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Abstract

In this paper regularization of the correlation matrix between futures contracts is examined.
With starting point in the recently established HPCA framework (Avellaneda, 2019), a couple
of different extensions to the one-factor model is suggested. Extensions are made in terms
of adjusting the model according to different cluster structures. The data consists of futures
contracts on a wide variety of underlying assets. Naturally they can be partitioned by asset
class, asset sub class and/or region. The considered asset classes are equities, bonds, FX and
commodities. Equities, bonds and FX are further partitioned by region - Europe, North/Latin
America and Asia/Oceania. Commodities are partitioned into metals, energies and agricultur-
als. Metals are also divided into precious metals and industry metals, and agriculturals are
divided into grains, livestock and miscellaneous agriculturals. These clusters are modelled both
hierarchically and non-hierarchically where region is considered a second dimension rather than
a child cluster. A completely different approach to HPCA is also presented, which is based
on the assumption that sparseness in the eigenvectors is favourable. The proposed methods to
modify the correlation matrix are evaluated with respect to ability of predicting eigenportfo-
lio risk, interpretability/sparseness of eigenvectors and portfolio performance. Three different
allocation methods are applied - minimum variance, mean-variance and equal risk contribu-
tion. All proposed methods turns out to predict eigenportfolio risk very well. Sparseness of
the eigenvectors vary significantly between the different methods. The methods based on the
sparseness-assumption turns out to perform best regarding Sharpe Ratio in portfolio perfor-
mance.

Keywords: Correlation matrix, Hierarchical Principal Component Analysis, Factor Model,
Clusters, Portfolio Optimization, Futures Contracts
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1 Introduction

Within portfolio optimization, the covariance matrix is often used to derive optimal portfolio
weights. A major problem is that a covariance matrix estimated from financial return series data,
in general is very noisy.

A popular method to regularize the covariance matrix is to apply some kind of shrinkage.
However, this method doesn’t add any more information about the correlation structure, it merely
makes the matrix more well-behaved in general. Another approach to solve this problem could
therefore be to include some prior knowledge about the correlation structure in the estimator. A
method called hierarchical principal component analysis (HPCA), involving a factor model based
on PCA and some partitioning of the assets, has been successfully tested in terms of interpretability
on US stocks (S&P500) partitioned by sector (Avellaneda, 2019) [1]. It is however not tested on
larger trading universes, for example futures contracts, which behave a little differently. It is neither
tested on more complex partitionings as for example hierarchical or two-dimensional clusters. In
this paper it will therefore be examined how the HPCA framework can be extended to more complex
cluster structures and if those can be successfully applied on futures contracts.

More specifically, it will be examined if HPCA applied on assets partitioned by asset class,
asset sub class and region, both hierarchically and non-hierarchically, can improve performance of
the correlation matrix in terms of interpretability and portfolio performance. Also a somewhat
different approach to HPCA will be implemented, based on the assumption that interpretability
and sparseness can improve performance.

1.1 What Correlation Structures to Utilize?

Since HPCA is based on some predefined clusters, we first need to form these. In this paper the
market universe consists of 100 different futures contracts on various underlying assets, ranging
from commodities such as metals, energies and agriculturals - to FX, stocks and bonds tied to
different regions such as Europe, North America, Latin America, Asia and Oceania. A more
detailed description of the data can be found in section 4.3 and a complete list over the assets
can be found in Appendix A.

Clusters should then be formed according to the modeller’s own beliefs regarding common
driving factors behind the returns (Avellaneda, 2019) [1]. Two natural driving forces could for
instance be regional factors or asset class-specific factors - which is exactly what we will use here.

However, one could of course form clusters based on some machine learning technique, but a
main assumption in this paper is that we can improve performance by manually deciding what
clusters to use. An argument for this could for example be that our data is too noisy to yield
reliable clusters with a data-driven approach.

Nevertheless, even though we are suspecting that there are some common driving factors be-
hind different asset classes and different regions it is not obvious how we should translate those
into clusters. One quite natural way to form clusters is in a hierarchical way. In our data there
are four main asset classes: bonds, equities, commodities and FX. Commodities can be further
partitioned into agriculturals, energies and metals. Agriculturals can be even further partitioned
into grains, livestock and miscellaneous agriculturals. Also metals can be partitioned once more,
into precious metals and industrial metals. Regarding regions, our data provides futures contracts
with underlying assets/currencies from Europe, North America, Latin America, Asia and Oceania.
Since Latin America and Oceania are quite small economies, we may suspect that Latin America
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and North America may be modeled as one common region, as well as Oceania and Asia as one
common region. However, since most commodities are produced/harvested all over the world it
doesn’t make much sense to model any regional covariation within this asset class. An overview of
these hierarchical clusters can be found in Fig. 1 below.

A natural question to consider now is whether the regional components from different asset
classes could originate from the same source, and if so - maybe it is better to model the clusters in
two dimensions, ie. asset class and region non-hierarchically? An illustration of this structure can
be found in Fig. 2 below.

One last suggestion could be to keep it simple and skip the regional clusters, meaning that we
only utilize the left (red) part of the cluster structure in Fig. 2.

In the following section some different methods to modify the correlation matrix based on these
clusters will be presented.

Figure 1: Suggestion of a hierarchical correlation structure. Each asset belongs to only one cluster.
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Figure 2: Suggestion of a non-hierarchical correlation structure. Assets can belong to both an asset
class cluster (red) and a regional cluster (green).

2 Hierarchical PCA

The main idea behind hierarchical principal component analysis is to modify the correlation matrix
by partitioning the assets into clusters and replace the correlation between assets from different
clusters with a measure of the correlation between the clusters (Avellaneda, 2019) [1].

2.1 HPCA with Non-Hierarchical Partitioning

The most simple approach to HPCA goes under non-hierarchical partitioning since it involves
only one level of clusters, for example asset classes. A slightly more complex approach is to have
multidimensional clusters, meaning that all assets can belong to multiple clusters from different
partitionings, for example one asset class and one region. Both approaches will be thoroughly
explained in the following sections.

2.1.1 One-Dimensional Partitioning

The simplest way to model correlation structures is presumably a partitioning in one dimension
with no sub-groups, for example by asset class only (left/red part of Fig. 2). Correlation between
assets from different clusters can then be measured as the correlation between the first principal
component of the clusters, as proposed by Avellaneda (2019) [1]. This can be achieved by describing
the returns of each asset with a one-factor model consisting of the strongest principal component
associated with its cluster. An important note here is that the following model only applies to assets
from different clusters, for assets in the same cluster we do not want to modify the correlations.

3



Nevertheless, with N observations of M assets collected in an N x M return series matrix X, then
for asset j we can describe its N x 1 time series of returns Xj , as

Xj = U
(1)
I(j)βj + ϵj , (1)

where U
(1)
I(j) is the N x 1, first principal component of cluster I(j), βj is the regression coefficient for

asset j and ϵj is some noise. The noise ϵj is by definition uncorrelated with the principal component

U
(1)
I(j), but not necessarily uncorrelated with the noise-term of other assets. However, an important

assumption here - the so-called ’HPCA-assumption’, is that the residuals of two assets from different
clusters ϵi and ϵj are uncorrelated (Avellaneda, 2019) [1], ie.

if I(i) ̸= I(j), then Corr(ϵi, ϵj) = 0.

The principal component U
(1)
I(j) is obtained from a singular value decomposition of the returns from

all assets in cluster I(j). More about the singular value decomposition can be found in ’Matrix
Theory’ (Holst & Ufnarovski, 2014) [4]. For any cluster K with k constituents, we have

XK = UKSKV T
K , (2)

where UK is a matrix of size N x k with the principal components, SK is a diagonal matrix of size
k x k with the singular values and VK is a matrix of size k x k with the component weights, all of
them associated with cluster K. Since all principal components are orthogonal to each other, the
β-coefficients for all assets in cluster K can be obtained without any regression from

βK = S
(1)
K V

(1)
K

T ,

where βK is a 1 x k vector, S
(1)
K is the largest (first) singular value and V

(1)
K is the first column of

the component weights (size k x 1), all of them associated with cluster K.
However, the purpose of this paper is not to construct a factor model for the raw return series

themselves, but rather to use a factor model to modify the correlation matrix. It is therefore more
convenient to express everything in terms of the correlation matrix instead of raw returns.

