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Abstract

Accounting for 10 million deaths and 20 million new cases every year, cancer is
one of the most common causes of death. The interest in trying to understand this
lethal disease using mathematical models has increased steadily for many decades.

Methods for boosting the immune system to better fight cancer (immunother-
apy) have also been long present. However, the full potential of immunotherapy
methods is not yet understood due to the immune system’s complexity. The im-
mune system naturally fights cancer, but it is not able to keep up when tumors grow
too quickly. This is where immunotherapy aims to enhance the immune system to
avoid and reverse tumor escape. Existing immunotherapies only work for some
cancers and patients, but a better understanding of the cancer-immune dynamics
could lead to new and reliable cancer treatments.

Experimental images of tumor tissue, with single-cell resolution, are here shown
in order to motivate the use of mathematical models for studies of cancer-immune
dynamics. The behavior of individual immune cells is (through literature review)
concluded to be governed by interactions with other immune cells. For this reason,
the development of effective immunotherapies relies on the understanding of these
cell-cell interactions, where spatial aspects are also believed to be of importance.

This review explores immunotherapy and mathematical cancer modeling by con-
sidering various cancer-immune interactions. The review aims to allow researchers
from research fields outside of biology and medicine to find interest and potential
in the study of immunotherapy.

Populärvetenskaplig beskrivning

Cancer är en av de vanligaste dödsorsakerna och st̊ar bakom 10 miljoner dödsfall varje
år. De vanligaste och mest studerade behandlingarna av cancer inkluderar kemoterapi
och cellgifter, men det finns även andra sätt att behandla cancer.

Ponera att kroppen själv kunde ta hand om cancer. Människans immunförsvar kan
besegra b̊ade virus och bakterier, s̊a intuitivt borde det inte vara mycket sv̊arare för
immunförsvaret att ocks̊a eliminera cancerceller. Det hela är dock n̊agot mer komplicerat
p̊a cellniv̊a. Cancerceller är muterade celler som kan ändra b̊ade form och utseende, vilket
i sin tur förvirrar immuncellerna. Tumörer (samlingar av cancerceller) kan även utveckla
immunhämmande effekter, exempelvis s̊a att immunceller blir tillsagda att det inte finns
n̊agot problem att ta hand om. Cancerceller kan även “förklä sig” med särskilda proteiner
(s̊a kallade receptorer) som immuncellerna normalt associerar med friska celler.

I tidigt skede av tumörutveckling kan immunförsvaret h̊alla tumörer i vilande (icke-
växande) tillst̊and, men efter ett tag tenderar tumörer att växa för fort för att im-
munsvaret ska kunna h̊alla tillbaka dem. Det är i detta skede som tumörer utvecklar
immunhämmande egenskaper. För att f̊a immunförsvaret att åter f̊a övertag i kampen
med cancer introduceras immunterapi, som g̊ar ut p̊a att förstärka immunförsvaret och
hjälpa det överkomma de immunhämmande egenskaperna hos tumörer.

Fokus i denna uppsats är p̊a matematisk modellering av tumörtillväxt och hur v̊art im-
munförsvar interagerar med cancerceller. Genom att matematiskt definiera och utvärdera
dessa interaktioner, kan bättre först̊aelse för viktiga parametrar ges. Effekter av rumslig
fördelning av immunceller kan ocks̊a undersökas och fastl̊as som väsentlig för att förutsäga
utfall och beteenden av tumörer. Genom att modellera cancer-immun-dynamik och sätta
i förh̊allande till observationer fr̊an faktisk tumörvävnad, kan matematisk modellering
underbyggas och motiveras med dynamik fr̊an verkliga tumörer.
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List of Abbreviations

APC Antigen-Presenting Cell.

CAR Chimeric Antigen Receptor.

CTL Cytotoxic T Lymphocyte.

DC Dendritic Cell.

IFN Interferon.

MHC Major Histocompatibility Complex.

NK cells Natural Killer cells.

ODE Ordinary Differential Equation.

PD-1 Programmed cell Death protein-1.

PDE Partial Differential Equation.

Th cell helper T cell.

TIL Tumor-Infiltrating Lymphocyte.

Treg regulatory T cell.
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1 Introduction

Cancer is a worldwide disease that accounts for millions of deaths every year. As one of
the most common causes of death, it is estimated that a total of 20 million people died due
to cancer during the years 2020 and 2021. This implies that cancer is approximately the
cause of every sixth death. Furthermore, it is estimated that the number of established
cancer diagnoses during 2021 was about 20 million [1, 2]. These statistics are also expected
to prevail into 2022 and continuously increase in the coming decades. However, it should
still be mentioned that some types of cancers are observed to have a decreasing probability
of causing death [2, 3].

The recent event of the worldwide coronavirus (SARS-CoV-2) 2019 pandemic, trig-
gered an increase in the study of immunology [4, 5]. These intense studies of viruses and
vaccines [6] might have contributed to an increased focus on the topic of immunotherapy
(mobilization of the immune system to fight cancer cells) [7, 8]. It is believed that this
increase is partly related to the disruption that the COVID-19 pandemic caused to can-
cer patients [9, 10]. However, the number of publications on the matter of mathematical
modeling of cancer and tumors, have also been naturally increasing exponentially since
the 1960s [11].

The complete potential and functionality of immunotherapy are not yet truly under-
stood, but it seems to possess a great potential for successful cancer treatment. However,
one should be aware that immunotherapy still has a long way to go before it can be
established as a cure for cancer [12, 13]. On top of this, immunotherapy consists of sev-
eral different concepts and methods, all gathered under the same name [14]. All of these
methods will not be addressed in this thesis, instead the aim is to give an overview of the
immunotherapy concept and its potential, mainly seen from a mathematical and physics
point of view.

In the subsection below, the role of physics in cancer research is presented. Thereafter,
an overview of the system components (cancer cells and the immune system) is given,
followed by a detailed introduction to immunotherapy.

1.1 Cancer and Physics

Traditionally, cancer research is majorly performed by biologists, medical doctors, and
biomedical engineers. However, the statistics presented above indicate that the research
area requires more attention and new perspectives. This is where both physicists, mathe-
maticians, and computer scientists can contribute with new ways of thinking and different
techniques to potentially assist in new discoveries [13].

Arguably, physicists and engineers have historically played a big role (and still do)
in the subject of cancer detection and cancer treatment, e.g. MRI (Magnetic Resonance
Imaging), radiation therapy, and x-rays, have all been heavily studied and developed
by physicists [15, 16]. Furthermore, lab-on-a-chip1 systems and microchips (also heavily
studied by biophysicists) are commonly used for 3-dimensional in vitro studies of micro-
tumors [18, 19], and to monitor anti-cancer drugs and potential drug resistance [20, 21].

Mathematical modeling also plays a big role in cancer research as it helps to quan-
tify tumor behavior. For example, it has been shown that the dynamics of tumors can

1Miniaturized biomedical laboratories, i.e. devices that integrate and automate laboratory functions
onto “chips”, see e.g. [17].
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be described by Gompertzian2 growth curves [22]. Therefrom, a phenomenological law
(the Norton–Simon hypothesis) was derived, this law related the tumor growth char-
acteristics to cytotoxic chemotherapy influence on tumor size. Specifically, it states a
proportionality between the unperturbed tumor growth rate, at a specific tumor size, to
the chemotherapy rate of regression in tumor volume at that size [23]. As a consequence,
the international standard of dose-dense chemotherapy treatment was developed, which
makes tumor destruction more likely in comparison to other methods [24, 25]. R. Simon
and L. Norton also states in [23] that “[...] it will remain imperative to use mathemat-
ical methods to guide clinical trial design.”. Their statement is substantiated by the
many applications of mathematical modeling in a variety of cancer-related research and
problems [13, 26, 27, 28].

Studies on immunotherapy have led to discoveries such that successful cancer recog-
nition and infiltration by immune cells can be very effective [13]. For a set of different
cancer types, it has even been shown that a high density of a specific kind of immune cell
in the tumor yields a promising forecast [29, 30]. Related to this, it has been speculated
that biologists would focus a lot on signaling pathways3, while physicists find more inter-
est in the effects of spatial organization on cell-cell interactions (introducing the concepts
of maximum entropy and fractal dimensions, which might contribute to the development
of more effective cancer treatments) [13].

The takeaway from this section is that collaboration between “traditional” cancer
researchers and researchers from other fields (such as physics), might produce new and
effective tools in the battle against cancer.

2 An Overview of the System Components

To fully understand immunotherapy, it is essential to have a good understanding of its
system components. In an attempt to provide the reader with the necessary knowledge
to understand and follow along with the models and methods presented in this thesis,
this section contains an overview of both what cancer cells are and how they arise, as
well as a detailed introduction to the immune system and its constituents. The readers
which are already familiar with cancer and immunology may skip directly to Section 3.

2.1 Cancer cells and Tumors

Cancer arises when control systems in a cell are flawed or malfunctioning, specifically,
the control systems that promote and protect against cell growth (where malfunction
could cause irresponsible and uncontrolled proliferation4). Proliferation is otherwise a
necessity for humans to go from being a fertilized egg to an adult with a cell count
in the trillions, where the majority of the cell proliferation eventually stops (e.g. when
organs reach their full size). Some proliferation, however, continues as skin cells and body
cavities experience “erosion” and need to be replenished as time goes by. This life-long
proliferation is essential, but if it is not properly controlled in a cell, this cell is on its
way to becoming a cancer cell [31].

2A sigmoid-like function implying that the growth (of an arbitrary quantity) is the slowest at the
beginning and end of time.

3Chemical reaction series where the proteins of a cell (together) govern cell functions like death and
division.

4Proliferation of cells is the process in which they grow and divide into daughter cells.
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The reason for occasional failure in the control systems is due to gene alterations in the
proteins constituting the systems. These alterations may arise from mutations (occurs
spontaneously when cellular DNA is faultily copied to daughter cells, or from byproducts
of cellular metabolism; e.g. accelerated by fatty foods, smoking, or radiation/UV expo-
sure). Mutations are otherwise a natural part of cellular life and are generally harmless,
but sometimes a mutated gene may cause uncontrolled proliferation (a mutated gene
with this ability is called an oncogene, and the normal or “healthy” version of this gene is
called a proto-oncogene). In short, a normal gene of a cell might mutate and cause uncon-
trolled cell growth. The oncogene is also heritable during cell proliferation, which implies
that uncontrolled cell growth may result in many unhealthy mutant clones. Other gene
alterations, that may arise as a consequence, might grant the ability to invade nearby
tissue or organs (metastasize) or to evade the immune system [26, 31].

A tumor is then a collection of many5 such aggressive malfunctioning cells with genetic
alterations, in other words, altered tissue due to evolutionary processes. Both evolution
and natural selection are indeed affecting the cells in the tumor microenvironment, where
survival is the ultimate goal for the tumor. Therefore, resistance, rapid proliferation,
and evolvability6 are all tumor desired cell properties, just as the aspirations of natural
selection-based systems. This causes a natural increase of oncogenes in the tumor cells [26,
33, 34].

To go one step further, “signaling pathways” are what enable tumors to spread and
grow. Specifically, when mutations cause these signaling pathways to be de- or over-
activated, tumor growth may accelerate. Some of these pathways can also be coupled to
the mechanobiology7 of the tumors in their microenvironment. That is, proteins linking
a cell to another can cause the cells to perceive how stiff their surroundings are, in
turn leading to proliferating, shapeshifting, and traveling (via signaling pathways) cancer
cells. As a consequence, cells within the tumor tend to increase the collagen fiber density,
causing their microenvironment to be stiff and the tumor to become a lump. Individual
cancer cells can also be remarkably stiff or soft, where the soft cancer cells easily deform
and efficiently metastasize with high motility [13, 36].

Going back to the root of the problem, it would be ideal if malfunctioning control
systems could be avoided. In fact, cells do have inbuilt safeguard systems for this exact
reason, both mutation-preventing and mutation-fixing [31]. Specifically, cells have repair
systems that quickly repair minor DNA damages (more than 20 000 mutation repairs per
day in a single human cell) [37]. When the DNA damage is severe or when the repair
system misses fixing a mutation, a mutation monitoring safeguard system is activated.
This system may, for example, give the repair system more time to fix the mutation by
preventing the damaged cell from proliferating, or when the damage is too extreme, it
will cause the cell to undergo apoptosis8 to eliminate the problem [31].

As a side note, this safeguard system contains the significant p53-protein, which mod-
ulates cell growth, and is therefore referred to as a tumor suppressor. The encoding genes
of protein p53 (and others like it) are similarly referred to as tumor suppressor genes (or
anti-oncogenes, cf. oncogene from previously). Research shows that most humans with

5Tumors of 1 cm3 are usually considered to consist of 109 cells, but 108 could be more realistic [32].
6The capacity of a system to evolve adaptively. In context, the ability of a cell to generate variations

in its heritable traits.
7A scientific field of study that focuses on physical forces and changes in the mechanical properties

of cells and tissues (see more in [35]).
8Activation of an intracellular death program, also known as “Programmed cell death”. In other

words, the cell is instructed to kill itself [38].
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tumors have mutations in these tumor suppressor genes, and mice designed to have mu-
tated p53 genes were found to develop and perish from cancer in ages ranging from merely
10 weeks to seven months [31, 39].

To conclude, it is only when the normal cell simultaneously experiences mutations in
its proto-oncogenes and tumor suppressor genes, that cancer can be developed. About
4-7 growth-promoting and safeguard-disabling mutations are thought to be necessary for
the most common cancers to arise, which usually takes decades in humans. But there are
also some common childhood cancers, for example, retinal cancer, which can arise from
mutations in a single tumor suppressor gene (RB1) [31, 40].

Moreover, each type of cancer is generally assigned to one of two categories, namely,
non-blood cell cancers (solid tumors) and blood cell cancers, see Figure 1. The solid
tumors are further categorized considering the type of cell they arise from, for example,
the most frequently discovered human tumors that metastasize in essential organs (e.g.
lung and colon cancer) are called carcinomas and arise from epithelial cells9. On the
other hand, blood cell cancers (e.g. leukemia) arise when blood stem cells’ descendants
do not mature to stop proliferating, in turn leading to more immature blood cells and
anemia10 or immunodeficiency [31, 41].

Figure 1: Comparison of solid tumors and blood cell cancers. The cancerous cells
in the solid tumor together form a “stationary” complex, while blood cell cancer implies
that the cancerous cells are circulating individually in the blood vessels.

