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Abstract

Differential of the peripheral blood is an important tool when assessing blood-related
diseases. Lymphocytes are part of the immune system and morphological changes
thereof should raise attention. CellaVision’s current systems automatically detect
and pre-classify lymphocytes that exhibit atypical morphologies but do not further
distinguish those into subclasses. By adding the subclasses into the pre-classification,
the overall accuracy would improve and the additional information would also al-
leviate the work load of healthcare professionals. The objective of this thesis is to
discriminate hairy cells from lymphocytes and other cell classes. The data consists
of expert-labeled images of white blood cells belonging to 20 classes, and is split into
a training and a test set, with 76 612 and 15 374 images each. We compare a tra-
ditional transfer learning network against a supervised contrastive learning network
and propose a methodology based on a three-step training sequence combining the
two. The networks that were trained using supervised contrastive learning outper-
formed the traditional transfer learning networks. The best test accuracy for a con-
trastive learning network was 90.24%, while the best transfer learning network only
obtained a test accuracy of 88.21%. With our findings, the supervised contrastive
loss-aided methodology has proven to have great potential for pre-classifying hairy
cells, as well as being superior in overall automatic classification of white blood cells.
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1
Introduction

What we neglect we become [1].

1.1 Motivation

White blood cells (WBCs) can be found in peripheral blood. Based on their mor-
phology, the WBCs can be separated into several cell classes. Lymphocytes are one
such cell class, which in case of leukemia or lymphoma can exhibit atypical mor-
phologies. In some cases, these abnormal lymphocytes can in turn be divided into
neoplastic cell classes, such as Sézary cells, mantle cells and hairy cells, etc. The
authors of [2] state that, when possible, abnormal lymphocytes should be classified
to particular neoplastic cells, i.e., a hairy cell that can be classified as a hairy cell
should be classified as a hairy cell and not just an abnormal lymphocyte.

Hairy cells can appear in the blood stream in case of hairy cell leukemia (HCL) [3].
According to [3] the main diagnostic tools for establishing if a patient has HCL are
examinations of peripheral blood and bone marrow, where the former will be the
focus of this project. Definitive diagnosis is normally conducted with flow cytometry
using immunophenotypic markers, but since flow cytometry is more expensive, the
networks developed in this project can be used to produce an initial indication to
the necessity of further investigations using flow cytometry [4].

This project will provide insight into the feasibility of using deep learning to pre-
classify hairy cells in peripheral blood smears, and we will suggest a novel learning
approach to pre-classify hairy cells and simultaneously improve the classification
performance for other WBC classes. The current method of manual assessment is
tedious, time consuming, requires a high level of competence and can be subjective.
An automated method could help diminish these limitations. A more reliable auto-
mated classification of abnormal lymphocytes could accelerate diagnosis and result
in an improvement in the quality of patient care.
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1.2 Aim

The aim of the thesis is to pre-classify WBCs, and in particular distinguish hairy
cells from other types of lymphocytes in a peripheral blood smear. The classification
problem will be solved using deep artificial neural networks (ANNs). We will look
at two different methods for learning. The first method is transfer learning, and the
second method is supervised contrastive learning. Special attention will be given to
the comparison between the models, in regard to their accuracy and generalization
abilities on the task at hand. To summarize, our goals are to:

• distinguish hairy cells,

• pre-classify white blood cells into 20 classes, and

• compare traditional transfer learning to supervised contrastive learning.

1.3 Scope

One limitation is due to the rareness of HCL. The hairy cell data are collected from
11 slides originating from three hospitals. The cell images of the other cell classes
come from a wide range of hospitals to ensure generalization of the trained classifier.
Different hospitals use different staining methods, and unless the training data is
representative of the different techniques, unwanted bias can be introduced towards
the staining method that is most prevalent in the dataset.

The performance of a deep learning network is strongly influenced by the network
architecture and the selection of hyperparameters. We will limit ourselves to using
Xception as base architecture, and one of the challenges is therefore to find an
optimal set of hyperparameters for the model and each learning method.

1.4 Prior Work

The traditional machine learning techniques involving segmentation, feature extrac-
tion and analysis, as well as classification using statistical methods have been utilized
to identify subtypes of lymphocytes in several earlier studies.

The usage of segmentation and feature extraction, together with fuzzy C-means to
classify chronic lymphocytic leukemia cells, HCL cells, and normal lymphocytes, is
described in [5]. The authors of [6] use feature analysis and support vector machine
to identify reactive lymphoid cells (RLC), lymphoid blast cells, and myeloid blast
cells.

In recent years, the development of deep learning using convolutional neural net-
works (CNNs) has further advanced automatic classification.
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One usage of a CNN was carried out in [7], where the authors constructed a transfer
learning model using pre-trained AlexNet together with fine-tuned top-layers and
reached a high level of accuracy for the detection of acute lymphocytic leukemia
subtypes. AlexNet is a network presented in [8].

An interesting approach was defined in [9], where two deep learning networks are
joined in a tandem fashion to first separate abnormal cells from normal cells, then
distinguish the lineage of the cells. This knowledge helps derive the diagnosis on
acute leukemia. Several pre-trained models, such as ResNet, are evaluated.

The earlier studies have shown that it is possible to use machine learning techniques
to identify cell types that share similar characteristics. There are both studies
that have had success with identifying hairy cells using traditional machine learning
techniques and studies that have used deep learning network on other abnormal
lymphocytes. This makes us believe that we should be able to find a network
architecture that can distinguish hairy cells from other abnormal lymphocytes using
deep learning techniques.

Contrastive loss-aided self-supervised learning has been proven to achieve higher
accuracy score on the ImageNet dataset than cross-entropy based losses [10]. In
[11], it was shown that contrastive loss could be modified to accommodate fully-
labeled data and thus be used for supervised training, and still perform better than
cross-entropy.

Two previous works have conducted experiments on classifying WBCs with con-
trastive loss. One used unsupervised learning and achieved better results than other
unsupervised methods [12]. The other one presented a hierarchical network that
combined supervised, unsupervised, and semi-supervised contrastive losses to allow
the usage on datasets with all degrees of labeling [13]. The dataset used in [13] only
included 15 WBC classes. Furthermore, it was only trained on partially-labeled
datasets.

We propose the use of supervised contrastive loss combined with transfer learning
for the pre-classification of hairy cells along with 19 WBC classes, as suggested by
CellaVision, and compare it to supervised cross-entropy transfer learning models.
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2
Background

If you can understand it, you can understand it [1].

2.1 Peripheral Blood

The blood that circulates in the human body and transports nutrients to organs
and tissues is called the peripheral blood. A laboratory analysis of the peripheral
blood of the patient is often one of the initial evaluations the physician orders when
suspicions on blood-rerlated illnesses arise [14].

After the blood sample is collected from the patient, it is analyzed through a work-
flow consisting of systems with different purposes. The cell counter measures the
concentrations of cells in the blood. When an anomaly is detected by the cell
counter, a blood smear is made either automatically or manually, and sent to a cell
image analyzer that performs blood differential. During a blood differential, the
cells are categorized into different classes based on their morphology, to assess the
WBC distribution in the blood. The differential can then be used as an aid for the
physician in diagnosis and care-decision making.

Traditionally, the examination of blood smears is conducted by trained laboratory
personnel using conventional microscopes. Not only is this process bottle-necked
by the availability of experts, but it also requires manually adjusting the focus and
shifting the field of view, while also discerning the morphology of the cells examined.
The opinions of experts often differ based on their training and preferences. Since
the automated differential method is trained on the ground truth produced by many
experts, the output is more universal. Therefore, it has the advantage of producing
consistent results across all labs.
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2.2 CellaVision

Founded in 1994 with the HQ located in Lund, Sweden, CellaVision is a global
company that aims to alleviate the pressure on healthcare providers caused by the
combination of shortage on hematology experts and increased volume of samples that
need to be analyzed [15]. The product line consists of digital microscopy systems
that automate hematology lab work. The main customers are large laboratories.

The analyzers collect high-resolution images of the blood cells, and the software
makes pre-classifications of each of the cells based on their morphology, aided by
ANNs. Lab workers can then examine the pre-classification results and assign new
labels to cells if needed. Currently, analyses of WBCs, red blood cells (RBCs),
and blood platelets are available. Only WBCs will be considered in this thesis. A
CellaVision DC-1 analyzer is shown in Figure 2.1.

Figure 2.1: To the left in the figure is the CellaVision DC-1 Analyzer, and to the
right is the user interface of the accompanying software. Image from [16].

2.3 Lymphocytes

One class of WBCs that CellaVision pre-classifies to is lymphocytes. They can be
subdivided into normal, reactive and abnormal lymphocytes according to the stan-
dard set by ICSH in [2]. Examples of the different types of lymphocytes can be
seen in Figure 2.2 and Figure 2.3. Reactive lymphocytes are lymphocytes that are
responding to some sort of intrusion of the body, e.g., a viral infection, while abnor-
mal lymphocytes are cells that have morphological characteristics which cannot be
regarded as normal. It can e.g., be atypical color, shape or nucleus. Some abnormal
lymphocytes can be subclassed into neoplastic cell classes, whose presence in the
blood can be directly linked to different forms of leukemia and lymphoma [2].
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(a) Large lymphocyte (b) Small lymphocyte

Figure 2.2: Examples of lymphocytes of varying sizes. There are visual differences
between the cells despite them belonging to the same cell class. For instance, the
cytoplasm of the small lymphocyte is noticeably smaller in area.

(a) Reactive lymphocyte (b) Abnormal lymphocyte

Figure 2.3: Reactive lymphocytes are often characterized by abundant cytoplasm,
while abnormal lymphocytes can take on many different shapes depending on the
variant. The abnormal lymphocyte shown here has distinct "notches" in the nucleus
that are not seen on a normal lymphocyte.
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2.3.1 Hairy Cells

Hairy cells are a subclass of abnormal lymphocytes that can be found in the pe-
ripheral blood of a patient with HCL, as described in [3]. They are recognizable
mainly by their hairy projections, i.e., the thin, fuzzy strains on the perimeter of
the cytoplasm, as seen in Figure 2.4. Other distinctive features are the color of the
cytoplasm, and the appearance of the nucleus, the shape of which can vary and have
a spongy appearing chromatin. The position of the nucleus can deviate from the
center of the cell.

(a) Large hairy cell (b) Small hairy cell

Figure 2.4: Just as the lymphocytes, hairy cells also come in different sizes. For
both cells, however, the hairy projections are clearly visible.