That also allows for use of some fancier method than the basic sample covariance estimator
when computing the raw correlations in the first place. A popular, slightly more decent method is
for instance an exponentially weighted moving average.

A useful property of the correlation matrix is that it is real and symmetric, meaning that a
singular value decomposition is equivalent to an eigenvalue decomposition (Holst & Ufnarovski,
2014) [4] - where the eigenvectors nicely coincide with the component weights V (from the SVD of
the return series matrix X) and the eigenvalues D with the squared singular values S2 (also from
the SVD of the return series matrix X). A singular value decomposition of the correlation matrix
consisting only of the assets within a specific cluster K can hence be written as

ΣK = VKDKV T
K ,

DK = S2
K .

Meaning that the β-coefficients for all assets in cluster K can be obtained from the correlation
matrix instead of the raw return series according to

βK =

√
D

(1)
K V

(1)
K

T .
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We can also express the first principal component U (1) in terms of V and D, by rewriting Eq. 2 as

U
(1)
K = XKV

(1)
K S

(1)
K

−1 = XKV
(1)
K D

(1)
K

−1/2. (3)

To simplify notation we introduce FK , which is a column vector of length M with the entries of

V
(1)
K D

(1)
K

−1/2 on the rows corresponding to the assets of cluster K and zeros elsewhere. This allows
us to write

UK = XFK .

Finally we have everything we need to reconstruct the correlation matrix according to the factor
model described by Eq. 1, in terms of the raw correlation matrix Σ. By placing all coefficients in
one column vector β of size M x 1 and all factors FK from each cluster K adjacent to each other
(column wise) in a larger matrix say F of size M x [number of clusters], the modified correlation
matrix Σ̃ can be written as

Σ̃ =
1

N
XTX

=
1

N
(XFβ)T (XFβ)

=
1

N
βTFTXTXFβ

= βTFTΣFβ.

Note that all residuals have vanished due to the HPCA-assumption. The final step is then to replace
all internal correlations within each cluster, with the corresponding raw correlations from Σ. In
summary, the following expression describes each element in the modified correlation matrix:

Σ̃i,j =

{
βiF

T
I(i)ΣFI(j)βj if I(i) ̸= I(j)

Σi,j otherwise

Keep in mind here that FK is filled out with zeros everywhere except for the rows corresponding
to the constituents of cluster K.

An advantage with this model is the simpleness - only one dimension, one layer of clusters
and only one factor to explain cluster correlations. This also leads to sparse and interpretable
eigenvectors, which is proved in Avellaneda (2019) [1].

2.1.2 Two-Dimensional Partitioning

One extension of the aforementioned one-dimensional approach found in Avellaneda (2019) [1]
is to include some other partitionings of the assets. An interesting application of such a model
regarding futures contracts could be to partition assets both in terms of asset class but also in
terms of region, non-hierarchically. See for example Fig. 2. The following theory holds for multiple
dimensions/partitionings but is presented in two dimensions to simplify notation. The extended
factor model describing the returns X of asset j now consists of two factors, ie.

Xj = U
(1)
I(j)β1,j + U

(1)
J(j)β2,j + ϵj , (4)
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where I(j) and J(j) denotes the two different clusters asset j belongs to. The HPCA-assumption
must also be extended, we suggest that for two different assets i and j

if I(i) ̸= I(j) or J(i) ̸= J(j), then Corr(ϵi, ϵj) = 0.

Furthermore, unfortunately the two principal components U
(1)
I(j) and U

(1)
J(j) in Eq. 4 are not nec-

essarily orthogonal to each other meaning that we cannot find the β-coefficients directly from the
singular value decomposition as earlier. But simple regression will do the work. To find the regres-
sion coefficients we therefore solve for each asset j, the following minimization problem

βj = argmin
βj

1

2
||Xj − UI(j),J(j)βj ||22, (5)

where βj = [β1,j β2,j ]
T

is a vector containing the two regression coefficients and UI(j),J(j) =[
U

(1)
I(j) U

(1)
J(j)

]
is a matrix whose columns consist of the first principal component of cluster I(j)

and J(j) respectively.
For the same reason as earlier, we would rather work with the correlation matrix than the raw

return series, meaning that we would rather do the regression in terms of Σ than X. Similar to the
one-dimensional case we rewrite U as

UI(j),J(j) =
[
U

(1)
I(j) U

(1)
J(j)

]
=

[
XI(j)V

(1)
I(j)D

(1)
I(j)

−1/2 XJ(j)V
(1)
J(j)D

(1)
J(j)

−1/2
]
,

and introduce FI(j),J(j), which now is a M x 2 matrix consisting of the entries of the two column

vectors V
(1)
I(j)D

(1)
I(j)

−1/2 and V
(1)
J(j)D

(1)
J(j)

−1/2 on the rows corresponding to the assets of cluster I(j)

and J(j) respectively, zeros elsewhere. This allows us to express U as

UI(j),J(j) = XFI(j),J(j).

We can now rewrite the minimization problem in Eq. 5 as

βj = argmin
βj

1

2
||Xj − UI(j),J(j)βj ||22 =

argmin
βj

1

2
(Xj − UI(j),J(j)βj)

T (Xj − UI(j),J(j)βj) =

argmin
βj

1

2
(XT

j Xj − 2XT
j UI(j),J(j)βj + (UI(j),J(j)βj)

TUI(j),J(j)βj) =

argmin
βj

1

2
(XT

j Xj − 2XT
j XFI(j),J(j)βj + βT

j F
T
I(j),J(j)X

TXFI(j),J(j)βj) =

argmin
βj

N

2
(Σj,j − 2Σj,:FI(j),J(j)βj + βT

j F
T
I(j),J(j)ΣFI(j),J(j)βj) =

argmin
βj

(Σj,:FI(j),J(j)βj +
1

2
βT
j F

T
I(j),J(j)ΣFI(j),J(j)βj),

which is a quadratic problem that can be solved analytically. After differentiating and setting the
expression equal to zero, the solution is found to be

βj = (FT
I(j),J(j)ΣFI(j),J(j))

−1(Σj,:FI(j),J(j))
T .

6



As in the one-dimensional case, we place all coefficients βj adjacent to each other (row wise) in a
larger matrix β and all FI(j),J(j) adjacent to each other (column wise) in a larger matrix F , and

calculate the modified correlation matrix Σ̃ according to

Σ̃ = βTFTΣFβ.

The final step is then to replace all internal correlations within each cluster, with the corresponding
raw correlations from Σ. In summary, the following expression describes each element in the
modified correlation matrix:

Σ̃i,j =

{
βiF

T
I(i),J(i)ΣFI(j),J(j)βj if I(i) ̸= I(j) or J(i) ̸= J(j)

Σi,j otherwise

Keep in mind here that each column in FK,L is filled out with zeros everywhere except for the rows
corresponding to the constituents of cluster K and L respectively.

A possible disadvantage with this model when using for example an asset class partitioning and
a regional partitioning is that some non-interpretable cross-correlation terms appear. Since the
model consists of both an asset class term and a regional term, when we estimate correlations this
will result in a sum of one asset class correlation term, one regional correlation term and two cross
terms describing correlations between each asset class and region.

2.2 HPCA with Hierarchical Partitioning

There are many ways to incorporate a more hierarchical structure in the correlation matrix. Ob-
viously all of them require some predefined tree structure of the clusters, see for example Fig. 1.
Here, two different suggestions on how to make use of a hierarchical partitioning will be presented.
Both based on the one-dimensional non-hierarchical model proposed by Avellaneda (2019) [1].

2.2.1 One-Factor Model

One way to incorporate this structure into the correlation matrix is to estimate correlations as
the correlation between the first principal component of the closest relevant branch. To be more
specific, the returns X of asset j to be used for estimating the correlation with asset i, can be
written as a one-factor model according to

Xj = UI(j,i)βj + ϵj ,

where I(j, i) returns the child cluster (that asset j belongs to) of the smallest cluster that both
asset j and i belong to. Let us illustrate with an example.