Finally, cancer is said to be either spontaneous or virus-associated. Spontaneous
cancers are what has been described above (i.e. spontaneous mutations), while virus-
associated cancers are accelerated by a virus infection (which is the case for ∼20% of
all human cancers). Specifically, there are viruses (e.g. hepatitis-B and papillomavirus)
that can produce oncoproteins in the virus-infected cells to negatively affect their safe-
guard systems and p53 protein [42, 43]. Notably, virus-associated cancers still arise from
spontaneous mutations, but the additional viral infection accelerates the production of
cancerous cells by reducing the number of needed mutations [31].

9A cell that is present in body surfaces like skin, blood vessels, and the urinary tract.
10Too few healthy red blood cells in the body carry oxygen to body tissues.
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2.2 The Immune System

The immune system is complex and involves many different components. These compo-
nents are traditionally split into two groups, the innate immune system and the adaptive
immune system [44]. But it is not as simple as saying that these two parts of the immune
system have different tasks and functionalities, because it is their cooperation that results
in our powerful defense against viruses and bacteria. Indeed, immunology is a subject
that continuously evolves and contains many details (both small and big), where almost
every rule has exceptions. The fact that the immune system involves plentiful compo-
nents, all interacting with each other, complicates matters further. Specifically, it does
not make sense to study one component at a time, since its actions will be dependent
on the actions of other immune system components [31]. However, in this section, the
bigger picture is considered, and the goal is to understand the essentials of the immune
system.

The innate immune system is the first line of defense when invaders enter the
body [45]. The name comes from the fact that this system seems to be a natural part
of all animals, and has been so for over 500 million years (at least some of its com-
ponents). One component of the innate immune system is the macrophage (Greek -
“big eater”) defender cell, which can detect bacterium using its receptors. More pre-
cisely, bacterium membranes consist of unfamiliar fats and carbohydrates which “signal”
to the macrophages (and other members of the phagocyte-family) to activate and go
dispose of the potentially dangerous microbe dressed with these molecules. The phago-
cytes’ disposal process is called phagocytosis and starts at contact, where the macrophage
(or other phagocytes) “eats” the bacterium by putting it in a vesicle (phagosome) and
then taking it inside of itself. Next, the bacterium vesicle is combined with another
vesicle (lysosome) containing bacteria-killing enzymes and chemicals. Furthermore, the
macrophages do not only eat bacteria, the “big eaters” also dispose of general “garbage”
in our bodies and can even eat cancer cells (see more in Section 3) [31, 44, 46].

Macrophages and all other blood cells in our bodies are produced from stem cells in
the bone marrow. As these stem cells divide into two daughter cells, one of these will
become a new stem cell (self-renewing), while the other is set off to grow into a mature
blood cell. The daughter cell is given a set of choices11 for what kind of blood cell it will
mature into (see Figure A.1 in Appendix A), which includes macrophages and red blood
cells etc. [47].

The stem cells destined to become macrophages are called monocytes once they have
entered our bloodstream, the monocytes then head for the capillaries to exit the blood
and enter our tissue, where they finally mature into macrophages. When the macrophages
then battle invaders, they secrete cytokines (proteins) which act as a means of commu-
nication between immune cells. These messengers can then tell nearby monocytes and
immune cells to enter the tissue and assist in the battle. Since the macrophages are able
to quickly recognize a variety of common bacteria and invaders, the innate immune sys-
tem finishes most battles in a few days [31]. In short, when the garbage collecting guards
(macrophages) detect invaders, they start to take care of the issue themselves, while
simultaneously sending messengers (cytokines) to recruit other cells, see Appendix A
Figure A.2 for an illustrative depiction of the process.

Except for the macrophages, the innate immune system can also take care of bacteria

11It is not a literal choice of the cell, instead, it is carefully governed by our body to make sure that
we always have enough of each kind.
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with its Natural Killer cells (NK cells). The NK cell (a so-called lymphocyte) can not
only kill bacteria but also virus-infected and cancerous cells (see more in Section 3) [48].
These cells are also produced in the bone marrow, and have cytokine-producing functions
like the macrophages, causing them to be helpful when our body is under attack [49].
However, in absence of an attack, they live relatively short lives with a turnover12 of
about 2 weeks [50]. In comparison to other immune cells, this is a rapid turnover, which
is present in both young and elderly people. However, they are also relatively fast at
killing damaged, infected, and transformed cells [51].

When in action, the NK cells can secrete defense-engaging cytokines such as the
gamma Interferon (IFN), IFN-γ. However, for the NK cells to be effective, they need to
be activated (similar to the macrophages). Inactive NK cells can also kill and produce
cytokines, but these processes are majorly boosted in active NK cells. The activation is
accomplished through signals (specifically, the IFN-α and IFN-β cytokines), which are
produced by other immune system cells when there is an attack. In contrary to the
engulfing macrophages, the activated NK cells kill the “bad cells” using apoptosis, i.e.
injecting them with “suicide”-causing enzymes (e.g. granzyme B) [48].

The NK cells also need to determine whether a cell is bad or not. This is made
possible through activating and inhibitory surface receptors (see Figure 2). The activating
receptors activate the killer instinct of the NK cells when the connection to the target
cell is slowed down by unfamiliar molecules on the cell’s surface (suggesting that the cell
could be virus-infected or cancerous). On the other hand, the inhibitory receptors inhibit
the killer instinct by recognizing the familiar (i.e. generally present on healthy cells) class
I MHC molecule13 [31, 52].

Figure 2: Illustration of how NK cells differentiate between normal and can-
cerous cells. The activating receptor (top on NK cell) successfully connects to most
cells, while the inhibitory receptor (bottom on NK cell) usually does not find the MHC
I molecule (bottom on normal cell) on tumor cells. For virus-infected cells, the receptors
can be blocked by molecules, then the balance between the signals of these two receptors
determines the action of the NK cell. Adapted from [52]cb.

12Continuous shedding and subsequent replacement with younger cells (two half-life cycles).
13Major Histocompatibility Complex (MHC) are proteins that “present” antigens to lymphocytes.

Separated into two classes (I and II), class I functions as a surface-bound “display” for what is going on
inside its cell.

9



Moving on to the adaptive immune system, its name comes from the fact that it is
able to defend our bodies against most invaders. Specifically, if given time to prepare (e.g.
through vaccines), the adaptive immune system can develop a defense against most foreign
invaders. The immunity is provided by antigens inducing special proteins (antibodies)
to circulate in our blood. These antibody molecules consist of different proteins and
can bind to antigens. The production of antibodies takes place in a specific kind of
white blood cells known as B cells (another lymphocyte, also originating from stem cells,
see Appendix A Figure A.1), which can further mature into antibody-generating plasma
B cells [45, 53]. Antibody molecules can also bind to cell receptors, and each kind of
antibody only binds to one specific kind of antigen. Once the receptors of a B cell bind to
their associated antigen, the B cell starts to proliferate to build up a reliable defense [54].

Notably, antibodies themselves do not kill, they only “tag” (opsonize) the intruders
to let other cells know that it is an invader and should be eaten or killed. Specifically,
antibodies can encourage phagocytosis of the invader by bringing it close to a phagocyte
and forming a bridge (see Figure 3) [31].

Figure 3: Illustration of an antibody forming a bridge. The antibody is bound to
the antigen of an invader (bacterium) and brings it close to a phagocyte (macrophage).
This process encourages the phagocyte to engulf the bacterium (which is expressing for-
eign molecules that are detected by other phagocyte receptors). Adapted with permission
from [31].

Another important cell of the adaptive immune system is the lymphocyte known as
the T cell. This cell also comes from the bone marrow (Appendix A Figure A.1) and looks
almost identical to the B cell. However, different T cells can have different tasks, therefore,
a T cell is generally classified as a killer T cell, helper T cell (Th cell), or regulatory T
cell (Treg). The killer T cell is usually referred to by the name Cytotoxic T Lymphocyte
(CTL) since it specializes in killing infected and cancerous cells by initiating their “suicide
modes” (cytotoxic effect). On the other hand, Th cells do not kill directly, instead they
secret cytokines (messengers, including IFN-γ from previously) to inform other cells of the
immune system about an issue. Finally, Treg cells regulate the “intensity” of the immune
system, to avoid the immune system running out of control and starting to attack healthy
cells (i.e. autoimmune disease) [31].

For the T cells to know what to kill, they need to be presented to the antigens of the
invaders (see Figure A.3 in Appendix A for the complete cycle of action of T cells killing
cancer cells). The presentation is performed by the previously mentioned MHC proteins,
where it is the T cell receptors’ role to recognize the presented antigen. The class I
MHC molecules know when there is an issue inside a cell and present antigens directly
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to the CTLs (direct killing), while the class II MHC molecules know about extracellular
issues and present antigens to the Th cells (indirect killing). The class I MHC molecules
naturally exist on the surface of most cells, while class II MHC molecules can be produced
by the macrophage, i.e. an Antigen-Presenting Cell (APC). Specifically, the macrophage
“decorates” its surface with class II MHC molecules displaying protein fragments of the
bacterium it just engulfed. The Th cells can then examine these class II MHC molecules
with their receptors to identify the threat [31, 55].

Similar to the macrophages and NK cells, activation of the T cells and B cells is
necessary for them to be effective with their immunosurveillance. For example, the Th
cell (and other cells of the adaptive immune system) is activated when it is presented to its
corresponding antigen by an APC and simultaneously recognizes a “control key”-protein
on the APC’s surface (see Figure 4). This two-key system is necessary to avoid accidental
activation of the immune system. If the control protein was present, the Th cell starts to
proliferate to build up a squadron of cells able to detect the specific antigen [55].

Figure 4: T cell activation by MHC molecules. (Top) An activated macrophage
acts as an APC to activate a Th cell by presenting an antigen on its class II MHC
molecule. The T cell receptors recognize the antigen and a specific protein on the APC
surface (to ensure the Th cell that the APC can be “trusted”). (Bottom) An infected or
cancerous cell is “examined” by a CTL using its T cell receptor and co-receptor, when
CTLs recognize antigens in association with class I MHC molecules, they kill the opposing
cell through granzyme secretion. Adapted with permission from [31].

Moreover, since both the T cells and APCs are widely spread out in our bodies, it
seems unlikely that the APC which found the invader also will find a T cell with the
correct T cell receptors to recognize the invader. However, our bodies contain special
“meet-up spots” to make this process more likely. These meet-up spots are, specifically,
our secondary lymphoid organs, e.g. lymph nodes, which are part of a lymphatic system
(for more details on the lymphatic system, see [56], and the figure therein) [31, 56, 57].

Both B cells and T cells travel between nodes to “scout” for their corresponding
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antigens. Since the lymph also tends to carry invaders and APCs to the lymph nodes,
there is now a relatively small and confined place where the necessary communication for
adaptive immune system activation can take place (thus increasing the likelihood for the
interactions to happen) [57].

Furthermore, the most important APCs are the dendritic cells (see Appendix A Fig-
ure A.1). These function similarly to other APCs and will capture protein fragments
from dying cells to present for T cells, that is, they can activate T cells to take care of
tumors and ongoing infections. Specifically, dendritic cells collect MHC complexes from
infected or cancerous cells to display on their surfaces [58].

To conclude this introduction to the immune system, the innate system is always in
place and ready to deal with invaders, but when the “war” becomes too great, the adaptive
system has to help get rid of the invaders. But it does take time for the specialized B
cells and T cells to proliferate and build up their forces, therefore, the innate system has
to do its best in the meantime. Furthermore, when the war is over, some B and T cells
(specialized on the specific invader) will stick around as memory cells. These memory
cells will simplify the process of a counterattack if reinfection occurs, allowing the immune
system to act quickly (cf. vaccines) [53, 57, 59].

3 Immunotherapy

The full potential of the immune system is still beyond our understanding, but as the
previous section emphasizes, it is powerful. Even though the immune system and im-
munotherapy are not fully understood, existing methods make use of the immune system
to treat cancer. For example, checkpoint inhibitors (awarded a Nobel Prize in 2018) are
one class of immunotherapy that focuses on how immunosuppressing proteins (immune
checkpoints) can be blocked to “unleash” the immune system [14, 60].

When surface proteins of T cells bind to other cells, the immune checkpoints act to
regulate the immune system and prevent overreaction. The surface proteins of the T cells
(checkpoint proteins) are part of the “two-key” system previously explained in relation
to Figure 4. Typically, cancer cells avoid T cells by bearing the right partner proteins.
Therefore, when the T cell binds to the cancer cell, the “control-key” is detected and
the T cell does not take any action. By using checkpoint inhibitor drugs, the checkpoint
proteins can be blocked to avoid detection of the control-key, thus causing the T cells to
attack cancer cells [61].

Consequently, checkpoint inhibitors increase the likelihood of cancer cell detection and
elimination by the immune system [60]. Specifically, there is a checkpoint protein called
Programmed cell Death protein-1 (PD-1), with corresponding partner protein (ligand)
PD-L1. PD-1 is a surface protein of T cells, and PD-L1 exists on both normal and
cancerous cells, the production of PD-L1 can even be major in some tumors. In the event
where PD-1 of a T cell binds to PD-L1 of a cancer cell, the T cell is “told off” from
killing the cancer cell. When immune checkpoint inhibitor drugs then block PD-1 and/or
PD-L1 proteins, T cells will start killing the cancer cells, see Figure 5 [61].

12



Figure 5: Illustration of how checkpoint inhibitors work, considering the proteins
PD-L1 (on the tumor cell) and PD-1 (on the T cell). (a) When PD-1 binds to PD-L1,
the T cell is kept inactive. (b) The binding of PD-L1 and PD-1 is prevented through
blockage using immune checkpoint inhibitors anti-PD-L1 and anti-PD-1, causing the T
cell to become active and kill the tumor cell. Adapted with permission from [61].

Some key surface proteins of cancer cells can even be disabled or locked through
binding engineered antibodies to them, thus making it easier for cells of the immune
system to kill cancer. The antibodies also opsonize the cancer cells to make them easier
to detect by the immune system, they can even bring T cells close to cancer cells (see
Figure 6). This specific kind of checkpoint inhibitor is known as antibody therapy [14, 60].
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Figure 6: Illustration of an antibody bringing a T cell close to a tumor cell, such
that the T cell can “inject” the tumor cell with granzymes (suicide-causing enzymes).
Adapted from [62]cb.