We believe that these distinctive features make hairy cells a good candidate for a
classification problem. It is worth noting that there are other cells that can have a
similar appearance as hairy cells, without being actual hairy cells. Such cells can be
found in splenic marginal zone lymphoma, which often exhibit polar villous projec-
tions, T-cell prolymphocytic leukemia, or as artefacts due to bad storage conditions
[4]. As the network can only decide based on the appearance of the cells, the network
will only give a suggestion of classification, while the final diagnosis will be left to
medical professionals, who will have a more holistic understanding of the situation
of a patient.
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3
Theory

I am deep, I am deep, I am deep [1].

3.1 Artificial Neural Networks

3.1.1 Perceptron

Artificial neural networks (ANNs) are loosely inspired by the neurons in the human
brain and how they work together to solve complex problems by propagating infor-
mation between each other [17]. The descriptions of ANNs and its components are
derived from [18], unless stated otherwise.

Each neuron in an ANN is commonly referred to as a node and can be seen as a
scalar multiplication of the input vector x and a weight vector ω. Frank Rosen-
blatt developed the simplest example of an ANN, the perceptron, in 1958 [19]. The
objective of the perceptron is to simply sum the output from a number of nodes,
add a bias weight b to the sum, and calculate the result with an output activation
function. A perceptron is shown in Figure 3.1. The bias serves to shift the sum
numerically, and the usage of the activation function will be explained later on.

The mathematical formulation for the perceptron is

y(x,ω, b) = ϕ(ωTx + b) = ϕ(
K∑
k=1

ωkxk + b) (1)

where y is the output of the perceptron, ϕ the activation function, and K the length
of the input vector.

For a classification problem each input x, commonly referred to as a pattern, has
a corresponding ground truth, called the target d. The core idea of the ANN is to
take the input and then, by approximating some function f , output y such that y
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Figure 3.1: A perceptron with four inputs. The inputs x1 . . . x4 are multiplied with
the weights w1 . . . w4. The products are then summed and added with the bias. An
activation function is applied on the sum to produce the output y.

is the same as the target [20], i.e.,

y ≈ f(x) = d. (2)

To understand the perceptron as a linear classifier, we study the expression without
the activation function. By expanding the part inside the parentheses in Equation
(1) and setting it equal to a constant C, we get

ω1x1 + ω2x2 + · · ·+ b = C. (3)

Restricting the problem to be on the two-dimensional plane and subtracting C from
both sides, this becomes the equation of a line,

ω1x1 + ω2x2 + b− C = 0. (4)

The line is called the decision boundary. If we train a perceptron and use the found
weight values to plot a line, it will fit between the samples of the two classes.

With this interpretation, it becomes apparent that the perceptron cannot solve a
nonlinear problem. Examples depicting one linear and one nonlinear problem are
illustrated in Figure 3.2.

3.1.2 Multilayer Perceptron

Adding one or several hidden layers between the input layer and the output layer, the
network becomes a multilayer perceptron (MLP). The intermediate layers are called
hidden since they, unlike the input and output layers, are not seen from outside the
network. Each node in one layer is connected to every node in the next layer. For
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(a) Linear problem (b) Nonlinear problem

Figure 3.2: Two illustrative examples of classification problems. The shapes rep-
resent class labels, and the dotted line is a decision boundary. A linear decision
boundary can be found for the left problem while the right problem can only be solved
using a nonlinear decision boundary.

an MLP with one hidden layer, the value at each hidden node is given by

hj = ϕh(u
T
j x+ bh), (5)

where ϕh is called the hidden activation function, and u is the hidden weights and
bh the bias. The values at the hidden nodes are then used to calculate the output,

y = ϕo(ω
Th+ bo), (6)

where ϕo is the output activation function, and ω and bo are the output weights
and bias respectively. The hidden activation should be some nonlinear function,
otherwise the function f will be reduced to a single matrix multiplication, and the
effect of the hidden layer or layers is lost. One commonly used hidden activation
function is the rectified linear unit (ReLU).

The output activation is normally a sigmoid function for binary classification, or
softmax for multiclass problems. The activation function makes it possible to inter-
pret the output as the probability of belonging to a certain class. Some examples of
activation functions used for hidden layers and the output layer are shown in Table
3.1

The MLP has one major drawback, which is that the number of weights needed
grows with the number of layers and nodes beyond what is reasonable for a normal
computer to handle, which makes an MLP with several layers unrealistic to train
and use for more complex problems. Thus, a different approach is needed. But first,
let us take a look at how neural networks are trained.

3.1.3 Loss Functions

A loss function is needed to measure the difference between the output and the
target. One requirement of this function is differentiability. To suit different tasks,
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Name Function Plot

Logistic 1

1 + e−x

ReLU max(0, x)

Table 3.1: Examples of activation functions [18]. Both their expressions and ap-
pearances can be seen in the table. The logistic function is usually used in an output
layer, while the ReLU is more often seen in a hidden layer.

many loss functions have been developed. For classification, the most commonly
used loss function is the cross-entropy [18],

En(ω) = −dn ln(yn)− (1− dn) ln(1− yn) (7)

for each pattern n, where the targets dn are either 0 or 1. The implication is that, if
pattern n has target value 0 and prediction yn = 0, or target value 1 with prediction
1, the term En will be 0. Contrarily, if the prediction disagree with the target value,
the term will be registered and this pattern is "punished" by the loss function.
The size of the term is larger the farther the prediction is from the target. The
function shown is the binary cross-entropy loss. The categorical cross-entropy loss
works similarly, but is instead used when the number of target classes exceeds 2.
Another example is the supervised contrastive loss, which is used in clustering tasks.
Explanation of the supervised contrastive loss can be found in 3.5.1.

3.1.4 Optimization

To find the optimal solution of the network, the loss function needs to be minimized
with respect to the weights. The standard approach of minimization is the gradient
descent, in which steps ∆ω are taken in the opposite direction of the gradient,

∆ω = −η
∂E

∂ω
, (8)

where η is the adjustable learning rate.

For a perceptron, the partial differential can simply be calculated on the loss function
with respect to the weight vector, using the chain rule. But in an MLP, the loss
function of the output layer is dependent on not only the output weights, but also the
weights to the hidden layer as shown in Equation (5) and Equation (6). To handle the
updates of weights through such a network, the learning algorithm backpropagation
is used. The principle is that the gradients are computed at the output layers, and
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propagated backwards in the network to be used to update the weights in the earlier
layers.

The gradient descent method was appreciated for its simplicity, but has some draw-
backs. It can get stuck in plateaus or local minima, and if the dataset is large, the
computation gets time-consuming.

3.1.4.1 Stochastic Gradient Descent

When the gradient is calculated on all samples, it can only have one direction at
each training step and the method is deterministic. If the weights get stuck in a local
minimum, there is no way for it to rebound and escape for further improvement. A
way to introduce randomness is to instead calculate the gradient of a single sample
and make mini-updates to the weights. This is called online updating. When all
samples have been used once for updating the weights, we say that an epoch has
elapsed. An intermediate method between the fully deterministic and the fully
stochastic approach is to instead divide the set of training samples into mini-batches.
When training on such mini-batches, the method is known as the stochastic gradient
descent algorithm. The batch size is a tunable hyperparameter that affects the model
performance. [18]

3.1.4.2 Adam

There have been many modifications on the gradient descent algorithm resulting in
new algorithms that store information from previous updates to adjust the mag-
nitude and direction of the learning step. Adaptive moment estimation (Adam) is
widely used [18], and it keeps track of both the average of the previous gradients, as
well as the average of the square of the magnitudes of the gradients. The previous
magnitudes allow the method to increase the learning step if the algorithm is stuck
in a plateau. When the algorithm is near a minimum, however, the gradient rapidly
switches sign, and Adam uses this information to shorten the learning step so that
it does not miss the minimum.

3.1.5 Performance Measures

The value of the loss function can be used to monitor the training improvement of
a model and to validate its final performance. However, it is difficult to interpret,
and more often than not, additional evaluation metrics are needed which are more
directly connected to the predicted outcome.

For the classification task, a confusion matrix is a straight-forward visual represen-
tation of how well a model has succeeded in predicting the patterns to the correct
classes. It is illustrated in Figure 3.3.
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Figure 3.3: Schematic drawing of a confusion matrix for a binary classification
problem, where the true predictions can be found on the diagonal. The confusion
matrix can also be produced for a general classification problem with n classes. In
that case, it will turn into an n× n matrix with true positives on the diagonal.

The matrix is a table that consists of all patterns divided into the four following
categories:

• TP: True positives, the number of patterns that are correctly predicted to
belong to the positive class, and should indeed be positive.

• FP: False positives, the number of patterns that are predicted to be positive,
but the targets are negative.

• FN: False negatives, the number of patterns that are predicted to be negative,
but the targets are positive.

• TN: True negatives, the number of patterns that are predicted to be negative,
and should indeed be negative.

From the confusion matrix, additional information can be computed. Three mea-
sures that are widely used are [21]:

• Accuracy, which measures the overall correctness,

TP + TN

TP + FP + FN + TN
. (9)

• Recall, which measures the ratio between the correctly predicted positive sam-
ples and all samples that should have been positive,

TP

TP + FN
. (10)
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• Precision, which measures the correctly predicted positive samples out of all
samples that are predicted as positive,

TP

TP + FP
. (11)

3.1.6 Generalization

The usefulness of a model can be determined by the generalization ability of the
model, as described in [20]. Generalization measures how well the model perfor-
mance on new data matches the training performance, where new data is data that
the model has not seen during training. Such a dataset can be referred to as a test
set, while the dataset used for training is usually referred to as a training set. For
the training and test sets to be modelled with the same model, some assumptions
are needed. It is assumed that both datasets are sampled from the same underly-
ing distribution, and that the samples are all independent, i.e., that they fulfill the
i.i.d. assumption. If the performance of the model is lower on the test set than it
is on the training set, then the model is said to be overfitted. If the model severely
underperforms even for the training data, then the model is said to be underfitted.

Usually the training is repeated several times using different hyperparameters. At
this stage, the training set is split into two sets, where the smaller set, which is
called the validation set, is held out during the training [18]. After each epoch the
model is evaluated on the validation set. Based on the evaluation result on the
validation set, the best set of hyperparameters are selected. This is called model
selection. After the model selection step, the best performing models are retrained
on the entire training-validation set, and tested on the test set.

To avoid under- and overtraining, the capacity of the model can be changed [20]. An
example is the number of nodes in an MLP. With too few nodes, the model cannot
approximate the assumed underlying function well enough, resulting in a too low
capacity. Adding more nodes will make the capacity of the model increase, but on
the other hand it comes with the risk of overfitting. A rule of thumb is to select the
model which is the least complex and at the same time performs as good as the set
of best models.