When estimating the correlation between a European bond and an American bond, the first
principal component of European bonds are used to describe the European bond and the first
principal component of American bonds are used to describe the American bond since these are
the child clusters of the smallest common cluster (bonds). If instead a European bond is compared
to a precious metal, then the first principal component of bonds is used to describe the European
bond and the first principal component of commodities is used to describe the precious metal as
those are the child clusters of the smallest common cluster (the market), see again Fig. 1.

The intuition behind this model is that correlation between assets further away from each other
in the tree should be estimated with some coarser method, in this case a principal component from
a larger subgroup.

7



2.2.2 ’All’-Factor Model

An extension of the aforementioned one-factor model could be to utilize all first principal compo-
nents of each cluster as well as child clusters. The returns X of asset j would then be described by
a linear combination of all k first principal components asset j is related to,

Xj = UI(1,j)β1,j + UI(2,j)β2,j + . . .+ UI(k,j)βk,j ,

regardless of which other asset the correlation is to be estimated with. Here, I(i, j) returns the i:th
cluster of asset j. For instance, a European bond would have ’Bonds’ as first cluster and ’Europe’
as second cluster. A precious metal would have ’Commodities’, ’Metals’ and ’Precious Metals’ as
first, second and third cluster, respectively - although the order doesn’t matter here, it’s still just
a linear combination. See once again Fig. 1 for an example of correlation structure.

A consequence of this, is that deeper branches yield a more detailed model of the returns, which
may (or may not) be favourable. A reason to prefer this model could for example be that the more
clusters an asset can belong to, the more detailed its returns should be described. Another property
of this model is that returns of an asset are described with the same factors regardless of what other
asset the correlation is to be estimated with.

2.3 An ’Eigenvector Sparseness’-Approach to HPCA

Another quite different suggestion on how to extend the simple HPCA model proposed by Avel-
laneda (2019) [1], is to rely on the assumption that the eigenvectors of the denoised correlation
matrix should be sparse. The other models are mainly based on the assumption that a coarser
estimator of correlation between economically more or less unrelated assets is favourable - resulting
in hopefully sparse eigenvectors. What if we instead force this property onto the correlation matrix?
That’s the purpose of this approach. For clarification, this framework can be used regardless of
whether the clusters are formed hierarchically or non-hierarchically.

2.3.1 The Basic Framework

The main idea is to formulate the problem as a minimization of the difference between the unmodi-
fied and the modified correlation matrix, under the constraint that the eigenvectors of the modified
correlation matrix have some predefined sparse structure. For interpretability reasons, it could be
desirable that some eigenvectors have non-zero elements only on a subset of the assets. For exam-
ple some eigenvectors describing intra-cluster relationships and some other describing inter-cluster
relationships – with zeros elsewhere. A convenient way to express these constraints is according to
the following.

Let G be the matrix consisting of all relevant eigenvectors. Depending on how we want to model
correlations it could for example be the eigenvectors of each cluster (if modeled non-hierarchically)
or the first eigenvector of each (possibly) hierarchical cluster. It should be mentioned here that
even though we discuss cluster correlations in terms of eigenvectors, we implicitly mean principal
components. A reminder of the relationship between those can be found in Eq. 3.

Another important aspect to consider here is whether we want to span the full space with
these eigenvectors or if we are satisfied with a low-rank approximation. If we have non-hierarchical
clusters and put all eigenvectors from each cluster in the matrix G, then those will span the full
space. On the other hand, if we have hierarchical clusters and want one or more eigenvectors from
each cluster, it is a little trickier to span the full space as some clusters overlap. Let us illustrate
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with two examples, the first one with non-hierarchical clusters and the second one with hierarchical
clusters.

In the case of non-hierarchical clusters, say A, B and C, we can just put all eigenvectors from
each cluster VA, VB , VC into G without any further considerations, see Fig. 3 below.

Figure 3: An example of the matrixG when composed by eigenvectors from non-hierarchical clusters
A, B and C. Each line represents an eigenvector - zeros everywhere else.

Then, by imposing some specific constraints on GT Σ̃G, where Σ̃ is the resulting modified cor-
relation matrix, an arbitrary sparse eigenvector structure can be achieved. Before stating the
constraints we let Q denote the resulting matrix from the matrix multiplication GT Σ̃G and take
a quick look at the appearance of this matrix Q. If we reuse the earlier example of G with non-
hierarchical clusters (Fig. 3) and the principle of using the first eigenvector to estimate cluster
correlations (as proposed by Avellaneda, 2019) [1], we will get the structure in Fig. 4.

9



Figure 4: An example of the block structure in GT Σ̃G.

This picture of course needs some further explanation. Since G is built from a nice collection of
eigenvectors extracted from different parts of the correlation matrix, one could suspect that some
eigenvalues D would appear in Q.1 This is very accurate. Since we have a very clear block structure
in G and Σ̃, we can find a block structure in the resulting matrix as well. All eigenvalues from each
cluster (DA, DB , DC) will appear as blocks on the main diagonal. In the off-diagonal elements of
Q, associated with the inter-cluster correlations, we have another case. If we for instance take the
top right block of Q which corresponds to the block multiplication V T

A Σ̃ACVC , we will only get one
non-zero element. This is because we decided earlier that cluster correlations should be described
by the first eigenvectors only, in this case V

(1)
A and V

(1)
C . This in turn means that Σ̃AC will be

orthogonal to all other eigenvectors from cluster A and C, yielding zeros everywhere except in the

top left corner where we have V
(1)
A

T Σ̃ACV
(1)
C . The same goes for all off-diagonal blocks, ie. one

non-zero element in the top left corner and zeros elsewhere.
However, when we move on the case of hierarchical clusters there are some different options.

Let us consider the same example as above but now B and C are child clusters to a new cluster,
say D. One way to incorporate this new information is to utilize the first eigenvector of cluster D,

denoted V
(1)
D . A question that arises is then if we really want to use the eigenvectors of B and C

as they are, since they partly contain the same information as the first eigenvector of cluster D. A
simple solution would be to remove the information contained in D by for example projection and
then extract the eigenvectors from what is left, now called ṼB and ṼC . If it is desirable to have a
fully spanned space, then we must use one eigenvector less than earlier from each cluster and fill
up with vectors that are orthogonal to both the first eigenvector of cluster D and the eigenvectors

1Remember that V TΣV = D.
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of what is left in cluster B and C. In the case of two child clusters, there will be only one ’extra’
vector. See illustration in Fig. 5.

Figure 5: An example of the matrix G when composed by eigenvectors from hierarchical clusters,
each line representing an eigenvector - zeros everywhere else.

For completeness an example of how to structure G in the case of triple layer hierarchical clusters
can be found in Appendix B.

However, with G constructed according to Fig. 5 we get a slightly more complex structure of Q,
see Fig. 6. Here we also assume that the principle of using the first eigenvector to estimate cluster
correlations is applied. The earlier observed block structure from the non-hierarchical clusters in
Fig. 4 is very pronounced here as well but in a more hierarchical manner. Since we have two main
clusters (A and D) we have four main blocks, and in one of the main clusters (D) we have two
child clusters (B and C) resulting in some additional blocks inside. As in the hierarchical example,
the blocks corresponding to inter-cluster correlations (here A vs. D and B vs. C) will only have

one non-zero element, corresponding to V
(1)
A

T Σ̃ADV
(1)
D and Ṽ

(1)
B

T Σ̃BC Ṽ
(1)
C respectively. Also, the

eigenvalues of cluster A, the eigenvalues of what’s left of cluster B and C after projection and the
first eigenvalue of cluster D will appear on the main diagonal for natural reasons (V TΣV = D). The
last element which we have not yet mentioned, is the bottom right element on the main diagonal.
This will correspond to the result of multiplying the so called ’extra’ vector - which is orthogonal

to both V
(1)
D , ṼB and ṼC - with Σ̃D from both left and right. This element does not really have

any interpretation, so if we are satisfied with a low-rank approximation of the correlation matrix
then this is probably the first element to disregard.
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Figure 6: An example of the block structure in GT Σ̃G.