It is also possible to engineer T cells to be super-activated and more prone to kill
cancer cells, e.g., through Chimeric Antigen Receptor (CAR) T cell therapy [60]. This
kind of therapy (T cell transfer therapy or adoptive cell therapy) involves the extraction
of immune cells from the patient suffering from cancer, these cells will then proliferate in
a lab, and later be re-injected into the patient. In CAR T cell therapy, the extracted T
cells are modified to produce CAR proteins, which allows the T cells to attach to surface
proteins on cancer cells (for details, see Appendix A Figure A.4). Alternatively, Tumor-
Infiltrating Lymphocyte (TIL) therapy can be applied, which uses artificial selection to
extract TILs14 from a tumor sample. The TILs are then left to proliferate and build up
in number before they are re-injected into the patient [63].

In principle, most T cells can recognize tumor proteins as foreign. However, tumors
tend to disarm and deactivate T cells in their microenvironment by secreting chemical
signals, causing T cells to only recognize and kill cancer cells under certain circumstances.
Therefore, one branch of immunotherapy focuses on how to activate these inactive T cells.
For example, this can be achieved by one type of dendritic cell that “decorates” itself with
cancerous proteins from tumors. Through stimulating these dendritic cells, the effect of
immunotherapy can be improved (specifically, the growth rate of some tumors in mice
has been shown to decrease) [64, 65].

There is a specific type of dendritic cell that interacts with cancer-killing T cells,
and another type that encourages T cells to activate in regressing tumors. The relevant
dendritic cells are activated by the specific interferon known as type-I IFN. Therefore,

14Most tumors contain some tumor-infiltrating lymphocytes that can recognize the cancer cells.
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stimulation of dendritic cells can be performed by inducing an increase of this cytokine [58,
65].

Unfortunately, interferon treatment of cancer can induce side effects, for example, flu
symptoms and lowering of blood cell count [66]. Direct or targeted interferon delivery
is therefore necessary, alternatively, a drug could potentially be used to have the cancer
cells themselves produce IFN type-I. Notably, many tumor cells naturally secrete IFN
type-I, but these are too few to cause the dendritic cells to activate. Furthermore, too
many IFNs are generally toxic to cells, even slight alterations can cause dramatic immune
responses [65].

In general, the precise cytokine dosage to achieve safe activation of T cells is cru-
cial for immunotherapy to be harmless. Through genetically engineered immune system
cells, the development of technologies with accurately controlled signaling is possible.
By studying and applying different technologies, possible upper and lower boundaries of
cytokine dosage could potentially be established for the safe activation of T cells (at least
the degree of cytokine control could be evaluated). If these boundaries can be deter-
mined, mathematical simulations and models could possibly predict the necessary degree
of T cell activation (cytokine dosage) to regulate the response of the immune system
in a controlled manner. Noteworthy, it is important to carefully consider the balance
between apoptosis-encouraging and apoptosis-inhibiting cytokines, but this is where the
coexistence of computer models and experiments can help to formulate new relationships,
molecular mechanisms, and establishment of optimal dosage [67].

It has been experimentally proved that cancer cells can be weakened (made less toler-
ant) to CTLs by direct injection of mature (antigen-loaded) dendritic cells into the tumor,
or by endogenous dendritic cell depletion [68]. Tumor infiltration by T cells is also known
to contribute to a good prognosis in multiple different cancer types (e.g. triple-negative
breast cancer) [69]. Furthermore, in adoptive cell transfer therapy, the T cells need to
be primed with their corresponding antigen to interact with the tumor (e.g. by stimulat-
ing endogenous dendritic cells). Alternatively, the T cells can be genetically modified to
engage dendritic cells by secreting a specific cytokine (FLT3L). In fact, research proves
that this modification increases the efficiency of the infused T cells [70, 71].

Methods such as vaccination with viral tumor antigens, stimulation of T cell receptors,
and engaged dendritic cells, all increase the efficiency of infused T cells. By further adding
checkpoint inhibitors to the above combination of methods, the inactivation of tumor-
reactive T cells can be avoided, and the overall effect of adoptive cell therapy is further
improved [70].

Notably, the adaptive immune system is not alone in the fight against cancer cells and
tumors, the macrophages and NK cells of the innate immune system can also help [46, 52].
Macrophages physically ingest cells (phagocytosis) and are also able to devour cancer
cells. However, the tumor microenvironment tends to suppress the macrophages’ ability
to fight the tumor. Especially, the cancer cells can express a specific receptor (CD47)
to deactivate the macrophages, but this suppression of the macrophages can be avoided
by using checkpoint inhibitors (cf. method for increasing cancer cell detection of T
cells). Furthermore, the tumor can also take (indirect) advantage of the macrophages to
metastasize throughout the body. The relation may be complex, but it is believed that
macrophages’ ability to fight cancer can be enhanced through immunotherapy [46].

The usage of NK cells in immunotherapy is similar to the T cell-based immunothera-
pies. Even though T cell-based therapies are currently the most researched and reliable,
NK cell-based therapies show promising potential by having more manageable safety
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profiles and being less transfer sensitive (relevant in adoptive therapy). The NK cells
also have the advantage that they can recognize and kill target cells without the need
for antigen presentation. Specifically, when the NK cell faces a tumor cell, the class
I MHC molecule is likely to be absent (see Figure 7, cf. Figure 2). If the NK cell’s
inhibitory receptor is not stimulated, the NK cell will kill the opposing tumor cell and
secrete cytokines to attract more immune cells [52, 72].

Figure 7: Illustration of an NK cell killing a tumor cell by inducing apoptosis
(release of cytolytic granules, like granzyme B) due to the tumor cell’s lack of class I
MHC molecules on its surface. Adapted from [52]cb.

To concluded, some common immunotherapies are presented in Table 1 below.

Table 1: Excerpt of some immunotherapies, composed from [14].

Immunotherapy Definition

Immune checkpoint inhibitors
Drug-induced blockage of immune checkpoints
that down-regulate the immune system.

T-cell transfer therapy
Boosting of T cells’ ability to detect and
kill cancer cells.

Monoclonal antibodies
Laboratory created proteins that bind to
cancer cells to mark (highlight) them.

Treatment vaccines
Teaching the immune system to recognize tumor-
associated antigens to destroy cancer cells.

Immune system modulators
Boosting immune response against cancer by using
agents (cytokines) that affect the immune system.

3.1 Issues of Immunotherapy

The above (and other) immunotherapies tend to solve separate cancer-related problems.
There seems to be no single optimal immunotherapy, in fact, the individual aspect plays
a major role. The concept of a (non-static) framework was recently proposed in the form
of a “cancer immunogram”, which aims to describe the effects of different immunother-
apies on an individual basis (with a focus on biomarkers). This framework emphasizes
that some patients may suffer from insufficiently foreign cancer, making it difficult to
establish T cell response. Therefore, treatment with a combination of immunotherapies
and biomarkers might be necessary [73].
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Furthermore, cytokines play an essential role in the activation of the immune system
to fight cancer, however, there are many different kinds of cytokines. Even though some
cytokines have positive effects on immunotherapy, cytokines can in general either promote
or suppress tumor progression. In fact, certain cytokines are necessary for the tumor-
promoting activity of suppressor cells (immunosuppression). Some cytokines, secreted by
tumor-infiltrating lymphocytes, even promote cancer metastasis through angiogenesis15.
Therefore, the presence of cytokines can also be associated with tumor survival and
malignancy [74].

Undeniably, a major problem with immunotherapy is that there exist immunosuppres-
sive mechanisms present in tumor microenvironments. Such molecules (cytokines) can be
produced by the cancer cells themselves, but also by Treg cells and macrophages. These
cytokines negatively affect the different lymphocytes (like the NK cells) by suppressing
their metabolism and helpful cytokine secretion. These unfavorable cytokines can even
hinder dendritic cells from acting as APCs [72, 75].

Arguably, the factors that influence the immunological possibility to fight cancer can
be generalized into seven different tumor features. (1) Tumors tend to sustain themselves
with growth factors (generally these are also immunosuppressive). (2) Tumors tend to be
unaffected by anti-growth signals, consequently, there will be local immunosuppression.
(3) Through overexpression of cell-death inhibitors, tumors can avoid apoptosis. (4)
Mutations in the p53-gen cause uncontrolled cell replication. (5) Continuous angiogenesis
implies tumor production of factors that can inhibit activation of T cells and maturation
of dendritic cells. (6) Metastasis can locally supply tumors with different troublesome
immunological features. (7) Tumors can also evade detection by the immune system
by continuous adaption and immunosuppressive networks in its microenvironment (to
inactivate approaching cells of the immune system) [76].

To avoid some of these immunosuppressive factors, the method of immune checkpoint
blockade is reasonable to apply. However, the application of this treatment only seems
to be effective regarding certain types of cancer. Even when the initial response and
prognosis appear to be good (e.g. for patients with melanoma), a tendency of develop-
ing resistance to the treatment is observed [77]. Extensive research on the specifics of
these mechanisms will help to improve immunotherapy methods and contribute toward
defeating the existing resistance. This can for example be studied by addressing the evo-
lutionary dynamics of checkpoint blockade resistance, but there is still a lot of research
needed [78].

The immune system can recognize and destroy cancer cells by having T cells attach
to tumor-specific antigens (neoantigens), but tumors are still able to escape. For this
purpose, normal cells can be engineered to express specific neoantigens, such that in vivo
observations can determine which neoantigens provoke immune response. While tumor
cells with immunogenic antigens are easily detected and likely to be destroyed, the op-
posite holds for nonimmunogenic antigens. Notably, even tumors with few immunogenic
antigens tend to be killed, but when the amount is substantially small (every hundredth
cell), the tumor survives since the T cells have “too little to work with”. This infers that
individuals with heterogeneous tumors (a large variety of clonal cells) generally benefit
less from immunotherapy [79].

In the following section, the effects and efficiency of immunotherapy will be investigate
considering mathematical and physical perspectives.

15A process leading to the development of new blood vessels from existing blood vessels.
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4 Physics Methods of Immunotherapy

4.1 Mathematical Models

Mathematical and computational models allow for the investigation of immune system
components in an integrated manner. The models can provide understanding of how im-
munological components interact with each other, and allow for investigation of the effect
of specific conditions. Furthermore, models used in immunology are often “universal”,
for example, models constructed to describe infection-dynamics can be applicable when
describing interactions of the immune-cancer system [80].

So-called phenomenological (quantitative) models, aim to extract patterns (such as
correlation coefficients or regressions) from data [81]. Due to the development of large
data processing using deep learning methods, complex phenomenological models can make
predictions and find patterns without knowing any underlying system mechanisms [82].
Therefore, to understand the underlying system mechanisms, studies using mechanistic
models are best suited. Such models can consider multiple different interacting com-
ponents at once, however, this causes the models to often be simplified16, but they
still provide mechanistic insights. Contrary to phenomenological models, mechanistic
models require system-specific knowledge and assumptions about the component inter-
actions [80].

It is also important to notice that the many and diverse mathematical models that
attempt to describe and quantify tumor systems, all suffer from reductionism. The two
extremes would be exhaustive biology models (considering as many cell-cell signals as
possible) and simple deterministic models (designed for deterministic and mathematical
analyses on optimization and control) [83].

Specifically, different models and what they model can be split into four categories:
(1) Simple growth models - A single population of cells. (2) Compartmental models -
Coupling of cell populations, e.g. represented by a probabilistic or deterministic Ordinary
Differential Equation (ODE) describing population size. (3) Variability - Heterogeneity
represented by continuous cell-variables (space, age, size, etc.), each variable described by
a Partial Differential Equation (PDE). (4) Agent-based models - Probabilistic or deter-
ministic evolutionary rules for cell variables (e.g. spatial and age-related). Furthermore,
these four models can also be combined. One example would be cell populations de-
scribed by agent-based models, where the connection of the populations is described by
signaling molecules, which in turn are described by spatially structured PDEs [83].

The compartmental models are usually considered the most common in immunologi-
cal modeling, where cytokine concentrations and population size of a specific cell type are
commonly modeled using ODEs [80]. However, just as with the different immunother-
apies, there is no ideal mathematical model. Depending on the circumstances and the
available parameter data, different models may be best suited. In the context of im-
munotherapy, the relation and interactions between tumors and the immune system are
of most interest. For example, regarding checkpoint inhibitor therapies, the dynamic pro-
cess describing the relation between tumor cells and the immune system can be modeled
(known as immunoediting, which considers the three phases: elimination, equilibrium,
and escape [84]). It would also be relevant to investigate and model the diffusion of drugs
and nutrients in tumor spheroids [83].

Tumor spheroids correspond to one common way to represent solid tumors’ structure,

16Yet, the physicist knows that simplified equations can often accurately describe system behaviors.
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where the composition is often generalized into three different layers, see Figure 8.

Figure 8: Structural depiction of a solid tumor. The composition of multi-cellular
tumor spheroids with some radius r(t) (only the outer [largest] radius is marked here since
it is usually this radius that is considered when modeling solid tumors). The composition
is generally idealized into three layers: Necrotic core (I), Quiescent (non-proliferating)
cells (II), and Proliferating cells (III).

Notably, tumor progression eventually tends to result in metastasis. This invasive
growth can be sporadic and less predictable than compact growth. Therefore, mathemat-
ical models generally regard tumor spheroids, which also represent the most promising
(yet versatile) models [83, 85].

In the most basic and generic case, compartmental growth (of some population X,
e.g. cancer cells) can be modeled by considering a growth rate (g) and a death rate (d)
according to,

X(t+ dt) = X(t) + [gX(t)− dX(t)]dt. (1)

The model is discrete and uses a time step of size dt, where the population after each
time step has increased or decreased with the difference between the growth and death
rate of the population at the last time step.

To obtain a continuous model, Eq. (1) can be turned into an ODE by allowing the
time step to be infinitesimal. The growth is then described by,

X ′(t) = gX(t)− dX(t), (2)

with the corresponding solution

X(t) = X(0)e(g−d)t, (3)

where it is noted that g > d results in an exponential increase, and g < d in an exponential
decrease towards zero.

The ODE in Eq. (2) corresponds to simple population growth, specifically, the im-
munological and cellular contexts demand more variables to be realistically described by
mathematical models. On small scales (e.g. in the context of extinction dynamics), bi-
ological systems are also governed by randomness, which can not be accounted for with
ODEs due to their determinism. Therefore, stochastic models, although mathematically
complicated to analyze, could also be considered. [80].
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Moreover, most ODE models lack the spatial aspect, and can at best only approximate
representations of space. Instead, models which include spatial coordinates are usually
formulated in terms of PDEs. However, these are usually cumbersome in comparison to
ODEs, and they still do not optimally account for immunological spatial features [80].

