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Abstract

Relying on clocks in distributed systems has long been seen as a convenient way
of ordering events but also a challenge because of the inevitable clock skew. In
recent years, the availability of highly synchronized clocks has improved which
enables all new innovations and system designs.

In this thesis, we investigate how the distributed database CockroachDB can be
adapted to utilize highly synchronized clocks. We implement our findings and
evaluate the performance impact of our modifications using a custom benchmark
designed to emulate a workload with long reads across multiple nodes with con-
tending writes.

Our results show significant performance improvements for our workload, with
median latency being reduced by up to 47% for reads and 43% for writes. We
conclude that our changes might make worthwhile additions to CockroachDB
but further research will be necessary to understand if they will be benefitial for
production workloads.

Keywords: distributed systems, databases, consistency, highly synchronized clocks
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Chapter 1

Introduction

The idea that you can not trust clocks has a long history in distributed systems. As Lamport
established all the way back in 1978, ordering events is a common problem for distributed
systems and one which could be fixed with perfectly synchronized clocks, if they did exist.
In practice, clocks can not be perfectly synchronized which has led to many innovations
to counter their imprecision. To fix this, Lamport proposed the Lamport clock, a form of
logical clock which can be used to establish ordering in some cases without the need for real
clocks. His invention later earned him a Turing Award and lead to the development of Vector
clocks about a decade later, designed to strengthen the guarantees o�ered by Lamport clocks.
Innovation continues to this day, for example with the Hybrid Logical Clock introduced in
2014 which combines a wall clock with a logical clock. This kind of clock allows timestamps
to be ordered internally while also allowing values to be queried by their timestamps, for
example to find all rows in a database created on a specific day.

What these innovations all have in common is that they either replace the need for physical
clocks or augment them to hide their inherent uncertainty. In recent years, the industry has
started approaching the problem from the other end by improving clock synchronization
enough to make them dependable. This was the approach Google chose for their globally
distributed database Spanner. They installed specialized hardware and software in their own
datacenters to dramatically lower the clock skew and also to calculate error bounds on all
clock readings. Thanks to this, Spanner achieved the strongest level of consistency with high
transactional performance, using only physical clocks.

As Spanner relies on specialized hardware, its innovations are out of reach for commod-
ity databases, but in recent years this has started to change. AWS introduced their Time
Sync Service which puts highly synchronized clocks in the hands of all applications deployed
to AWS. The Open Compute Project has also been working on establishing standards and
sharing technology around clock synchronization. As part of this project, Facebook has for
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1. Introduction

example open-sourced the design of a plug-in card for precise clock synchronization, built
around an onboard GPS receiver and atomic clock. One database that stands to gain from
these developments is CockroachDB, a distributed relational database that provides strong
consistency guarantees. CockroachDB was conceived by former Google engineers and largely
inspired by Spanner but with one crucial di�erence, it was designed to run on commodity
hardware and hence could not rely on highly synchronized clocks. Instead, it uses regular
clocks but takes measures to retry transactions where clock skew may impact consistency.

1.1 Research questions
For this thesis, we wanted to investigate how distributed databases can be adapted to utilize
highly synchronized clocks and what impact it has on performance. In particular, we con-
ducted the thesis as a case study on CockroachDB because it’s source-available, allowing us to
modify it freely, and because weakly synchronized clocks play a central role in its design. On
top of investigating how CockroachDB can be adapted, we also wanted to implement these
changes and see what e�ect they have on performance.

In summary, we aimed to answer the following research questions:

Q1 How can CockroachDB be adapted to utilize high-precision clock synchronization?

Q2 What e�ect does this have on CockroachDB’s transactional performance?

1.2 Scientific contribution
The belief that clocks can not be relied upon is quickly becoming outdated as highly synchro-
nized clocks become more commonplace, and we hope our work can help in the building of
next-generation distributed systems. In particular, we believe our thesis contributes to this
young research area in two ways.