How is this related to the eigenvectors of Σ̃? Well, from empirical studies we have found that the
eigenvectors of Σ̃ are built from the cluster eigenvectors corresponding to the non-zero elements in
Q. More precisely, each column (or row - it’s symmetric) in Q will describe what cluster eigenvectors
will form each eigenvector of Σ̃. For instance, if we examine the non-zero elements of Q in Fig. 4.
There are three columns with three non-zero elements, all of them referring to the first eigenvector of
each cluster. We will thus have three Σ̃-eigenvectors built from a combination of the first eigenvector
of each cluster. We also see that all other columns only have one non-zero element implying that
the rest of the Σ̃-eigenvectors will be built from only one of the cluster eigenvectors each. Similarly
for Q in Fig. 6, we can see that two Σ̃-eigenvectors will be built from the first eigenvectors of cluster
A and D explaining the higher level cluster correlations, and two other Σ̃-eigenvectors will be built
from the first eigenvectors of what is left of clusters B and C after projection explaining the lower
level cluster correlations. The rest of the Σ̃-eigenvectors will be built from only one of the cluster
eigenvectors each.

Comparing this with the eigenvectors of the raw correlation matrix, which not necessarily have
any zero-elements - we have achieved a very sparse structure. Although it should be noted here
that this sparse structure is achieved also in the one-dimensional partitioning model described in
section 2.1.1 (proven by Avellaneda, 2019) [1], but not necessarily the other models since the cluster
eigenvectors are somewhat distorted.

So, by formulating this approach as an optimization problem with the constraint of some el-
ements in Q to be zero we can both determine exactly which cluster eigenvectors to use when
approximating different parts of the correlation matrix and achieve an arbitrarily sparse eigenvec-
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tor structure of Σ̃. An exact formulation of the problem is the following:

Σ̃ = argmin
Σ̃

||Σ− Σ̃||2Fr

s.t (6)

Qi,j = 0, (i, j) ∈ M

Q = GT Σ̃G

where M is the set of all matrix coordinates in Q we prefer to be zero and G is a matrix consisting
of all cluster eigenvectors we want to utilize. Some examples of G and what elements to constrain
in Q can be found in Fig. 3 - 6.

This method will be applied according to the inter-cluster correlations of the one-factor model
described in section 2.2.1. We will however discard the non-interpretable elements (see example
related to Fig. 6), resulting in a low-rank approximation. This means that Q for this model will
have similar appearance as Q in Fig. 6 but without all non-interpretable elements on the main
diagonal. The advantage of this method is interpretability. We will get both fewer and sparser
eigenvectors. A possible disadvantage is that the main diagonal in the correlation matrix (ones)
not necessarily will be preserved, since we do not span the full space. Strictly speaking we then no
longer have a correlation matrix.

2.3.2 Introduction of an L1-Penalty for Further Sparseness

In the previous section we discovered a neat way to force sparseness into the eigenvectors of the
modified correlation matrix Σ̃ by putting constraints on what cluster eigenvectors to use. What if
some of them still are superfluous? By introducing an L1-penalty on the coefficients we may be
able to achieve an even sparser structure by letting an optimizer decide what cluster eigenvectors
to keep or remove when approximating different parts of the correlation matrix. By adding the
L1-penalty to Eq. 6, we end up with the new problem formulation

Σ̃ = argmin
Σ̃

||Σ− Σ̃||2Fr + λ
∑

(i,j)∈N

|Qi,j |

s.t

Qi,j = 0, (i, j) ∈ M

Q = GT Σ̃G

where M is the set of all matrix coordinates in Q we prefer to be zero and N is the set of all
other coordinates in Q. A problem with numerical solvers and the L1-penalty is that the reduced
elements in Q will only be approximately zero and not necessarily equal to zero. Consequently,
some elements in the eigenvectors of Σ̃ will also be approximately zero, as well as some eigenvalues.
This can have hazardous effects on portfolio performance2 so we also have to introduce a threshold
of what we consider to be zero in Q. We put this threshold as the smallest eigenvalue of the raw
correlation matrix (as the entries of Q are closely related to eigenvalues) and let our optimizer do
the thing once more. This time with the constraint of zeros also at the coordinates of Q that did
not exceed the threshold and without the L1-penalty as we already know what coefficients were
superfluous.

An optimal λ we will be searched for with respect to a qualitative analysis of the eigenvectors.

2See for example Hauser & Schmeltzer (2013) [7]
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3 Analysis of the Principal Components and Their Ability
to Model Cluster Correlations

Theoretically the first principal component of a cluster should describe the most pronounced be-
haviour and therefore be suitable for modelling inter-cluster correlations in the HPCA framework.
Since the theory relies completely on this assumption, it is of great importance that we analyze the
behaviour of those.

The principal components themselves are not very interesting to visualize, so we will instead
look at the eigenvectors. This can be justified by Eq. 3 from earlier, which shows that the first
eigenvector essentially describes the contribution of each asset to the principal component. So, by
observing the behaviour of the eigenvectors we will understand how the assets are related to the
principal components.

To verify that our choice of clusters is reasonable, we will also examine some eigenvectors from
the full correlation matrix.

3.1 Analysis From an Asset Class Perspective

We earlier decided to form four main clusters based on asset classes, namely ’Bonds’, ’Equities’,
’Commodities’ and ’FX’. To verify that the behaviour of the assets in each cluster is similar, we
look at the first eigenvectors of the raw correlation matrix, see Fig. 7 below.

In the first two eigenvectors we can see some typical market behaviour, namely one vector
with opposite directions of bonds and essentially all other assets (’Eigenvector 1’) as well as one
vector with the same direction for all assets (’Eigenvector 2’). This originates from investors acting
differently depending on the state of the global economy. From one perspective, during good times
investors tend to put their money into equities and other fairly risky assets, while during tougher
time periods rather invest in safer assets like bonds. This creates a negative correlation between
bonds and essentially all other assets, which usually is apparent in the first eigenvector, ie. explains
most of the variance. From another perspective, during good times investors tend to invest in the
market in general, while during tougher periods rather sell - regardless of whether the relevant
assets are bonds or other types of assets. This creates another dimension of the variability in the
correlation matrix, namely a slightly positive correlation between all assets - which appears as an
eigenvector with the same sign for all elements. This behaviour is often a little less pronounced,
thus ending up as the second eigenvector, ie. explains second most of the variance. However, for
various reasons this ’buy all’ or ’sell all’ behaviour sometimes dominates the market, making the two
first eigenvectors switch place. Keep this market behaviour in mind when examining the regional
eigenvectors.

Further, in the third and the fourth eigenvector of Fig. 7 we can see that most assets within FX
seem to covariate, as well as most assets within commodities. The common factor that drives all
assets within FX in the same direction for this data set, is the US dollar. All currencies are written
in US dollar which creates a strong dependency to the exchange rate of the USD. More about the
data can be found in section 4.3. From these observations it seems reasonable to believe in the four
main clusters stated before.
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Figure 7: First four eigenvectors of the sample correlations estimated with an exponentially weighted
moving average, last observation taken from 2022-03-31.

To investigate this further we examine the eigenvectors of each main cluster separately. First we
want to verify the choice of our hierarchical clusters under ’Commodities’ in Fig. 1. By observing
the first four eigenvectors of commodities (Fig. 8) we can indeed distinguish the three child clusters
- metals, energies and agriculturals. We can also see that all elements in the first eigenvector have
the same sign, meaning that the assets in general tend to be positively correlated with each other. If
we then look at eigenvector five (Fig. 9) we can within metals also see some internal variation, more
precisely precious metals vs. industry metals. In eigenvector six (Fig. 9) we can see some internal
variation within agriculturals as well, this time grains and livestock vs. miscellaneous agriculturals.
The hierarchical clusters under ’Commodities’ in Fig. 1 thus seem to be very reasonable.
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Figure 8: First four eigenvectors of the sample correlations between assets classified as ’Com-
modities’. Estimated with an exponentially weighted moving average, last observation taken from
2022-03-31. The height of each bar corresponds to the value of each entry in the eigenvector.

Figure 9: Eigenvector five and six of the sample correlations between assets classified as ’Com-
modities’. Estimated with an exponentially weighted moving average, last observation taken from
2022-03-31.