The fifth of the earlier presented model categories was agent-based models, these
are well suited for including spatial representations. Contrary to the compartmental
ODE models, these consider populations on an individual basis. Agent-based models
are illustratively realistic and account for influenced, stochastic, or governed movement
of each system component (such as the T cells), as well as their spatial interactions
with other system components. The individual component behaviors in these models
are commonly determined using parameters sampled from probability distributions to
implement diversity. Notably, agent-based models are often difficult to analyze due to
the large amount of system-defining parameters and quantitative information needed [80].

For a hands-on experience and an introduction to the use of mechanistic simulation
models in immunology, the R-package DSAIRM (Dynamical Systems Approach to Im-
mune Response Modeling) is available, see [86, 87].

4.1.1 Undisturbed Tumor Growth

Gompertzian growth curves are phenomenological models that describe undisturbed tu-
mor growth. This growth model assumes that the proliferation rate decreases exponen-
tially with time [22, 83]. The equations of the system can then be written as,{

V ′(t) = P (t) · V (t)

P ′(t) = −γP (t)
, (4)

where V (t) is the time-dependent tumor volume, P (t) is its proliferation rate, and γ is
the rate at which the growth slows down. Solving for V (t) gives,

V (t) = V0 exp

(
P0

γ
(1− e−γt)

)
, (5)

where V0 is the initial volume, and P0 is the initial proliferation rate. Considering the
derivative of Eq. (5), Eqs. (4) can conveniently be written on a one-dimensional form,

V ′(t) = P0V (t)− γV (t) lnV (t). (6)

According to Eq. (6), the volumetric growth rate of tumors depends on one growth-
promoting term (directly proportional to the tumor volume) and one death term (pro-
portional to the tumor volume and its logarithm).

Alternatively, tumor growth is also sometimes [83] modeled by the Bertalanffy equa-
tion [88],

V ′(t) = Psurf. · V (t)2/3 −M · V (t). (7)

The ODE assumes that the total growth scales with the proliferation rate ([Psurf.] =
[length/t]) and the tumor’s surface area, with a decrease (due to cell death) proportional
to its volume with some constant [M ] = 1/[t]. In comparison to Figure 8, the Bertalanffy
equation can be interpreted to take the different layers into account, where it is only
the proliferating cells (surface layer) that cause the tumor to increase in its volume.
The proliferation term (Psurf.) is thus dependent on the width of the proliferation layer
(assumed to be constant, see more in relation to Eq. (9) on Page 22).
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The analytical solution of the Bertalanffy equation is computationally heavy, however,
its growth curve obtained through a numerical solution is given along with a Gompertzian
and a logistic growth curve in Figure 9 below. Notably, the logistic growth curve is
included due to its (to be seen in Section 4.1.2) frequent appearance in mathematical
models.

Figure 9: Time-dependent tumor growth. Note that the unit of V (t) is considered
arbitrary (could be cm3, or the number of cells, etc.). The growth functions assume a
proliferation rate of P = 0.1/day (or, e.g., [cm/day] for the Bertalanffy equation) and an
initial tumor volume of V0 = 0.1. The growth is modeled by one Gompertzian curve (green
line, corresponding to Eq. (5)), one Bertalanffy curve (blue dashed line, corresponding
to a numerical solution of Eq. (7)), and also one logistic curve (black dot-dashed line
corresponding to a numerical solution of V ′(t) = PV (t)(1 − V (t)/κ), which appears in
models considering tumor carrying capacity, κ). Here, γ = 0.019/day, M = 0.037/day,
and κ = 16 ([κ] = [V (t)]).

The features of the sigmoidal curves emphasize the tendency of tumors to initially
have exponential growth, then enter a more linear phase, and finally a plateau phase
(where saturation is reached).

It should also be noted that, in influenced tumor growth, a death term −c(t)V (t)
should be included in the growth models, where the function c(t) represents the cytotoxic
effect of drugs, treatment, or immune cells on the tumor [83]. Furthermore, if the natural
proliferation rate can be influenced, P = P (V, t) should be considered with some propor-
tionality to an effective function Pe(t). This proportionality is, for example, accounted
for in the model presented in [83],

V ′(t) =

(
P (V, t)

1 + Pe(t)
− c(t)

)
V (t). (8)

The growth models from Eqs. (6-8) do no not explicitly assume any structural geome-
try of the tumors (except for Eq. (7)), i.e. the volumetric variable can also be interpreted
as a literal cell count (with parameter units adjusted accordingly). These kinds of growth
models aim to supply a macroscopic and phenomenological growth quantification, with-
out assumptions on the tumor structure. Thorough models should also consider tumor
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heterogeneity and geometry, e.g. through spatially distributed models (however, hetero-
geneity is not necessarily directly correlated to space). Other parameters that might be
more relevant than spatial aspects include the tumor cell ages (cell-division cycles and
internal cell traits on the individual scale) and drug-induced resistance (adaptability of
the tumor microenvironment) [83].

Contrary to the models presented above, growth models can also be constructed to
explicitly consider the tumor geometry and structure. The most simple ones assume
tumor spheroids growing in a sigmoidal manner (cf. Figure 8 and Figure 9). Models
considering tumor spheroids commonly assume perfect symmetry, both geometrically
(with some radius r(t)) and property-wise (e.g. proliferation, necrosis, and diffusion) [89].
Volumetric models are then rewritten in terms of the tumor radius by replacing V (t) with
4
3
πr(t)3. A well-studied model originated from observations of constant proliferation rate

(P ) in the proliferating layer of tumor spheroids (III in Figure 8) [90], and that this
outer layer of the tumor has a constant width (w) [91]. The model was later written
to have the tumor initially grow exponentially [92] (omitted here), and finally through
the introduction of a general death term (proportional to the spheroid radius and a rate
constant, γ) [89], the model reads,

r′(t) = Pr

[
w

r
−
(w
r

)2

+
1

3

(w
r

)3
]
− γr. (9)

Moreover, undisturbed tumor growth has also been described in spatial models using
PDEs (see more in Section 4.2.2).

4.1.2 Cancer–Immune Interactions

The interactions between cancer cells and immune cells have already been explored and
accounted for in Sections 2 and 3, but to summarize and recall these cancer-immune
interactions, the diagram below in Figure 10 is considered. It should be noted that
the mathematical interpretation of these cancer-immune interactions (mainly cancer cell
death through cytotoxic effect, and immune cell inactivation) are commonly characterized
using ODEs [83].

Figure 10: Diagram depicting growth-associated cancer-immune interactions.
The green arrows represent growth stimulation, and the red bar lines represent growth
inhibition. It should be noted that most models neglect the promoting effect that immune
cells can have on cancer cells.
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The dynamical process of the immune-cancer system is of great importance in the
context of immunotherapy, and it is referred to as immunoediting. As briefly mentioned
earlier, immunoediting considers three different phases: Elimination - through sufficient
cytokine production, tumor antigen recognition by dendritic cells, or active CTLs and NK
cells, tumor cells are eliminated by the immune system. Equilibrium - through immune
cell evasion and inactivation, some tumor cells avoid elimination. Escape - escalated
growth of the tumor cells that survived the elimination phase and evaded immune detec-
tion in the equilibrium phase (e.g. through immunosuppressive cytokine secretion or an
apoptosis encouraging tumor microenvironment) [93]. The three phases are illustratively
depicted below in Figure 11 (and an even more extensive illustrative poster of cancer
immunoediting can be found in [93]).

Figure 11: Illustration of immunoediting and its three phases. 0○ The initial
condition, where a normal cell has developed an oncogene and turns into a cancer cell
(oncogenesis). 1○ The elimination phase, where immune cells such as T cells and NK cells
suppress the cancer cell from proliferating. 2○ The equilibrium phase, where the tumor
is dormant and anti-tumor cytokines (IL-12 and IFN-γ) are maintaining the cancer in
its equilibrium state. 3○ The escape phase, where the tumor will progress by evading
the immune system and taking advantage of the Treg cells. The bottom panel shows the
time-dependent growth profiles corresponding to the immunoediting process. Adapted
from [94, 95]cb.
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With the dynamical aspects in consideration, a simple and straightforward way to
investigate cancer-immune interactions is to regard the Lotka-Volterra [96, 97] (predator-
prey) model, with the number of cancer cells as the prey and the number of immune cells
as the predator. Notably, this model neglects many of the essential interactions shown
in Figure 10, however, it acts as a good starting point. The equations of such a system
look like this,

C ′(t) = PCC − γCI

I ′(t) = PICI − δI,
(10)

where PC is the proliferation rate of the cancer cell population C = C(t), γ is the death
rate of cancer cells (proportional to both the cytotoxic immune cell population, I = I(t),
and the cancer cell population). Furthermore, the immune cell population is growing with
some proliferation rate PI (which is affected by the cancer cell population17), and δ is the
natural death rate of the immune cells. Note that the tumor volume function V (t), from
the previous section, can correspond to the same thing as C(t). The change of notation
from this point onward is to remove the geometric analogy and, instead, consider the
size of a cancer population as the number of cancer cells in the tumor. The interaction
between cancer cells and immune cells according to the Lotka-Volterra model can be seen
in the phase portrait below.

Figure 12: Phase portrait of the predator-prey model according to numerical so-
lutions of Eqs. (10). The phase portrait represents how the system evolves, where the
direction of time is indicated by the arrows. The green star indicates a state of possible
tumor elimination, the black circle represents a stable state for a dormant tumor, and
the red square indicates a state of possible tumor escape. The specific parameters used
are PC = 0.08/day, γ = 0.0005 day−1cells−1, PI = 0.0002 day−1 cells−1, and δ = 0.2/day.

17Originating from the fact that the predators survive on nutrition from the prey, which is not the case
for cancer and immune cells. However, as conveyed by the introductory section, if the immune system
recognizes a great population of intruders (or cancer cells), an increase of immune cells can take place to
deal with the issue. Yet, as also discussed, immune cells can have a hard time recognizing cancer cells,
so the matter is complicated. But as to be seen, this proportionality remains even in the more realistic
models.
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A more physical extension of the predator-prey model was presented in 1973 by
Bell [98],

C ′(t) = PCC − γ
CI

1 + C + I

I ′(t) = PI
CI

1 + C + I
(1− νI)− δI,

(11)

where ν is an antibody production inhibiting constant. If the antibody production is
considered unlimited (ν = 0) the only difference to the predator-prey model in Eqs. (10)
is that Bell’s model introduces finite limits to the population growth ( 1

1+C+I
). Even

though Bell’s model has similarities to the predator-prey model, they exhibit dramatically
different behaviors.

Figure 13: Phase portrait of the Bell model from Eqs. (11). The black circle marks
an unstable state between tumor escape (to its right) and tumor elimination (to its left).
Notably, this model is not meant to represent cancer-immune interactions, and even in the
context of modeling viral bacterial infections (its intended use), Bell deems it difficult to
select biologically realistic parameter values. However, estimations based on his discussion
in [98] are used here and read as PC = 0.9/day, γ = 3/day, PI = 2.4/day, δ = 0.1/day,
and ν = 0.001/cells.

Other appearances that the model by Bell can take are extensively accounted for
in [98]. But one interesting remark is that uncontrolled proliferation of the antigen (here,
cancer) will occur when γPI −γδ−PIPC ≤ 0, otherwise (for γ < PI) the populations will
oscillate towards a dormant tumor or (for γ > PI) experience extreme oscillations, i.e.
malignant tumor escape or complete tumor elimination (as seen in Figure 13) [28, 98].

Moving on to more realistic models for cancer-immune interactions, a (today classic)
model was presented in 1979 by Stepanova [99]. The model assumes T-cell proliferation
is stimulated by the tumor cells’ antigens, and that the tumor growth rate is described
by unperturbed tumor growth (F (C), in accordance with the models presented in Sec-
tion 4.1.1) subtracted by some death term proportional to the number of immune cells
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and cancer cells. The model reads,

C ′(t) = F (C)− γCI

I ′(t) = PI (1− βC)CI − δI + α,
(12)

where the immune cell proliferation is now suppressed by an immunosuppressive coeffi-
cient, β, related to the cancer cell population. In opposite to the natural immune cell
death (δI), a natural generation (i.e supply from the bone marrow) of immune cells is
also accounted for.

For a sufficiently small tumor, the immune system can prevent its growth, but after
a critical point, the tumor escapes. This can be interpreted as an unstable manifold and
is best represented in a phase portrait.

Figure 14: Phase portrait of the Stepanova model from Eqs. (12), considering
tumor growth by the Bertalanffy equation from Eq. (7), i.e. F (C) = PCC

2/3 − MC.
The parameterization has here been done in a normalized and unitless manner to bet-
ter illustrate and the model behavior and disregard any volumetric assumptions, thus
PC = 0.6,M = 0.098, α = 0.1, β = 0.3, γ = 1, δ = 0.4, and PI = 0.5 (inspired by parame-
ters used in [83]). The green star represents a stable state for a nonmalignant (dormant)
tumor, the black circle represents an unstable state, and the red square represents (ma-
lignant) tumor escape.

Another model introduces the necessity of the formation of cancer-immune cell com-
plexes for any cell death to occur. The model, along with a kinetic scheme of cancer-
immune interactions (see Figure 15), was proposed in 1994 by Kuznetsov et al. [100] and
will be referred to as the Kuznetsov model from now on.
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Figure 15: A kinetic scheme of cancer-immune interactions proposed in [100],
where I denotes active CTLs and NK cells, and C represents cancer cells. At a rate of
k1, cancer and immune cells form complexes (which are also decomposed at a rate k−1).
The complexes also result in only immune cell survival with a rate of k2, and only cancer
cell survival (i.e. dead or inactivated immune cells) with a rate of k3.

A simplified (2D) version of the Kuznetsov model can be seen below,

C ′(t) = PCC

(
1− C

κ

)
− γCI

I ′(t) = PI
CI

g + C
−mCI − δI + α,

(13)

where, in relation to the k-rates from Figure 15, γ = Kk2 and m = Kk3, with K =
k1

k2+k3+k−1
(considering β from Eqs. (12), m = PIβ). The cancer growth rate is here de-

scribed by logistic growth (cf. C ′(t) from Eqs. (12) with F (C) = PC(1 − C/κ)). The
immune cell proliferation (PCCI) is seen to be suppressed by the cancer population and
some constant (g), while the total growth rate is (except for natural death and supply)
influenced by cancer-induced immune-death (−mCI). Note that the complete Kuznetsov
model also regards a third ODE, describing the formed complexes. However, the dimen-
sional reduction is obtained by letting the complexes be approximately described by the
product KCI (see details in [100]), which here allows for the depiction of the model in
2D phase portraits, see Figure 16.