The first is our literature study which investigated the current state of distributed databases
and clocks, and resulted in two proposed ways of adapting CockroachDB for highly synchro-
nized clocks. The study was conducted with a particular focus on the industry and what is
achievable in production systems, which we hope can serve as a useful reference for future
distributed systems development. Even though this thesis was conducted as a case study, we
believe our learnings are applicable to other databases and distributed systems, both existing
and yet to be invented.

The second way is the data from our experiments. During our research, we could not find any
good data on how well Amazon Time Sync Service and ClockBound performs, so we built
and ran our own test. We hope the data from this experiment can help inform researchers and
developers what level of clock synchronization is available today for production systems. The
biggest contribution of this thesis though is the benchmark we performed on CockroachDB
modified to utilize highly synchronized clocks. We hope the data from our benchmarks can
o�er valuable insight into when highly synchronized clocks are useful and what can be gained
from designing distributed systems around them.
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1.3 Individual contributions
The authors have collaborated on all aspects of this thesis, including writing, coding, and
reviewing literature. Some parts of the work was split up with each author focusing on dif-
ferent things, but in those cases the work was always discussed between us and reviewed. In
general, Fabian placed a larger focus on implementation and coding, for example modify-
ing CockroachDB, porting ClockBound, implementing the custom benchmark and creating
the timestamp bounds size experiment. Jacob, on the other hand, stayed more focused on
benchmarking, including researching and evaluating potential benchmarks, running and de-
bugging benchmarks and analyzing results.
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Chapter 2

Background

In this chapter, we present the findings of our literature study, on which this thesis is based.
We start with the concept of consistency in distributed databases and how clocks could be
used to achieve it if they were perfectly synchronized. After that we briefly explore how clock
synchronization can be improved with specialized hardware before moving onto Spanner, an
example of a proprietary database built to use such hardware in order to achieve the strongest
level of consistency. From there, we get to Amazon Time Sync Service which enables pre-
cise clock synchronization for all services running on AWS. This opens the possibility for
databases designed to run on commodity servers to rely on highly synchronized clocks, just
like Spanner. Finally, we take a close look at one such database, CockroachDB, which is
the subject of our case study. We explore the techniques used by CockroachDB to achieve
strong consistency using only weakly synchronized clocks, how clock synchronization a�ects
performance and the downsides of their approach.

2.1 Consistency
In a distributed system, data is often replicated across several nodes for reliability and scal-
ability. This has implications for the consistency of the data. During writes, the update
may reach di�erent nodes at di�erent times causing them to have di�erent views of the cur-
rent value. Any reads that occur simultaneously may get inconsistent values depending on
which node serves the read. Distributed databases can o�er di�erent guarantees for consis-
tency where one of the weaker guarantees is eventual consistency, which is used by distributed
databases like Cassandra [9] and Amazon DynamoDB [33]. With eventual consistency, all
nodes are guaranteed to eventually serve the same value for reads if all writes stop [21], but
there are no guarantees for how long convergence takes. The weak guarantees provided by
eventual consistency places a larger burden on application developers as they need to design

11



2. Background

applications that can deal with inconsistencies [7].

As an example of this, let’s say we are building an application where users can make posts
that are either public or private. The visibility of a post is determined based on a setting
on the user profile, which is read when the post is created. If our application is backed by a
database that o�ers eventual consistency the user risks seeing some unexpected behaviour. For
example, if a user wants to make a private post, they’ll first update their settings and then
write and create their post. Our application will check the current setting when creating the
post, but because of eventual consistency, there is no guarantee that we’ll actually observe
the previous change and the post might end up inadvertently public.

To avoid having to design around situations like these we need stronger consistency guar-
antees, and the strongest possible one is linearizability. If a system guarantees linearizability,
reading from two di�erent nodes will always yield the same, most recent value. From the
perspective of the application, the system appears to have only a single copy of the data and
when performing a write, there must be some point in time during the write at which the
update is atomically applied. Without this guarantee, values could flip back and forth if they
are read at the same time as a write runs, which can happen in an eventually consistent system
[21].