An alternative to varying the capacity of the model, if one aims to improve gener-
alization, is to use regularization during training [20]. Two regularization methods
will be described in Section 3.1.7 and Section 3.1.8.

3.1.7 Augmentation

The aim of augmentation is to produce more training data by applying randomized
transformations on the input [20]. By artificially introducing a larger variation to
the training set, a better representation of the underlying data distribution can be
achieved, and therefore, the generalization ability of the model is improved. Since
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hairy cells are quite rare, the data collected for this project was limited in terms of
patient and hospital variations. Therefore, data augmentation was used.

For the task of classification, the model should be transformation-invariant, since
an image of a cell will still be a valid cell image after e.g., rotation or translation of
the image. For a transformation to be valid, it should be label preserving, i.e., the
transformed image should retain the same class belonging as before the transforma-
tion.

When comparing how well different models perform, it is important to use identical
augmentation settings during training, to make the comparison independent of the
augmentation itself.

3.1.8 Dropout

Dropout is a method of regularization, where many subnetworks are created during
training, all based on the main network [20]. For each time a pattern is presented
during training, the set of nodes to be used are drawn based on the probability p, and
the other nodes are "dropped", thereby creating a subnetwork. The hyperparameter
p can be different for each layer and node in the network and is set before training.
When the trained model is tested on new data, all nodes of the main network are
used.

The reason Dropout will regularize training is that, since the nodes are dropped at
random, one node can never rely on the presence of another node [20], which means
that the nodes will not be able to cooperate to make a jagged decision boundary. A
jagged decision boundary is a result of overfitting of the model to the noise in the
training data [18].

Dropout is especially useful for models with many nodes, since dropping nodes
during training will lower the capacity of the model [20]. Too few nodes in the main
model will make underfitting more likely for the submodels. Another advantage of
the slimmed submodels is that they will be less computationally expensive to train.
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3.2 Convolutional Neural Networks

3.2.1 Introduction

A convolutional neural network (CNN) is a type of ANN, which uses sparse con-
nections and shared weights to extract features from data [20]. Instead of a fully-
connected MLP with weights connecting each input node to each output node, a
convolutional layer has a kernel, containing only a limited number of weights. The
kernel is used for feature extraction and is moved systematically over the spatial
dimensions of the image. At each position, the kernel calculates a feature, and all
these features are combined into the output feature map.

A convolution, in its discrete form, is defined in [20] as

S(i, j) = (K ∗ I)(i, j) =
∑
k

∑
l

I(i− k, j − l)K(k, l), (12)

where S is the output image, K the convolution kernel, I the input image, and k,
l, i and j are indices. The height mw and width nw of the kernel are decided in
advance, and the number of weights of the kernel is mw ×nw × d+1, where d is the
number of channels of the input and the 1 represents the bias [18]. However, each
convolutional layer can have several kernels acting on the same input. Thus, the
total number of weights of a convolutional layer is mw × nw × d× c+ c, where c is
the number of kernels, which also is equal to the number of channels of the output.
Since mw and nw normally is selected as significantly smaller than the height and
width, m and n, of the input image, the total number of weights will be reduced
compared to the MLP [20]. After the convolution, a non-linear activation function
is used.

The activation is often followed by a pooling step [20]. A pooling step uses a non-
trainable kernel to look at limited areas of the input, and outputs one value for each
area based on some criterion. The kernel is moved over the input systematically just
like the kernel for the convolution. A popular choice is max pooling, which outputs
the largest value of each small area which the kernel passes. One main reason to use
a pooling after a convolution is that it helps the network to be invariant to minor
translations of the detected features. E.g., if an edge is found at one location or
found a few pixels to the right might not be important to the larger classification
problem.

When moving any kind of kernel over an image, the step size needs to be considered.
This is called the stride. If the stride is larger than one, this will reduce the spatial
dimension of the output, and this is common to do when using pooling [20]. The
dimensionality reduction is a way to condense the detected information before the
final classification.

In a CNN there are usually several convolutional layers and pooling steps stacked
after each other, after which the output of the last convolution or pooling layer is
flattened into a large vector and sent into a small MLP [18]. The output of the MLP
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is finally activated by some function to transform the output into probabilities, as
described in Section 3.1.2.

It is clear that CNNs are an important machine learning architecture, which solves
the main issue of the MLPs, i.e., that an increasingly deepened network leads to an
explosively growing number of weights. However, rather than just simple stacking
of layers, could there be more advanced kinds of architectures?

3.3 The Inception Architecture

3.3.1 Introduction

The approach of simply adding more convolutional layers has two disadvantages.

With the model getting larger, the number of parameters also increases. This makes
the model more prone to overfitting and thus requires a large and detailly labeled
dataset. The size of the available dataset is often a strict limitation in medical
imaging tasks, and even if one can acquire the amount of image data needed, it
is still laborious work for the expert tasked with labeling the data. Increasing the
number of parameters leads to longer computation time, this not only presents a
hardware limitation but also bottlenecks throughput.

The Inception architecture was first published in [22], 2014. It is inspired by sparse
computation and the Hebbian principle, which states that “neurons who fire together,
wire together” [23]. The main idea is to replace fully dense operations inside the
convolutions with sparse components that imitate them. In doing so, the authors
of the 2014 paper believed that both the performance and the robustness of the
network would be improved.

3.3.2 Naïve Implementation

When facing a classification task, the network makes decisions based on features
found in the image. Even for a group of images with the same label, the features
that mostly define an image as belonging to the correct class can have varying sizes,
see Figure 3.4.

Figure 3.4: To identify Arnold’s cat [24] from the three images, the network would
need to detect features of varying sizes.
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Traditionally, the convolutional layers of different sizes and pooling layers are stacked
upon each other, and the usual sizes are 3× 3, 5× 5, 7× 7. This makes it possible
for the network to capture features of different scales. The novel approach in the
Inception module is to instead let a series of convolutional kernels in varying sizes run
parallelly and concatenate the results into one single feature map that is propagated
into the next computational layer [22]. A schematic drawing of the architecture is
shown in Figure 3.5. This utilizes parallel computation while keeping the number of
parameters down. By allowing the network to choose between different filter sizes,
the network adapts itself to detect features of different sizes. During training, the
kernels with scales that match the salient features will be activated while the other
scales “die out”.

Figure 3.5: The naïve Inception module architecture.

3.3.3 The Inception Module

Simply concatenating convolutions of varying sizes results in the naïve implemen-
tation. The drawback of this is that each convolution operation requires a large
number of multiplications. Let us illustrate this problem with the first Inception
module used in the GoogLeNet architecture, an input block that is 28 ×28 ×192
(height × width × depth) [22]. The convolutional operation will be done with 32
filters of size 5× 5 with "same" padding. The number of multiplication operations
in total are

(28× 28× 32)× (5× 5)× (192) = 120 422 400

The problem can be remedied by introducing 1 × 1 convolutions before the spatial
convolutions. These serve to capture the depth-wise connections in the input while
simultaneously introduce even more sparsity by separating the convolution into two
dimensions. An ordinary convolutional operation can be viewed as two operations
carried out simultaneously on the input data in two dimensions, the spatial dimen-
sion and the depth dimension. By dividing the convolution into two dimensions, the
number of parameters can be greatly reduced.

Figure 3.6 shows a 1× 1 convolution. It essentially multiplies the information from
all the channels for each pixel. The output has the same spatial dimensions as the
input, with a depth that equals the number of convolutional kernels. In other words,
a 1×1 convolution teaches the network information about cross-channel correlations
while reducing the dimension depth-wise.
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Figure 3.6: Illustration of a 1× 1 convolution where the input has height m, width
n, and d channels. The output retains the same width and height, but has instead c
channels since c convolutional filters are used.

Continuing on the same module, let 16 filters of 1×1 convolutions reduce the di-
mension of the input block, this results in

(28× 28× 16)× (1× 1)× 192 = 2 408 448

multiplication operations.

After the 1× 1 convolutions, the spatial convolutions are appended to produce the
output with depth 32. For the 5× 5 kernel, the number of multiplication operations
during this step is

(28× 28× 32)× (5× 5)× 16 = 10 035 200

The total number of operations is

2 408 448 + 10 035 200 = 12 443 648

which is roughly ten times smaller than the number we got when the full convolution
was carried out in a single step.

The modified Inception module can be seen in Figure 3.7.

Figure 3.7: The Inception module architecture with the convolution filters and how
they are concatenated to produce the output.
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3.3.4 Xception

Based on an even stronger hypothesis on the separability of the convolution opera-
tion, the Xception module was designed [25]. Such decoupling was already used in
Inception where the 1×1 point-wise convolutions were done before the depth-wise
convolutions. In Xception, the point-wise and depth-wise convolutions are extremely
separated, hence the name. The number of such chains of convolutions equals the
number of desired output channels. Instead of using several kernels of different
sizes, only the 3×3 convolution is used in the Xception architecture. The Xception
network slightly outperforms Inception [25], and the architecture of an Xception
module can be seen in Figure 3.8.

Figure 3.8: Schematic drawing of the Xception module. The chains of convolutions
are "extremely" many compared to the Inception module. There are as many such
chains as the number of output channels.

3.4 Transfer Learning

Even with the efficient architecture provided by the Xception network, the amount
of available data and time resource is still a limiting factor for training. Transfer
learning is a method that takes advantage of a network that is pre-trained on a larger,
general dataset and applies the knowledge to a different dataset. If the dataset used
for the pre-trained network is large enough with many different classes of images,
the resulting feature maps serve as general knowledge of image classification and
can be applied to other classes than those present in the pre-training dataset.

To adapt the network to the specific task, the top fully connected layers that are
customized for the generic task need to be switched out for ones with properties that
are better suited for the current task. The size of the output layer and the type of
loss function should correspond to the number of classes in the new task. Now, the
new top layers are blank slates without any trained weights. If the whole network
is trained, the already trained weights of the base model will overpower the ones in
the top layers, resulting in trivial weights and thereby sub-optimal training results.
For this reason, the base layer weights are set to be frozen during the initial training
step and only the top layer weights are trained. This first step allows the network to
have a rough knowledge of where the minimum could be located, and fine-searching
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is taken care of in the second step. The learning rate is often set to be high in the
first step, to ensure that the network converges to the approximate location.