3.2 Analysis From a Regional Perspective

By examining the first three eigenvectors of bonds, equities and FX separately we can verify that
there indeed seem to be some regional covariation, see Fig. 10.
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For instance, in the second eigenvectors we can see that for equities, North + Latin America
and Europe tend to vary with each other but against Asia, and for bonds and FX we instead have
North + Latin America and Asia varying together but against Europe. In the third eigenvector of
equities and bonds we can see Europe and Asia varying together against North + Latin America.
The third eigenvector of FX is harder to interpret, maybe because the regional component is not
as strong as for bonds and equities. This may be explained by the different risk levels of currencies
within the same region. Currencies associated with less stable economies are usually considered
more risky, for example Mexican peso or Brazilian real. Another important note is that all elements
in the first eigenvector of all three clusters have the same sign, implying that the assets tend to be
positively correlated with each other.

Figure 10: First three eigenvectors of the sample correlations between assets classified as ’Equities’,
’Bonds’ and ’FX’, respectively. Estimated with an exponentially weighted moving average, last
observation taken from 2022-03-31.

However, for the non-hierarchical model in Fig. 2 where the regional factor is assumed to be
common for both equities, bonds and FX, we need to examine the eigenvectors of all those assets
together, see Fig. 11. We directly see the characteristic market behaviour we encountered earlier
in the eigenvectors of the full correlation matrix. Namely, one eigenvector showing that bonds are
negatively correlated to most other assets and one eigenvector with essentially all assets in the same
direction.
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Figure 11: First two eigenvectors of the sample correlations within each region. Estimated with an
exponentially weighted moving average, last observation taken from 2022-03-31.

The question to consider now is thus whether the first principal component of the non-hierarchical
regional clusters is suitable to model inter-cluster correlations. To examine this we make a heatmap
over the inter-cluster correlations, estimated from the first principal component of each cluster, see
Fig. 12. As has been noted earlier, there will be some unintuitive correlations between asset classes
and regions. If we examine these correlations carefully we detect some very interesting values. Cor-
relations between equities and all regions are strongly negative, correlations between bonds and all
regions are considerably positive and correlations between FX + commodities and all regions are
considerably negative. This is probably not what one would expect the cross-correlations to look
like.
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Figure 12: Cluster correlations. Estimated with an exponentially weighted moving average, last
observation taken from 2022-03-31.

To examine whether this has any negative effect or not, we compare the raw correlation matrix
to a modified version according to the non-hierarchical model in section 2.1.2, see Fig. 13. The
reconstruction seems to work fine for all correlations except for equities vs. bonds where it is
negatively inflated from a general correlation of about -0.3 to almost -0.6. This is not how the
reconstruction should work and it is most likely caused by the somewhat odd behaviour of the
regional principal components, so we make another attempt. This time with both the first regional
principal component and the second one (making it a 3-factor model), see Fig. 14. This time the
reconstruction seem to be much better and we therefore choose to proceed with this 3-factor model
instead of the earlier proposed 2-factor model described in section 2.1.2.

Figure 13: Raw correlations and reconstructed correlations according to section 2.1.2. Estimated
with an exponentially weighted moving average, last observation taken from 2022-03-31.
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Figure 14: Raw correlations and reconstructed correlations according to section 2.1.2 but with the
two first regional principal components. Estimated with an exponentially weighted moving average,
last observation taken from 2022-03-31.

4 Models, Metrics and Performance Measures

The aforementioned methods to modify the correlation matrix will be evaluated with respect to
sparseness/interpretability of eigenvectors, ability of forecasting risk and portfolio performance. As
benchmarks, the unmodified (raw) correlation matrix estimated with an exponentially weighted
moving average (EWMA), as well as with a simple shrinkage will be used.

4.1 Models

An explanation of how raw correlations are estimated, a brief summary of the different models that
will be assessed and how shrinkage is applied can be found below.

Raw Correlations
So called raw or unmodified covariance is estimated with an exponentially weighted moving average,
according to

Ct = γ ·XT
t Xt + (1− γ) · Ct−1,

with a decay of γ = 1/500 implying a center of mass at 500 days. Xt is a vector containing the
(standardized) returns of each asset at time t. The correlation matrix Σt is then obtained by nor-
malizing each element in the covariance matrix Ct with the standard deviation of the two relevant
assets. This is the basic correlation estimator all modification methods are applied upon.

One-Dimensional Partitioning by Asset Class
This model is described in section 2.1.1 with a non-hierarchical partitioning by asset class, accord-
ing to left/red part of Fig. 2.

Two-Dimensional Partitioning by Asset Class and Region
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This model is described in section 2.1.2 with a non-hierarchical partitioning by asset class and
region, according to Fig. 2. Note however that two regional factors are used, which is justified by
the earlier analysis of the regional eigenvectors in section 3.2.

Hierarchical One-Factor Model
This model is described in section 2.2.1 with a hierarchical partitioning according to Fig. 1.

Hierarchical ’All’-Factor Model
This model is described in section 2.2.2 with a hierarchical partitioning according to Fig. 1.

Sparse Eigenvector Approach
This model is described in section 2.3 with a hierarchical partitioning according to Fig. 1. Note
that this is a low-rank approximation of the correlation matrix.

Sparse Eigenvector Approach with L1-Penalty
This model is described in section 2.3.2 with a hierarchical partitioning according to Fig. 1. From
a qualitative analysis of the eigenvectors for different values on the L1-penalty coefficient λ, it was
found that λ = 0.2 yielded sufficiently sparse eigenvectors with only significant cluster-eigenvectors.
A comparison of the eigenvectors for λ = 0 and λ = 0.2 can be found in Appendix C. For clarifica-
tion, with λ = 0 this is the same model as the ’Sparse eigenvector approach’ above and for λ = 0.2
also a low-rank approximation.

Shrinkage - a Simple but Effective Benchmark Method
The main idea behind shrinkage is to incorporate structure by a combination of the raw correlation
matrix and some very structured estimate. More about shrinkage can be found in ’Honey, I Shrunk
the Sample Covariance Matrix’ (Ledoit & Wolf, 2004) [5]. However, this structured estimate is
often very simple, for example no correlation at all or the mean correlation between all assets, as
in Ledoit & Wolf (2004) [5]. In other words, shrinkage can be achieved by pulling all off-diagonal
elements towards some value, for example 0 or the mean correlation. Here, shrinkage towards 0
with a shrinkage factor of α = 0.2 will be used, ie.

Σshr = α · I + (1− α) · Σ,

where I is the identity matrix and 0 < α < 1. The shrinkage factor α = 0.2 is chosen with respect
to a trade-off between portfolio performance and eigenvalue risk-prediction performance, which will
be further explained in section 4.2. Nevertheless, this method is very simple but yet so effective.
Even a small modification like this, has huge impact on the well-behaviour of the matrix. Take the
eigenvalues for example. From the characteristic polynomial it can be found that each eigenvalue
will be transformed according to

D̃
(k)
shr = α+ (1− α) ·D(k)

shr, (7)

where D̃
(k)
shr and D

(k)
shr denotes eigenvalue k after and before transformation, respectively. Eq. 7 can

also be rewritten as

D̃
(k)
shr = α+ (1− α) ·D(k)

shr = α(1−D
(k)
shr) +D

(k)
shr.
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This implies that

D̃
(k)
shr > D

(k)
shr if D

(k)
shr < 1 and

D̃
(k)
shr < D

(k)
shr if D

(k)
shr > 1.

Shrinkage thus increases eigenvalues smaller than 1 and decreases eigenvalues larger than one. This
in turn leads to a dramatic improvement of the condition number (smaller numerator and larger
denominator). In practice it reduces the extreme trading positions that often occur due to noise in
the smaller eigenvalues of the raw correlation matrix.

4.2 Performance Measures

As stated earlier, the quality of the modified correlation matrices will be assessed in terms of
portfolio performance, interpretability/sparseness of the eigenvectors and ability to forecast risk.

4.2.1 Portfolio Allocation Methods

To evaluate performance of the modified correlation matrices, some different portfolio optimization
methods that rely with various extent on the correlation matrix will be implemented. More spe-
cific, minimum variance, mean-variance and equal risk contribution (ERC). Inverse volatility/Equal
weights will be used as benchmark portfolios.