To achieve linearizability, a total ordering must be established for all operations in order to
determine which operation precedes another and to know which is the most recent write
for a value. One way to achieve that is to use a real-time clock to assign timestamps to
operations [21]. This requires perfectly synchronized clocks across all nodes though which is
not attainable, hence any distributed system that relies on synchronized clocks also needs to
handle clock skew between nodes [21]. The amount of clock skew depends on a lot of di�erent
factors [21] and for systems running in public clouds, measurements show that when sampling
clock skew the 99th percentile of samples can reach an average value of 60 milliseconds across
three nodes [3].

2.2 Atomic clocks and GPS synchronization
Although perfectly synchronized clocks are impossible to achieve, low clock skews are attain-
able using specialized hardware and software. One way to achieve low clock skew is to utilize
the Global Positioning System, more commonly knows as GPS [36]. As the name indicates,
the main purpose of GPS is to localize devices across the world which is achieved by mea-
suring the distance from a device to a number of GPS satellites. All GPS satellites contain
highly synchronized clocks and by reading the current time from at least three satellites, a
device can calculate the distance to each one using the speed of light and known signal delays.
Although the positioning feature of GPS is highly useful on its own, GPS also has the added
benefit of providing a global, highly accurate clock synchronization source for distributed
systems [36].

In the periods between synchronizations, clock skew will grow as the local clocks at each node
do not run at the same rate. This clock drift puts a lower limit on the attainable skew [21]. The
quartz clock in a computer runs at a constant rate but the rate di�ers between clocks and
is sensitive to environmental factors, where even small di�erences can accumulate to large

12



2.3 Spanner and TrueTime

drifts [35]. An alternative is to utilize atomic clocks which run at much more consistent rates
but are larger and more expensive than quartz clocks [31].

2.3 Spanner and TrueTime
One company which has employed atomic clocks and GPS synchronization to manage clock
skew is Google. By installing the specialized hardware in their datacenters they were able to
lower the clock skew enough to build Spanner, a distributed SQL database which achieves
linearizability using real-time clocks [13]. This is made possible by a novel API called True-
Time which generates timestamps with guaranteed bounds on clock skew. The specialized
hardware keeps the bounded clock skew below 7 ms with an average of 4 ms in production
[13].

The TrueTime API consists of a single basic operation, now(), which returns two timestamps
that form an interval. The actual time is guaranteed to lie within that time interval. Thanks to
this invariant, it is possible to determine a causal ordering by comparing time intervals. Given
two intervals, T1 =

[
tmin
1 , t

max
1

]
and T2 =

[
tmin
2 , t

max
2

]
, we can determine that T2 occurred after

T1 if tmin
2 > tmax

1 and vice versa [13].

Spanner utilizes these bounded timestamps to establish an ordering for its transactions. Ev-
ery transaction is assigned a bounded timestamp when it has acquired all the locks it needs
to operate. After performing all operations, the leader uses a method which Spanner refer to
as commit-wait [13]. It must wait until tmax of the transaction’s timestamp has passed before
committing and releasing its locks. As tmax provides an upper bound for timestamps gener-
ated across all nodes, it is guaranteed that the changes made by the transaction will be visible
across the entire cluster, achieving linearizability [21]. This also means that the latency for
write transactions is directly a�ected by the clock skew, which makes highly synchronized
clocks crucial to achieving good performance [13].

Although Spanner uses locks for read-write transactions, it can perform strongly consistent
read-only transactions without any locking. This is made possible using snapshot reads and
TrueTime. When a read transaction is started, it is assigned a timestamp as the current tmax

and the read is then performed on all nodes that contain data of interest. Every node will
return data as a snapshot at time tmax. Writes committed after that will not be considered.
This ensures strong consistency for read-only transactions without locking [13].

2.4 Amazon Time Sync Service and Clock-
Bound

TrueTime is internal to Google and only usable by Google’s own cloud services. This means
that commodity databases can not make use of the highly synchronized clocks and bounded
timestamps. AWS has released their own service to provide highly synchronized clocks across
their datacenters, called Amazon Time Sync Service. This service is implemented similarly
to TrueTime with redundant GPS synchronized atomic clocks in datacenters [13]. The main
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2. Background

di�erence is that AWS allows access to these highly synchronized clocks on all EC2 virtual
machines [4].

