud
have a possibility larger than a threshold ρ.

∆di = ∥Pi −w∥2 (24a)

δi =
1−∆di

MAX(∆di)
(24b)

possibility+ = δi (24c)

3.7.7 Voting scheme

As RandLA-NET inference many sub-point-clouds so their resulting predicted
labels must be stitched together. This is done using the voting scheme shown
in Equation 25 where Pi,j is the probability for point j from point cloud i, α
is a smoothing constant, Predi,j is the current inference prediction and P init

i,j is
the initial value for Pi,j .

Pi,j = Pi,j · α+ Predi,j · (1− α)

P init
i,j = 0

(25)

3.7.8 Grid subsampling

Before inference in RandLA-Net, the point clouds are preprocessed using a grid
subsampling strategy. This is dividing the 3D space in small voxels and outputs
only one point per voxel. This is effective in reducing the number of points and
the point density in very dense areas.

21

3.7.9 Network architecture

Figure 7: Network architecture of RandLA-NET.

Input to the network is a point cloud with dimensions N x din where N is the
number of points and din are the point features that can vary between datasets.
In the dataset from CARLA, din is the x,y,z coordinate values. Thereafter
there are a number of encoding layers. These encoding layers consists several
of dilated residual blocks together with random sampling. This random sam-
pling layer down-samples the points with a factor of 4, at the same time the
point feature dimension is increased with a factor of 4. Hereafter, the decoding
layers are applied. Features from the closest point, chosen with k-nearest neigh-
bours (KNN), in the upstream layer are applied to all points and concatenated
from features from the encoding layer (through skip connections) and applied
to an MLP. Lastly the prediction is done through three fully connected layers
and a dropout layer. An image of the basic network architecture can be seen in
Figure 7.

3.8 Evaluation Metrics

When evaluating models there are a few important metrics that are necessary to
explain. In the binary case, when there are predictions of positive and negative
outcomes, there are four possible cases: True Positive when a positive outcome
is correctly classified, True Negative when a negative outcome is correctly clas-
sified, False Positive when a negative outcome is miss-classified as positive and
False Negative when a positive outcome is miss-classified as negative. These
cases are shown in a contingency table in Table 1.

Table 1: Table showing how binary classification is arranged in a contingency
table.

Actual
Assigned

Prediction Positive Prediction Negative

Positive TP FN
Negative FP TN

22

In the multi-class case, these outcomes are defined individually for each class.
In this case, TN refers to all correct cases of a model not predicting instances
belonging to a class and TP is the same for instances belonging to the class.
FP refers to incorrectly predicting instances belonging to a class when they do
not and lastly, FN refers to incorrectly predicting instances belonging to a class
as not doing so.

In [29], accuracy, precision, recall, specificity and F1 scores are defined. Accu-
racy quantifies number of correct predictions compared to the total number of
predictions. In the binary case, this is seen in Equation 26.

accuracy =
TP + TN

TOTAL
(26)

Precision is a measure of how sure the model is that a positive outcome is correct:
of predicted positive outcomes, how many positive predictions are correct. This
is seen in Equation 27.

precision =
TP

TP + FP
(27)

Recall, sometimes referred to as sensitivity, is a measure of how good the model
is at correctly predicting positive outcomes: of actual positive outcomes, how
many are correctly predicted as positive. This is seen in Equation 28.

recall =
TP

TP + FN
(28)

Specificity, sometimes referred to as true negative rate, is a measure of how
good a model is at predicting negative outcomes. How many of the negative
outcomes were correctly classified as negative. This is seen in Equation 29.

specificity =
TN

TN + FP
(29)

The F1-score, sometimes referred to as simply F -score or F -measure is the
harmonic mean of precision and recall . It is a value between 0 and 1 (F1 ∈ [0, 1])
that signifies how well a model classifies positive cases. Further information is
included in Section A, in the appendix. This is seen in Equation 30.

F1 = 2 · precision · recall
precision + recall

=
TP

TP + 1
2 (FP + FN)

(30)

IoU, short for Intersection over Union, is a standard measure within point cloud
semantic segmentation and is used to compare different deep learning architec-
tures against eachother. It measures the quota between the true positives and
the union of the predicted and true labels. This is seen in Equation 31.

IoU =
TP

TP + FP + FN
(31)

23

The mean IOU is calculated as the mean of IoU over all classes. The mean forces
all classes to be equally important regardless of the number of points. Similarily
to the weighted cross entropy loss function, it enforces good prediction of all the
classes and not only the most frequent.

Root Mean Square Error (RMSE) is a measure of the difference between ob-
served values y and values predicted by some kind of an estimator ŷ. This is
seen in Equation 32.

RMSE =

√√√√ n∑
i=1

(yi − ŷi)2 (32)

3.8.1 Confusion Matrix

Confusion matrices are matrices that show how the classification varies over dif-
ferent classes. The rows are the predicted label and columns are the true value.
Each element on the diagonal are correctly predicted instances. It provides an
easy interface to see which classes are mixed up in a prediction.

24

4 Method

4.1 Simulation of data

This section describes how data was generated using CARLA. Noise was added
to the data to better resemble that of the RP-LiDAR and this was mostly
done by adding noise in the radial direction (which is the most dominant noise
direction for the RP-LiDAR).

4.1.1 CARLA LiDAR Data

Only a small number of point clouds generated by CARLA’s native LiDAR were
used. These were used for testing the ground model. The point clouds were
produced by randomly spawning a LiDAR in different locations with random
yaw angles and a pitch of −15◦. Noise was added by first defining an attenuation
where points were randomly removed with a probability that increases with
distance according to an exponential distribution with λ = 0.015. Thereafter,
uniform noise was added in all directions of U[−0.5λ, 0.5λ] with λ = 0.05 for all
points but for two exceptions. Vegetation was given uniform noise with λ = 0.25
and poles were given Gaussian noise with standard deviation σ = 0.03. All units
are in metres.

4.1.2 Graphic LiDAR Dataset

The Graphic LiDAR dataset, was designed for training, validation and testing
a neural network for semantic segmentation of point clouds. Four point clouds
were also used to test and compare ground models.

Data was simulated using the Graphic LiDAR plugin described in Section 2.4.2.
Point clouds were produced by placing LiDAR-spawnpoints within a CARLA
simulation. These spawn points were chosen with suitable starting position and
orientation for its view to include several classes, but also to imitate how a
real world stationary LiDAR would be placed. Then, the LiDAR iterated over
the spawn points multiple times, with uniform random pitch between −10◦ and
−15◦ and uniform random yaw between −30◦ and 30◦, and capture one frame
per iteration. 810 frames each, were simulated in validation and test sets, and
3885 frames were simulated in the training set. This amounted to 15 % valida-
tion, 15 % test data and 70 % training data. These numbers were chosen on the
basis of being a common choice for this type of split. The frames captured from
the test, validation and train datasets come from different simulation-worlds in
order to decrease similarities and to avoid overfitting on given environments.

25

Table 2: Distribution of frames and targetpoints in different datasets simulated
from carla. For the column ”Class balance”, the numbers describe the percent-
age of points belonging to classes ground, vegetation and other.

Test Spawn points Frames Class balance
Town 1 54 810 65.2 5.4 29.3

Total 54 810
Val

Town 2 54 810 62.5 4.3 33.1
Total 54 810
Train

Town 4 28 420 62.2 28.8 9
Town 5 48 720 70.5 9.4 20.1
Town 6 69 1035 71.0 12.7 16.2
Town 10 114 1710 63.9 5.42 30.6

Total 259 3885

Each frame contained roughly 45K points. This means that the entire dataset
contained roughly 2.5 ·108 points.

Noise was added to all point clouds by creating a scrolling noise texture of
correlated Gaussian noise to the depth value of points.

4.1.3 Ground model Dataset

For testing the ground models, six point clouds were chosen with different char-
acteristics for comparison. These six were divided into two different sets of point
clouds: Flat terrain and Hilly terrain. It is good to point out that only parking
lot had truly flat ground. The other two Flat terrain point clouds had ground
undulation of a few meters, which is much flatter than the hilly point clouds.

(a) Point cloud of a playground with surround-
ings.

(b) Point cloud of a parking lot. (c) Point cloud of a petrol station.

Figure 8: Images of the point clouds belonging to the flat dataset. White points
are ground points and red points are other.

26

The Flat point clouds are seen in Figure 8 and Hilly are seen in Figure 9. In
Table 3 below, the Flat terrain-dataset is described in more detail, partly with
all points in the point clouds and partly with all points with distances between
2m and 100m from the sensor.

Table 3: Number of points for different categories for the different point clouds
in the flat terrain-dataset. The subset-point clouds refer to all points between
distances R ∈ [2m, 100m] to the sensor.

Point cloud Type Total Ground Other
”Playground”

All points 92 041 49 471 42 570
Subset 92 041 49 471 42 570

”Parking lot”
All points 45 914 34 983 10 931
Subset 43 237 34 777 8 460

”Petrol Station”
All points 93 546 71 155 22 391
Subset 93 546 71 155 22 391

Total
All points 231 501 155 609 75 892
All points % 67.22% 32.78%
Subset 228 824 155 403 73 421
Subset % 67.91% 32.09%

All point clouds in the Hilly terrain-dataset were from the Graphic LiDAR
Dataset, described in Section 4.1.2, from the CARLA’s ”Town 5” environment.
They are of the terrains in CARLA that had most ground undulation and were
quite similar. They were chosen for displaying different types of hills and can
be seen in Figure 9.

(a) Hill 1: hill with trees furthest down. (b) Hill 2: long hill with trees on top. (c) Hill 3: hill with larger hill to the right.

Figure 9: Images of the point clouds belonging to the Hilly dataset. White
points are ground points and red points are other.

In Table 4, the Hilly terrain-dataset is described in more detail.

27

Table 4: Number of points for different categories for the different point clouds
in the Flat terrain-dataset. The subset-point clouds refer to all points between
distances R ∈ [2m, 100m] to the sensor.