A complete exposition of the parameters from Eqs. (13) can be seen below in Table 2
(along with their most realistic values according to [100, 101]).

Table 2: Description of the parameters in the Kuznetsov model from Eqs. (13).

Parameter Description Estimated value

PC Proliferation rate of cancer cells 0.18 day−1

γ Tumor cell death rate 1.101× 10−7 day−1cells−1

κ Tumor’s maximum carrying capacity 5.0× 108 cells
PI Proliferation rate of immune cells 0.1245 day−1

δ Natural death rate of immune cells 0.0412 day−1

m Immunosuppressive constant 3.422× 10−10 day−1cells−1

g Experimentally measured constant 2.019× 107 cells
α Natural generation of immune cells 1.3× 104 cells day−1
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Notably, the Kuznetsov model takes density limitation into account by letting the can-
cer proliferation term depend on the maximum carrying capacity, κ, of the tumor (which
is especially motivated considering tumor spheroids [102]). Moreover, the Kuznetsov
model can not have any closed orbits or limit cycles, but depending on the used param-
eters, it can have zero, one, or three equilibrium points [28]. The Kuznetsov model also
generally predicts a dormant tumor through its inward spiraling phase portrait, like the
one seen in Figure 16.

(a) (b)

Figure 16: Phase portraits of the Kuznetsov model corresponding to Eqs. (13).
The complete behavior of the model is seen in (a), while (b) shows the phase portrait
for tumors of a magnitude lower (compared to (a)). The inward spiral results in a stable
benign tumor (denoted by a green star), the black circle marks an unstable state, and
the red ✖ indicates a stable malignant tumor. The used parameter values are the same
as in Table 2.

The phase portraits seen in Figure 16 highlight a phenomenon known as “sneak-
ing through”, as a tumor that appears to become dormant, escapes in the end. The
phenomenon depends on the ratio between the induced inactivation (death) of immune
cells and cancer cells, i.e. k3

k2
from Figure 15 (or m

γ
≈ 0.0034, considering Table 2) [28].

For k3 ≪ k2, the immune system is too effective, thus sneaking through is only pos-
sible when the ratio is above a certain value (k3

k2
≳ 0.0029, numerically obtained using

m = 2.89 × 10−10 day−1cells−1 and γ from Table 2). The existence of this threshold
infers that immunosuppressive features are essential for tumor escape, which predicts the
effectiveness of checkpoint inhibitor drugs (artificially decreasing k3).

From here, it is natural to introduce a generalized model (stated [103], adapted in
[28]),

C ′(t) =

Tumor growth︷ ︸︸ ︷
PCf1(C) C −

Predation︷ ︸︸ ︷
γf2(C, I)CI

I ′(t) = PIf3(C)︸ ︷︷ ︸
Recruitment

CI − δf4(C)︸ ︷︷ ︸
Inactivation

I + αf5(C)︸ ︷︷ ︸
Generation

.
(14)

This generalized model can be easily adopted to obtain the special cases from Eqs. (10)-
(13) (and others, see e.g. Table 10.1 in Ref. [28]), for example, the Kuznetsov model
from Eqs. (13) can be further adapted to large tumors by considering the Gompertzian
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growth curve from Eq. (6) (instead of logistic growth). In this case, f1 = 1 − 1
κPC

lnC,
while everything else is identical to Eqs. (13). The phase portraits now look like,

(a) (b)

Figure 17: Phase portraits of the modified Kuznetsov model, considering Gom-
pertzian tumor growth. The behavior of the model is seen in (a), while (b) considers
tumors of a magnitude smaller (notably identical to Figure 16 (b)). The black circle
marks an unstable state, the green star marks tumor dormancy, and the used parameter
values are the same as in Table 2 and Figure 16. Also, note that the phenomenon of
“sneaking through” is still present (bottom left in (a) and bottom right in (b)).

The next logical step is to introduce a third ODE, for example, the process of how the
cancer-killing immune cells (CTLs) are recruited, could be accounted for. One group of
immune cells that encourage CTL proliferation (through cytokine production, e.g. IFN-
γ) and are partly responsible for CTL recruitment, are the Th cells. A model which
accounts for this cytokine production, by assuming that the proliferation rate of CTLs is
proportional to the number of Th cells, was presented in 2018 by Dritschel et al. [104].

C ′(t) =

Logistic growth︷ ︸︸ ︷
PCC

(
1− C

κ

)
−

Predation︷ ︸︸ ︷
k2CIT ,

I ′Th(t) =
Infiltration︷︸︸︷

ιTh +

Proliferation︷ ︸︸ ︷
2PTh

C̃CITh

C̃2 + C2
−

Natural death︷ ︸︸ ︷
δThITh ,

I ′T (t) =
Infiltration︷︸︸︷

ιT +

Proliferation︷ ︸︸ ︷
PT IT ITh −

Inactivation︷ ︸︸ ︷
k3ITC −

Natural death︷︸︸︷
δT IT .

(15)

The parameters are the same as introduced earlier (except for the immune cells’
infiltration rate, ι), where the k-rates from Figure 15 are also considered. The subscripts
denote the cell corresponding to the specific parameter (Th = T helper cells, T = CTLs,
and C = cancer cells). The C̃-parameter corresponds to the number of cancer cells when
the proliferation rate of Th cells is half-maximum. When C = C̃, the individual Th cell’s
maximum proliferation rate (PTh) is obtained, and the proliferation term is seen to be
similar to previous proliferation terms.

The Dritschel model has shown that the immunoediting process is dependent on the
CTLs’ and Th cells’ infiltration rates, where both of these immune cells are crucial for
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tumor elimination. It also indicates an increased effect of tumor growth suppression by
combining immune system-boosting immunotherapies with the blocking of tumor-induced
immunosuppressors [104].

More variables could also be accounted for by introducing more ODEs (see for exam-
ple [105]), however, as explained, ODEs can only approximately represent spatial aspects.
The next section, therefore, moves on from ODE-based models.

4.2 Spatial Distribution of Immune Cells

4.2.1 Physical Attributes

This section considers sets of data containing spatial information of cells from 2D-slices
of tumor tissues. The data corresponds about 6500 tumor samples taken from a total of
roughly 3500 different cancer patients, see explicit details in Appendix C. The data have
generously been supplied by [106, 107].

An example of the spatial data collected from each tumor sample is seen in the figure
below, which considers cell-coordinates in a sample taken from a breast cancer patient.

Figure 18: Spatial distribution of tumor-infiltrating lymphocytes and cancer cells
in tumor tissue taken from a breast cancer patient. The killer T cells (CTLs) are sepa-
rately marked with stars to further highlight them.
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All mathematical models accounted for in the previous subsection assumed that im-
mune cells (CTLs) kill cancer cells. By observing the spatial distributions of the CTLs
and cancer cells depicted in Figure 18, it can be noted that the CTL-dense areas (e.g.
around (x, y) = (1000, 800) or (800, 600)) contain fewer cancerous cells than the areas
with no or sparse CTLs. To explicitly investigate if the lack of cancer cells is generally
related to the presence of CTLs, the number of CTLs and cancer cells in each tumor
sample can be compared. Specifically, by counting the number of CTLs and cancer cells
in Figure 18 and all other of the 6500 tumor samples, the scatter plot in Figure 19 is
obtained18.

Figure 19: Number of CTLs in relation to the number of cancer cells. Each data
point corresponds to a separate tumor sample from an unspecified cohort.

Notice in Figure 19 that the lower the CTL count, the larger the cancer cell count
is able to get. However, from the the right-hand histogram, it is noted that the tumor
samples are more likely to only have a few number of CTLs (samples with few CTLs are
more common). By also considering the peak of the histogram on the top in Figure 19, the
tumor samples appear to most likely contain about 2000 cancer cells, where the frequency
of larger cancer cell counts seem to decrease with Gaussian-like behavior.

Notably, the data in Figure 19 corresponds to 12 different cancer types (cohorts). It
has previously been mentioned that tumors can differ a lot in behavior depending on their

18For the relations between each of the other cells depicted in Figure 18 (B cells, Th cells, etc.), see
Appendix C Figure C.1 and Figure C.2 (for logarithmic scale).
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region of occupation, therefore, it could be more reasonable to study the CTL occurrence
in the 12 cohorts separately. To investigate if this assumption is valid, the data from
Figure 19 is separated into 12 different plots in Figure 20, where each panel considers a
different cancer type (tumor cohort).

Figure 20: CTL count in comparison to the number of cancer cells, separated by
type (cohort). Here, CRC is Colorectal cancer, Esoph is Esophageal, MEL is Melanoma,
and Ovca’Lund and Ovca’Sto correspond to Ovarian cancer data from research teams
from Lund University and the Karolinska Institute (Stockholm), respectively. Some co-
horts (e.g. Ovca’Sto and MEL) are noted to consist of relatively few data points, therefore
not allowing for any clear trends to be established.
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Some of the cohorts in Figure 20 (Ovca’Lund and Prostate) show sporadic behavior
where a high count of CTLs can also be found in tumor samples with large cancer cell
counts. In particular, these cohorts show no clear relation between CTL count and cancer
cell count. Other cohorts (Breast, CRC, Esoph, and Lung) correlate particularly well to
the general behavior observed in Figure 19, implying the potentially important role of
CTLs in benign tumors of these types. In fact, it has previously been shown that a high
density of tumor-infiltrating lymphocytes (like the CTLs) is strongly correlated to a better
prognosis for patients suffering from cancers known as ’HER2-positive breast cancer’
and ’triple-negative breast cancer’, where the latter one is known to have the highest
concentration of infiltrating lymphocytes of all breast cancer types [108]. The trend seen
for colorectal cancer (CRC) is also expected from previous research establishing that a
high density of CTLs can decrease the rate of recurrence in colorectal carcinoma [29, 30].

Both Figure 19 and Figure 20 show that a high count of CTLs in most cancers limits
the number of cancerous cells in a tumor. It is even considered that the role of CTL-
density in tumors is well known to be important in cancer prognosis, and that focus should
be put on other immune cells. But at the same time, it is deemed worth considering their
spatial distributions and association with cancer recurrence [13].

Therefore, before moving on from the CTLs, some spatial distribution aspects of
the well-known cancer-killing immune cells (given through empirical observations in the
studied data) are considered. Specifically, in Figure 18 it was noted that there are CTL-
dense areas, in particular, it is observed that the CTLs seem to appear in clusters.
The general behavior of CTL-clustering can be investigated statistically by considering
the relative frequency of specific cluster sizes, i.e. f(Icluster) =

Occurrence of cluster size
Total number of clusters

, where
f(Icluster) is the relative frequency (or empirical probability) of CTL-clusters of size Icluster.
The process of cluster classification and the resulting cluster behavior is seen below in
Figure 21.
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Figure 21: Clustering of CTLs in tumors. The top-left panel illustrates the four
classified CTL-clusters of the single tumor sample depicted in Figure 18. The clustering
process is performed using the k-means method, where the optimal number of clusters (k)
per tumor sample is found using the “Elbow method” (illustrated in the top-right panel
as finding the point of maximum curvature in a distortion plot). The KneeLocator()-
function of the Python package kneed (which builds upon the ’kneedle’ algorithm intro-
duced in [109]) makes it possible to classify the CTL-clusters and their sizes in each of
the 6500 tumor samples. The relative frequency (f) of all found cluster sizes can then be
collectively plotted for all samples on log-log scale (the bottom panel).

The general clustering behavior (regarding cluster size) of CTLs in all of the considered
tumor samples can be observed in Figure 21 to approximately follow a power law. The
power-law19 indicates the presence of scale-invariance in cluster formation of CTLs. Note
that the used clustering algorithm needs to know in what range the optimal number of
clusters (k) is expected to be, the maximum number of clusters per sample was here set
to 20 (i.e. k ∈ [1, 20], however, no tumor samples were found to be optimally described
by more than 6 clusters).

Briefly moving on from the CTLs, it was in Sections 2.2 and 3 noted that also the NK
cells and macrophages of the immune system can be major contributors to the killing of

19A tentative exploration of the power-law’s implications can be found in Appendix D.
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cancer cells. The data sets considered, also account for these innate immune cells and
some of their variants. The spatial data is still in the form as described in Appendix C,
however, now with the innate immune system cells instead of TILs. The innate immune
cells accounted for in the data are put into relation with the number of cancerous cells
(similarly to Figure 19) in the figure below.

Figure 22: Relation between the number of immune cells and cancer cells. Here,
M1 and M2 are different subgroups of macrophages, and more on the relation between
Myeloid cells and NK cells can be found in [110]. Some distinguishing features are more
evident when plotted on a logarithmic scale, see Appendix C Figure C.3. Note that the
behavior of the “Unspecified cells”-panel can be influenced by many different cells, but
also by the fact that the total number of cells in each tumor sample is finite (which holds
in all cases).

Notice that the NK cells behave similarly to the CTLs in relation to the number of
cancerous cells. However (especially evident from the logarithmic scale in Appendix C
Figure C.3) the M1s’ and M2s’ relation to the number of cancer cells stand out. Both M1
and M2 are commonly referred to as tumor-associated macrophages, implying that they
are common in tumor microenvironments. From previous research, it is also well-known
that M1 macrophages are tumor resistant and have anti-tumor effects such as being able
to distinguish between normal cells and tumor cells, while M2 macrophages promote
tumor proliferation, invasion, metastasis, and angiogenesis [111, 112].
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The M1s can have positive regulatory effects such as increasing the number of ac-
tivated NK cells and promoting T cell proliferation [111]. On the other hand, the reg-
ulatory effects of M2s can directly inhibit the proliferation of CTLs by Treg recruit-
ment [113]. Surgical removal of these tumor-associated macrophages has also proven
to block Treg recruitment, thereby, inhibiting tumor growth [114]. The many immuno-
suppressive and tumor-supportive features of M2s can cause cascade reactions in tumor
progression, rapidly increasing the process of forming malignant tumors. Specifically, the
ratio between CTLs and M2s has been proven to predict the survival of cancer patients
better than many other clinical parameters [107, 112].