Amazon Time Sync Service does not on its own provide an alternative for TrueTime as it
only provides synchronized clock readings and not bounded timestamps [4] [13]. AWS has
released a complementary open-source tool called ClockBound which implements the same
API as TrueTime [5], allowing applications to generate bounded timestamps backed by Time
Sync Service. ClockBound runs as a daemon on each server which applications can commu-
nicate with using a custom protocol over UNIX datagram sockets. The timestamps are 64-bit
unsigned integers representing the number of nanoseconds since January 2st 1970 (the Unix
epoch) [34].

ClockBound works by continuously tracking the maximum possible clock skew which the
system clock may currently see [34]. This is made possible by Chrony, a tool for synchronizing
the system clock against external sources, such as NTP servers or reference clocks. Chrony not
only synchronizes the system clock but also tracks metadata, for example estimates of clock
skew and network delays [10]. ClockBound uses this metadata, combined with an estimate for
the local clock’s drift, to form error bounds for the system clock and based on that generates
bounded timestamps [34]. Because ClockBound only requires Chrony to operate and Chrony
can use many synchronization sources, it’s possible to run ClockBound without Amazon
Time Sync Service. With this setup, it would still be possible to generate bounded timestamps
but without good synchronization, the bounds will be greater. Unfortunately, we were not
able to find any numbers on what level of clock skew to expect when using Amazon Time
Sync Service. Because of this, we opted to run our own tests as described in section 3.4.4 with
the results presented in section 4.3.

2.5 CockroachDB
Unlike Spanner, CockroachDB does not rely on any specialized hardware. This allows it to
run on commodity servers in public as well as private clouds which usually relies on software-
level clock synchronization, such as the Network Time Protocol (NTP) [14].

CockroachDB’s reliance on wall time without specialized hardware means it must be able
to handle a large amount of clock skew. The commit-wait method Spanner uses to achieve
strong consistency can only obtain reasonable performance with tightly synchronized clocks
and guaranteed bounds on skew, as provided by TrueTime [13]. To enable strong consistency,
CockroachDB instead detects when a transaction can not order itself among other transac-
tions that recently occurred. These conflicts are detected by using a static max_o�set value
which is a pessimistic upper bound on the clock skew any node might see. The default value
for max_o�set is 500 milliseconds but can be manually set by the operator [14]. As long as the
actual clock skew does not exceed max_o�set, CockroachDB o�ers linearizability for reads
and writes which operate on the same keys [14]. This is also called causal consistency and
o�ers slightly lower guarantees than full linearizability, which implies a total ordering of all
operations across the database. With causal consistency, if we have two transactions with
non-overlapping read and write sets then a third observer could see their writes in either
order. According to Kleppman though, most systems only require causal consistency and a
global ordering is not necessary [21].

14



2.5 CockroachDB

Each value stored in the database is associated with the commit timestamp of the last trans-
action that wrote the value. During execution of a transaction, each value read is checked
against the transaction’s commit timestamp. If the value timestamp is later than the trans-
action’s, then there is a risk that the transaction that wrote the value actually precedes the
current transaction in real-time but clock skew gave it a later timestamp. As max_o�set sets
an upper bound on the clock skew, CockroachDB checks for Tt < Tv < Tt +max_o�set where
Tt is the current transaction’s timestamp and Tv is the value timestamp. If Tv falls within
this interval, known as the uncertainty interval, an uncertainty restart is initiated, forcing the
current transaction to restart with a new timestamp ahead of the one encountered [14]. The
implication of this is that all values whose timestamps reside within the uncertainty interval
are treated as past writes. Uncertainty restarts can be split into two categories and we will
look at both in detail: necessary restarts, which occur due to actual clock skew between nodes,
and unnecessary restarts, which occur due to latencies in the system.