Point cloud Type Total Ground Other
”Hill 1”

All points 42 504 19 507 22 997
Subset 41 960 19 093 22 867

”Hill 2”
All points 33 630 20 851 12 779
Subset 29 966 19 457 10 509

”Hill 3”
All points 42 132 28 461 13 671
Subset 40 545 27 862 12 683

Total
All points 118 266 68 819 49 447
All points % 58.19% 41.80%
Subset 112 471 66 412 46 059
Subset % 59.05% 40.95%

4.2 Ground Models

4.2.1 Implementation of RLWR-based Model

The model was implemented based on the description provided in the proposed
article, see [9]. The model took a point cloud as input and returned points
predicted to be ground.

The implementation was carried out as follows. First, the point cloud was di-
vided into x− z profiles with width dy and y− z profiles with width dx. There-
after, every such profile was fed into a RLWR-iterator algorithm consisting of
a number of subtasks which were iterated. First, the z-values were shifted so
that the minimum value was zero. Thereafter RLWR-regression was performed
using a linear fit as polynomial fit. This was performed for a specified number
of iterations (t) and a specified fraction (f). Thereafter followed 4 subtasks:

Task 1: Residuals ri = zi − ẑi are calculated where ẑi is the fit.

Task 2: The points are divided into those above and those under the fitted
RLWR-line.

Task 3: Down-weighting was performed using the bisquare robust weight func-
tion in Equation 6 on the points above the fitted line. Weights were
produced by assigning a weight of wi = 1 for points under the line and
wi = B(r∗i) above the line where r∗i = ri

6·median(|r|) for points over the

28

line. Re-weighting the z-values was carried out by element-wise multi-
plying the weights with corresponding zi and assigning these as the new
z-values. Following re-weighting, low outliers were adjusted. This was
done for a neighborhood of a point consisting of k = ceil(f · n) closest
points. Here, a check was made whether the given point was lower than
the lowest point in its neighborhood. If it was, its value was replaced by
the lowest.

Task 4: The RMSE (specified in Equation (32)) was calculated between the
values of the RLWR-regression and the down-weighted z-values. The new
set of z-values was fed to the RLWR-regression to get the next fit and
tasks 1-3 were repeated until the change in RMSE (dRMSE) was less
than a specified threshold δ. The last RLWR fit was used as the final fit
for determining the height of the ground along the given stripe. The final
ground points were chosen as the initial z − values (dependent variables)
that were within a threshold (T) of this determined ground.

The common ground points were decided as the intersection of ground points
for both overlapping x− z and y− z profiles, i.e. the points classified as ground
points for both stripes. The threshold for determining ground points for stripes
in either direction was allowed to vary due to varying spacial densities for these
directions. With sufficiently narrow stripes, the thought was that variations
along the complementary horizontal axis was limited, so that a good estimation
of the ground level could be achieved. This is however a trade-off, since nar-
rower stripes give fewer points and a less robust fit.

In total, this algorithm required 7 hyperparameters: dx, dy, f , t, δ, Tx and Ty

4.2.2 Implementation of Hybrid Regression Model

The implementation of the hybrid regression model was very similar to the de-
scription provided in the original paper [10]. The main difference was in the
point cloud representation and the addition of DBSCAN. In the article, the
considered datasets all consisted of a spinning LiDAR scanner, producing a
point cloud with a 360◦ view. The data considered in this thesis consisted of
a stationary LiDAR with a 120◦ view. Thus, the polar grid representation in
the model implemented here consisted of a slice slightly larger than 120◦. The
model took a point cloud as input and returned predicted ground points and a
ground function z = f(x, y) as output.

The model was implemented in the following way. First, all points in a provided
point cloud were filtered through DBSCAN with ϵ = 1.5 and a minimum of 5
samples for a point to be a core point. This was to remove noisy points. All
points within a radius of Rmax were thereafter assigned into a grid pattern
displayed in Figure 10. This was done for N circles, M segments and N ×M
bin:s. The bins were the intersections of segments and circles. The sizes and

29

numbers of these were specified by a radial length ∆r and angle ∆α. The
assignment was given by

seg(pi) =

⌈
atan2(xi, yi)

∆α

⌉
, (33)

and

circ(pi) =

⌈√
xi + yi
∆r

⌉
. (34)

For each bin, the lowest height was selected to create a skeleton of the ground.
Thereafter the set of these lowest points were arranged into segments (SLm).
Despite consisting of the lowest point in every bin, the points were not neces-
sarily ground points and were therefore fed through an RLWR-regression and a
gradient filter before being assumed to be ground.

binm
n

segm

circN

x

y

Figure 10: Polar grid map for projecting point cloud into grids. Segments are
the divisions for different azimuthal angles (area between red lines) that go in
the radial directions whereas the circles are the areas between given radius from
the origin (area between blue circles). The bin:s are the intersections between
segments and circles.

The points of every SLm were fed into RLWR, using radius r as independent
variable and z as dependent variable. This is done given t-iterations and a
specified fraction f . The fitted heights were thereafter fed into a gradient filter.
This filter calculated the gradient for every (ri, zi) pair. This was done, given
second order accurate central differences of interior points and first or second

30

order at the sides using numpy’s gradient function, see [30]. Any gradients with
a slope larger than a specified βmax were replaced by the value of the nearest
point for which the slope was less than this. The remaining set of points along
a segment (SL′

m) were thereafter used as a seed skeleton for GPR along the
angular direction α.

Before performing the GPR, the seeds were rearranged circle-wise SLn. For ev-
ery circle, the mean height value was calculated and subtracted from the seeds
SLn. The azimuthal angle α was calculated for all points. Thereafter, given the
seeds of each circle, a Gaussian Process regression model was fitted for αi, zi
pairs and the result of this was used to predict the heights of all points in the
circle. The kernel used was the squared exponential kernel specified in Equa-
tion (14) with initial values θ = (l, σ2

f , σ
2
n). The GPR implementation used

was scikit-learn’s GaussianProcessRegressor provided by their API. The fit was
carried out using a Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer algo-
rithm from scipy.optimize.minimize, see [31].

The predictive height for the model was the mean predicted height of the points
in a bin according to the GPR. When filtering points, all points within a thresh-
old value T of this height for a bin were considered part of the ground. A ground
function z = f(x, y) was constructed by returning a function that mapped every
x, y value to a bin and returning the bin’s average predicted height. If there
was no such bin (i.e. the (x, y)-position was outside the point clouds area) it
was set to return a None-value. For bins that had no points but were inside
the point-cloud’s area, the predicted height was used of a point with an angle
α in the centre of the bin. This was done using a GPR fitted with the circle’s
seed points. Also given, was a grid for which the predicted mean height of every
relevant bin along with x and y values for the centre of these.

In total, there were 10 hyperparameters for the implementation: the radial
width of bins/circles ∆r, the angular width of bins/segments ∆α, the maximum
distance considered for the point cloud Rmax the fraction of points taken into
account in the RLWR f , the number of iterations in the RLWR t, the maximum
slope by which points are filtered βmax, the initial values for the kernel in the
GPR θ = (l, σ2

f , σ
2
n) and the threshold for which points were filtered by T .

4.2.3 Implementation of Plane Model

The plane model was the simplest model used. It used the RANSAC algorithm
provided by Open3D ’s API through their segment plane() function, see [21].
The model took a point cloud P and a threshold T . Using the RANSAC algo-
rithm with error tolerance δ, fitted on n points, for t iterations, the best plane
was fit to the point cloud. The heights ẑ of all points in the cloud were predicted
by using the plane equation in Equation (1), i.e.

31

ẑ = f(x, y) =
−ax− by − d

c
. (35)

All points (xi, yi, zi) for which zi was within the threshold of the plane’s height
|zi − ẑi| < T were considered ground points by the model.

4.3 Test on Ground models

The three models were tested on the ground model dataset described in Section
4.1.3, divided into Hilly and Flat terrain. For each such subset of point clouds,
every ground model was tested for a few different choices of hyperparameters.
The models were tested on their ability to filter out ground points and relevant
scores were calculated. Table 5 below, show the choices of hyperparameters for
the different types of models evaluated on the two sets of point clouds. These
remained the same for all runs.

Table 5: Hyperparameters of the different Ground models tested.

Hybrid Model
Parameters: f t βmax θ = (l, σ2

f , σ
2
n) T

0.1 5 10 (0.1935, 0.2415, 0.0396) 1
RLWR-Based Model
Parameters: f t δ Tx Ty

0.1 5 0.1 2m 1m
Plane Model
Parameters δ n t

0.001 3 1000

All models except for one plane model were fit on a subset of points P′. This
subset constituted of all points with a distance between Rmax = 100m and
Rmin = 2m of the LiDAR, i.e. P′ ∈ [Rmin, Rmax]. A subset of the points were
chosen due to the properties of point clouds generated by stationary LiDAR.
Generally, points within 2m were noise and therefore there was no greater pur-
pose of fitting ground within this radius. These point clouds also decreased in
point density at further distances due to trigonometry but also occlusion. In the
data, points beyond 100m tended to be too occluded to provide any valuable
information.

For the Hybrid and plane models the threshold was set to T = 1m and for the
RLWR based model the thresholds were Tx = 2m and Ty = 1m. Due to two
reasons, larger values of Tx and dy were assigned. Firstly, RLWR had a more
complicated process filtering points. Ground points had to be chosen by RLWR
filterings in both x and y directions. Secondly, due to the scan pattern of a sta-
tionary LiDAR being very dense along azimuthal scans, (stripes in y-direction)
and a lot less dense in the orthagonal x direction. The choice of initial θ for the

32

Hybrid models was set according to what the authors set in the paper [10].

Table 6 shows how each type of model was varied to explore the impact of
given hyperparameters. The Hybrid and RLWR-based models were varied in
choices of grid sizes (dx, dy) and (dr, dα) respectively, whereas the plane model
was varied in choices of points from point cloud. One plane model was fit
using all points and the other was fit using the same points as the other models
P′ ∈ [Rmin, Rmax]. The ”Small grid” for the hybrid model was chosen according
to the grid size used by the authors of [10].