Mean-Variance
The idea behind Mean-Variance is to maximize expected returns while minimizing the variance
(Markowitz, 1952) [6]. This can be formulated as

wt = arg max
wt

(
µT
t wt −

1

2
wT

t Σt−1wt

)
,

where µ is a vector of expected returns of the assets. One solution to this problem is

wt = Σ−1
t−1µt,

which can be scaled by a constant c to obtain all solutions, ie. wt = c · Σ−1
t−1µt. We will chose c

such that the portfolio volatility is equal to 1, see Eq. 8 in the end of this section.
Expected returns can be tricky to estimate accurately and various fancy methods exist, but to

keep it simple we will use an exponentially weighted moving average. Expected returns will thus
be estimated according to

µt = γ ·Xt + (1− γ) · µt−1,

where Xt is the returns of each asset at time t and γ is the decay. Here a decay of γ = 1/300, ie. a
center of mass at 300 days, will be used.

Minimum Variance
Minimum variance is - except for inverse volatility/equal weights - the simplest allocation method
we will use here as it only requires an estimation of the covariance/correlation matrix. One could
therefore expect that a better estimated correlation matrix would result in a better performing
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portfolio. The main idea behind minimum variance is exactly what it sounds like - to minimize the
variance. This can be formulated as

wt = arg min
wt

1

2
· wT

t Σt−1wt

s.t wT
t µ = 1, where µ = [1 1 . . . 1]T .

The solution to this is unique, according to

wt = Σ−1
t−1µ.

We will however scale the solution such that the portfolio volatility is equal to 1, see Eq. 8 in the
end of this section. The only difference compared to the weights obtained from ’Mean-Variance’ is
thus that µ is a constant vector of ones.

The intuition behind the model is to minimize risk by utilizing how the assets are correlated with
each other. No effort is put into adding an estimation of expected returns, correlation is enough
according to this approach.

Equal Risk Contribution
The idea behind ERC is to derive optimal portfolio weights based on equal risk contribution from
each asset. In the more general case, where the risk contributions are not necessarily equal but
described by a vector b = [b1 b2 . . . bn], the problem can be formulated as the following system of
equations 

RCi(w) = biR(w)

bi > 0

wi > 0∑n
i=1 bi = 1∑n
i=1 wi = 1

where RCi(w) is the risk contribution of asset i and R(w) is the risk measure of the portfolio with
portfolio weights w = [w1 w2 . . . wn] (Griveau-Billion et al., 2013) [3]. The risk measure R(w) will
be the portfolio volatility. This system can efficiently be solved by the cyclical coordinate (CCD)
descent algorithm, as described in ’A Fast Algorithm for Computing High-dimensional Risk Parity
Portfolios’ (Griveau-Billion et al., 2013) [3]. As the title reveals, we will use equal risk contribution
from each asset, ie. b1 = b2 = . . . = bn where n is the number of assets. It should be noted here that
the weights are constrained to be positive, unlike the weights estimated with ’Minimum Variance’
and ’Mean-Variance’.

Inverse Volatility/Equal Weights
Inverse volatility is a relatively simple allocation method, assigning weights proportional the inverse
of the volatility of each asset. In practice this means

wt =
1√

diag(Σt−1)
.

However, in this setting where we use the correlation matrix instead of the covariance matrix all
assets will have volatility equal to 1. This implies that all assets will be assigned the same weight,
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which is yet another simple allocation method often referred to as ’Equal weights’. More about the
advantages with this naive equal weights allocation method can be found in ’Optimal versus naive
diversification: How inefficient is the 1/N portfolio strategy?’ (DeMiguel et al., 2007) [2].

To make the different portfolio allocation methods comparable we normalize all weights by expected
portfolio volatility. Expected portfolio volatility is simply estimated as the realised volatility at t−1
but with the newly estimated weights, resulting in the normalized weights w̃t according to

w̃t =
wt√

wT
t Σt−1wt

. (8)

In this way we can set our preferred risk level, here a portfolio volatility equal to 1. It should also
be mentioned that weights are updated daily. Also, when these allocation methods are applied on
low-rank approximations of the correlation matrix (the sparse approaches), a pseudo inverse of the
matrices is used when necessary.

To evaluate portfolio performance - average portfolio return (daily), realised portfolio volatility
(daily), Sharpe ratio (yearly) and average turnover/holding period will be used. The performance
measures will be estimated according to the following:

Average Portfolio Return: E[dR]

Realised Portfolio Volatility:
√
V [dR]

Sharpe Ratio:
Average Portfolio Return

Realised Portfolio Volatility
·
√
252

Average Turnover:
1

E[|w|]
·

M∑
k=1

N∑
t=1

|wk
t+1 − wk

t |
M ·N

Average Holding Period
1

Average Turnover

Here dR denotes daily portfolio return, wk
t denotes the weight of asset k at time t and E[|w|] is

the average absolute weight over time, amongst all assets. M and N are the number of assets and
daily portfolio returns respectively.

4.2.2 Eigenvalues and Their Ability to Predict Risk

Portfolio weights derived according to Mean-Variance can be decomposed into eigenvalues and
eigenvectors, which in turn can be interpreted as a sum of scaled eigenportfolios. The column
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vector of portfolio weights w can be expressed as a sum of M scaled eigenportfolios according to

w = Σ−1µ

= V D−1V Tµ

=

M∑
k=1

V (k) 1

D(k)
V (k)Tµ

=

M∑
k=1

V (k)

√
D(k)

V (k)Tµ√
D(k)

=

M∑
k=1

V (k)

√
D(k)

µ(k)

√
D(k)

.

Each eigenvector V (k) can thus be interpreted as a set of eigenportfolio weights (the eigenportfolio),
scaled by its volatility 1√

D(k)
to obtain unit variance, and Sharpe ratio (expected return/volatility).

The relationships between eigenportfolio risk (variance), expected eigenportfolio return µ(k) and
eigenvalues D(k) can be shown by

V ar[V (k)TX] = V (k)TV ar[X]V (k)

= V (k)TΣV (k)

= D(k),

E[V (k)TX] = V (K)E[X]

= V (K)µ

= µ(k),

where X now is a random vector describing the returns of each asset. We can therefore evaluate
the performance of a correlation matrix by comparing its eigenvalues to the realised risk of each
eigenportfolio. Realised eigenportfolio risk will be measured as the variance of the return of the
portfolios constructed from each eigenvector during some different time periods, depending on the
horizon of interest. These variances will then be compared to the eigenvalues corresponding to
the eigenvectors used to construct the portfolios, to evaluate the predictive performance of the
eigenvalues.

To investigate whether the risk is more often under- or overestimated during the time period
the mean difference of the ratio [eigenvalue / eigenportfolio variance] from 1 will be examined for
each eigenvalue. Benchmark eigenvalues and eigenvectors will be extracted from the raw correlation
matrix and from the shrunken raw correlation matrix.

A typical problem with the raw correlation matrix is that its eigenvalues usually gives an over-
estimation of the risk associated with the first eigenportfolios as well as an underestimation of the
risk related to the eigenportfolios associated with smaller eigenvalues. With shrinkage on the other
hand, the opposite is often the case. As the value of the smallest eigenvalues is increased, the risk
related to the eigenportfolios of those is typically overestimated. Ideally we want a non-biased small
deviation from the realised risk, and rather overestimated than underestimated.

Regarding eigenvalues, the condition number is also an interesting measure of performance.
The condition number of a matrix is calculated as the largest eigenvalue divided by the smallest

25



eigenvalue and roughly measures how prone to error the inverse of a matrix is. This is a nice
indicator, but keep in mind that it does not necessarily mean that the actual portfolio performance
will be improved.

4.2.3 Sparseness and Interpretability of Eigenvectors

Furthermore, sparseness of the eigenvectors can be used as a measure of how denoised a correlation
matrix is. Sparseness is not only a nice indication of low levels of noise but also facilitates inter-
pretation. Both the number of non-zero elements and some qualitative analysis of the eigenvectors
are interesting here.