2.5.1 Necessary uncertainty restarts

Writer

Reader
Uncertainty

restart

Node 2

42.003

read x

42.004

write x

Node 1

Figure 2.1: Clock skew causing uncertainty restart

Figure 2.1 depicts a very simplified example of how a necessary uncertainty restart may occur
in the face of clock skew. Initially, a write to key x is issued to node 2, causing it to start
a transaction and assign it the provisional timestamp 42.004 based on node 2’s local clock.
Every key in CockroachDB has a single leaseholder node which is the only node that can read
or write to that key. In this case, the leaseholder node for key x is node 2 so as the write
arrives, it attempts to write key x and successfully commits, pushing the timestamp when x
was last modified to 42.004. Moments later, a read for key x is issued to node 1 which starts
a transaction with read timestamp 42.003 from node 1’s clock. Even though this operation
happens after the previous write, it receives an earlier timestamp because of clock skew be-
tween node 1 and 2. Next, node 1 finds out that node 2 is the leaseholder for x and sends
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2. Background

a read request. When the value x is read from node 2, CockroachDB detects that its write
timestamp is later than the current read timestamp and falls within the uncertainty interval.
Since CockroachDB can’t tell if the write timestamp is later because it actually occurred later
in real-time or if it occurred earlier in real-time but got a later timestamp because of clock
skew, the read must be retried with a higher timestamp to maintain consistency. We call
these necessary restarts as consistency will be broken if the transaction is not restarted.

An important aspect of necessary restarts is that they are only dependent on the actual clock
skew and not the size of the uncertainty intervals, as defined by max_o�set. This is the case
because a larger amount of clock skew increases the risk for a transaction to get a later times-
tamp than another transaction which occurred after the first in real-time. The e�ect of clock
skew on uncertainty restarts has been studied previously by Geng et al. when they evaluated
a novel clock synchronization method. In their study, they showed that lowering the actual
clock skew, without changing max_o�set, reduced the amount of uncertainty restarts [15].

2.5.2 Unnecessary uncertainty restarts

read x,y

write y

42.003

42.004

Uncertainty restart

caused by read y

Reader

Writer

Node 1

Node 2

Figure 2.2: Write causing unnecessary uncertainty restart

Clock skew is not the only thing that can cause restarts, di�erent forms of latency across
the system can also cause writes to be placed inside the uncertainty interval of a read, which
restarts the read. We call these unnecessary uncertainty restarts as the ordering of the times-
tamps matches the real-time ordering and hence no restart is necessary to ensure consistency.

Figure 2.2 shows an example of such a situation. In this scenario, node 1 is leaseholder for
the range containing x and node 2 for key y. A read for keys x and y is issued to node 1.
Node 1 initiates the transaction, assigning it a timestamp of 42.003 along with an uncertainty
interval. As node 1 is leaseholder for the range containing x it fetches that value. It also sees
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that node 2 is the leaseholder for the range containing key y and sends a request to read from
it, which takes some time because of network latency. Later in real time, a write to key y is
issued to node 2. As it is the leaseholder for that range, it successfully writes to key y with the
timestamp 42.004 and commits momentarily before the other read request arrives. When the
read request arrives, it detects that a write has occurred for that key inside its uncertainty
interval and hence can not determine if the write actually happened before the read started
but was assigned a later timestamp because of clock skew. Because of this ambiguity, the read
must be restarted to not break consistency. If the max_o�set had been low enough for the
write to fall outside the uncertainty interval, then the read could be certain that the write
actually started after itself, making it safe to ignore. These unnecessary restarts can be caused
by any latency impacting a read operation, including if the read operations needs to read a
lot of data which spans multiple nodes.
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Chapter 3

Approach

In this chapter, we walk through how we conducted this thesis. We start by detailing our
literature study in section 3.1, which leads us to the method, presented in section 3.2, used
to adapt CockroachDB for highly synchronized clocks. In section 3.3, we detail the actual
changes made to CockroachDB and how we verified their correctness. Finally, in section
3.4 we explain the experimental setup we used to measure the impact of our changes, which
included both a benchmark of database performance and a test of the level of clock synchro-
nization provided by Amazon Time Sync Service and ClockBound.