Table 6: Specifications of the different Ground models tested.

Model Type Model
Hybrid Model dr dα

Large grid: 1.2m 12◦

Medium grid: 0.6m 6◦

Small grid: 0.2m 2◦

RLWR-Based Model dx dy
Large grid: 1.0m 2.0m
Medium grid: 0.5m 1.0m
Small grid: 0.25m 0.5m

Plane Model Rmax Rmin

fit on all points: 1000m 0m
fit on subset of points: 100m 2m

The set of grid sizes in Table 6 with overall best performing model, was thereafter
used for every model-type to produce plots of filtered point clouds.

4.4 Evaluation of Ground model on point clouds

A hybrid model was visualised on three point clouds generated by the RP-
LiDAR. The model chosen was that which gave the best overall performance
from Section 4.3. The data consisted of three point clouds seen in Figure 11
from separate recordings and environments, all recorded using a trapezoidal
scan pattern with the RP-LiDAR.

33

(a) Point cloud referred to as Emdala. (b) Point cloud at Eslöv airport. (c) Point cloud referred to as Matteannexet.

Figure 11: Three different point clouds that the ground models were tested on.

In Table 7 below, total number of points for the three point clouds are shown.

Table 7: Specifications of the point clouds studied.

Environment Point Count
Emdala 57504
Eslöv airport 29136
Matteannexet 59451

4.5 RandLa-NET

4.5.1 Data preprocessing

Firstly, before using data as input to the network, it was pre-processed. This
was done by gridsubsampling it according to cubes of side length 0.06. This
was done to decrease the point density at certain locations. For the testing
and validation sets, a projection file was saved containing the mapping from the
subsampled to the original point clouds. Thereafter KD-trees for all files were
created and saved, these KD-trees were calculated using the scikit-learn library
[32].

4.5.2 Training of network

Different models of RandLa-NET were trained and tested with variable number
of layers and KNN neighbours to predict how these values affect the network.
The models where trained at 50 epochs and the number of input points to the
network was set to 30 000 (25 000 with KNN as 24) due to GPU limitations.
50 epochs was chosen as the training seemed to converge after this amount of
epochs. Each training was done with inital learning rate of 0.01 with a decay
of 0.95 after each epoch. Batch size was set to 4 and validation/test batch size
was set to 15. The batch sizes was chosen as they were the maximal sizes the
network could be run without GPU memory overload.

34

Table 8: Specifications of the different Randla-NET models tested on the
CARLA dataset.

Model name No. classes KNN No. layers Epochs Input points
Normal 3 16 4 50 30 000
Normal-25K 3 16 4 50 25 000
2 layer-model 3 16 2 50 30 000
6 layer-model 3 16 6 50 30 000
Normal knn 32 3 24 4 50 25 000
Normal knn 8 3 8 4 50 30 000

The training of the network was carried through whilst computing the valida-
tion and training accuracy. This was done with the aim of detecting overfitting.

4.5.3 Testing of the network

The testing of the network was carried out on pointclouds simulated from a
separated environment (a different town) see Table 2. The voting threshold ρ
was chosen as 0.5. The testing was done by performing inference on the testing
frames and computing a confusion matrix over the classes. The prediction on 5
frames of CARLA data was visualised. This was done to provide an understand-
ing of how the semantic segmentation performs on the test dataset. Thereafter
the network was applied on 5 different RP-LiDAR recordings (Grenden, Lomma
beach, Matteannexet, Hörby and Eslöv airport) and the prediction was plotted.
We do not have the ground truth as these are real LiDAR recordings therefore
the only way to test the network is by visual inspection. The total network pre-
diction time and batch inference time was saved. This was done to determine
whether or not the network could be used in real time.

4.6 Improvement to the Background Density Filter

The Density filter in Section 3.4 was expanded on in order to incorporate se-
mantic information with the purpose of improving its ability of filtering out
vegetation. The filter required the existence of a model (neural network) that
could perform semantic segmentation on relevant point clouds. The filter used
this semantic information to strictly filter out points in areas considered vege-
tation, whilst simultaneously performing the same standard filtering based on
a threshold.

During the training phase, the conventional count aggregation was, for a given
fraction of frames f , accompanied with aggregation of semantic prediction of
the points in these frames. After training, a voting scheme was carried out
for all voxels that had received semantic information. The most common vote
for every voxel was chosen as the voxel’s type. Here, an exception was carried

35

out for all vegetation voxels where there were fewer than a specified number
of semantic counts Tc. This was to limit the effect of too many voxels being
missclassified as vegetation. After voting, an expansion scheme was carried
out for every ”vegetation voxel” to all 26 neighbouring voxels that shared a side
or corner. This expansion scheme was iterated t-times.

Points were assigned voxels according to

v =
[
l ·

[r
l

]]
n
. (36)

Here [·] denotes a rounding operator and [·]n rounds to the n:th decimal. l is
the side length, r = (x, y, z) is the coordinate of a point and v is the centre
coordinate of the voxel that r belongs to. The size of n was chosen according
to the side length so that n was greater than the number of significant digits in l.

Filtering was carried out by the same mechanism as before, but with the ad-
dition of voxels classified as vegetation filtering out all points mapped to the
voxel regardless of the count. Thus, the filter heavily removed points in areas
classified as vegetation by the neural network but worked as the standard Den-
sity Filter in all other spatial areas.

4.7 Test on Background Subtraction

The two different background subtraction models were tested in situations with
wind, to see whether the improvements made any difference. Since the data was
not annotated, this was limited to a select few frames and no advanced com-
parisons were made. More varied frames would have only made it more difficult
to discern a difference since it would become difficult to pin point the cause of
potential differences.

The Improved Density Filter and standard Density Filter, with side-length
l = 0.1m and t = 1 expansion, were tested on recordings of Eslöv airport and
Snowy Bus Station with the RP-LiDAR. For Eslöv airport, both filters were
trained on 840 consecutive frames and evaluated on 442 frames of two consecu-
tive chunks of 250 and 192 frames each. For Bus Station Snow, the filters were
trained on the initial 800 frames and evaluated on the final 95, for which wind
appeared. Frames were chosen for mostly containing background. For every
frame, points were filtered using T = 10 as threshold, and the remaining points
were clustered using DBSCAN with ϵ = 0.4 and minimum of 10 points in a
neighbourhood for a point to be considered a core point. This was to emulate
the behaviour of the filter in the actual pipeline.

Three metrics were calculated. The number of total points and clusters passing
each filter were calculated. This was done to estimate both filters ability to

36

filter out vegetation in windy conditions.

In addition to this, visualisations of the Improved Density Filter was produced
for further understanding of behaviour and intuition. Here, all voxels which
would filter out points, where Tc = 5 and T = 10, were saved and plotted. This
was done for Eslöv airport and a version of Matteannexet. In both cases, the
filters were trained on 800 frames.

The recordings were produced with the standard settings described in Section
2.4.1.

37

5 Results

5.1 Ground Models

The following section presents results of the tests of the ground models described
in Section 4.3.

Figures 12 and 13 show the F1-scores and accuracies for the hybrid models of
different grid sizes on the two different sets of point clouds.

Figure 12: Results for Hybrid Model on the Flat point clouds for three different
grid sizes. Total F-scores and Accuracies at top left and confusion matrices in
other boxes for different grid sizes.

38

Figure 13: Results for Hybrid Model on the Hilly point clouds for three different
grid sizes. Total F-scores and Accuracies at top left and confusion matrices in
other boxes for different grid sizes.

Figures 14 and 15 show the F1-scores and accuracies for the RLWR-based mod-
els of different grid sizes on the two different sets of point clouds.

39

Figure 14: Results for RLWR-based model on the Flat point clouds for three
different grid sizes. Total F-scores and Accuracies at top left and confusion
matrices in other boxes for different grid sizes.

Figure 15: Results for RLWR-based model on the Hilly point clouds for three
different grid sizes. Total F-scores and Accuracies at top left and confusion
matrices in other boxes for different grid sizes.

40

Figures 16 and 17 show the F1-scores and accuracies for the plane model for
different fitted with all points or with a subset of points on the two different
sets of point clouds.

Figure 16: Results for plane-model on the Flat point clouds for either all points
in point cloud or subset of point cloud. Total F-scores and Accuracies to left
and confusion matrices in other boxes.

Figure 17: Results for plane-model on the Hilly point clouds for either all points
in point cloud or subset of point cloud. Total F-scores and Accuracies to left
and confusion matrices in other boxes.

In Figures 18 and 19, examples of how the different type of models filter out
ground points is displayed. The choice of grid-sizes was set according the mod-
els that produced best results for every model type. Note, these were separate
runs from those that produced the results above. They used the same hyperpa-
rameters and are of the same point clouds. The models used were the Hybrid
model with medium grid size, RLWR-based model using the small grid size and
the Plane model using the subset of points in the point cloud.

41

(a) Hybrid model on playground (b) RLWR model on playground (c) Plane model on playground

(d) Hybrid model on parking lot (e) RLWR model on parking lot (f) Plane model on parking lot

(g) Hybrid model on petrol station. (h) RLWR model on petrol station (i) Plane model on petrol station

Figure 18: Examples of ground model filtration on Flat dataset for the Hybrid
model with medium grid, RLWR-based with small grid size and plane model fit
on the same subset of points as the other two models. All hyperparamers are
the same as previously. Points predicted as ground are red and all other points
are white.

42

(a) Hybrid model on Hill 1 (b) RLWR model on Hill 1 (c) Plane model on Hill 1

(d) Hybrid model on Hill 2 (e) RLWR model on Hill 2 (f) Plane model on Hill 2

(g) Hybrid model on Hill 3 (h) RLWR model on Hill 3 (i) Plane model on Hill 3

Figure 19: Examples of ground model filtration on Hilly dataset for the Hybrid
model with medium grid, RLWR-based with small grid size and plane model fit
on the same subset of points as the other two models. All hyperparamers are
the same as previously. Points predicted as ground are red and all other points
are white.