4.3 Data and Pre-Processing

The data used in this paper consists of price series from 100 different futures contracts taken
from 1980-01-01 to 2022-03-31. Not all assets have data for the full time period and are therefore
gradually added to the trading universe. A complete list of all utilized assets can be found in
Appendix A. All prices are written in - or converted to - US dollars. Since each futures contract
only exist for a limited amount of time (overlapping with its successor and predecessor), all price
series on the same contract are merged to get one single coherent price series. This means that the
actual price is not preserved, but the arithmetic difference is.

To somehow standardize things, closing prices are used to estimate arithmetic daily returns
which in turn are volatility adjusted to obtain standardized daily returns. Volatility adjustment is
achieved by scaling each return with an estimate of its current volatility, in this case estimated from
both open, max, min and closing prices. To compensate for different opening hours and time zones,
a 3-day smoothing filter is applied to the standardized returns. The mean values of the returns are
not subtracted as it is assumed to be approximately zero, any deviation just noise.

5 Results

To understand how much impact each method have had on the correlation matrix itself, we provide
a plot with the mean absolute difference per element compared to the raw correlation matrix (Fig.
15). The two sparse methods obviously have the largest impact, while ’Hierarchical ’all’-factor’ is
most similar to the raw correlation matrix.
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Figure 15: Mean absolute difference per element in the correlation matrix over the full time period
1980-01-01 to 2022-03-31.

5.1 Eigenvalues and Realised Eigenportfolio Risk

To get a feeling for what effect the different methods have on the eigenvalues, we make a plot over
the mean eigenvalues see Fig. 16. It is very clear that shrinkage has a large impact on especially the
smallest eigenvalues and that all other methods except for the two sparse ones yield eigenvalues that
are very similar to the raw correlation matrix´s. The eigenvalues of the sparse method with λ = 0
seem to be a somewhat compressed version (along the x-axis) of the raw ones. The eigenvalues of
the sparser method with λ = 0.2, discards many of the smallest eigenvalues keeping only ≈ 70 of
the largest ones.

Closely related to the eigenvalues is the condition number, see Fig. 17. It is very clear that the
size of the smallest eigenvalue drastically improves the condition number.
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Figure 16: Mean eigenvalues.

Figure 17: Condition number of the last correlation matrix, ie. 2022-03-31.

The 20-days predictive ability of the eigenvalues can be seen in Fig. 18 below. The earlier
described ’bias’ in the raw and shrunken eigenvalues are very apparent here. The raw eigenvalues
gives a larger and larger underestimation of the risk associated with the smaller eigenportfolios
while the shrunken gives a larger and larger overestimation of the risk associated with the smaller
eigenportfolios. However, all other modification methods yield very accurate risk predictions, nei-
ther clearly underestimated nor clearly overestimated. In Fig. 19 we can see that the mean error
behaves very similar regardless of the time horizon.
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Figure 18: Mean error, realised risk vs predicted risk per eigenvalue/eigenportfolio.

Figure 19: Mean error, realised risk vs predicted risk per eigenvalue/eigenportfolio, different time
horizons.
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5.2 Sparseness and Interpretability of Eigenvectors

A quick overview of the sparseness can be obtained in Fig. 20 below. We can see that the raw
correlation matrix has essentially no zero elements in the eigenvectors, as well as the hierarchical
1-factor and ’all’-factor model. Slightly sparser is the eigenvectors from the non-hierarchical Asset
Class + Region model, but sparsest are clearly the Asset Class and the two sparse approach models.
This is not very surprising though as the purpose of the sparse approach is to produce sparse
eigenvectors.

Figure 20: Percentage of non-zero elements in the last eigenvectors, ie. 2022-03-31.

5.3 Portfolio Performance

Portfolio performance for the three different allocation methods ’Minimum Variance’, ’Mean-Variance’
and ’Equal Risk Contribution’ can be found in table 1, 2 and 3, respectively. Note that the per-
formance of ’Inverse Volatility/Equal Weights’ is the same in all tables and added to serve as a
benchmark.
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Sharpe Ratio
(yearly)

Portfolio
Volatility (daily)

Avg. Portfolio
Return (daily)

Avg. Holding
Period (days)

Raw 0.769 1.11 0.054 38.6
Asset Class 0.802 1.11 0.056 103
Asset Class &
Region

0.857 1.19 0.064 89.4

Hierarchical
1-factor

0.818 1.14 0.059 166

Hierarchical
’all’-factor

0.840 1.09 0.058 116

Sparse, λ = 0 0.939 1.09 0.065 88.1
Sparse, λ = 0.2 0.934 1.09 0.064 55.3
Shrinkage 0.818 1.14 0.059 83.8
Inverse vol./
Equal weights

0.683 1.01 0.043 1070

Table 1: Performance measures for the allocation method ’Minimum Variance’ for all different
modified correlation matrices. Inverse volatility/Equal weights included as benchmark.

Sharpe Ratio
(yearly)

Portfolio
Volatility (daily)

Avg. Portfolio
Return (daily)

Avg. Holding
Period (days)

Raw 0.497 1.12 0.035 8.77
Asset Class 0.763 1.25 0.060 10.7
Asset Class
& Region

0.838 1.29 0.068 11.2

Hierarchical
1-factor

0.815 1.30 0.067 11.6

Hierarchical
’all’-factor

0.779 1.25 0.061 11.3

Sparse, λ = 0 0.853 1.22 0.066 11.3
Sparse, λ = 0.2 0.888 1.20 0.067 12.2
Shrinkage 0.908 1.11 0.064 11.4
Inverse vol./
Equal weights

0.683 1.01 0.043 1070

Table 2: Performance measures for the allocation method ’Mean Variance’ for all different modified
correlation matrices. Inverse volatility/Equal weights included as benchmark.
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Sharpe Ratio
(yearly)

Portfolio
Volatility (daily)

Avg. Portfolio
Return (daily)

Avg. Holding
Period (days)

Raw 0.783 1.03 0.051 318
Asset Class 0.768 1.06 0.051 462
Asset Class
& Region

0.772 1.03 0.050 329

Hierarchical
1-factor

0.759 1.07 0.051 500

Hierarchical
’all’-factor

0.791 1.03 0.052 370

Sparse, λ = 0 - - - -
Sparse, λ = 0.2 - - - -
Shrinkage 0.784 1.12 0.055 353
Inverse vol./
Equal weights

0.683 1.01 0.043 1070

Table 3: Performance measures for the allocation method ’Equal Risk Contribution’ for all different
modified correlation matrices. No values for the sparse methods since the optimization algorithm
did not converge. Inverse volatility/Equal weights included as benchmark.

Within the ’Minimum Variance’ portfolio performance in table 1, we can see that the Sharpe
ratio is slightly improved for all modification methods compared to when using the raw correlation
matrix. Most significant are the sparse approaches. Compared to shrinkage, the other modified
matrices seem to perform about at least as well with respect to Sharpe ratio. Regarding holding
period, all methods except for the sparsest (λ = 0.2) are longer than for the raw and shrunken
matrix.

When examining the performance of ’Mean-Variance’ in table 2, we can see a huge improvement
of the Sharpe ratio for all modified matrices compared to the raw correlation matrix. Shrinkage
only performs slightly better than the modified matrices. The holding period is very similar for all
models.

Regarding ’Equal Risk Contribution’, we note that the values for the sparse methods are missing.
This is because the optimization did not converge, causing the portfolio weights to explode. Some
debugging showed that this is most likely due to the fact that the sparse matrices not strictly are
correlation matrices (not necessarily ones on the main diagonal) and also of very low rank, which
caused problem for the convergence. However, seen to the other methods it is obvious that this
allocation method is less sensitive to the correlation matrix. Essentially all methods yield the same
performance regardless of if or how the correlation matrix is modified. It is also notable that the
holding period is very long for all models.

An interesting note here is that we normalize all weights to obtain a daily portfolio volatility
equal to 1, but still get a slightly higher volatility for all models and allocation methods.