Since the base layer is only trained on the pre-training dataset, their weights need to
be adjusted in the second step in order to find a more precise minimum and improve
the model performance. Here is how we can think about the procedure intuitively:
The differences between the visual representations of the images in the current task
and the data used in pre-training would probably have generated different feature
maps through the network. By fine-tuning the base network, the feature maps will
be adapted to the new task. Due to the large number of parameters present in the
base model, this second training step is usually done with very small training step
size.

3.5 Contrastive Learning

What if, before applying a classifier, the data is first processed so that samples of
the same class are represented with similar coordinates in a latent space?

Contrastive learning uses information on the similarities and differences between
images within a dataset to cluster images [26]. First, a copy is made of the input
image, and both the original image and the copy are augmented. This random
augmentation generates a variation that allows the model to learn the essential
information that describes the similarity between the two images. The pair of images
are then compared against other images, called the negative samples. The goal of
training is to find the representational space in which the positive samples are close
together while the negative samples are pushed away.

There are several different approaches developed through the years. Most of the
earlier implementations are used for self-supervised learning. The earliest usage of
contrastive loss was presented in [27], where the authors used the loss as a dimen-
sionality reduction method prior to a classifier. In semi-supervised tasks, such as
the one presented in [10], the model is trained to find the underlying structure of
a dataset using the contrastive loss and assigns pseudo-labels to the found clusters.
If we have some labeled data, we can train the network to find similarities between
the unlabeled samples and the labeled samples and find which classes the unlabeled
ones belong to. This is done by contrasting the positive sample in a batch against all
other samples in the same batch while maximizing similarity between the positive
sample and its augmented counterpart. A classifier is then applied to find the real
classes to which the samples belong.

It is later found that contrastive learning could also be applied in a fully labeled
scenario, as described in [11]. The label information can be used to further leverage
accuracy. In this case, all samples belonging to the same class as the positive sample
in a batch are used to attract each other while repelling the negative samples in the
same batch. The "clustering" approach is what makes the contrastive learning also
appealing for supervised learning. Imagine that the dataset can be described in a
N -dimensional space. Each of the classes then forms a data cloud. If we could push



3.5. Contrastive Learning 23

samples belonging to the same class closer together, while simultaneously pushing
away the other classes, it would become much easier to draw the decision boundaries.
An illustration of how a supervised contrastive model works is shown in Figure 3.9.

Figure 3.9: The augmented pair of puppy images (the upper left images) and all
the other puppies belong to class 1. The objective of the network is to gather the
puppies of all breeds while pushing the kittens away. Image used with permission
from P. Khosla, author of [11].

In addition to all the building blocks used for transfer learning, two additional
ingredients are needed to train a contrastive learning network, namely contrastive
loss and pair-wise augmentation.

3.5.1 Supervised Contrastive Loss

The objective of the contrastive loss is to measure the similarity between the rep-
resentations of two images. In other words, it is a distance measurement between
vectors consisting of image features in a batch of images. The supervised contrastive
loss function that will be used in this thesis was introduced in [11] as

Lsup
out =

2M∑
i=1

Lsup
out,i =

2M∑
i=1

−1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
. (13)

The sample i is known as the anchor, and zi is the corresponding vector in the
projection space. For each training batch consisting of M images, the loss is calcu-
lated on 2M pair-wise augmented samples. The set P denotes all positive samples
apart from the sample i that the loss is being calculated for. The set A includes all
samples in the batch except for the anchor. It can be seen from the equation that
if the latent space pushes the positive samples in a batch together, while pushing



24 Chapter 3. Theory

away the negative samples, the loss will be small, otherwise the loss will be large. τ
is called the temperature and is a tunable hyperparameter.

3.5.2 Pair-wise Augmentation

To teach the model the general representation of a given class, it is ideal for each
sample from a class to have different views. This can be achieved by applying
generous augmentations on the image pairs. In other contrastive applications (such
as ones that discern objects in traffic, or dog breeds from one another), views often
have the literal meaning of the object seen from different viewing angles. Since
blood cells are only viewed from top, the definition of view needs to be broadened.
It can then include rotation, translation, zooming, cropping, and tuning of contrast
and tone.

3.5.3 Architecture

The following is a description of the architecture and training set-up used in [11]. An
encoder is needed to reduce the dimensions in the input image to a representational
space. This space still retains many dimensions, and 2048 is the number proposed
in the original paper. The calculation of the loss function would be very time-
consuming if conducted on such large vectors. Therefore, a projection network is
needed for further dimensionality reduction. This network is called the projection
head and is attached to the end of the encoder network. It is an MLP with either
one hidden layer or none, and an output layer with 128 nodes. The concatenated
network is trained with the contrastive loss.

After adequate training, the projection network is discarded, and a classifier is ap-
pended to the encoder instead. To keep the training of the weights to the classifier
network only, the weights of the encoder are set to frozen. After already finding
a good representational space during the first training step, the task of the new
network is to assign the correct labels to samples. Therefore, it is trained with
categorical cross-entropy loss instead of the supervised contrastive loss. The size of
the output from the encoder network as well as the output layer from the projection
head could largely depend on the dataset and the number of classes studied and will
be investigated in this project.
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4
Methodology

If you ignore technology, produce demons [1].

4.1 Collection of Cell Images

The slides and datasets were provided by CellaVision. We were able to collect slides
that have hairy cell occurrence observed in laboratory. These slides were then run
on the CellaVision DC-1 system and the cell images were saved on a database called
"hairy_db". In total, 11 slides containing hairy cells originating from three hospitals
were acquired.

For each run of a slide the system was set to count 1000 WBCs and stop the scanning
once the threshold was reached. For two of the slides the system was unable to find
enough WBCs and the analysis was automatically stopped. The system was set to
pre-classify 19 standard WBC classes, i.e., not including hairy cells. All scanned
images were stored in a database along with the pre-classification labels.

The cell images should be stored in both .bmp and .jpg formats, where the .bmp
format contains more information while the .jpg format is compressed and normal-
ized. Due to a corruption in the database, we lost many of the .bmp images, and
had to resort to using the .jpg images instead.

It is vital to ensure that all cells, including the hairy cells, receive the correct ground
truth labeling. Therefore Steven Marionneaux, expert in hematology, was consulted
to examine all the cells in the database and assign them with the correct labels.

To complement the collected dataset with cells from other cell classes, additional
cell images were extracted from earlier runs on other slides. These are stored in
the “WBCTrain” database at CellaVision. We were able to use an internal tool to
select which cells that should be used. For each of the cell classes, up to 5000 cells
were collected, depending on the availability of cell images. Some of the classes,
e.g., promyelocytes and plasma cells were very rare, hence all the cells belonging to



26 Chapter 4. Methodology

these classes across the whole database were collected.

For the classes lymphocytes, abnormal lymphocytes, and reactive lymphocytes, the
criteria for labeling at collection time does not necessarily align with our goal which
is that hairy cells should belong to their own class. Manual examination of images
of these three classes were thus conducted to remove possible occurrences of hairy
cells.

In the model selection phase only the hairy cells were used from "hairy_db", and
not the cells from the other 19 standard classes. However, after suspicions of the
model learning to recognize system and software specific information of the images
from this database, and not only the morphology of the hairy cells, images of all
cell classes from "hairy_db" were added to the training set for the final retraining
of the model on all training and validation data.

The total numbers of cell images used for training and validation are displayed in
Table 4.1.

Table 4.1: The table contains the number of cell images used for the final training
on all available data. Note that these numbers include cells from both the databases
"WBCTrain" and "hairy_db", which is why some cell classes exceed the 5000 num-
ber limit.

Number of cells in each class for the final training

Segmented neutrophil 6542 Plasma cell 116
Eosinophil 5063 Hairy cell 4279
Basophil 2512 Smudge cell 6762
Lymphocyte 5983 Erythroblast (NRBC) 4667
Monocyte 5094 Artefact 4515
Band neutrophil 3530 Giant thrombocyte 994
Promyelocyte 365 Thrombocyte aggregation 1660
Myelocyte 3561 Reactive lymphocyte 4697
Metamyelocyte 2070 Abnormal lymphocyte 4201
Blast (no lineage spec) 5001 Large thrombocyte 5000

Total: 76612

4.1.1 Training, Validation, and Test Split

Since we did not have access to more hairy cells than the collected 11 slides, two of
the slides were put aside into a holdout test set.

For the other 19 cell classes, a database called “WBCTest” that is used for internal
validation of neural network performance at CellaVision is used. These images are
collected from different slides than the ones in "WBCTrain", hence the usage of
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them for testing will ensure that the generalization ability of the model is evaluated.
In Table 4.2 are the number of cell images used for testing.

Table 4.2: The number of cell images used for testing can be seen in the table.

Number of cells in each class for testing

Segmented neutrophil 1135 Plasma cell 185
Eosinophil 1113 Hairy cell 1453
Basophil 707 Smudge cell 1171
Lymphocyte 1137 Erythroblast (NRBC) 409
Monocyte 1094 Artefact 1047
Band neutrophil 524 Giant thrombocyte 121
Promyelocyte 265 Thrombocyte aggregation 221
Myelocyte 425 Reactive lymphocyte 1277
Metamyelocyte 195 Abnormal lymphocyte 610
Blast (no lineage spec) 1431 Large thrombocyte 854

Total: 15374

The validation split is done during training using the built-in split argument from
the Tensorflow data.dataset module [28]. To prevent the data from being shuffled
differently during each run, a seed is set, and the split ratio between the training
and validation sets was constant at 0.8:0.2.

4.1.2 Expert Classification

"WBCTrain" and "WBCTest" have previously been labeled by several experts, al-
though all slides have not been labeled by all experts. For "WBCTrain" we found
that using images labeled by one expert or more, where all experts are in agreement,
resulted in a dataset with acceptable ground truth. Yet, when using the same con-
figuration on "WBCTest", there were several severe expert misclassifications, such
as segmented neutrophils being labeled as lymphocytes. We therefore decided to be
even more critical of the expert labels in the test set, and to only use images with
at least two or more experts, of whom all agree.

4.2 Transfer Learning

4.2.1 Model Creation

The model used for evaluating transfer learning is implemented with adaptions from
[29], and the architecture can be found in Appendix B.1.



28 Chapter 4. Methodology

First, an input layer receives the images and passes them on to the rest of the
network. The second layer receives the input and applies online-augmentation.

Between the input and the base model, a normalization layer is added which scales
the input to be between -1 and 1. This is because the pre-trained weights in Xception
only accept inputs in this range.