The Hybrid model had the best performance of the three models in terms of
accuracy and F1-score. The best performing Hybrid model used the medium
grid size (dr = 0.6m, dα = 6◦) and achieved higher scores than the best RLWR-
based model, which used the small grid size of (dx = 0.25m, dy = 0.5m). The
Plane model performed very well on the Flat dataset, but did not achieve scores
as high as the Hybrid model. The Plane model, however, achieved low scores
on the Hilly dataset.

In Table 9, the worst specificity of every model type is shown on each dataset.

43

Table 9: Worst specificity of every model type on each dataset.

Model Specificity Flat dataset Specificity Hilly dataset
Worst Hybrid model 78.91% 91.18%
Worst RLWR model 97.34% 97.85%
Worst Plane model 83.53% 89.89%

The RLWR-based model generally had very high specificity compared to the
others. Also, specificity tended to be higher on the more complicated Hilly
dataset.

5.1.1 Hybrid Model on RP-LiDAR point clouds

In Figure 20 below are predictions of ground points according to the description
in Section 4.4. The Hybrid model with medium grid size was used together
with the hyperparameters in Table 5 with the exception that the threshold was
decreased to T = 0.5m. This means that the filtered red points in the images
are within 0.5 meters of the predicted ground. The other parameters were
dr = 0.6m, dα = 6◦, f = 0.1, t = 5, βmax = 10 and θ = (0.1935, 0.2415, 0.0396).

44

(a) Emdala seen from top view (b) Emdala seen from the side

(c) Eslöv airport seen from top view (d) Eslöv airport seen from the side

(e) Matteannexet seen from top view (f) Matteannexet seen from the side

Figure 20: Examples of ground model filtration with the Hybrid model on three
different point clouds recorded by the RP-LiDAR. Points classified as ground
are red and remaining points are white.

In Figure 21, a grid of points representing the predicted height of the ground
model (in red) are plotted alongside the point cloud for which it was fit. These
are viewed in two directions for every point cloud.

45

(a) Emdala seen from top view (b) Emdala seen from the side

(c) Eslöv airport seen from top view (d) Eslöv airport seen from the side

(e) Matteannexet seen from top view (f) Matteannexet seen from the side

Figure 21: Examples of ground model points for the Hybrid model on three
different point clouds recorded by the RP-LiDAR. Points classified as ground
are red and remaining points are white.

5.2 RandLa-NET

5.2.1 Training

In Figures 22, 23, 24, 25, and 26 shows training and validation accuracy along
with loss and confusion matrices for variations of RandLA-NET specified in
Table 8. Table 10 shows Mean-IoU and Accuracy for these models on the

46

test set. In Figure 27 the same is shown for the normal model trained on the
Semantic-KITTI dataset.

Figure 22: Training/validation accuracy and loss during training. Mean IOU
score over different classes on validation set during training and confusion matrix
of the normal model for test set.

47

Figure 23: Training/validation accuracy and loss during training. Mean IOU
score over different classes on validation set during training and confusion matrix
of the 2 layer model for test set.

Figure 24: Training/validation accuracy and loss during training. Mean IOU
score over different classes on validation set during training and confusion matrix
of the 5 layer model for test set.

48

Figure 25: Training/validation accuracy and loss during training. Mean IOU
score over different classes on validation set during training and confusion matrix
of the KNN 24 model for test set.

Figure 26: Training/validation accuracy and loss during training. Mean IOU
score over different classes on validation set during training and confusion matrix
of the KNN 8 model for test set.

49

Table 10: Mean IoU and accuracy over test set for different models.

IoU [Ground vegetation other] [%] mean IoU [%] Accuracy [%]
Normal-model [97 69 91] 85 96
Normal-model-25K 96 45 84 55 93
2-layer model 97 68 90 85 96
5-layer model 97 64 89 83 96
KNN-24 model 97 66 90 84 96
KNN-8 model 97 68 90 85 96

Figure 27: Training/validation accuracy and loss during training. Mean IOU
score over different classes on validation set during training and confusion matrix
for Semantic-KITTI model on Semantic KITTI dataset.

In Table 11 inference time along with relevant information of size for different
point clouds from different recordings are shown. In Figure 28, the results of
semantic segmentation on these point clouds is shown and in Figure 29 the same
is done on scenes from CARLA with the Graphic LiDAR.

50

Table 11: Inference time for the normal-model on different RP-LiDAR datasets.

Total time [s] Mean batch time [s] Batch size Av pc size Num points
Grenden 8.89 0.488 15 56402 30000
Lomma beach 9.64 0.528 15 83742 30000
Matteannexet 9.14 0.503 15 67919 30000
Lomma beach 7.9988 0.4407 15 83742 30000
Hörbylantmän 9.279 0.4931 15 48738 30000
Eslövflygplats 6.02927 0.5155 15 29956 25000

51

(a) Grenden (b) Segmented Grenden

(c) Lomma beach (d) Segmented Lomma beach

(e) Matteannexet (f) Segmented Matteannexet

(g) Hörby (h) Segmented Hörby

(i) Eslöv airport (j) Segmented Eslöv airport

Figure 28: Results of the semantic segmentation on recordings by the RP-
LiDAR. To the left are the original point clouds and to the right are the pre-
dictions. White points are classified as ground, green points are classified as
vegetation and red points are classified as other.

52

(a) Scene 1 (b) Scene 1 truth (c) Scene 1 prediction

(d) Scene 2 (e) Scene 2 truth (f) Scene 2 prediction

(g) Scene 3 (h) Scene 3 truth (i) Scene 3 prediction

(j) Scene 4 (k) Scene 4 truth (l) Scene 4 prediction

(m) Scene 5 (n) Scene 5 truth (o) Scene 5 prediction

Figure 29: Comparing the semantic segmentation versus ground truth on frames
from the CARLA test dataset.

53

(a) Matteannexet (b) Eslöv airport

Figure 30: Model trained from semantic-kitti data predicting on frames recorded
from RP-LiDAR.

5.3 Background Filter

The number of points passing the filter, accumulated clusters and number of
points in these clusters can be seen for Eslöv airport in Table 12 and for Snowy
Bus Station in Table 13.

Table 12: Number of clusters, accumulated Point count and accumulated Point
count within clusters for density filter and improved density filter for Eslöv
airport.

Model: Density Filter Improved Density Filter
Number of clusters 2406 345
Accumulated Point count 629230 110436
Accumulated Point count (clusters) 70906 17080

Table 13: Number of clusters, accumulated Point count and accumulated Point
count within clusters for density filter and improved density filter for Snowy Bus
Station.

Model: Density Filter Improved Density Filter
Number of clusters 390 227
Accumulated Point count 158287 88880
Accumulated Point count (clusters) 5964 2946

Of the registered clusters in Eslöv airport, 194 of them were of people moving
throughout the scene. None of the filters filtered out a single instance of a per-
son in a frame. Thus the count of clusters from wind in vegetation was 151 for
the Improved Density Filter and 2212 for the standard Density Filter. In Snowy
Bus Station a lot of clusters originated from a part of the ground that had been

54

occluded during training due to snow on the LiDAR-sensor. From this, 130
clusters were added. Subtracting this gives 97 for the Improved Density Filter
and 260 for the standard Density Filter. In addition to this, there were also
many buses and cars that were clustered. In fact, an overwhelming majority of
cluster registrations in the Improved Density Filter were from these. These were
passed through both filters to the same extent. This means that the number of
clusters in vegetation were much lower and by the same amount.

In Figure 31 examples can be seen of the same frame for each filter. The coloured
points were the clustered points and the colour represents individual clusters.
In Figure 32, visualisations of the Improved Density Filter can be seen on Eslöv
airport and Matteanexet for Tc = 5 and T = 10. Voxels are coloured according
to their voted category and the voxels shown are voxels.

(a) Density filter (b) Improved density filter (c) Density filter (d) Improved density filter

Figure 31: Comparison of density filter and our improved density filter over
vegetation for a recording on Snowy Bus Station

55

(a) Overview matteannexet (b) Zoomed matteannexet

(c) Overview eslöv airport (d) Zoomed eslöv airport

Figure 32: Improved density filter voxels visualized. Green voxels: vegetation,
white voxels: ground and red voxels: other.

56

6 Discussion

6.1 Ground Models

In terms of accuracy and F1-scores, it was quite expected that the Plane model
performed well on the Flat dataset but not well on the Hilly dataset. Still,
this shows the strength of simpler models. The RLWR-based model, which was
much more complicated and computationally heavy, did not manage to match
the Plane model ’s scores on the Flat dataset.

The datasets were somewhat skewed. In both datasets, there were more ground
points than non-ground, however, ground points never made up more than 2/3
of all points. Also, due to the Graphic LiDAR produced ”Parking lot” point
cloud making up fewer points than the others, this scene was weighted less in
the final scoring on the Flat terrain data. This effect makes F1-scores increase
somewhat and it is good to keep this in mind when comparing models. Despite
this, a combination of accuracy and F1-scores were strong factors in reaching a
conclusion regarding a preferred model.

Data from two different types of simulated LiDARs was used to study the
Ground Models in addition to real recorded data from the RP-LiDAR. The
reason for this was to increase understanding of the performance of these mod-
els in as many settings and domains as possible.

6.1.1 Performance of Plane model

The limitations of the Plane model are also apparent in the confusion matrix
in Figure 17, where a lot of ground is classified as other. For the best model,
True Positives account for TP = 32.71% and False Negatives account for 26.35%
which is very close. This means that it manages to correctly predict only 55.38%
(recall) of ground points. This is due to the inflexibility of the model. Examples
of this can be seen in Figures 19c, 19f and 19i where clear continuous parts of
the ground are correctly classified.