6 Conclusions & Discussion

Regarding the ability of the eigenvalues to predict risk, we can conclude that all proposed HPCA
methods yields a much more accurate estimation of the risk associated with each eigenportfolio
compared to the raw and shrunken correlation matrices. This property is very favourable and most
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likely contributing to the improvement of the Sharpe ratio when using the ’Minimum Variance’
allocation method. This is not really the case for ’Mean-Variance’ where the shrunken matrix
still performs very well. This is probably caused by the estimation of expected returns, which
tend to favour shrunken matrices. Although the sparse method with λ = 0.2 also performs well in
’Mean-Variance’. This can maybe be explained by the similarity of its eigenvalues and the shrunken
eigenvalues.

Comparing the two non-hierarchical methods ’Asset Class’ and ’Asset Class & Region’ we can
conclude that regarding portfolio performance, we need both an asset class specific factor and a
regional factor to get a higher Sharpe ratio. If we instead look at sparseness of the eigenvectors,
only an asset class-factor yield much sparser result. It could though be questionable if that is the
right kind of sparseness. In the case of only asset class, the eigenvectors are built from the asset
class cluster eigenvectors. This means that if there are any other structures in the correlation (for
example regional clusters), this will not be visible in the eigenvectors of the full matrix since they
are constrained to be a combination of the asset class specific eigenvectors. So, sparseness itself is
only a good thing if we strongly believe in our clusters.

Regarding the two hierarchical methods, their performance are very similar from all aspects.
The ’all’-factor model yields a higher Sharpe ratio for ’Minimum Variance’ while the one-factor
yields a higher Sharpe ratio for ’Mean-Variance’. It is therefore hard to conclude whether one of
them is better than the other.

Comparing all HPCA methods altogether, the sparse ones seem to be best performing as they
yield both sparse and interpretable eigenvectors, accurately estimated eigenportfolio risk and decent
portfolio performance. There is however a convergence problem when utilizing these matrices in
ERC, but since essentially all matrices performs the same it is meaningless to utilize something else
than the raw correlation matrix in ERC.

When comparing the two sparse models their overall performance is quite similar, except for
the fact that the sparsest model (λ = 0.2) has disregarded many of the smallest eigenvalues. This
results in a much better condition number. It also has slightly higher Sharpe ratio and a little
sparser eigenvector structure. We can thus conclude that the sparsest model slightly outperforms
the less sparse model (λ = 0) and performs as good as shrinkage but with the advantage of being
regularized in a much more meaningful way.

Another interesting topic is the relevancy of the clusters. In this paper it has been proposed
that clusters should be modeled as constant over time, but this may not necessarily be the case.
However, when partitioning the assets in a natural way - for instance asset class and region - then
there is no reason to model this dynamically since regions and asset classes are very unlikely to
change.3 Time-varying clusters would thus be more relevant if one would utilize some data-driven
clustering method instead. Also, one could argue that the regional clusters are becoming less and
less relevant as the economy is getting more and more globalized. A couple of hundred years ago,
the regional factor would probably have been very evident as people were mostly trading within
their own closest area but nowadays everyone can trade with essentially anyone.

A possible problem, which we luckily have not encountered here, arises from the fact that
we have not proven that the modified correlation matrices from ’Asset Class & Region’ and the
two hierarchical methods are positive semi-definite, implying that there is a possibility of negative
eigenvalues. This could have terrible consequences for portfolio performance since we then have
an eigenvector associated with negative risk, see for example ’Seven sins in portfolio optimization’
(Hauser & Schmeltzer, 2013) [7] for further explanation.

3It would be weird if the location of USA suddenly was in Europe or if gold turned into a grain.
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A Appendix

Name Asset Class Asset Sub Class Region
Nasdaq Equities - North America
S&P 500 Equities - North America
Dow Jones Equities - North America
Russell 2000 Equities - North America
Canada 60 Equities - North America

MEM Equities - North America
S&P 400 Equities - North America

Russell 2000 CME Equities - North America
Russell 2000 ICE Equities - North America
S&P 500 ESG Equities - North America

OMX Equities - Europe
CAC 40 Equities - Europe
DAX Equities - Europe

Euro STOXX 50 Equities - Europe
FTSE 100 Equities - Europe
IBEX Equities - Europe
MIB Equities - Europe
SMI Equities - Europe
AEX Equities - Europe

Euro STOXX Banks Equities - Europe
STOXX 600 ESG Equities - Europe

OMX ESG Equities - Europe
SPI Equities - Oceania

Nikkei 225 mini Equities - Asia
Nikkei SIM Equities - Asia
Taiwan Equities - Asia

Hang Seng Equities - Asia
Hang Seng China Enterprises Equities - Asia

China 50 Equities - Asia
TOPIX Equities - Asia
Nifty50 Equities - Asia
KOSPI Equities - Asia

Singapore Equities - Asia
Nikkei Mini Equities - Asia
Nikkei CME Equities - Asia
FTSE Taiwan Equities - Asia
10-Year T-Note Bonds - North America
5-Year T-Note Bonds - North America
2-Year T-Note Bonds - North America

U.S. Treasury Bond Bonds - North America
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Name Asset Class Asset Sub Class Region
Ten-Year Government of Canada Bond Bonds - North America

Ultra U.S. Treasury Bond Bonds - North America
BOBL Bonds - Europe

Euro Bund Bonds - Europe
UK Gilt Bonds - Europe

Euro Schatz Bonds - Europe
Euro Buxl Bonds - Europe
Euro OAT Bonds - Europe
Euro BTP Bonds - Europe
BTP Short Bonds - Europe

mini-10year JGB Bonds - Asia
KTB 10y Bonds - Asia
KTB 3y Bonds - Asia

10-Year Australian Government Bond Bonds - Oceania
3-Year Australian Government Bond Bonds - Oceania

Canadian Dollar Foreign Exchange - North America
Brazilian Real vs. US Dollar Foreign Exchange - Latin America
Mexican Peso vs. US Dollar Foreign Exchange - Latin America

Swiss Franc Foreign Exchange - Europe
Euro Foreign Exchange - Europe

British Pound Foreign Exchange - Europe
Swedish Krona vs. US Dollar Foreign Exchange - Europe

Norwegian Krone vs. US Dollar Foreign Exchange - Europe
Polish Zloty vs. US Dollar Foreign Exchange - Europe

Hungarian Forint vs. US Dollar Foreign Exchange - Europe
Turkish Lira vs. US Dollar Foreign Exchange - Europe
Russian Ruble vs. US Dollar Foreign Exchange - Europe

South Korean Won vs. US Dollar Foreign Exchange - Asia
Australian Dollar Foreign Exchange - Oceania
South Korean Won Foreign Exchange - Asia
New Zealand Dollar Foreign Exchange - Oceania

Palladium Commodities Metals - Precious Metals -
Gold Commodities Metals - Precious Metals -
Silver Commodities Metals - Precious Metals -

Platinum Commodities Metals - Precious Metals -
Aluminium Commodities Metals - Industry Metals -
Copper Commodities Metals - Industry Metals -
Zinc Commodities Metals - Industry Metals -
Nickel Commodities Metals - Industry Metals -
Lead Commodities Metals - Industry Metals -

Brent Crude Commodities Energies -
Low Sulphur Gasoil Commodities Energies -

Crude Oil Commodities Energies -
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Name Asset Class Asset Sub Class Region
NY Harbor ULSD Commodities Energies -
RBOB Gasoline Commodities Energies -

Henry Hub Natural Gas Commodities Energies -
Crude ICE Commodities Energies -

Corn Commodities Agriculturals - Grains -
Soybeans Commodities Agriculturals - Grains -

Soybean Meal Commodities Agriculturals - Grains -
Soybean Oil Commodities Agriculturals - Grains -

Wheat Commodities Agriculturals - Grains -
Wheat Kansas Commodities Agriculturals - Grains -

Sugar Commodities Agriculturals - Miscellaneous -
Coffee Commodities Agriculturals - Miscellaneous -
Cotton Commodities Agriculturals - Miscellaneous -
Cocoa Commodities Agriculturals - Miscellaneous -

Live Cattle Commodities Agriculturals - Livestock -
Feeder Cattle Commodities Agriculturals - Livestock -
Lean Hogs Commodities Agriculturals - Livestock -

B Appendix

Figure 21: An example of the G matrix. In this case two main clusters A and E. Two child clusters
of E - F and D. Also two child clusters of F - B and C.
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C Appendix
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