After augmentation, the images are ready to be processed by the base model. As
mentioned in section 3.4, the model should be built upon a pre-trained base model
(with its top layers removed) that already contains information on feature maps for
image classification. Since this work focuses on the comparison between the transfer
and contrastive learning methods, we limited ourselves to using one base model for
all experiments, and selected the Xception model for its performance. We let the
base model initialize with weights obtained from training on the ImageNet dataset
[30].

After the base model, a global average pooling layer is needed to extract a feature
map for each of the classes. The global average pooling layer acts like a fully
connected layer but adapts better to CNNs. A dropout layer with 0.2 dropout
strength is added. The outputs are then passed on to the top layers.

Our task has 20 classes while the original ImageNet task has 1000 classes [25].
Therefore the top layers from the original Xception architecture were removed and a
new top layer with size 20 was appended. It is worth noting that it is possible to add
hidden layers to the top architecture. However, after experimenting with different
architectures, we arrived at the conclusion that a single dense layer produced the
best results.

4.2.2 Metrics

The metrics that are monitored are shown in Table 4.3.

Table 4.3: Metrics used in transfer learning.

Metrics Training Validation Test

Categorical cross-entropy loss • • •
Accuracy • • •
Recall • •
Precision • •
Confusion matrix • •
Scatter plot • •

A 20×20 confusion matrix is plotted to assess the performance of the model for
each cell class. Since one part of the objective is to discern hairy cells from the
other lymphocytes (normal, abnormal, and reactive), special consideration is taken
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to evaluate the performance of the model on these classes. During the test phase,
another simplified confusion matrix is plotted, in addition to the full matrix. In
the simplified version, the four lymphocyte classes are presented, while all other cell
classes are assigned to the category “Other”. This smaller confusion matrix helps in
understanding whether the hairy cells and the other lymphocyte classes get mixed
up with each other or with non-lymphocyte classes.

To view the effect of the contrastive learning, a scatter plot of the output of the global
average pooling, i.e., the part that corresponds to the encoder in the contrastive
model, is created. The output is l2-normalized and a dimensionality reduction is
performed to be able to plot the space in 2D.

4.2.3 Training

During the first training step, the initialized base model weights are set to be frozen.
This way the only trainable weights are the ones in the top layers. The loss function
is monitored during training, and the number of epochs are selected to let the model
train until the validation performance stagnates.

Since the weights of the base model have not been trained on the images used
specifically for this task, some fine tuning is needed for it to find better features.
The weights are unfrozen, and the whole model is trained.

Both training steps are monitored using the cross-entropy loss and accuracy.

4.2.4 Model Selection

The hyperparameters are selected based on the metrics and the loss/accuracy graph
obtained during training, as well as the confusion matrices. For simplicity, all models
including the ones described in Section 4.3, will be named HAL-XXXXX (Hairy ab-
normal lymphocyte network), where the first letter after the hyphen denotes whether
it is a transfer learning (T), contrastive learning (C), or a randomly initialized (R)
model, while the last four digits act as a distinguisher. The hyperparameters for the
three best performing transfer models can be seen in Table 4.4.

4.2.5 Data Augmentation

To achieve better generalization performance, augmentation layers are added to each
model. For transfer learning, this is the only augmentation step. The augmentation
is done online which means that each sample will be randomly augmented within
the given parameters. The morphology of blood cells depends largely on the size, so
zooming was limited to a small amount only. Furthermore, it is important to take
care when using color transformations, since the stains used have very distinct color
palettes. Thus, doing hefty color transformations might lead to the training data
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Table 4.4: Selected hyperparameters in transfer learning, excluding augmentation
settings.

Hyperparameter HAL-T3001 HAL-T3002 HAL-T3003

Top layer epochs 10 6 15
Fine tuning epochs 4 5 5
Top layer learning rate 10−3 10−3 10−3

Fine tuing learning rate 10−4 10−4 10−4

Dropout 0.2 0.2 0.2
Batch size 20 25 25

not being representative of future data [31].

The augmentation is performed using tf.keras.layers [32], and the different settings
are:

• Random contrast: The contrast is calculated as (x − µ)c + µ, where x is the
input pixel contrast, µ the image pixel mean, and c is a factor drawn from the
interval [1.0− C, 1.0 + C], where C is the contrast factor chosen by the user.

• Fill mode reflect: When an image is moved in any way such that parts of image
no longer contain any pixel information, these parts will be filled by reflecting
the content of the nearest pixels.

• Random rotation: The rotation is drawn from the interval [−2πr, 2πr], where
r is the rotation factor.

• Random translation: The translation factor, t, is the bound of the percentage
of the input height or width with which the output image is shifted. The shifts
can be either upwards, downwards, to the left or to the right depending on
the sign that is assigned to the randomized values. We select the translation
bounds to be the same in both axes so only one factor will be present.

• Random zoom: The zooming factor z is the bound of the percentage of the
input image size with which the output image will be enlarged or shrunken,
i.e., the image is zoomed in the range [−z, z] where a negative factor means
shrinking.

The augmentation setting used for transfer learning can be seen in Table 4.5.

4.2.6 No Transfer Learning: Model with Randomly Initial-
ized Weights

As a comparison, a model was trained with identical architecture as HAL-T but with
randomly initialized weights instead of the ones obtained from ImageNet training.
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Table 4.5: Selected augmentation settings in transfer learning.

Augmentation Classifier

Contrast C 0.1
Fill mode reflect
Rotation r 0.5
Translation t 0.05
Zoom z 0.05

This model will be referred to as HAL-R. When setting up the model, no weights are
loaded and an "empty" model is compiled. By doing so, the entire model is trained
from scratch, and both top layers and the base model are trained simultaneously.
Except for the weight initialization, most hyperparameters are kept to be the same
as the ones used for the model with best performance, as can be seen in Table
4.6. Since there is no separate top layer training, nor fine tuning, there is only one
learning rate and one number of epochs. To ensure that the model will converge or
stop improving in a reasonable amount of time, early-stopping is used. If the loss
has not improved in 3 epochs, the training will be stopped.

Table 4.6: Selected hyperparameters in the randomized initialization training, ex-
cept augmentation settings. The augmentation settings were the same as for transfer
learning, Table 4.5.

Hyperparameter HAL-R

Epochs 100
Learning rate 10−3

Dropout 0.2
Batch size 25

4.3 Contrastive Learning

4.3.1 Model Creation

The implementation of the contrastive training and loss is based on two previous
works. From [33], a first iteration of the loss function was created. Some minor
tweaks to the loss function were added, inspired by [11]. The structure of the
architecture and the training pipeline are also influenced by [11] with adaptions
to integrate with the available software and hardware used for this project. The
model, HAL-C, consists of an encoder, a projection head, and a classifier, and all
architectures can be found in Appendix B.2 - Appendix B.5.

The encoder network is very similar to the transfer learning architecture from the
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input to the global average pooling layer, except that it does not include the augmen-
tation layer. The base model for the encoder is still the Xception module pre-trained
on ImageNet. The encoded space will thus be the output of the global average pool-
ing layer, and will be a 2048-dimensional space.

The projection network consists of an input layer, an online augmentation layer,
the encoder, and the projection head. As recommended by [11] both the encoded
features, before being sent into the projection head, and the output of the projection
head are l2-normalized. The projection head is chosen to be an MLP with a dropout
layer and a single dense output layer. The output is an N -dimensional space, where
N is a hyperparameter. The projection model had to be implemented as a subclass
of Tensorflow’s keras.Model for it to be able to handle the contrastive training step,
and this implementation is loosely based on [34]. The reason is that the contrastive
training step includes a doubling of the data before data augmentation in each batch
to create the two views of the same image, which is not part of any standard training
packages.

The classifier network has a similar architecture as the projection network, but with
some differences. The most important being that the classifier network does not
use l2-normalization on the output layer, and that the number of output nodes
corresponds to the number of classes. Other differences are that the augmentation
will have slightly milder settings, and that there of course was no doubling of data
in the training steps.

4.3.2 Metrics

For the contrastive training almost the same metrics were studied as for the transfer
learning. The metrics can be seen in Table 4.7.

Table 4.7: Metrics used in contrastive learning.

Metrics Training Validation Test

Supervised contrastive loss • • •
Categorical cross-entropy loss • • •
Accuracy • • •
Recall • •
Precision • •
Confusion matrix • •
Scatter plot • •
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4.3.3 Training

Previous work in [10] and [11] have pressed upon the importance of larger batch sizes
during training of contrastive networks. However, due to the large size of Xception,
and the limited GPU memory, the batch size was limited to 16, and could not be
explored further.

Since pre-trained Xception weights are used in this project, the training can be
seen as a combination of transfer and contrastive learning. In the initial training
experiments, firstly the projection network was trained, followed by training of the
classifier network. However, the initial training of the projection network did not
work as expected. The input was projected down to practically a single point in
the projection space, and even sometimes to the zero vector, which naturally made
training of the classifier impossible, since it had no means of distinguishing between
the classes. The issue was solved by this three-step training procedure:

1. Train the projection network with the projection head weights unfrozen, but
with the encoder weights frozen.

2. Train the projection network with both the projection head and encoder
weights unfrozen.

3. Train the classifier network with the classifier weights unfrozen, but with the
encoder weights frozen.

The three-step training is illustrated in Figure 4.1.

Figure 4.1: Three-step training procedure. The green color means that the weights
are trainable, while the grey color means that the weights are frozen.
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4.3.4 Model Selection

When the training procedure was established, a hyperparameter search was initi-
ated. The resulting hyperparameters can be seen in Table 4.8 and Table 4.9 for
the projection networks and the classifier networks respectively. The projection
networks and the encoders will be referred to as projection-head-X and encoder-X,
where X corresponds to the number of projection head units used in the training.

Table 4.8: Selected hyperparameters for the projection networks in contrastive
learning. Note that the settings for projection-head-16 was changed slightly from
the training with validation-split to the final training using all training and valida-
tion data. This means that the validation and the test results are produced with
somewhat different hyperparameters. The hyperparameters used for the validation
results can be found in Table C.1 in Appendix C, whereas the hyperparameters shown
here were used in the final training. The reason for the change is that it was believed
already in the model selection that these hyperparameters would be better, but due to
the long training time no retraining was performed.

Hyperparameter projection-head-16 projection-head-128

Projection head epochs 7 7
Encoder + projection head epochs 10 10
Projection head learning rate 10−3 10−3

Encoder + projection head learning rate 10−5 10−5

Dropout 0.2 0.2
Batch size 16 16
Temperature 0.1 0.1
Projection head units 16 128
Encoder base encoder-16 encoder-128

Table 4.9: Selected hyperparameters for the classifier networks in contrastive learn-
ing.