6.1.2 Performance of RLWR-based model

The RLWR-based model produced quite underwhelming results. Compared to
accuracies between 97.45% and 97.84% in the original article [9], the results in
this thesis do not come close. In Figures 18b, 18e, 18h, 19b, 19e and 19h, it
can be seen that the method is sporadic in classifying points. This is due to the
way the method has to classify ground points in both x and y directions and
then only classifies a point as ground if there is consensus, i.e. it is classified in
both. Compare this to the other methods, were predictions of ground heights
are made on continuous areas, such as a plane in the Plane model, and bins in
the Hybrid model. The fact that the point clouds studied in this thesis are a
lot less dense than those studied by the authors of [9], is likely a strong factor

57

behind the decreased performance. This means that height variations, caused
by objects not belonging to ground, are a lot more difficult to discern. This
is analogous to a low sample rate. A way of making every slice more dense, is
making them broader, but here is a trade-off. Making slices broader decreases
their ”resolution”. Points that are a slice-width from each other can be pro-
jected as beside each other. This makes it more difficult for the RLWR-iteration
to discern the actual ground level if there is to much variation in a slice’s depth.

In [10], the authors achieve accuracies between 73.18% and 95.23% on scenes
from the KITTI dataset for their RLWR-based model. Since these are differ-
ent environments, no definitive conclusions can be drawn, but since the KITTI
dataset is produced by a LiDAR (Velodyne) with point densities that are roughly
the same, this might suggest that the model in this thesis could have been im-
plemented in an inferior way. However, it should be clearly pointed out, that
the authors made a few modifications to the RLWR-implementation for their
experiments. First, the x and y slices were exchanged for a polar grid map, us-
ing segments, circles and bins, the same as for the Hybrid model. The authors
of [10] claim that this representation adapts to the point cloud’s distribution
better. Also, due to the size of the point clouds in the KITTI dataset, only
the lowest points of every bin are used and points are filtered by the average
height of the bin and a threshold parameter Tg. The discrepancy in results from
the polar grid map is difficult discern. This likely makes point counts between
slices in the same direction vary less. However, even though the authors claim
that the choice of only picking lowest values in bins was motivated by time-
performance reasons, it likely also had an impact on classification performance
and behaviour. The sporadic and conservative nature of point classification is
likely caused by the consensus method of filtering points. Changing to a thresh-
old based method over a continuous area, changes this dynamic and causes all
points within a threshold in the area to receive the same classification. This
will cause more non-ground points to be miss-classified but likely more ground
points to be correctly classified. For further discussion on sources of discrepan-
cies, see the appendix, Section D.2.

There seems to be a lot of possible improvements that can be made for the
RLWR-based model, but these would likely not improve the method beyond
the Hybrid model. For one, the results in the article that proposed the Hybrid
model [10], consistently showed their model outperforming their RLWR-based
model. Secondly, RLWR-regression fits points in a scatterplot and does not
seem to lend itself to height prediction in areas of a given grid without points.
When searching for better models, potential improvements to the Hybrid model
or newer models are suggested instead of this model.

6.1.3 Performance of Hybrid model

By measures of accuracy and F1-score, the Hybrid model achieved the best re-
sults. This was always the case unless the ground was completely flat, as seen in

58

Figure 18i, where the Plane model performed the best. It was more adaptable
to both ground undulation occlusion. There are however, very clear limits to
how much it could handle. Even though the Hybrid model achieved best scores
on the hilly dataset it is quite evident from Figures 19a, 19d and 19g that the
model was quite bad at adapting to ground that varies at that scale. In Figures
18a and 18g it is possible to see that the model also struggled when the height
of the ground had abrupt and steep variation. In the playground point cloud,
there is such a hill just to the left of the central path and in the petrol station
point cloud the same can be seen behind the petrol station. In both these cases,
the problem did not arise from occlusion.

On the ”real” points clouds in Figure 20, generated by the RP-LiDAR, the
Hybrid model showed good performance on Emdala and Eslöv airport. There
were height variations in these point clouds, but they were more gentle than
those seen in the simulated clouds. In Emdala it is possible to see that the
model adapted to the slightly twisted shape of the ground undulation. The little
hill in the far back (seen more clearly in Figure 20b) was missed by the model
however. Here, the model was drawn up to the height of the bushes as evident
in Figure 21a and 21b. In Eslöv airport, the ditch to the left, close to the LiDAR
was captured in the model and the lowest point of the smaller bushes were also
included. It is worth pointing out here that, despite not seeing the ground, the
model made an accurate prediction of what the height actually was. All of this
is confirmed by plots of the actual model in Figure 21. From Figures 20e and
20f it is clear that, once again, the Hybrid model had problems in handling too
much ground undulation and occlusion. The model quite accurately managed
to capture the change of height of the hills close to the LiDAR. Further away
however, where these hills occluded large parts of the point cloud, especially
around the completely occluded pond with steep edges surrounding it, the model
was barely able to find any ground. Looking at the actual model in Figures
21e and 21f this is clear. The model was very modest in following any steep
inclines. This was likely due to a combination of the gradient filter and the
GPR. The gradient filter in the RLWR-step changes predicted height for points
along segments with slopes larger than 10◦. The GPR has a noise parameter in
the kernel σ2

N that avoids outliers and since it is fit only on seed points along
a circle, the angular resolution might have been too large to treat these sudden
changes in height as non-outliers.

6.1.4 Further analysis of Hybrid Model

From all of this, a few a clear patterns emerge. The first is that the model could
not handle changes in height that were too sudden and dramatic as in the Hilly
dataset, the sharp hills in Playground and Petrol Station and the steep edges
in Matteannexet. This was likely caused by a combination of the gradient filter
and the smoothing of the GPR using the exponential kernel.

The second pattern is that the model seemed to have been quite negatively

59

impacted by sparsity of clusters and large empty gaps in a given circle. These
issues were usually caused by occlusion. The resulting incorrect fit was likely
driven by two factors. The first was that when the mean value of a circle became
based on few points with large gaps and since these were often affected by occlu-
sion, they would usually not belong to the ground. Thus, bias was introduced
and the mean height for these circles became biased to become higher than the
mean height of the actual ground for that circle. The second factor, was that
the GPR likely became more conservative with less inputs. Further discussion
of this factor and examples of this in the point clouds can be seen in Section
D.3, in the appendix. Generally, where the model was smooth, there seemed to
be an abundance of regularly spaced points and where the heights of the circles
begin to vary in a non-smooth way, the point clouds started to become affected
by occlusion.

It is difficult to avoid the problem of strong height variations unless the actual
scene is changed. In a case where it is critical that the ground model is accurate,
it might be motivated to actually change the environment. Obscuring objects
such vegetation or man made objects, might be removed. If it is possible to con-
vert the scene of interest into something like the front part of Emdala, the model
would likely consistently perform well. Lastly, there are a few ways in which the
model itself might be improved to prevents issues from heavy occlusion. One
source of error seems to have arisen from calculating the mean height of circles.
This was done by calculating the mean of the seeds for a given circle and did not
involve comparing them to that of any neighbouring circles. Although, the seeds
are affected by neighbours by the RLWR-iteration for the segments, there was
no sanity check on whether there was a large jump between circles. This could
be done by assuming that the mean height of circles only can change with a
given slope angle. Doing this, sudden jumps in mean height may be suppressed
and also, the more systematical increase in height at further distances, caused
by only seeing the top of objects, might be reduced. Another potential im-
provement would be to allow increased sizes of bins at further distances. Due to
lower point densities, this could potentially increase the probability of including
actual ground points, decreasing height bias and making the GPR fit less sparse.

Another interesting aspect is what data to use when producing the ground
model. In these experiments, only single frames were used. In an actual set-
ting, together with other background models that require multiple frames to be
trained, the model might take advantage of aggregated frames to reduce spar-
sity. One way of doing this might be by evaluating the model on the background
filter and perhaps voxel-centres of appropriate kinds from the improved density
filter. Another possible solution would be to hand-scan the surroundings be-
forehand and constructing the ground model from this data. This would also
reduce the impact of occlusions.

As mentioned before, the Hybrid model had the worst specificity on the flat
dataset, meaning that it miss-classified the greatest amount of non-ground points

60

as ground. If a model is sought where this is very important to avoid, another
model might be of more interest. The results of ground model filtering in this
thesis seems to suggest that the consensus approach to filtering is better at
avoiding this than categorising all points within a threshold of a continuous
model. This might also just be the case of the RLWR-model being overly
cautious.

6.1.5 Conclusions

The great performance of the Plane model on simple flat terrain, clearly demon-
strates the strength of simple models. However, once the terrain becomes
more complicated, with ground undulation and occluded areas, more compli-
cated models are desired. Of these, the Hybrid model clearly outperformed
the RLWR-based model in terms of accuracy and F1 score and shows greater
promise in adapting to occlusion. Still, even this model breaks down with too
much height variation and occlusion. This means that it is necessary to be
mindfull of placement of the LiDAR and the height variations of a scene when
considering deployment of the model.

6.2 RandLA-NET

Looking at the different RandLA-NET models in Figures 22, 23, 24, 25 and 26
it can be seen that all models achieve the lowest IoU-score for the vegetation
class. This is likely due to the vegetation class having the most complex spatial
structure. This complexity partly comes from the fact that vegetation has many
different forms, from a single bush to a field of crops to a tree. To improve future
predictions it could be wise to provide a dataset with separate labels for small
shrubbery and trees. Since CARLA did not allow for such differentiation this
could not be tested in this thesis.

The IoU score for the ground class was already after one epoch over 90 % for all
models. This means that all models learnt to detect this incredibly fast and is
likely due to ground points generally sharing a simple pattern: evenly distanced
and following straight lines. This seems to have been easy for the network to
learn.

In all models, the training appeared to converge after approximately 25 epochs
as neither the training accuracy or loss changed considerably. This indicates
that training after 25 epochs on the data from CARLA could lead to overfit-
ting. One can actually see a small a hint of overfitting as the validation accuracy
slightly falls short of the training accuracy during the last epochs. However, as
the overfitting is very small it does not seem to have been an issue. The low
amount of overfitting could imply that the training set is well varied with many
different environments.