Thus the consideration of NK cells and macrophages is also motivated for study in
presence and distribution in the tumor microenvironments. A third group of immune
cells that the provided data sets account for (which also was introduced in Section 2.2)
are the APCs (antigen-presenting cells), these were deemed essential for the activation of
other immune cells. A brief investigation of their relation to the number of cancerous cells
is therefore also motivated. The APCs considered are Dendritic Cell (DC) variations, see
Figure 23 below.

Figure 23: APC count in relation to the number of cancer cells in its corre-
sponding sample. The specifics of the different kinds of APCs (DCs), can be explored
further in [115, 116]. However, mDCs are myeloid DCs, pDCs are plasmacytoid DCs, and
CD208 is also known as DC-LAMP. For logarithmic scale, see Appendix C Figure C.4.
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The different APCs in the tumor samples are noted to differ in their relation to the
cancer cell count. Notably, it has been shown that immature DC-conditioned Th cells are
immunosuppressive, while mature DCs (like mDC and pDC) induces immunostimulatory
Th cells [117]. These results are well reflected by the data from Figure 23. Furthermore,
T cells related to two specific cytokines (IL-10 and TGF-β), are known to increase in
number independent of whether the DCs are mature or immature, while their suppressive
functions only are coupled to immature DCs (inhibition of the IL-10 and TGF-β related
receptors on DCs have also proven to enhance activation of CTLs and to kill cancer
cells) [117, 118].

The physical attributes and relations between the number of immune cells and can-
cer cells in tumor microenvironments, suggest that models of the interactions between
immune cells and cancer cells are motivated by the dynamics of actual tumor microen-
vironments. The considered data also does not contain any interpretation or aspect of a
time variable, the static “images” emphasize the need of models that incorporate spatial
parameters. Building upon the (solely time-dependent) ODEs from Section 4.1.2, models
that can make predictions for, e.g., I(x, y, z, t) are in the next section considered using
PDEs.

4.2.2 Mathematical Modeling

In comparison to the simplistic (undisturbed) tumor growth models from Eqs. (6-9),
more comprehensive models can be introduced by accounting for spatial aspects using
PDEs. One such model takes growth saturation into account by considering glucose (main
nutrient) concentrations, G, and the volumetric fractions of tumor cells (C), healthy cells
(H), and extracellular space (S). The model also applies Heaviside functions (Θ) mainly
to simplify the influence of the death and proliferation rates on the glucose level, with
the intention to ease its analytical study [119]. The model reads,

∂C

∂t
=

Proliferation︷ ︸︸ ︷
PC ·Θ(G−Gp) ·Θ(S − Scr)−

Death︷ ︸︸ ︷
MC ·Θ(Gd −G)−

Convection︷ ︸︸ ︷
1

r2
∂ (vCr2)

∂r

∂H

∂t
=

Convection︷ ︸︸ ︷
− 1

r2
∂ (vHr2)

∂r
,

∂G

∂t
=

Inflow︷ ︸︸ ︷
NαH[1−G] +

Convection︷ ︸︸ ︷
DG

r2
∂2 (Gr2)

∂r2
−

Consumption by proliferating cells︷ ︸︸ ︷
QpC ·Θ(G−Gp) ·Θ(S − Scr)

−QqC [Θ (Gp −G) ·Θ(Scr − S) + Θ (S − Scr)] ·Θ(G−Gd)︸ ︷︷ ︸
Consumption by quiescent cells

(16)

with cell velocity v = Nα,cr

µ[S0−Scr]
∂S
∂r
, where S = 1− (H +C). In contrast to the previous

models, all volumetric fractions are here spatially dependent, i.e. C = C(x, y, z, t), H =
H(x, y, z, t), and G = G(x, y, z, t). The dynamics of the convective motions depend on
gradients of stress that in turn depend on the death and proliferation of the cancer cells.
Furthermore, tumor proliferation is possible for glucose concentrations (G) above the
critical point Gp, and an extracellular space fraction (S) greater than the critical fraction
Scr. For glucose concentrations lower than Gd < Gp, the tumor cells are assumed to
die due to malnutrition [83, 119]. See Table 3 for a complete description of the model
parameters.
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Table 3: Description of parameters from Eqs. (16), with values from [119].

Parameter Description Estimated value
P Proliferation rate of tumor cells 0.03 h−1

M Death rate of tumor cells 0.003 h−1

Nα Nutrient generation (supply) level 1.1× 10−3 s−1

DG Glucose diffusion coefficient 2.8× 10−6 cm2

s

Qp Proliferating cells’ glucose consumption rate 1.2× 10−16 mol
cells·s

Qq Quiescent cells glucose consumption rate 3× 10−18 mol
cells·s

Gd Critical glucose level for tumor cell survival 0.055 mM
Gp for tumor cell proliferation 0.55 mM
r Radial coordinate -
S0 Fraction of healthy cells’ extracellular space -
µ Fluid viscosity -

To analyze heterogeneous spatio-temporal dynamics of tumor cells and immune cells,
tumor-infiltrating immune cells (e.g. T-cells) are considered in spatially-distributed mod-
els [120, 121]. If consideration is also taken to tumor antigen recognition, the mutation
frequency in tumor antigens can be shown to play an important role in the effective-
ness of the immune system [122]. On the topic of mutations in tumor antigens, a model
accounting for antigen heterogeneity and evolution (i.e. mutation) has been presented
in [123] (see Appendix B.1 for details).

A mathematical model describing spatio-temporal dynamics of tumor cells and im-
mune cells in immunogenic solid tumors was presented in 2004 by Matzavinos et al.
[121]. The model specifically considers the dynamics between a small non-necrotic multi-
cellular tumor (without angiogenesis) and tumor-infiltrating cytotoxic lymphocytes. The
dormancy phenomenon briefly accounted for in the previous section, is more extensively
explored in this model, and the lymphocyte infiltration is accounted for using a set of
different parameters.

Similar to the model by Kuznetsov from Eq. (13), immune cells and tumor cells
are here assumed to form complexes, with the same rates as in Figure 15. The model
consists of four nonlinear PDEs describing tumor-infiltrating CTLs (I), cancer cells (C),
complexes (ζ), and chemokines20 (χ), where all variables depend on spatial coordinates
(x, y, z) and time (t). Recall,

I + C
k1
k−1

ζ

k2 I

k3 C

20Specific types of immune-activating cytokines.
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The model is then written as,

∂I

∂t
=

Random motility︷ ︸︸ ︷
D1∇2I −

Chemotaxis︷ ︸︸ ︷
K∇ · (I∇χ)+

Proliferation︷ ︸︸ ︷
PI

CI

g + C
−

Decay︷︸︸︷
δI +

Generation︷ ︸︸ ︷
αΘ(x)

−
Local kinetics︷ ︸︸ ︷

k1CI + (k−1 + k2) ζ,

∂χ

∂t
=

Diffusion︷ ︸︸ ︷
D2∇2χ+

Production︷︸︸︷
pζ −

Decay︷︸︸︷
dχ ,

∂C

∂t
=

Random motility︷ ︸︸ ︷
D3∇2C +

Logistic growth︷ ︸︸ ︷
PCC

(
1− C

κ

)
−

Local kinetics︷ ︸︸ ︷
k1CI + (k−1 + k3)ζ,

∂ζ

∂t
=

Local kinetics︷ ︸︸ ︷
k1CI − (k−1 + k2)ζ,

(17)

where ∇ is the differential operator of 3D-Euclidean space, i.e. x̂ ∂
∂x

+ ŷ ∂
∂y

+ ẑ ∂
∂z

in

Cartesian coordinates. Many of the variables have been introduced earlier (including
the Heaviside-function Θ(x), which here introduces a sub-region that initially consists
solely of tumor cells, see details in [121]). All parameters are collectively accounted
for in Table 4 below, along with their estimated values (adapted from [100, 101, 121]).
Also, note that random motility (passive transport) and chemotaxis (active transport)
represent two ways for the immune cells to infiltrate the tumor.

Table 4: Description of the parameters in the Matzavinos model from Eqs. (17).

Parameter Description Estimated value

PC Proliferation rate of cancer cells 0.18 day−1

κ Tumor’s maximum carrying capacity 5.0× 108 cells · cm−1

PI Proliferation rate of immune cells 0.1245 day−1

δ Natural death rate of immune cells 0.0412 day−1

k1 Complex formation rate 1.3× 10−7 day−1cells−1cm
k−1 Complex deformation rate 24.0 day−1

k2 Cancer death by immune cell 7.198 day−1

k3 Immune cell death by cancer 0.002 day−1

g Experimentally measured constant 2.02× 107 cells · cm−1

α Natural generation of immune cells 1.36× 104 day−1cells · cm−1

d Decay rate of chemokines 1.155× 10−2 day−1

p Production rate of chemokines [20, 3000] cell−1 min−1

D1 Random motility of immune cells 7.0× 10−5 cm2 day−1

D2 Diffusion coefficient of chemokine [10−4, 10−2] cm2 day−1

D3 Random motility of cancer cells [0.06, 9]× 10−6 cm2 day−1

K Chemotaxis coefficient 1.728× 106 cm2 day−1M−1

The Matzavinos model can be adopted for modeling of tumors exhibiting multi-layered
cell growth or multi-cellular spheroid growth. The Matzavinos model has also demon-
strated the existence of quasi-stationary (in time) and space-heterogeneous cell distri-
butions, as well as stable limit cycles (verified with bifurcation analysis). These results
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explain the complex heterogeneous spatio-temporal dynamics observed in the PDE sys-
tem, and are believed to deepen the cancer dormancy insight, while also contributing to
anti-cancer vaccine advancements [121]. For extensive simulations of time-relative spa-
tial distributions of immune cells in tumor tissue, according to the Matzavinos model,
see [121].

4.3 Physics Tools

This section briefly accounts for a few relevant tools that could be considered when
researching physical aspects of immunotherapy.

AstroPath™ [data acquisition] is a platform used for the investigation of marker
expressions on individual cells and their respective spatial coordinates. Multiplex im-
munofluorescent technologies are known for making visualization of molecular expression
patterns possible, however, it is not suitable for large tumor areas. This is where As-
troPath comes in, it draws from methods used in astronomy (which is well-known for
large-scale imaging analyses) to perform multispectral imaging with a single-cell resolu-
tion of whole-tumor samples. AstroPath has since been used, among others, for multiplex
immunofluorescent analyses to find prognostic predictors related to immunotherapy on
melanoma cancers. Read more about the end-to-end workflow provided by AstroPath
in [124]. Notably, this was the method used for compiling the cancer-patient data used
in this thesis.

PhysiCell™ [simulation tool] is a framework built in C++, the simulator21 is physics-
based and intended to use for simulations and studies of large multi-cellular systems. Read
more about the simulator in [125].

Moreover, an application powered by PhysiCell (using an Anaconda Jupyter-based
GUI) has been presented in [126]. This application is used to study the effects of chemical
communication (interactions) in dynamical multi-cellular systems. The model considers
Invader cells (cf. cancer cells) whose survival and proliferation are dependent on some
resource released by some Suppliers (cf. cancer-promoting cells). Scout cells (cf. APCs)
are drawn towards these Invader cells and can secrete attack signals (cf. cytokines) when
an Invader cell is encountered. The attack signals cause Attacker cells (cf. CTLs) to trace
the attack signal back to its origin, when encountering an invader cell, the Attacker cells
become activated and start to secrete a poison (cf. granzymes) to kill the Invader cells.
The model is well applicable for modeling immunotherapy methods, however, it should
be noted that it only considers chemical interactions (i.e. no contact-based interactions).

PyClone™ [mutation modeling] is a statistical modeling tool22 for Python, created
to study and identify clonal population structures. The model is used to analyze deeply
sequenced mutations and can be described as a Bayesian clustering method. Its intended
use is for the investigation of point-mutation occurrence in samples from heterogeneous
cancers. For more details and its applications, see [127].

Immunotherapy with microchips [laboratory work] and the important roles of
biophysics and lab-on-a-chip methods (considering single-cell analyses) are extensively
motivated for cancer research [18]. One research team [19] focuses on the use of microchips
to understand the mechanisms of cytotoxic killer cells (NK cells and CTLs). Through
a physics-immunology platform, they study cytotoxic cells using microchips to gather

21Download at: https://sourceforge.net/projects/physicell/ [Retrieved May 15, 2022].
22Reed more about the tool and how to install it at: https://github.com/Roth-Lab/pyclone/

[Retrieved May 15, 2022].
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a limited amount of tumor cells and cytotoxic cells within wells. The wells allow for
individual cell monitoring at the same time as the complete cell population can be studied.
Using these methods, they have observed trends of certain groups of immune cells being
particularly effective in killing cancer cells.

By combining microchips and ultrasonic emitters, 3D microtumors can also be synthe-
sized. Specifically, by matching the well-size with the frequency of the emitter, standing
(sound) waves force the cells to cluster and form a 3D structure (microtumor) near the well
center. These microtumors are then used for modeling solid tumor features in relation to
the cancer-killing immune cells, which behave differently in 2D and 3D environments [19].

5 Concluding Remarks

The cells of the immune system are most often able to keep newly emerged tumors from
escaping and becoming malignant. However, this phase of cancer elimination ends when
the proliferation rate of the tumor eventually saturates the immune system’s capacity.
This is where the tumor escapes and starts to rapidly proliferate, with even more muta-
tions as a consequence. It is in this escape phase that the tumor develops an immunosup-
pressive microenvironment, using features such as cytokine secretion and “recruitment”
of immune cells (e.g. Tregs and macrophages) to encourage its growth further. But as
attempted to expand upon and illustrate in this review, these changes do not have to be
irreversible. Through manipulation, boosting, and/or inhibition of certain immunogenic
features, immunotherapies can help reverse the process to re-enter the elimination phase
and enhance the cancer-killing capabilities of the immune cells. Notably, there already
exists immunotherapeutic treatments for cancer that are in use today, however, these only
work for a limited amount of patients and cancer types. Consequently, more research is
needed, and it is expected that a more comprehensive understanding of the events in be-
tween the elimination- and escape phase might lead to new findings and the development
of immunotherapies that can avoid the transition to happen in the first place [128].

Some cells of the immune system (including CTLs, NK cells, M1 macrophages, and
dendritic cells) naturally fight cancer, and the level of malignancy (density of cancerous
cells) is in many tumors directly influenced by the presence of tumor-infiltrating lympho-
cytes, antigen-presenting cells, and natural killer cells in the tumor microenvironment.
Other immune cells, like immature dendritic cells, are less helpful in moderating tumors
and can influence Th cells to become immunosuppressive. The M2 macrophages also
have directly immunosuppressive features, such as Treg recruitment that down-regulates
the rate of proliferation for the CTLs.