Hyperparameter HAL-C3001 HAL-C3002 HAL-C3003

Classifier epochs 20 20 20
Classifier learning rate 10−3 10−3 10−3

Dropout 0.3 0.2 0.3
Batch size 16 16 16
Encoder base encoder-16 encoder-128 encoder-128

4.3.5 Data Augmentation

The same sorts of augmentation as in transfer learning were used for contrastive
learning, but with other hyperparameters. The augmentation settings for the pro-
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jection network and the classifier network can be seen in Table 4.10.

Table 4.10: Selected augmentation settings for contrastive learning. The table
contains the settings both for the projection networks and the classifier networks.

Augmentation Encoder/Projection Head Classifier

Contrast C 0.5 0.1
Fill mode reflect reflect
Rotation r 0.5 0.5
Translation t 0.1 0.05
Zoom z 0.1 0.05

4.4 Sanity Test

In the initial training, hairy cell was the only class used from the database "hairy_-
db". Let us call this set A. The other 19 cell classes were taken from the database
"WBCTrain". This set will be referred to as B. This led to models with 1.0 recall
and 1.0 precision for hairy cells in the test set, and arose suspicions of the models
only learning to recognize the difference in appearance between the databases, and
not the actual morphology of hairy cells. Therefore a sanity test consisting of two
parts was conducted.

A new test set, C, was formed of the 19 other cell classes, but this time only from
"hairy_db". In part 1, the models trained on the original training set, which consists
of data from both A and B, were tested on a C-test set. The models were then
retrained on a new training set with data from A, B and C. These models were
again tested on the C-test set.

In part 2, a fourth set was formed called D. D was composed of the possible hairy cells
that had been removed from "WBCTrain" and "WBCTest" in the data collection
phase. These images have not been confirmed as hairy cells, but their morphology
show clear resemblances to that of a hairy cell. Examples of such images can be
seen in Figure 4.2. Again, the models were first trained on A and B and tested on
D, and then retrained on A, B and C and tested on D.

Note that all other test results presented in this report are produced using a training
set with data from A, B and C, and tested on a test set with data from A and B.
The validation results are produced by doing a validation split on data from A and
B. Only this section uses the data in D. A summary of the four datasets can be seen
in Table 4.11.
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(a) Large hairy lymphocyte (b) Small hairy lymphocyte

Figure 4.2: Abnormal lymphocytes with morphologies similar to those of hairy
cells. Images belong to dataset D.

Table 4.11: A summary of the datasets used in the sanity test. Note that A, B, C
and D all have separate training and test subsets.

Dataset Description

A Hairy cells from "hairy_db".
B Cells from the other 19 classes from "WBCTrain" or "WBCTest",

depending on if it is a training set or a test set.
C Cells from the other 19 classes from "hairy_db".
D Cells with morphologies similar to hairy cells from "WBCTrain" or

"WBCTest".
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5
Results

It’s ultimately about ambitions [1].

5.1 Transfer Learning with Xception

In Table 5.1, the results of the training of HAL using transfer learning, HAL-T, is
presented. Three different hyperparameter combinations were selected for the final
retraining using all training data, HAL-T3001, HAL-T3002, and HAL-T3003. Both
the validation and test accuracy and loss can be seen in the table.

Table 5.1: Results for the three best transfer learning models.

Model Validation Accuracy Validation Loss Test Accuracy Test Loss

HAL-T3001 0.9087 0.2811 0.8766 0.4598
HAL-T3002 0.9057 0.2921 0.8821 0.4200
HAL-T3003 0.9056 0.3021 0.8817 0.4297

For the best model, HAL-T3002, Figure 5.1 shows the full confusion matrix with
all classes. The lymphocyte-specific confusion matrix can be found in Figure 5.2.
Figure 5.3 shows the dimensionality reduction of the encoded space for HAL-T3002.
The dimensionality reduction was performed using t-SNE.
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Figure 5.1: Confusion matrix for HAL-T3002, which is the best performing transfer
learning network.

Figure 5.2: Confusion matrix with only the lymphocyte classes for the best transfer
learning network, HAL-T3002. The non-lymphocyte classes have been forwarded to
the label "Other".
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Figure 5.3: t-SNE dimensionality reduced scatter plot of the encoded space for
HAL-T3002 used on the test set.

5.1.1 Randomly Initialized Model

The model that was initialized with random weights, instead of ImageNet pre-trained
weights, reached the early-stopping criterion and stopped training after 11 epochs.
The accuracy and loss for both training and test of the HAL-architecture with
random initialization, HAL-R, can be seen in Table 5.2. The confusion matrix with
all 20 classes can be found in Figure 5.4. In Figure 5.5 the encoder-space is visualized
using a scatter plot and t-SNE.

Table 5.2: Results for HAL-R, which is the network initialized with random weights.

Model Training Accuracy Training Loss Test Accuracy Test Loss

HAL-R 0.08778 2.837 0.07617 2.889
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Figure 5.4: Confusion matrix for the model with randomized weight initialization,
HAL-R.

Figure 5.5: Dimensionality reduction using t-SNE on the encoded space of the
model with randomized weight initialization, HAL-R. There are no visible clusters
of the same color. All cell classes are rather mixed up.
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5.2 Contrastive Learning

The accuracy and loss on validation and test for the contrastive models, HAL-
C, can be seen in Table 5.3. Three models are presented, where HAL-C3001 has
N = 16 projection head units, and the other two, HAL-C3002 and HAL-C3003,
have N = 128. Of the three models, HAL-C3003 has the best performance.

Table 5.3: Results for the HAL-C models. Note again that the validation and
test results for HAL-C3001 are obtained with slightly different hyperparameters as
explained in Table 4.8.

Model Validation Accuracy Validation Loss Test Accuracy Test Loss

HAL-C3001 0.9129 0.2660 0.9004 0.3550
HAL-C3002 0.9186 0.2546 0.9020 0.3518
HAL-C3003 0.9184 0.2551 0.9024 0.3462

The full confusion matrices with all cell classes for HAL-C3001 and HAL-C3003
can be found in Figure 5.6 and Figure 5.7, and the condensed, lymphocyte-only
confusion matrices can be seen in Figure 5.8 and Figure 5.9. The dimensionality
reductions of the encoded space for HAL-C3001 and HAL-C3003 can be seen in
Figure 5.10 and Figure 5.11.
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Figure 5.6: Confusion matrix for the contrastive learning model with 16 projection
head units, HAL-C3001.

Figure 5.7: Confusion matrix for the best contrastive learning model with 128
projection head units, HAL-C3003.
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Figure 5.8: Confusion matrix with the lymphocyte classes for HAL-C3001.

Figure 5.9: Confusion matrix with the lymphocyte classes for HAL-C3003.
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Figure 5.10: Dimensionality reduced scatter plot of the encoded space of HAL-
C3001. Produced with t-SNE.

Figure 5.11: Dimensionality reduced scatter plot of the encoded space of HAL-
C3003. Produced with t-SNE.
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5.3 Sanity Test

The part 1 results on the C-test set can be seen in Table 5.4, and the results for
part 2 on the D-test set can be seen in Table 5.5. For both tables the test accuracy
when training on A and B can be seen in the first column and the test accuracy
when training on A, B and C can be seen in the second column. All networks in the
sanity test are trained using transfer learning.

Table 5.4: Results for part 1 of the sanity test. The accuracy is shown for a test
set with data from C. For the first accuracy the networks are trained on data from
A and B, and for the second accuracy the networks are trained on data from A, B
and C. The networks are trained using transfer learning.

Model
Accuracy tested on C

Trained on A & B Trained on A, B & C
HAL-T3001 0.6138 0.9116
HAL-T3002 0.4836 0.8825
HAL-T3003 0.2974 0.9212

Table 5.5: Results for part 2 of the sanity test. The accuracy is shown for a test
set with data from D.

Model
Accuracy tested on D

Trained on A & B Trained on A, B & C
HAL-T3001 0.07407 0.1852
HAL-T3002 0.07407 0.1481
HAL-T3003 0.03704 0.1852

For model HAL-T3003 four confusion matrices were produced for the four different
training-testing configurations. The matrices for part 1 of the sanity test can be seen
in Figure 5.12 and Figure 5.13, and the matrices for part 2 can be seen in Figure
5.14 and Figure 5.15.
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Figure 5.12: Confusion matrix for the model HAL-T3003 trained on sets A and
B, and tested on set C.

Figure 5.13: Confusion matrix for the model HAL-T3003 trained on sets A, B,
and C, and tested on set C.
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Figure 5.14: Confusion matrix for the model HAL-T3003 trained on sets A and
B, and tested on set D.

Figure 5.15: Confusion matrix for the model HAL-T3003 trained on sets A, B,
and C, and tested on set D.
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6
Discussion

Believing is like being in an experiment on mind control [1].

6.1 Random initialization of Xception

We will start the discussions by examining the randomly initialized model, as this
will better illustrate the benefits gained by using transfer learning. As expected,
using random initialization for the network did not yield any reasonable results.
All images were classified to the same class, namely smudge cell. This implies that
the model has found a very poor local minimum and was unable to detect any
useful features. Since the selected architecture has 20 847 932 trainable weights,
the weight space is very vast. Therefore, the likelihood of starting close to any
decent local minimum is extremely low. Additionally, if the optimization algorithm
had been able to find a minimum, the risk of this minimum being overfitted to the
training data, which is relatively small compared to the number of weights, would
be very high. This means that such a minimum might not be a general one.

Another factor that makes it hard to train large networks from random weights is
that there are many hyperparameters to tune. A hyperparameter search would take
a long time, since for each hyperparameter setting a new training is needed and
when all weights are trainable, the time for an epoch is quite long. We chose to
base the settings for this training on the hyperparameters in the transfer learning
section, but with a few changes. Firstly, we used a learning rate of 10−3, since we
believed that an untrained model would need to move around more than a transfer
learning model. Secondly, we set the total number of epochs to 100, to give it a
chance to converge, though it stopped early already after 11 epochs. A more in-
depth hyperparameter search was not performed, since it falls outside of the scope
of this project.

Looking at the encoded space it is clear that the model has not learned to differ-
entiate between different classes. There is no clustering of similar classes of any
sort.
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6.2 Transfer Learning with Xception

With the best performing model, HAL-T3002, achieving a 88.21% test accuracy,
the results of the transfer learning model far exceed the training of the randomly
initialized model. The idea is that the transferred weights already have learned some
general image features, and all the top layers have to do is to find a decision boundary
well suited for the cell classification task. This local minimum will potentially be
close to an even better minimum, which can be found after unfreezing the base
model.