61

It is somewhat strange that most models share similar scores on their confu-
sion matrices even though they have large differences in the amount of layers,
point spatial resolution and network parameters. A common strategy in ma-
chine learning is to rely on the simplest model (Occham’s razor) as larger models
tend to induce overfitting, require more memory and are slower. This implies
that the larger models might be unnecessarily large for the CARLA point clouds
and it might therefore be better to use the smaller models to save computer re-
sources. In the instance of domain transfer to ”real” point clouds, if models are
overfit, they are more likely to achieve worse performance and thus one of the
smaller models is recommended for use in such a pipeline.

The performance of RandLA-NET on RP-LiDAR data was good for many dif-
ferent recordings. From Figures 28b, 28d, 28f, 28h and 28j one can see that in
many cases it correctly segmented most points of class ground. This agrees with
the aforementioned reasoning that ground had a simpler spatial relationship.
The class other was usually correctly predicted on buildings and poles. The
class vegetation was generally predicted correct with some exceptions where it
was confused with other as can be seen in Figure 28f, where a tree is confused
with the class other. Although the performance was somewhat lacking in certain
instances, it was generally quite good.

One aspect in which further improvements could be achieved is through using
better and more varied data for training. In this thesis, data from six CARLA-
environments were used. Despite being from different ”maps”, a lot of the
environments were quite similar and most of them were mostly flat. More var-
ied environments, with more ground undulation and more assets would help in
increasing this variability. Being able to vary the scanning pattern to a trape-
zoidal pattern and more opportunities to vary semantic tags for assets would
also help in making models that are more adaptable. These would likely be
better at domain transfer and therefore also better at semantic segmentation of
the RP-LiDAR data.

Looking at the predicted point clouds from the Graphic LiDAR plugin, in Fig-
ure 28, one can visually confirm that the point clouds were mostly correctly
predicted concerning the three classes. However, it seems that there occured
some miss-classifications on the edges, where the point cloud was especially
sparse. This was especially the case at far distances from the LiDAR, but also
on the sides. Here, the ground truth was often other or ground whereas points
were often predicted as vegetation. The likely reason behind this is that these
locations are sparse in such a way that point formations closely resemble that
of vegetation.

It was not necessary to preprocess the point cloud using grid subsampling, how-
ever, it likely improved performance as it increases the receptive field for the
points in the dense areas, see [28]. During testing, the skipped points were
mapped to the voxel center point and therefore assigned the same prediction

62

value.

Looking at Table 10 most models had equal performance on the test set with
the exception of the normal model with N = 25K input points per inference
pass, which achieved considerably worse performance on the vegetation class.
This is reasonable, since smaller input clouds would provide a worse overview of
the setting. Interestingly though, the KNN-24 model which also had 25K input
points, achieved a much better IoU-score. Therefore the larger receptive field,
provided by using more nearest neighbours, seemed to have counteracted the
shorter point reach by having less input points.

Concerning results on Semantic KITTI, our maximum mean-IoU score, achieved
by any model, was 51.4 %. In the original report the authors received a mean-
IoU score on the dataset of 55.9 % [28]. The scores in the original report were
however collected from Semantic KITTI ’s official test dataset for which access
was not available to us. Our score was computed from the validation set. The
reason for reaching a lower mean-IoU score was likely due to a lack of computer
resources. The authors used an Nvidia RTX2080Ti GPU with 12 GB of mem-
ory, whereas we used an Nvidia RTX2080 with 8 GB of memory. The difference
in GPU memory proved to be a substantial problem during training as we of-
ten received GPU resource exhaustion when running on standard settings. To
compensate for low GPU memory, parameters such as number of input points
to the point cloud and batch size, had to be scaled down. A small input point
cloud likely minimizes the information scope that the network has and likely
worsens the performance. A small batch size would likely worsen the updates of
the weights as the gradient updates contains less data samples and is therefore
more noisy.

In Figure 30 we can see that it is not wise to use a model trained on the Se-
mantic KITTI dataset for inference on the RP-LiDAR recordings. In Figure
30a and 30b ground and vegetation is mixed up in a lot of cases and many trees
were labeled as other. The reason for this is likely due to large differences in
point density, scanning pattern and recorded angles.

The prediction currently only utilizes three classes. More applications of the
semantic segmentation would be enabled if the models were trained on more
classes. Examples could be car, ground, grass, tree, bushes, buildings, poles, etc.
An interesting improvement of the network could also be to introduce a time
series module. This could be done by connecting points from previous point
clouds to the local spatial encoder to make features of the relative point po-
sitions to the previous point clouds. This would likely improve prediction on
dynamical objects that move or sway. However, this would also greatly enlarge
the size of the network and would therefore require a very strong GPU. It would
also be wise to train the model with data that has reflectivity as this would likely
improve predictions.

63

As can be seen in Table 11, RandLA-NET is a very fast network. The total in-
ference time including multiple inferences, voting and remapping of subsampled
point clouds was approximately 0.6 seconds per point cloud. The true inference
time was lower: 0.032 seconds per sub-point cloud with N points. This suggests
that RandLA-NET is suitable for real time point cloud processing if there is a
GPU available. The authors of RandLA-NET received an inference time of 0.04
seconds which was similar to our inference time.

6.2.1 Conclusion

RandLA-NET showed great promise of being both effective and precise in per-
forming semantic segmentation on point clouds of the same type that it was
trained on. On those generated by RP-LiDAR, the results were still good,
although sometimes, visibly worse. Besides being accurate, it was also fast,
showing promise for real time segmentation in deployment, although it required
a GPU. To reduce the workload it is suggested that the amount of layers and
KNN points are decreased as the network showed similar performance. Further-
more, it is recommended that more varied data is produced for training better
models. Also, more classes are recommended as this would increase the possible
applications of the network.

6.3 Background Filtering

The results strongly indicate that there were added benefits of including seman-
tic information in the background model. However, it is essential to mention
that the tests were only in scenes that contained wind. In a lot available record-
ings this was not the case, and here, the standard Density filter showed equal
performance. This is reasonable since the additions of voxel expansion and
strict filtering of vegetation voxels only adds utility in these cases. When the
background is still, no additional point subtraction is made. In this case, this
will actually only worsen the performance of the pipeline, since the background
model will filter objects such as animals and people that are close to the veg-
etation. This effect is also present when there is wind, but the added utility
of being able to remove more points generally outweighed these effects. With
larger side-length however, this effect becomes more pronounced and thus might
start to become an issue.

Another noteworthy aspect of the results was the impact the clustering stage
had in filtering out stray and sporadic points. In the point cloud stream, a
fair amount of noise, generally in the sky or at far distances appear as sporadic
points. These points are difficult for the filter to handle due to shifting posi-
tions and low density nature. This shows why the subsequent clustering step
is essential in the filtering procedure. DBSCAN is very effective in determining

64

whether points are stray or part of a cluster.

A strong limiting factor in comparing the models was the lack of annotated
data. This meant that it was difficult to numerically compare the models. Thus,
only certain selected frames were used, where visual and numerical comparisons
could be made and where confounding effects could be avoided. One way of
improving the comparison would have been to simulate scenes and thus have a
ground truth to compare with. Another limiting factor was that the semantic
segmentation was required to achieve a certain level of performance on a given
environment for the filter to work.

From visual comparisons of the two models, the Improved Density Filter seemed
to suppress dynamic background to a much greater extent, even with lower lev-
els of wind. However, this would have been difficult to numerically compare in
a lot of cases, where the majority of clusters arose from non-background dy-
namic objects. Discrepancies could have arisen from many different reasons. It
is difficult to formalize this as a result, but it is worth mentioning.

Given all this, the Improved Density Filter is recommended in general cases
when vegetation occurs. Depending on the use-case however, the number of
expansions of the model might be decreased to t = 0 if higher value is placed
on avoiding miss-classification of non-background as background.

6.3.1 Conclusion

It is difficult to draw any strong conclusions from the limited experiments on
the different filters. However, in situations with strong wind it was shown
that the Improved Density Filter made a big difference in suppressing dynamic
background. In addition, the semantic background filter is only as good as the
semantic information it is provided, and thus it is essential that a semantic
segmentation model is able to handle the given environment.

7 Conclusion

It has been shown that the Hybrid ground model is able to accurately describe
ground that is sufficiently flat and non-occluded. The plane model failed to
capture ground undulation and the RLWR-based model was too conservative
in predicting ground points. For both Hybrid and RLWR-based models, sug-
gestions of improvement were made, however, the Hybrid model was deemed to
show more promise. It has also been shown that it is possible to perform seman-
tic segmentation on point clouds recorded by a LiDAR well by training a neural
network on simulated point clouds. The segmentation is domain transferable
as the results are sufficiently adequate even though the scanning patterns vary
between simulated and recorded data. Changes to the architecture of the neu-
ral network did not seem to have a large effect. Finally it has been shown that

65

semantic information could be included in an expanded background filter to suc-
cessfully suppress dynamic background objects. This experiment was however
limited in scope and further study is encouraged for definitive conclusions re-
garding the model’s performance. The background filter is also only as good as
the semantic model and so improvement of this is essential for the background
model to become fully reliable.

66

8 Future Work

There is a lot further work to be done. In the case of ground models, the poten-
tial improvements mentioned in Section 6.1.4 could be explored. Also, better
ways of visualizing the actual model could be studied with focus on creating
meshes or wireframes from the ground function f(x, y). An interesting addition
to the tests performed, would be to study distributions of distances between
the model’s prediction of ground to correctly and incorrectly classified points in
histograms. In [11], the authors take a Deep Learning approach by developing
a neural network that takes a point cloud as input and as output (1) produces
a grid of the ground and (2) performs segmentation of ground points. Such a
network would however require a lot of data. Thus, the success of this depends
on whether the environments in CARLA are varied enough to achieve results
that are good enough to translate to RP-LiDAR data.