The effect of cancer-fighting immune cells on tumor microenvironments can also vary
significantly. The consideration of the number of CTLs in relation to the number of
cancerous cells in a tumor microenvironment (Figure 19), shows that it is also common for
tumors with low cancer cell counts to only have a few CTLs. Tumor-promoting immune
cells can also be few in more malignant tumors (Figure 22 and Figure 23). Notably,
the behavior and importance of particular immune cells vary depending on which organ
the tumor is located in (Figure 20), e.g. prostate cancer only conveys a vague relation
between the number of CTLs and cancer cells. In particular, tumors should not be studied
in a general manner. Even though global features can be observed (Figures 19, 22, 23,
and C.1), different cohorts need to be considered separately to model and predict tumor
behaviors and outcomes in a realistic manner.
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Immune cells also do not act individually, every cell’s behavior is governed by other
cells, e.g. the CTLs which need to be informed of an issue by Th cells, and by Tregs
to be told at what rate they should proliferate and kill. In turn, Th cells and Tregs are
dependent on the APCs finding and presenting antigens for them, in turn, dependent on
cytokine secretion, etc. The spatial aspects have to be considered and, ideally, all involved
immune cells and signaling cytokines should be accounted for to achieve accurate cancer
prognostics.

Models considering spatial cell-distributions are able to approximately describe the
dynamics of tumor microenvironments by considering chemokines (immune-activating
cytokines) and outcome rates of cancer-immune interactions (k-rates and complexes, ζ),
see Eq. (17). But in the process of developing effective immunotherapies, i.e. efficient
ways to influence the natural behavior of the dynamics in the tumor environment, it is
essential to account for other TILs than just the CTLs, as well as APCs and the members
of the innate immune system (macrophages and NKs).

It is worth mentioning that a common and general issue with mathematical models in
immunotherapy is that the actual application of treatments often results in unpredictable
outcomes (e.g. harmful effects). Some well-motivated models have even been deemed too
simplistic for being of practical use [83, 129]. The need for extensive models that incorpo-
rate multiple variables and interactions between cell populations is evident, but the high
dimensionalities of the parameter spaces further complicate the parametrizations and in-
troduce circumstantial parameters (estimated with large uncertainties within ranges of
values, cf. Table 4).

The subject of immunotherapy is comprehensive, and far from everything has been
accounted for in this review. Therefore, below follows some recommended further reading
for the interested readers.
Further reading:

• Immunotherapy: The future of cancer treatment [130]
• Cancer immunotherapy: a brief review of the history, possibilities [. . . ] [131]
• Cancer immunoediting and resistance to T cell-based immunotherapy [132]
• Nonequilibrium Physics in Biology [133] (in particular, Section IX)
• Dynamical properties of autoimmune disease models [. . . ] [134]
• The immune contexture and Immunoscore in cancer prognosis [. . . ] [135]
• The “Encyclopedia of Cancer Immune Microenvironment”23 (cell densities)
• A review of mathematical and computational methods in cancer dynamics [136]
• More mathematical aspects in [105, 121]
• More on the physicists’ role and importance in cancer research [13, 26]
• Build your own model - Simulation modelling for immunologists [80].

Key words that could ease the understanding of other literature:

• CD8+ = T killer cell (CTL)
• CD4+ = T helper cell (Th)
• CD3+ = T regulatory cell (Treg)
• TCR = T cell receptor
• TIL = Tumor-infiltrating lymphocyte
• TME = Tumor microenvironment
• Effector cells = Cytotoxic immune cells
• Immunoscore = Quantification of in situ immune infiltrations (for prognostics)

23An online database found at: https://encima.one/ [Retrieved May 15, 2022].
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Outlook

The fact that the immune system is a complex and efficient defense system suggests that
it should also be able to fight cancer, and so it does, but the immune system tends to
eventually be saturated, at least in humans. A scenario where the immune system rarely
fails is in the bodies of bats, where their immune system can effectively protect them from
developing cancer. In fact, bats are unaffected by many (typically deadly) viruses and
therefore serve as asymptomatic reservoirs for these [137]. The seemingly robust immune
system of bats suggests that there exist fundamental immune mechanisms that could
lower the human cancer rate, or at least supply strategies for human cancer treatment.
Specifically, the understanding of bats’ tumor suppressor mechanisms might contribute
to both cancer treatments and cancer prevention.

Some humans also seem to be less susceptible to viruses. The lack of knowledge of
why has led to the concept of “immunological dark matter” (something “invisible” which
is theorized to exist to explain the visible). The term seems to have arisen in relation to
the discovery of some individuals being resistant or non-susceptible to SARS-CoV-2 [138].
However, no conclusions have yet been drawn about the nature of immunological dark
matter, but it could be related to both geographical isolation and natural resistance [59].
Importantly, the name is just a placeholder for what is not yet fully understood, and
there may not be any parallels to be drawn to immunotherapy, but it does emphasize
how advanced and complex the immune system can be, and that more research is needed.

In regards to immunotherapeutic treatment utilization, the mathematical conclusion
of dose-dense chemotherapy (drawn from the Gompertzian growth curve and the Norton-
Simon hypothesis), might also play an important role in immunotherapy. However, the
potential advantages of dose-dense immunotherapy still have to be further investigated.

In the area of cancer-immune modeling, the spatial aspect of cell distributions in
tumor microenvironments has to be accounted for to a greater extent. Consideration
also has to be taken to immune cells that directly, or indirectly, encourage immune cell
and cancer cell proliferation and death. Analytical studies of such extensive models could
then help investigate potential approximations and dimension reduction to determine key
contributors and disregard redundant cell behaviors.

The spatial organization of immune and cancer cells is also expected to play an im-
portant role in attempts to disrupt tumors. In particular, entropic relations and cluster
formations require further research. The presented power-law of relative cluster-size fre-
quencies indicates the presence of scale-invariance, whose implications should be further
studied. A tentative approach to investigate a potential relationship between the cluster-
ing of cytotoxic T lymphocytes and the malignancy of tumors is presented in Appendix D.

I hope that this review can stimulate further efforts in modeling of immunotherapy
and cancer-immune interactions. In particular, I believe that more research about spatial
aspects is needed, along with increased cooperation between different fields of study.
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[30] Jérôme Galon, Anne Costes, Fatima Sanchez-Cabo, Amos Kirilovsky, Bernhard
Mlecnik, Christine Lagorce-Pagès, Marie Tosolini, Matthieu Camus, Anne Berger,
Philippe Wind, et al. Type, density, and location of immune cells within human
colorectal tumors predict clinical outcome. Science, 313(5795):1960–1964, 2006.

[31] Lauren M Sompayrac. How the immune system works. John Wiley & Sons, 2019.

[32] Ugo Del Monte. Does the cell number 10(9) still really fit one gram of tumor tissue?
Cell cycle, 8(3):505–506, 2009.

[33] Gloria H Heppner and Fred R Miller. The cellular basis of tumor progression.
International review of cytology, 177:1–56, 1997.

[34] Bernard Crespi and Kyle Summers. Evolutionary biology of cancer. Trends in
ecology & evolution, 20(10):545–552, 2005.

[35] Chwee Teck Lim, Alexander Bershadsky, and Michael P Sheetz. Mechanobiology.
Journal of The Royal Society Interface, 7(suppl 3):S291–S293, 2010.

[36] Darci T Butcher, Tamara Alliston, and Valerie MWeaver. A tense situation: forcing
tumour progression. Nature Reviews Cancer, 9(2):108–122, 2009.

[37] Lawrence A Loeb. Human cancers express mutator phenotypes: origin, conse-
quences and targeting. Nature Reviews Cancer, 11(6):450–457, 2011.

[38] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and
Peter Walter. Programmed cell death (apoptosis). In Molecular Biology of the Cell.
4th edition. Garland Science, 2002.

[39] Lawrence A Donehower, Michele Harvey, Betty L Slagle, Mark J McArthur,
Charles A Montgomery, Janet S Butel, and Allan Bradley. Mice deficient for
p53 are developmentally normal but susceptible to spontaneous tumours. Nature,
356(6366):215–221, 1992.

[40] Heidi Chial. Proto-oncogenes to oncogenes to cancer. Nature education, 1(1):33,
2008.

[41] National Cancer Institute SEER Training Modules. Cancer classification. https:
//training.seer.cancer.gov/disease/categories/classification.html,
2022. Online; accessed February 21, 2022.

46

https://training.seer.cancer.gov/disease/categories/classification.html
https://training.seer.cancer.gov/disease/categories/classification.html


[42] Martyn KWhite, Joseph S Pagano, and Kamel Khalili. Viruses and human cancers:
a long road of discovery of molecular paradigms. Clinical microbiology reviews,
27(3):463–481, 2014.

[43] Cheryl Chan, Yu Wang, Pierce KH Chow, Alexander YF Chung, London LPJ Ooi,
and Caroline G Lee. Altered binding site selection of p53 transcription cassettes by
hepatitis b virus x protein. Molecular and cellular biology, 33(3):485–497, 2013.

[44] Ruslan Medzhitov and Charles Janeway Jr. Innate immunity. New England Journal
of Medicine, 343(5):338–344, 2000.

[45] Charles A Janeway Jr, Paul Travers, Mark Walport, and Mark J Shlomchik. Prin-
ciples of innate and adaptive immunity. In Immunobiology: The Immune System
in Health and Disease. 5th edition. Garland Science, 2001.

[46] Cancer Research Institute. Immunotherapy fact of the day #8. https://www.ca

ncerresearch.org/en-us/join-the-cause/cancer-immunotherapy-month/30-

facts/08, 2018. Online; accessed February 22, 2022.

[47] Mayo Clinic. Stem cells: What they are and what they do. https://www.mayocl
inic.org/tests-procedures/bone-marrow-transplant/in-depth/stem-cells

/art-20048117, 2019. Online; accessed February 25, 2022.

[48] Eric Vivier, Elena Tomasello, Myriam Baratin, Thierry Walzer, and Sophie Ugolini.
Functions of natural killer cells. Nature immunology, 9(5):503–510, 2008.

[49] Giorgio Trinchieri. Biology of natural killer cells. Advances in immunology, 47:187–
376, 1989.

[50] Yan Zhang, Diana L Wallace, Catherine M De Lara, Hala Ghattas, Becca Asquith,
Andrew Worth, George E Griffin, Graham P Taylor, David F Tough, Peter CL
Beverley, et al. In vivo kinetics of human natural killer cells: the effects of ageing
and acute and chronic viral infection. Immunology, 121(2):258–265, 2007.

[51] Charles T Lutz, Anush Karapetyan, Ahmad Al-Attar, Brent J Shelton, Kimberly J
Holt, Jason H Tucker, and Steven R Presnell. Human NK cells proliferate and die
in vivo more rapidly than T cells in healthy young and elderly adults. The Journal
of Immunology, 186(8):4590–4598, 2011.

[52] Hans-Gustaf Ljunggren. Paths taken towards NK cell–mediated immunotherapy
of human cancer—a personal reflection. Scandinavian Journal of Immunology,
93(1):e12993, 2021.

[53] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and
Peter Walter. Chapter 24 The Adaptive Immune System. In Molecular Biology of
the Cell. 4th edition. Garland Science, 2002.

[54] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and
Peter Walter. B Cells and Antibodies. In Molecular Biology of the Cell. 4th edition.
Garland Science, 2002.

47

https://www.cancerresearch.org/en-us/join-the-cause/cancer-immunotherapy-month/30-facts/08
https://www.cancerresearch.org/en-us/join-the-cause/cancer-immunotherapy-month/30-facts/08
https://www.cancerresearch.org/en-us/join-the-cause/cancer-immunotherapy-month/30-facts/08
https://www.mayoclinic.org/tests-procedures/bone-marrow-transplant/in-depth/stem-cells/art-20048117
https://www.mayoclinic.org/tests-procedures/bone-marrow-transplant/in-depth/stem-cells/art-20048117
https://www.mayoclinic.org/tests-procedures/bone-marrow-transplant/in-depth/stem-cells/art-20048117


[55] Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and
Peter Walter. Helper T Cells and Lymphocyte Activation. In Molecular Biology of
the Cell. 4th edition. Garland Science, 2002.

[56] Healthdirect. Lymph nodes. https://www.healthdirect.gov.au/lymph-nodes,
2021. Online; accessed March 1, 2022.

[57] Lindsay B Nicholson. The immune system. Essays in biochemistry, 60(3):275–301,
2016.

[58] K Liu. Dendritic cells. Encyclopedia of Cell Biology, page 741, 2016.

[59] Thomas Parr, Anjali Bhat, Peter Zeidman, Aimee Goel, Alexander J Billig, Rosalyn
Moran, and Karl J Friston. Dynamic causal modelling of immune heterogeneity.
Scientific Reports, 11(1):1–17, 2021.

[60] Andrea Greif. 2018 Nobel Prize in Physiology or Medicine: Unleashing the Immune
System. https://www.lls.org/blog/2018-nobel-prize-physiology-or-medi
cine-unleashing-immune-system, 2018. Online; accessed March 4, 2022.

[61] National Cancer Institute at the National Institutes of Health. Immune checkpoint
inhibitors. https://www.cancer.gov/about-cancer/treatment/types/immuno

therapy/checkpoint-inhibitors, 2019. Online; accessed March 6, 2022.

[62] Ajit Singh, Sundee Dees, and Iqbal S Grewal. Overcoming the challenges associated
with CD3+ T-cell redirection in cancer. British Journal of Cancer, 124(6):1037–
1048, 2021.

[63] National Cancer Institute at the National Institutes of Health. T-cell transfer
therapy. https://www.cancer.gov/about-cancer/treatment/types/immunoth
erapy/t-cell-transfer-therapy, 2019. Online; accessed March 8, 2022.

[64] Ellen Duong, Tim B Fessenden, Emi Lutz, Teresa Dinter, Leon Yim, Sarah Blatt,
Arjun Bhutkar, Karl Dane Wittrup, and Stefani Spranger. Type I interferon acti-
vates MHC class I-dressed CD11b+ conventional dendritic cells to promote protec-
tive anti-tumor CD8+ T cell immunity. Immunity, 2021.

[65] Massachusetts Institute of Technology. A stealthy way to combat tumors: Biologists
show that helper immune cells disguised as cancer cells can help rejuvenate T cells
that attack tumors. ScienceDaily. www.sciencedaily.com/releases/2021/11/
211119155623.htm, 2021. Online; accessed March 9, 2022.