There is a drop of 2.6% in accuracy between the validation and test sets. This could
be connected to the training and validation split of a common dataset. The split
will not take into account that some images come from the same slide. This means
that some cells in the training and validation set might share some similarities since
they come from the same patient, are stained the same way and that the images
are collected using the same system. The test set on the other hand will exclusively
come from another set of slides. The cell images might therefore be different when
it comes to these previously mentioned factors, and the training data can be said to
not completely represent the underlying distribution.

Looking more closely on the confusion matrix in Figure 5.2 on page 38, it is worth
noting that there are no false positive hairy cells, i.e., no images are falsely classified
as such. The most common class among the false negative hairy cells, are lympho-
cytes. This is not completely unexpected, due to their strong likeness. If the "hairs"
are very thin or small, both large and small hairy cells can look very similar to lym-
phocytes. The other lymphocyte classes suffered more from being misclassified to
each other. There are especially an overclassification from abnormal lymphocytes
to reactive lymphocytes. Generally the model seems to have had difficulties to learn
to recognize abnormal lymphocytes, which is expected due to its large intra-class
variation.

The scatter plot of the encoded space, Figure 5.3 on page 39, is far more interesting
than the one created for the random initialization. Each class has now one or several
more or less clearly defined clusters, where each class is marked with its own color.
Note that the hairy cell images have formed two semi-close clusters at the left side
of the figure. One hypothesis is that the two clusters represent the small and large
hairy cells, since these have slightly different morphologies, e.g., when it comes to
the size of the cells, but also the appearance of the cytoplasm.

Most of the reactive lymphocytes, the lymphocytes and some of the abnormal lym-
phocytes can be found in clusters close together in the upper part of the image. The
abnormal lymphocytes have been split into a few different clusters that are some-
what spread out over the figure. This likely reflects the inhomogeneous morphologies
of the class. The abnormal lymphocytes can come in many sizes, shapes and col-
ors, making it a difficult class to cluster. This is why it from a machine learning
perspective might be a really good idea to label the subclasses, such as hairy cells.
This gives the network the possibility to separate the abnormal lymphocytes into
these morphologically dissimilar subclasses instead of trying, and failing, to classify
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them into one large, very diverse class.

6.3 Contrastive Learning

HAL-C3003 has the best result of the contrastive models and achieves an accuracy
of 90.24%, though the others are very close in performance. Nonetheless, all the
contrastive models distinctly outperform all the transfer models, meaning that HAL-
C3003 is the best of all models in this project. HAL-C3003 has a 1.7% lower accuracy
on the test set than on the validation set.

To compare the effect of using 16 or 128 projection units, confusion matrices and
dimensionality reduction scatter plots for both HAL-C3001 and HAL-C3003 were
included in the results. The confusion matrices, Figure 5.6 and Figure 5.7 on page
42, are very similar. HAL-C3003 has a better accuracy for hairy cells, reactive
lymphocytes and abnormal lymphocytes, and has slightly fewer false negative hairy
cells, while HAL-C3001 has one more true positive lymphocyte than HAL-C3003.
However, the differences are small and could be due to the randomness in learning.
Just like the best transfer learning model, none of the contrastive models has any
false positive hairy cells. This indicates that the models generally are unwilling to
classify images from "WBCTest" as hairy cells.

In Table 6.1 some false negative hairy cells can be seen. The first image contains
two cells, which unsurprisingly confuses the classifier. Looking at the morphology
of the left cell in the image, this is most likely a segmented neutrophil, which is the
predicted class of the classifier. The rest of the images all have features which could
make the classifier put them in the predicted class. The second image lack visible
hairy strains, similarly with the fourth and sixth, the third looks quite smudged,
and the fifth has a nucleus with many indentations which could lead the classifier
to think that it is a segmented neutrophil.

Image

Predicted label Segm. Neutr. Lymphocyte Smudge

Image

Predicted label Lymphocyte Segm. Neutr. Lymphocyte

Table 6.1: Examples of images that should be classified as hairy cells but were
predicted as other classes (false negatives). The images come from the test set and
the predictions are done with HAL-C3003. The class labels denote the predictions.

The scatter plots, Figure 5.10 and Figure 5.11 on page 44, are also quite similar,
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though some clusters are moved and rotated. Some clusters seem to be a bit more
tight for HAL-C3003, than for HAL-C3001. This can e.g., be seen for the lymphocyte
and reactive lymphocyte clusters.

The use of more projection units gives the model more features to use for maximizing
the similarities in the supervised contrastive loss, but this could increase the risk of
overfitting to the training data. For the presented models, no such clear difference
can be seen, as all models have a slight tendency of overfitting, i.e., that they have
a lower accuracy on the test data.

The three step-training method for the contrastive models is superior compared to
training both the encoder and the projection head at the same time in the first step.
We believe that the advantage can be attributed to that, by first only training the
projection head, the projection head is given the chance to find a good starting point
at a reasonable local minimum. If the first step is left out, the network could not find
any other contrastive loss minimum than the one where all images are projected to
the same point in the encoded space and the projection head space. One can think
of it as if the very small projection head is overshadowed by the enormous encoder.
Since the weights in the projection head is only random, while the encoder is pre-
trained on ImageNet, the pure force of the encoder will drive the training, leaving
the weights of the projection head forgotten, and the result will be meaningless.
The first training step will clearly not affect the encoded space, since these weights
are frozen, but it can be seen as an advanced form of weight initialization of the
projection head.

When training the projection networks, the second training step was very time-
consuming. Each epoch took around 45 minutes, while for the contrastive classifier
networks each epoch only took about 5-6 minutes. Due to this slow training we
were limited in the number of experimental networks we could train. Therefore we
only tried a temperature of 0.1, as suggested by previous articles, e.g., [11], however
another temperature could be more suited for this task. Likewise we could not
perform a huge search for the other hyperparameters for the projection network.
For this reason the results on the validation set for the projection-head-16 was run
with the hyperparameters in Table C.1, while for the final model it was believed
that the model would gain from some hyperparameter alterations, such as more
epochs in the training of the encoder, and larger learning rate when training only
the projection head weights. These alterations were thus used in the final training,
and could be seen in Table 4.8.

Since the difference between the model using 16 projection units and the models
using 128 projection units is small, and the fact that projection-head-16 will have
slightly less weights, meaning it is a smaller network to train, it could be preferable
to use the smaller model. On the other hand HAL-C3003 did achieve the best
accuracy of all models. The projection head weights used for training the projection
network are discarded in the later training stages, which means that the deployment
speed of the network is not affected by the difference in the number of weights. With
available computing power, it is therefore worth to choose 128 projection units over
16 projection units.
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6.4 Sanity Test

For part 1 of the sanity test, where the models are tested on C, the AB result is
very poor compared to the ABC result, see Section 5.3. It confirms the hypothesis
that the models initially might have learned to recognize the difference between
the databases rather than the differences between the cells. The network HAL-
T3003 went from an accuracy of 29.74% to 92.12%, which really shows the effect of
using the other cell classes from "hairy_db". "hairy_db" is a very recently created
database, whereas "WBCTrain" and "WBCTest" are a bit older, meaning that there
could be some software or hardware discrepancies. Even with the naked eye it is
possible to tell images from the two types of databases apart, based on other image
characteristics than the morphologies of the cells. The three databases do not seem
to completely represent the same underlying distribution.

The performance improvement can also be seen in the confusion matrices for part
1, Figure 5.12 and Figure 5.13. Between the first and second matrix there is a
clear move of classifications to the diagonal, which represents the correctly classified
cells. This is especially true for segmented neutrophils, smudge cells, artefacts,
lymphocytes, and monocytes. For lymphocytes there are no true positives at all in
the first figure, while there are 151 correct classifications in the second figure. When
training with only AB, there was obviously an overclassification to hairy cells.

Some examples of false positive hairy cells can be seen in Table 6.2. The first two
images are labeled as smudge cells, but they both contain more than one cell in
the image. Again, this makes it terribly hard for the classifier to know where to
put them. The other images are all lymphocytes, which could be because of the
similarities they share with hairy cells.

Image

True label Smudge Smudge Lymphocyte

Image

True label Lymphocyte Lymphocyte Lymphocyte

Table 6.2: Examples of images that belong to other classes but were classified by
the network as hairy cells (false positives). The images come from set C and the
prediction is done with HAL-C3003. The class labels denote the ground truth.

The result for part 2 is not quite as hypothesis confirming as the result for part 1.
We believe that these cells could be hairy cells, but they were labeled as abnormal
lymphocytes, and since we lacked a confirmation of the origin of the images, we
chose not to use them in the training. This means that the accuracy gives an account
for how many of these suspicious images were classified as abnormal lymphocytes.
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There is a small increase of the already really low accuracy, but note that none
of these images were actually classified as hairy cells. Neither when training on
AB, nor when training on ABC. In short, our model does not know what to do
with these images. This is likely because the model has not seen anything similar
before, i.e., the images from "WBCTrain"/"WBCTest" that look like hairy cells are
not represented in the training distribution. Thus, further image collection work is
needed to better represent the underlying distribution. As mentioned in the theory,
the i.i.d assumption needs to be fulfilled for the training and testing data. In the
case of ABC and D the assumption seems not to hold, especially the identically
distributed part, thus making it impossible to get an accurate result on D.

Some of these problems described in this section could, if not completely, at least
partially be removed if the data was collected once again to obtain the .bmp images,
instead of only the .jpg. Since the data loss was discovered only after the images had
already been labeled, this was unfortunately not realistic to achieve in the limited
time of this project.

6.5 Comparison of the Learning Methods

The best contrastive learning model, HAL-C3003, boosted the accuracy on the test
set by 2.3%, compared to the best transfer learning model, HAL-T3002. This dif-
ference can partially be explained graphically by studying Figure 5.3 on page 39
and Figure 5.11 on page 44. The scatter plot for the contrastive learning model has
an overall denser appearance, most noticeably for classes such as plasma cells and
reactive lymphocytes. The contrastive model has also succeeded in separating the
thrombocyte classes, which are more intertwined for the transfer learning model.

Apart from the loss, training set up and hyperparameters, the same base model and
top architecture were used for both learning methods. Therefore, there is a reason
to believe that this difference largely depends on the contribution of the contrastive
loss.