Whereas all semantic segmentation models were evaluated on a test set of sim-
ulated data. It would be interesting to further explore how the different models
would have handled domain transfer to the data produced by RP-LiDAR. As of
now, this was only explored for the Normal model with N = 30K. Even though
the model could handle many environments surprisingly well, there is still a lot
of room for improvement. The semantic segmentation was concluded to very
likely have been limited by the quality of the training data and thus, this is an
area in which further work is strongly suggested. One way of improving the
quality of the data would be to switch over to an Unreal Engine 5 based simu-
lation environment and use the LiDAR in [33]. Trapezoidal scanning patterns
of the training data could also greatly have benefited the domain transfer along
with more varied terrain than CARLA’s generally flat ones. There is also much
more experimentation to be done in choice of classification categories and the
impact of these. For example, being able to successfully distinguish between
different types of vegetation could potentially synergize with the ground model
if the ground model was trained on only points classified as ”ground”, ”short
bushes” and other types of objects types that are generally close to the ground.
Another interesting comparison would be to test other models such as Voxnet
and KpConv and see how well different models handle domain transfer.

A natural next step would be to study the performance of the background filter
on simulated data. Doing so, a more data driven conclusion regarding its effec-
tiveness could have been achieved. Also, it would be of interest expand another
type of model to include semantic information, such as the Maximum Distance
Filter. Such an implementation could be carried out by a similar method of
accumulating semantic information for every angle represented by a matrix and
saving the most common for every angle. Thereafter, depending on the back-
ground type, different thresholds could be applied as well as a similar expansion
scheme.

In this thesis, potential uses of ground model and semantic information of the

67

background were discussed, but not explored to a greater extent. A natural
further step would be to do this. Examples of this is to use centroid height as a
feature in tracking and classification, to study impact of using a ground model
as a filter for ground points and/or clusters outside heights of interest, to use
semantic information to fill out parts of a point cloud for visualisation purposes
etc.

References

[1] Berntsson J. Winberg W. “Pedestrian detection and tracking in 3D point
cloud data on limited systems”. Master Thesis in Computer Science. Lund
University, 2021.

[2] Bernst̊ahle R. Lind H. “Segmentation, Classification and Tracking of Ob-
jects in LiDAR Point Cloud Data Using Deep Learning”. Master Thesis
in Mathematical Sciences. Lund University, Jan. 2022.

[3] J. Wu, H. Xu, and J. Zheng. “Automatic background filtering and lane
identification with roadside lidar data”. In: 2017 IEEE 20th International
Conference in Intelligent Transportation Systems (ITSC) (2017), pp. 1–6.

[4] J. Wu et al. “Automatic Background Filtering Method for Roadside Li-
DAR Data”. In: Transportation Research Record 2672 (2018), pp. 106–
114.

[5] J. Zhao et al. “Detection and tracking of pedestrians and vehicles using
roadside LiDAR sensors”. In: Transportation Research Part C: Emerging
Technologies 100 (2019), pp. 68–87.

[6] Wen Xiao et al. “SIMULTANEOUS DETECTION AND TRACKING OF
PEDESTRIAN FROM PANORAMIC LASER SCANNING DATA”. In:
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Infor-
mation Sciences III-3 (June 2016), pp. 295–302. doi: 10.5194/isprs-
annals-III-3-295-2016.

[7] Y. Song H. Zhang and Y. Liu J. Liu H. Zhang X. Song. “Background
Filtering and Object Detection With a Stationary LiDAR Using a Layer-
Based Method”. In: IEEE Access 8 (2020), pp. 184426–184436.

[8] Jianying Zheng et al. “Background Noise Filtering and Clustering With
3D LiDAR Deployed in Roadside of Urban Environments”. In: IEEE Sen-
sors Journal 21.18 (2021), pp. 20629–20639. doi: 10.1109/JSEN.2021.
3098458.

[9] D. Belton A. Nurunnabi G. West. “Robust Locally Weighted Regression
Techniques for Ground Surface Points Filtering in Mobile Laser Scanning
Three Dimensional Point Cloud Data”. In: IEEE Transactions on Geo-
science and Remote Sensing 54.4 (2016), pp. 2181–2193.

[10] Kaiqi Liu et al. “Ground Surface Filtering of 3D Point Clouds Based
on Hybrid Regression Technique”. In: IEEE Access 7 (2019), pp. 23270–
23284. doi: 10.1109/ACCESS.2019.2899674.

68

https://doi.org/10.5194/isprs-annals-III-3-295-2016
https://doi.org/10.5194/isprs-annals-III-3-295-2016
https://doi.org/10.1109/JSEN.2021.3098458
https://doi.org/10.1109/JSEN.2021.3098458
https://doi.org/10.1109/ACCESS.2019.2899674

[11] Anshul Paigwar et al. “GndNet: Fast Ground Plane Estimation and Point
Cloud Segmentation for Autonomous Vehicles”. In: 2020 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). 2020,
pp. 2150–2156. doi: 10.1109/IROS45743.2020.9340979.

[12] Jie Cheng, Dong He, and Changhee Lee. “A simple ground segmentation
method for LiDAR 3D point clouds”. In: 2020 2nd International Con-
ference on Advances in Computer Technology, Information Science and
Communications (CTISC). 2020, pp. 171–175. doi: 10.1109/CTISC49998.
2020.00034.

[13] Charles R Qi et al. “PointNet++: Deep Hierarchical Feature Learning
on Point Sets in a Metric Space”. In: arXiv preprint arXiv:1706.02413
(2017).

[14] Daniel Maturana and Sebastian Scherer. “VoxNet: A 3D Convolutional
Neural Network for real-time object recognition”. In: Ieee/rsj Interna-
tional Conference on Intelligent Robots and Systems. 2015, pp. 922–928.

[15] Hugues Thomas et al. “KPConv: Flexible and Deformable Convolution
for Point Clouds”. In: Proceedings of the IEEE International Conference
on Computer Vision (2019).

[16] “Random Sample Consensus: A Paradigm for Model Fitting with Appli-
cations to Image Analysis and Automated Cartography”. In: Communi-
cations of the ACM 24 (1981), pp. 381–395.

[17] Matt Weed. Sensor(y) Overload: Making Sense of Lidar @ONLINE. 2022.
url: https://www.luminartech.com/sensory- overload- making-
sense-of-lidar/.

[18] Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”.
In: Proceedings of the 1st Annual Conference on Robot Learning. 2017,
pp. 1–16.

[19] J. Behley et al. “SemanticKITTI: A Dataset for Semantic Scene Under-
standing of LiDAR Sequences”. In: Proc. of the IEEE/CVF International
Conf. on Computer Vision (ICCV). 2019.

[20] CARLA Team. CARLA: Open-source simulator for autonomous driving
research @ONLINE. 2022. url: https://carla.org/.

[21] Open3D. Point Cloud @ONLINE. 2022. url: http://www.open3d.org/
docs/latest/tutorial/Basic/pointcloud.html.

[22] W. S. Cleveland. “Robust Locally Weighted Regression and Smoothing
Scatterplot”. In: Journal of the American Statistical Association 74.368
(1979), pp. 829–836.

[23] C. E. Rasmussen C. K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006. isbn: 0-262-18253-X.

[24] “A Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise”. In: AAAI (1996), pp. 226–231.

69

https://doi.org/10.1109/IROS45743.2020.9340979
https://doi.org/10.1109/CTISC49998.2020.00034
https://doi.org/10.1109/CTISC49998.2020.00034
https://www.luminartech.com/sensory-overload-making-sense-of-lidar/
https://www.luminartech.com/sensory-overload-making-sense-of-lidar/
https://carla.org/
http://www.open3d.org/docs/latest/tutorial/Basic/pointcloud.html
http://www.open3d.org/docs/latest/tutorial/Basic/pointcloud.html

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.

[26] Yaoshiang Ho and Samuel Wookey. “The Real-World-Weight Cross-Entropy
Loss Function: Modeling the Costs of Mislabeling”. In: IEEE Access PP
(Dec. 2019), pp. 1–1. doi: 10.1109/ACCESS.2019.2962617.

[27] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: CoRR abs/1412.6980 (2015).

[28] Qingyong Hu et al. “Learning Semantic Segmentation of Large-Scale Point
Clouds with Random Sampling”. In: IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (2021).

[29] David Powers. “Evaluation: From Precision, Recall and F-Factor to ROC,
Informedness, Markedness Correlation”. In: Mach. Learn. Technol. 2
(Jan. 2008).

[30] NumPy. numpy.gradient @ONLINE. 2022. url: https://numpy.org/
doc/stable/reference/generated/numpy.gradient.html.

[31] scikit learn. sklearn.gaussian process.GaussianProcessRegressor @ONLINE.
2022. url: https://scikit-learn.org/stable/modules/generated/
sklearn.gaussian_process.GaussianProcessRegressor.html.

[32] scikit learn. sklearn.neighbors.KDTree @ONLINE. 2022. url: https://
scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KDTree.html.

[33] Unreal Engine. LiDAR Point Cloud Plugin Overview @ONLINE. 2022.
url: https://docs.unrealengine.com/5.0/en-US/lidar-point-
cloud-plugin-overview-in-unreal-engine/.

70

http://www.deeplearningbook.org
https://doi.org/10.1109/ACCESS.2019.2962617
https://numpy.org/doc/stable/reference/generated/numpy.gradient.html
https://numpy.org/doc/stable/reference/generated/numpy.gradient.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html
https://docs.unrealengine.com/5.0/en-US/lidar-point-cloud-plugin-overview-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/lidar-point-cloud-plugin-overview-in-unreal-engine/

9 Appendix

A F1-scores and Skewed Datasets

The F1-score does not contain information regarding negative cases which is ev-
ident in how True Negatives are not included in the metric. Thus, a model pre-
dicting outcomes on a dataset containing skewed distribution with very few neg-
ative outcomes may not receive a bad F1-score even though it does not correctly
predict a single negative outcome. For example, if the dataset contains 1000
positive outcomes and 10 negative outcome and the model predicts all instances
as positive as seen in Table 14, the recall will be 1 (recall = 1), the precision
will be (precision = 1000

1010 ≈ 0.990) and the F1-score will be F1 = 1000
1005 ≈ 0.995

even though it has not correctly classified a single negative outcome. Thus, it
is necessary to be critical of the data and not rely blindly on the scores.