[66] American Society of Clinical Oncology. Interferon Therapy for Chronic Myeloid
Leukemia. https://www.cancer.org/cancer/chronic-myeloid-leukemia/tre

ating/interferon-therapy.html#references, 2018. Online; accessed May 5,
2022.
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Pyclone: statistical inference of clonal population structure in cancer. Nature meth-
ods, 11(4):396–398, 2014.

[128] Gabriella Beer. Science Surgery: ‘Why doesn’t the immune system attack cancer
cells? Cancer Research UK. https://news.cancerresearchuk.org/2019/02/28
/science-surgery-why-doesnt-the-immune-system-attack-cancer-cells/,
2019. Online; accessed March 19, 2022.

[129] Urszula Ledzewicz, Mohammad Naghnaeian, and Heinz Schättler. Optimal re-
sponse to chemotherapy for a mathematical model of tumor–immune dynamics.
Journal of mathematical biology, 64(3):557–577, 2012.

[130] Manisha Sahu and Hemakumari Suryawanshi. Immunotherapy: The future of can-
cer treatment. Journal of Oral and Maxillofacial Pathology: JOMFP, 25(2):371,
2021.

53

https://news.cancerresearchuk.org/2019/02/28/science-surgery-why-doesnt-the-immune-system-attack-cancer-cells/
https://news.cancerresearchuk.org/2019/02/28/science-surgery-why-doesnt-the-immune-system-attack-cancer-cells/


[131] Stanley J Oiseth and Mohamed S Aziz. Cancer immunotherapy: a brief review of
the history, possibilities, and challenges ahead. Journal of Cancer Metastasis and
Treatment, 3:250–261, 2017.

[132] Jake S O’Donnell, Michele WL Teng, and Mark J Smyth. Cancer immunoediting
and resistance to t cell-based immunotherapy. Nature reviews Clinical oncology,
16(3):151–167, 2019.

[133] Xiaona Fang, Karsten Kruse, Ting Lu, and Jin Wang. Nonequilibrium physics in
biology. Reviews of Modern Physics, 91(4):045004, 2019.

[134] Shingo Iwami, Yasuhiro Takeuchi, Yoshiharu Miura, Toru Sasaki, and Tsuyoshi
Kajiwara. Dynamical properties of autoimmune disease models: tolerance, flare-
up, dormancy. Journal of theoretical biology, 246(4):646–659, 2007.

[135] Daniela Bruni, Helen K Angell, and Jérôme Galon. The immune contexture and
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Appendices

A Complementary figures

Figure A.1: Illustration of the event where a stem cell splits into two daughter
cells. One daughter cell is destined to remain a stem cell, while the Bi-potential cell
has 11 (many more in reality) options to “choose” between. Adopted with permission
from [31].
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Figure A.2: Illustration of the macrophage recruitment process. The dermis layer
is the second layer of the skin. The invader is engulfed and dissolved by a macrophage,
which then secretes cytokines to recruit help (monocytes from a nearby blood vessel).
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Figure A.3: Illustration of the dynamical interactions between the immune sys-
tem (T cells) and cancer cells. The cycle of action shows the process of T cells being
activated and transported to the tumor site. Each step implies the involved cells in paren-
theses, where APCs are antigen-presenting cells, and CTLs are cytotoxic T lymphocytes.
Adapted with permission from [139].
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Figure A.4: Illustration of the CAR T cell therapy. The T cells are firstly extracted
from a blood sample from the patient, such that they can be genetically engineered to
express the Chimeric Antigen Receptor (CAR). Once some of these CAR T cells have been
created, they are allowed to proliferate. Once a sizeable batch has been obtained (usually
a few weeks), the CAR T cells are infused into the patient. Finally, the CAR T cells will
eventually find the cancer cells and bind to them, consequently killing them. Adopted
with permission from [63].
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B Mathematical models

B.1 Integro-differential model of antigen heterogeneity and evo-
lution

In [123], a model considering antigen heterogeneity and evolution (mutation) is intro-
duced. In essence, the model considers five different cell populations (i), namely cancer
cells (i = 1), APCs with no antigens on their surface (i = 2), APCs with a certain anti-
gen (i = 3), naive T cells (i = 4), and activated T cells (i = 5). The model considers
the phenomenons of cancer mutations that promote change of their expressed antigens,
cancer cell proliferation and nutrient competition, cancer cell recognition (influenced by
APCs), activation of naive T cells, proliferation of activated T cells, and immune induced
cancer cell death.

The variable u ∈ [0, 1] below, is a continuous structuring-variable used to identify the
state of the specific cells. The biological interpretation of u for the different populations
are (1) governs cancer cells’ expression of antigens, (3) to identify APC exposed antigens,
(4) cognate antigen of naive T cells, and (5) the antigens that activated T cells recognize
and attack. Note that population 2 is an unstructured population (no u dependence).

The sizes of the five populations (1-5) are here, respectively, donated f1, n2, f3, f4, and
f5, where (at time t) n2 is a real positive number, and fi : R+ × u ∈ [0, 1] → R+, i ̸= 2.
The model is presented below in Eqs. (18)-(22), with parameter explanation in Table 5.

∂

∂t
f1(t, u) =

∫
U

M (u∗, u; ϵ) f1 (t, u∗) du∗ − f1(t, u)

∫
U

M (u, u∗; ϵ) du∗+

+ κ1(u)f1(t, u)− µ1(u)f1(t, u)

∫
U

f1 (t, u
∗) du∗+

− µIf1(t, u)

∫
U

e−θI(u−u∗)2f5(t,u∗)du∗

=

∫
U

M (u∗, u; ϵ) f1 (t, u∗) du∗ − f1(t, u)︸ ︷︷ ︸
renewal and mutations

+κ1(u)f1(t, u)︸ ︷︷ ︸
proliferation

− µ1(u)f1(t, u)n1(t)︸ ︷︷ ︸
cell-cell competition

−µIf1(t, u)

∫
U

e−θI(u−u∗)2f5 (t, u
∗) du∗︸ ︷︷ ︸

cancer-immune competition

(18)

d

dt
n2(t) = −γ2n2(t)

∫
U

f1 (t, u
∗) du∗ + µ2

∫
U

∫
U

f3 (t, u∗) f3 (t, u
∗) du∗du

∗

= −γ2n2(t)n1(t) + µ3n
2
3(t)︸ ︷︷ ︸

recognition, presentation and homeostatic regulation

(19)

∂

∂t
f3(t, u) = γ2n2(t)f1(t, u)− µ3f3(t, u)

∫
U

f3 (t, u
∗) du∗

= γ2n2(t)f1(t, u)− µ3f3(t, u)n3(t)︸ ︷︷ ︸
recognition, presentation and homeostatic regulation

(20)
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∂

∂t
f4(t, u) = κ4f4(t, u)− µ4f4(t, u)

∫
U

f4 (t, u
∗) du∗+

+

∫
U

∫
U

e−θI(u∗−u∗)2A4 (u, u∗, u
∗) f4 (t, u∗) f3 (t, u

∗) du∗du
∗+

− f4(t, u)
∑
j

∫
U

∫
U

e−θI(u−u∗)2Aj (u∗, u, u
∗) f3 (t, u

∗) du∗du
∗

= κ4f4(t, u)− µ4f4(t, u)n4(t)︸ ︷︷ ︸
homeostatic regulation

− γ4f4(t, u)

∫
U

e−θI(u−u∗)2f3 (t, u
∗) du∗︸ ︷︷ ︸

T-cell activation

(21)

∂

∂t
f5(t, u) =

∫
U

∫
U

e−θI(u∗−u∗)2A5 (u, u∗, u
∗) f3 (t, u

∗) f4 (t, u∗) du∗du
∗+

+ κ5f5(t, u)− µ5f5(t, u)

∫
U

f5 (t, u
∗) du∗

= γ4f3(t, u)

∫
U

e−θI(u∗−u)2f4 (t, u∗) du∗︸ ︷︷ ︸
T-cell activation

+κ5f5(t, u)− µ5f5(t, u)n5(t)︸ ︷︷ ︸
clonal expansion

.

(22)

Here, U := [0, 1], and ni(t) =
∫
U
fi(t, u) du is the number density of population i ̸= 2

at time t, where fi(t, u) du represents the number of cells in population i ̸= 2 belonging
to the volume du (normalized considering the number of cells at t = 0 in the system).
Furthermore, t is normalized considering the average cancer cell’s lifetime.

For more details and an explanation of the model’s appearance, see [123].

Table 5: Model parameters corresponding to the model of Eqs. (18)-(22).

Biological Phenomena Parameters
Mutations altering the antigenic expression γ1, ϵ
Cancer cell proliferation κC

Competition among cancer cells µC

Recognition and antigen presentation by APCs γ2
Activation of T-cells by APCs γy, θ

I

Homeostatic regulation of APCs µ3

Homeostatic regulation of naive T-cells κ4, µ4

Clonal expansion of activated T-cells κ5, µ5

Immune destruction of cancer cells µI , θI

Symmetric probability kernel for mutations M, see [123]
Probability density of cell transitions from
state u∗ to u (population 4 to 5)

Ai(u, u∗, u
∗)
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C Data and complementary plots

The data consists of tumor tissue samples taken from 3359 different cancer patients,
where two simultaneous tissue samples (from different tumor regions) were sometimes
taken from the same patient, resulting in a total of 6380 tumor samples. The cell-
coordinate data from each sample represents one 2D layer from the sample. Each sample
is solely tumor tissue, but the insides of these tissues also consist of clusters of tumor
cells ’sitting’ in tumor-associated stroma. The individual cancerous cells were identified
using a cytokeratin marker (which is expressed by cancer cells in epithelial cancers). For
melanoma cancer, another marker was used, but for consistency reasons, it is also denoted
as ’CK’ in the data [140].

Notably, some samples are denser in cell counts than others, and some even have large
regions consisting of voids (holes). Specifically, the density of cells varies depending on
the type of tumor and stroma tissue considered (fat, muscle, organ parenchyma, etc.).
Samples can also be damaged, e.g. contain large areas of defects or necroses, which have
been manually removed during the data compilation, resulting in smaller sample sizes or
internal ’holes’. But some tumors (adenocarcinomas) also contain growth patterns that
themselves make glandular-like structures, resulting in ’holes’ in the image. Furthermore,
the samples have been physically removed from bigger tumor pieces using cylindrical
’punchers’, causing the samples to be of different sizes [140].

In Table 6 on the next page, the data structure can be seen. Note that “1” marks
the type of the cell, i.e. that some marker used to identify that specific kind of cell was
detected in the cell on that specific location (rows with zeros in all cell categories, implies
that the cell at that location is an “unspecified cell”, meaning that it did not show any
of the markers for the cells investigated).
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Figure C.1: The number of each TIL-type in relation to the number of cancerous
cells. Each data point corresponds to a separate tumor sample. Directly there seem to
be indications of a certain relation between the number of each TIL-type and the cancer
cell count. For logarithmic scale, see Figure C.2.
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Figure C.2: TILs plotted separately in relation to the number of cancer cells,
on a logarithmic scale. Corresponding to Figure C.1.
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Figure C.3: Relation between the number of NK cells and cancer cells on a
logarithmic scale. Corresponding to Figure 22.
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Figure C.4: APC count in relation to the number of cancer cells on a logarithmic
scale. Corresponding to Figure 23.
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D Entropic aspects

The concept of entropy has only been mentioned hastily, however, entropy is commonly
explained as a measurement of the lack of consistency in a system [141]. Entropy is also
known as an important quantity to many physicists, especially, entropy has proven to
be useful when describing the behavior of chaotic processes [142]. Furthermore, entropy
can be interpreted as a measure of possible ways for energy to be distributed in a system
of molecules (through their available microstates24, Ω). Macrostates then describe the
global properties of a system, e.g. the sum of a sequence is a macroscopic property of the
sequence [143].

The entropy in microcanonical ensembles is derived by counting the number of mi-
crostates corresponding to a specific macrostate (S ∝ lnΩ), where the macrostate entropy
is a measure of ways for a system to remain in the same macroscopic state while being
microscopically different [144]. It is also known that nonequilibrium physical systems
tend to maximize their entropy production at each instant, which in turn can be linked
to their evolution towards entropically larger macrostates [145].

Explicitly, the microstates are here represented by formed clusters of immune cells
(CTLs), thus the ensemble of all microstates is the set of all observed cluster formations.
Therefore, the formally defined entropy,

S = −
M∑
i

pi log pi, (23)

where pi is the probability for each of some M possible outcomes, has to be altered.
In particular, the interpretation of M and pi needs to be represented by other (cluster-
related) metrics, which in this case are the number of clusters (N) and their respective
sizes (Icluster). The entropy related to the clustering of CTLs in each tumor is therefore
given by,

S ≈ −
N∑
n

Iϕcluster,n log
(
Iϕcluster,n

)
, (24)

where Icluster,n is the number of CTLs in the nth cluster of in total N clusters. The
exponent, ϕ, is included to introduce scale-invariance, such that consideration is taken to
systems of unspecified size (i.e. arbitrarily large tumors).

The value of ϕ is obtained from a fitted power-law f(Icluster) = aIϕcluster, where the
statistical interpretation of f(Icluster) corresponds to the relative frequency (or empirical
probability) of specific cluster sizes, i.e. Occurrence of cluster size

Total number of clusters
. By then considering the

generalized clustering behavior of CTLs in all tumors (using the adjusted entropy formula
from Eq. (24)), the relation between entropy (of CTL-clustering) and the number of cancer
cells can be quantified on the individual tumor scale.

By applying the value of ϕ = −1.2 (found in Figure 21) in Eq. (24), the entropy
related to the clustering of CTLs in each tumor sample can be investigated in relation to
the number of cancerous cells in the same sample. The result is seen below,

24The microscopic configuration of a system, e.g. the position of atoms in gas or cells in tissue.
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Figure D.1: Clustering entropy of CTLs in relation to the number of cancerous
cells. Each data point represents a separate tumor sample.

Similarities to Figure 19 are seen, however, larger entropy is not necessarily solely
explained by that a larger volume gives more microstates, therefore a more rigorous
explanation is required [146].

The data investigated consists of no time aspect, and the role of entropy, entropy
maximization, and system irreversibility should ideally be studied on an individual tumor
basis with the time-dependent evolution of the cell structures in consideration. Therefore,
this appendix only serves as a brief exploration of how the concept of entropy can be
incorporated into the study of immunotherapy and expand the relevant “parameters” to
investigate.
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