It is interesting to note that the predictions for hairy cells did not improve. From
the confusion matrix we see that the transfer learning network actually succeeded
better with 1440 correctly classed hairy cells, compared to the best contrastive learn-
ing network with 1437. One of the reasons for the inter-class difference could be
attributed to the data set. For the non-hairy cell classes, the images are gathered
from a large number of patients and hospitals, which cover many different instru-
ments and smear making techniques. The hairy cell images for training, on the other
hand, are limited to nine slides from three hospitals. The contrastive loss is designed
to learn the similarities between images depicting the same object but in different
settings. When training on a somewhat homogeneous data set, the network is not
exposed to samples of varying appearances and the strength of the contrastive loss
is diminished. This is possibly why we could observe a performance gain in some of
the non-hairy classes and a small loss in accuracy for the hairy cells.

Another observation is that many of the smaller cell classes like metamyelocytes,
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plasma cells, and giant thrombocytes received a greater benefit from the contrastive
loss. Recalling the underlying mechanism in contrastive learning, we suspect that
this is due to the batch size. An interpretation could be that, for the smaller classes,
a larger chunk of data is examined at a time by the network, and it is easier for the
training to drive the weights toward a more suitable representational space.

The findings of other studies on contrastive learning also indicate that larger batch
size yields better results. Although we were unable to experiment on different batch
sizes due to hardware limitation, the results were still satisfactory. And we believe
that with larger batch size, the supervised contrastive loss could improve classifica-
tion performance in all cell classes.

The contrastive model is more robust than the transfer learning model, with a 1.7%
validation-test accuracy drop compared to 2.6% for the transfer learning model.
Recalling the formulations of the losses, one could argue that this difference is general
rather than coincidental. The learning objective for the cross-entropy loss is "what
does a cell class look like?" and trains the network to learn features for each of the
classes. On the other hand, the contrastive loss instead tries to find out "how are the
cell classes best separated from each other?", and creates the representational space
such that each cluster is as concentrated within each other and as separated from
the others as possible. With this interpretation and the awareness that cell images
can differ in non-morphological attributes, it is plausible to suggest that a learning
method which focuses on the differences between classes is better at knowledge
generalization than a method that relies on a specific appearance of each cell class.

6.6 General Discussion

The hairy cells used in this thesis are labeled by only one expert, which might have
introduced an expert bias, i.e., labeling of the cells can be quite subjective. In future
studies it would therefore be interesting to use several experts to remove some of
the subjectivity.

Another difficulty is that the network is only able to judge the cell images based on
appearance, which might lead to misclassifications of the group of cells resembling
hairy cells mentioned in section 2.3.1. This problem is seemingly quite hard to
combat with deep neural networks, and is left to future studies.

There are a few images in the training and test sets that contain two or more cells
per image. To improve the models further, these images should have been removed
prior to training and testing. The images are labeled as one class, however the
network prediction will be random, since there is no way for the network to know
which cells is the main cell. A cleanup of the data would therefore be suggested by
us. In addition we suggest recollecting the images as .bmp to reduce the software
bias.

The final models, for which a test accuracy is presented, were trained on more data
than the models, for which the validation accuracy is presented. Not only are these
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final models trained on both training and validation data, but also all training data
from "hairy_db". Clearly, the use of more data helped the generalization ability.

Due to the limit in time and computing resources some things were not explored in
this project. Future work could look into more advanced classifiers and projection
heads, or other hyperparameter combinations. Especially hyperparameters for the
projection network could be investigated further. We experimented to some extent
with hidden layers in the classifier. This did however only reduce the performance,
and the idea was thus abandoned.

In this thesis we only focused on hairy cells, but for the medical field it would be
of great interest to also include additional abnormal lymphocyte classes, such as
mantel cells and Sézary cells. For this to be possible, a great effort must be made
on obtaining cases of the corresponding leukemias and lymphomas. The key to a
well generalizing network is the data. The several clusters within the abnormal
lymphocyte class could be representing these subclasses and an interesting starting
point for future investigations.
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7
Conclusion

Keep robotizing [1].

Based on the results, we conclude that both models work well for pre-classifying hairy
cells along with 19 other WBC classes. Furthermore, supervised contrastive learning
outperforms traditional transfer learning in both accuracy and robustness for WBCs
in general. The cell class-specific comparisons indicate that the method works well
on classifying cells with large diversities and could possibly even distinguish other
abnormal lymphocyte cell classes than hairy cells. We believe that these findings
contribute to a step forward in digital hematology.

With a combination of using datasets with larger in-class variations, and training
using larger batch sizes, the performance of the contrastive learning network can
be improved even further. The hematology expert shortage that the healthcare
sector is experiencing at the time means that much of the available cell image data
is unlabeled. This working example of supervised contrastive loss applied on cell
images paves the way for further work to explore whether contrastive loss could also
be used on partially labeled data for classifying abnormal lymphocytes and other
WBCs.
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A
Miscellaneous

All code for the thesis was written in Python 3.8/3.9. The models were created
and trained using Keras and tensorflow-gpu 2.7 on an NVIDIA RTX 2080 8GB and
an NVIDIA RTX 2060 Super 8GB. The contrastive network with all data required
too much memory for our computers and was instead trained on an NVIDIA RTX
1080 Ti 11GB. The Xception architecture and weights were obtained from the Keras
library.

All scatter plots and confusion matrices were produced using the Seaborn package.
All illustrations, except the ones that have origin references, are produced by the
authors in Adobe Illustrator. The cell images were extracted from the CellaVision
databases.
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B
Architectures

B.1 Architecture for HAL-T and HAL-R

Layer (type) Output Shape Parameters

Input (None, 256, 256, 3) 0
Augmentation (None, 256, 256, 3) 0
Rescaling (None, 256, 256, 3) 0
Xception (None, 8, 8, 2048) 20861480
GlobalAveragePooling2D (None, 2048) 0
Dropout (None, 2048) 0
Dense (None, 20) 40980
Total parameters 20902460

B.2 Architecture for the Encoder of HAL-C

Layer (type) Output Shape Parameters

Input (None, 256, 256, 3) 0
Rescaling (None, 256, 256, 3) 0
Xception base model (None, 8, 8, 2048) 20861480
GlobalAveragePooling2d (None, 2048) 0
Total parameters 20861480
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B.3 Architecture for the Projection Network of HAL-
C with 16 Projection Units

Layer (type) Output Shape Parameters

Input layer (None, 256, 256, 3) 0
Augmentation (None, 256, 256, 3) 0
Encoder (None, 2048) 20861480
Normalization (None, 2048) 0
Dropout (None, 2048) 0
Dense (None, 16) 32784
Normalization (None, 16) 0
Total parameters 20894264

B.4 Architecture for the Projection Network of HAL-
C with 128 Projection Units

Layer (type) Output Shape Parameters

Input layer (None, 256, 256, 3) 0
Augmentation (None, 256, 256, 3) 0
Encoder (None, 2048) 20861480
Normalization (None, 2048) 0
Dropout (None, 2048) 0
Dense (None, 128) 262272
Normalization (None, 128) 0
Total parameters 21123752
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B.5 Architecture for the Classifier Network of HAL-
C

Layer (type) Output Shape Parameters

Input (None, 256, 256, 3) 0
Augmentation (None, 256, 256, 3) 0
Encoder (None, 2048) 20861480
Normalization (None, 2048) 0
Dropout (None, 2048) 0
Dense (None, 20) 40980
Total parameters 20902460
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C
Hyperparameters

In Table C.1 the hyperparameters used in the training of projection-head-16 in the
model selection with validation split can be seen.

Table C.1: Selected hyperparameters for the projection network in contrastive learn-
ing in the training with validation split for projection-head-16.

Hyperparameter projection-head-16
Projection head epochs 7
Encoder and projection head epochs 7
Projection head learning rate 10−5

Encoder and projection head learning rate 10−5

Dropout 0.2
Batch size 16
Temperature 0.1
Projection head units 16
Encoder base encoder-16
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Popular Science Summary

Truffles and Champignons: How to Find Cancer Cells
with Machine Learning?

The white blood cells in our blood stream tell stories about how our bodies are doing.
Hairy cells are cancerous cells indicating leukemia. How do we find such cells using
contrastive machine learning?

You’ve heard about self-driving cars that can "see" the traffic. Did you know that the
same kind of technology can be used to detect blood cancer cells, such as hairy cells,
and help doctors diagnose and treat patients? This tool is called machine learning.
To be specific, we compared a method called transfer learning and another called
contrastive learning and got 88 % and 90 % correctly predicted cells, respectively.
Now, machine learning might sound scary, but remember, we want to train machines
to listen to us and to make our lives happier. So in a way, machines are like puppies
(but much less fluffy and bark in 1’s and 0’s). For the time being, let’s replace
"machine learning" with "puppy learning".

Harry is a very cute puppy and you’re eager to show off to your friends that Harry
can find a truffle (the cells we want to find) among a bunch of champignons (other
cells). How do you teach him? Puppies aren’t inherently crazy about mushrooms,
but they do love treats. You let Harry smell a truffle and a champignon. When
Harry puts his little snoot on a truffle, you yell "Good boy!" and reward him with
a yummy treat! The same thing happens inside a machine learning model. Every
time it’s correct, the behavior is rewarded, and if it makes the wrong decision, we’ll
guide it towards making a better decision next time. You continue with the next
pair of fungi. As the training session progresses, Harry is more and more eager to
boop the truffle.

Next day, you wonder, would it be easier for Harry if he got to see many fungi at
once? You present Harry with 5 champignons and 5 truffle at once. As the goodest
boy in the world, Harry doesn’t disappoint you and quickly separates all the truffles
from the set. This is the essence of contrastive learning. The similar smells of the
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truffles make them more recognizable as a group.

Harry gets better at the game each day, but during one session, he picked the wrong
mushrooms. No treat was served and Harry looks at you with pleading puppy eyes.
Is there anything wrong with the mushrooms? Suddenly, it struck you that when
packing the mushrooms in a hurry yesterday, you put both kinds in the same plastic
bag. Their scents have gotten mixed up! Dogs don’t see as good as humans do and
Harry has been relying on his nose to tell them apart. Of course he can’t find the
right ones now!

What happened here is similar to using wrongly labeled data for training. Harry’s
nose can’t tell a truffle from a champignon if they smell the same. Likewise, a
machine learning network also cannot make the right choices if it has been fed poor
quality data.

After discovering the mistake you store the mushrooms apart and, to your relief,
Harry excels at the fungi game the next day.

Now your training can continue. Hopefully you and Harry can go and win truffle
searching competitions together! Oh, and for us? We’ll continue finding new ways
to make data and algorithms work for us and help doctors discover illnesses.
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