Table 14: Contingency table for a case where a ”bad” model that predicts all
instances as positive, produces a good F1-score.

Actual
Assigned

Test outcome positive Test outcome negative Total for condition

Condition positive 1000 0 1000
Condition negative 10 0 10

B Gaussion Process Regression

All content in this section is retrieved from [23].

B.1 Including noise

It is good to note that joint posterior in Equation 13 holds for the case when
there is no noise, i.e y = f(x). Here, the posterior perfectly incorporates the
conditioned observations with zero variance at the observations. Adding noise
however, adds uncertainty for these observations which is more in line with most
situations, where there is only access to noisy measurements of function values.
In these cases, observations are modeled as

y = f(x) + ϵ. (37)

Here, ϵ is assumed to be independent identically distributed Gaussian noise with
variance σn. This changes the covariance structure between observations from
consisting of solely the covariance kernel cov(y, y′) = k(x,x′) to include a noise
term as seen in Equations (38).

cov(y, y′) = k(x,x′) + σ2
nδ (38a)

cov(y) = K(X,X) + σ2
nI (38b)

71

In these equations δ represents the Kronecker delta, I is the identity matrix and
y ∈ Rn×1 is column matrix of observations with inputs X ∈ Rn×d. With this
added noise term, the joint distribution of the observed values under the prior
becomes [

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
. (39)

This produces a joint distribution, seen in Equations (40), which is quite similar
to the case without noise [23]:

f∗|X∗, X,y ∼ N (f̄∗, cov(f∗)) (40a)

f̄∗ = E[f∗|X∗, X,y] = K(X∗, X)[K(X,X) + σ2
nI]

−1y (40b)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]

−1K(X,X∗) (40c)

Such a process can be seen in Figure 33. Here, the impact of noisy measurements
are clearly seen as even though the variance shrinks close to the observations,
it is not zero. Also, the mean function is not required to pass through the
observations, decreasing the impact of outliers.

Figure 33: Posterior for a Gaussian process with squared exponential covariance
kernel with l = σ = 1 and σ2

n = 0.05 given Xtrain = [−4,−3,−2,−1, 1] and
ytrain = sin(Xtrain). The red line is the mean value for the posterior and the
gray area marks ± 2 standard deviations.

C Fitting a Gaussian Process Regression Model

A Gaussian process regression model is fit by optimizing the hyperparame-
ters of the kernel for a given set of values for the independent values Xtrain

(observations X in Equations (13), (40b) and (40c)) and corresponding depen-
dent values y. Optimization is done by maximising the log marginal likelihood
log p(y|X, θ). The marginal likelihood can be described as the probability of
receiving the outcome y given X assuming a Gaussian process with covariance

72

function k(xi, xj) with hyperparameters θ. For noisy targets y given by Equa-
tion (37), where Ky = Kf +σ2

nI is the covariance matrix for these noisy targets,
the log marginal likelihood is [23]

log p(y|X, θ) = −1

2
yTK−1

y y − 1

2
log|Ky| −

n

2
log(2π). (41)

Note that assuming no noise in targets but including the noise in the kernel
function instead (as in Equation (14)), the same result is achieved. The partial
derivatives w.r.t the hyperparameters of the function above becomes [23]:

∂

∂θj
log p(y|X, θ) =

1

2
yTK−1 ∂K

∂θj
K−1y − 1

2
tr(K−1 ∂K

∂θj
). (42)

These partial derivatives are of the matrix K, but can be expressed, for sim-
plicity, for the kernel element-wise instead as seen in Equations (43) [10].

∂k(xj , xi)

∂l
= σ2

fexp

(
− (xi − xj)

2

2l2

)
· (xi − xj)

2

l3
(43a)

∂k(xj , xi)

∂σf
= 2σfexp

(
− (xi − xj)

2

2l2

)
(43b)

∂k(xj , xi)

∂σn
= 2σnδij (43c)

C.1 Accounting for noise in Kernel

The squared exponential kernel in Equation 14 includes measurement noise in
the kernel directly instead of in the model. Thus, there are different methods
of incorporating and interpreting the noise. One way is to regard the kernel
in Equation 14 as the covariance for the measured outputs as in [23], i.e as
cov(y, y′) = k(y, y′). In this case, all the results for Gaussian process regression
with noise hold, except for the noise is incorporated in the covariance matri-
ces/functions in Equation 39 and 40c. However, in [10], this kernel is used
directly in the equations for noiseless GPR as a way of including noise for these
points. The linear predictor in Equation 13 will still be the same as in the case
with noise (Equation 40b). The same does not hold for the variance since the
K(X∗, X∗) term in Equation 13 will include the noise σ2

nI which is not included
in Equation 40c. Whereas these discrepancies produce theoretically different
distributions, the predicted function will be the same for the same set of hyper-
parameters θ = (l, σ2

f , σ
2
n).

The GPR with noise and GPR without noise (but with noise included in the
kernel) form the same log marginal likelihood and therefore also partial deriva-
tives in Equation 41, 42 and 42. Thus, the optimization will converge to the
same solution. Since they also give the same linear predictor, both methods
give equivalent results in the context of regression.

73

D Further Discussion of Ground models

D.1 Impact of specificity

The proportion of False Positives were generally quite low, however this was
likely due to the datasets being skewed to containing more ground points. Thus,
the specificity, or true negative rate (see Equation (29)) is a better measure.
That the RLWR-based model generally had very high specificity indicates that it
was quite conservative and did not miss-classify non-ground to a greater extent.
In contrast, the worst Hybrid model and Plane model performed a lot worse
in this regard. It is good too keep these numbers in mind when comparing
the models. Depending on the use case, miss-classification of non-ground as
ground might be detrimental and in this case the RLWR-based model may be
of greater interest. These effects are less visible in accuracy and F1-scores due
to the datasets being slightly skewed. However, it should be pointed out that
the RLWR-based model in this thesis was solely designed for the use of point
filtering. Should the model have been adapted for the use of predicting ground
height, the consensus method of comparing points stripe-wise may have been
replaced by another method.

D.2 Further Discussion of RLWR-based model’s poor performance

There are other potential causes of the discrepancies between the results in
[9] and [10] compared to this thesis for the RLWR-based model. They might
have been caused by errors in the implementations. The authors in [9] were
quite unspecific by what they ment by ”Down weighting” and ”Reweighting”
on page 2185 where the implementation of the model was described. When
experimenting with choices of hyperparameters for this model, δs much smaller
than δ = 0.1 resulted in very few points being classified as ground. It amplified
the sporadic nature of the classification. In the original paper, the authors
used a change threshold of δ = 0.005. This discrepancy is likely either due to
differences in implementation or test environments.

D.3 How impact of sparse circles might have impacted GPR fit to
be more conservative

The model attempted to fit the seed points from every cluster but seemed to
struggle with all the empty bins in between. In two different cases, this could
have had different effects.

1: For more evenly sparse circles, the regression seemed to become less variable
and worse at adapting to points far below the ”incorrect mean”. These
would incorrectly be seen as outliers. Such points would be predicted
as closer to the mean value of the circle and therefore appear elevated.
Examples of this can be seen clearly in Matteanexet where the back part
was greatly occluded and contained mostly sporadic clusters of points. As
seen in 21e and 21f the model has little variability in each circle.

74

2: In the case one or maybe two large gaps, there could also be the aspect of
the kernel parameters being fit mainly for the part of the circle with most
points. In these cases the mean would likely not be affected to the same
extent. Since the regression would fit the kernel mainly based on the more
continuous distribution of points, the model would predict a slow increase
in height in the gap that joins the two separated sections. Such an affect
seems to be visible in Figure 21, especially in the side views, as strings of
points in the air. This is possible to see for the incorrectly classified hill
at the back of Emdala and around the bushes in the back left of Eslöv
airport. This behaviour can also be seen in the same figure for circles
where the heights suddenly seem to elevate unexpectedly.

75

Master’s Theses in Mathematical Sciences 2022:E23
ISSN 1404-6342

LUTFMA-3472-2022

Mathematics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lth.se/

	Introduction
	Task
	Limitation
	Related Work
	Statement of Contribution

	Background
	Background Model
	Ground Model
	Semantic Segmentation

	LiDAR sensor
	Data
	RP-LiDAR data
	CARLA

	Semantic KITTI

	Theory
	Plane Segmentation with RANSAC
	Regression
	Robust Locally Weighted Regression
	Gaussian Process Regression

	Density-Based Spatial Clustering of Applications with Noise
	Background Filter
	Semantic segmentation
	Neural networks
	Loss function
	Optimizer

	RandLA-Net
	Local Spatial Encoding
	Attentive Pooling
	Dilated Residual Block
	Inference
	K-d tree
	Possibility iteration
	Voting scheme
	Grid subsampling
	Network architecture

	Evaluation Metrics
	Confusion Matrix

	Method
	Simulation of data
	CARLA LiDAR Data
	Graphic LiDAR Dataset
	Ground model Dataset

	Ground Models
	Implementation of RLWR-based Model
	Implementation of Hybrid Regression Model
	Implementation of Plane Model

	Test on Ground models
	Evaluation of Ground model on point clouds
	RandLa-NET
	Data preprocessing
	Training of network
	Testing of the network

	Improvement to the Background Density Filter
	Test on Background Subtraction

	Results
	Ground Models
	Hybrid Model on RP-LiDAR point clouds

	RandLa-NET
	Training

	Background Filter

	Discussion
	Ground Models
	Performance of Plane model
	Performance of RLWR-based model
	Performance of Hybrid model
	Further analysis of Hybrid Model
	Conclusions

	RandLA-NET
	Conclusion

	Background Filtering
	Conclusion

	Conclusion
	Future Work
	Appendices
	Appendix
	F1-scores and Skewed Datasets
	Gaussion Process Regression
	Including noise

	Fitting a Gaussian Process Regression Model
	Accounting for noise in Kernel

	Further Discussion of Ground models
	Impact of specificity
	Further Discussion of RLWR-based model's poor performance
	How impact of sparse circles might have impacted GPR fit to be more conservative