3.1 Literature study
To start this thesis and lay the groundwork for answeringQ1, we conducted a literature study.
A central part of this was the book Designing Data-Intensive Applications by Martin Kleppman
[21], which we used as a reference on transactions, consistency, clocks and other relevant
concepts. We also followed the books citations to dive deeper on these topics. On top of this,
we performed keyword searches on Google Scholar based on what we noted from Kleppmans
books. This proved especially helpful to find papers and books on topics that Kleppman does
not o�er as much detail on, such as clocks and clock synchronization.

Another central part of our literature study was the help of Erik Grinaker, an engineer at
Cockroach Labs, the company behind CockroachDB. He helped us make sense of Cock-
roachDB’s documentation and design. He also pointed us towards other relevant things,
such as previous studies on CockroachDB and clock synchronization.
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3.2 Method
As mentioned in chapter 2, CockroachDB and Spanner use di�erent transactional models
to achieve strong consistency. Spanner uses a commit-wait approach, meaning it waits out
the uncertainty for all writes. Since Spanner has access to highly accurate atomic clocks and
bounded timestamps, it can keep the time it needs to wait low. With Amazon Time Sync Ser-
vice [4] and ClockBound [5], tight, bounded timestamps are made available to commodity
databases like CockroachDB, meaning it would be feasible to change CockroachDB to use a
commit-wait model as Spanner does, removing the need for uncertainty restarts. This would
improve consistency, making all operations linearizable rather than just ones with overlap-
ping read and write sets. It also has the potential of improving performance, especially for
read-heavy workloads where uncertainty restarts can cause increased latency for transactions.
The drawback would be potentially increased latency for write operations as each operation
would have to wait out any clock uncertainty. This also means that the write latency would
be directly a�ected by any variation in clock skew.

Another approach would be to improve the precision of the uncertainty intervals that Cock-
roachDB uses to detect potential consistency issues. In section 2.5, we mentioned that Cock-
roachDB uses a statically configured value max_o�set for the upper bound on the uncertainty
interval. Since the value is static, it must be set to handle the worst case clock skew at any
point, which makes the uncertainty intervals much larger than the average clock skew [14]. It
also places a burden on the operator to understand the level of clock synchronization achiev-
able and select the lowest possible max_o�set based on that, unless they decide to not optimize
and use the default value. With ClockBound, we can get bounded timestamps that provide
an upper bound on any clock skew and which are dynamically recalculated as the level of
clock synchronization changes. By replacing the static max_o�set with a dynamic value from
ClockBound, we can potentially make the uncertainty intervals shorter on average without
any manual configuration by the operator. As the sizes of the bounded timestamps should
always be lower than the actual clock skew at any point in time, consistency will also be main-
tained. Combining this with highly synchronized clocks, like Amazon Time Sync Service, the
uncertainty intervals could potentially become very short. Smaller uncertainty intervals have
potential to improve performance by reducing the risk of unnecessary uncertainty restarts, as
we saw in section 2.5. As we also saw in figure 2.2 unnecessary restarts are especially relevant
for workloads with lengthy reads across multiple nodes along with contending writes. An
uncertainty restart causes increased latency for restarted read operations, which naturally
has a greater impact on performance when reads are already lengthy [20]. Necessary restarts
however will not be a�ected though as they are a result of actual clock skew, not the size of
uncertainty intervals.

After concluding our literature study, we met with Erik Grinaker from Cockroach Labs.
Together with him, we discussed the two previously mentioned methods for adapting Cock-
roachDB to better utilize highly synchronized clocks. The commit-wait approach ended up
being discarded as the changes required were determined as too big for this project. We
instead settled on attempting to make the uncertainty intervals dynamic and reduce their
length, hypothesising that tightening the uncertainty intervals would improve transactional
performance. To test our hypothesis, we forked and altered CockroachDB to make use
of Amazon Time Sync Service and ClockBound to generate bounded timestamps. These
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bounded timestamps were then used to form the uncertainty interval, replacing the static
max_o�set setting.

3.3 Implementation
Here we detail the implementation work we did to adapt CockroachDB as described in sec-
tion 3.2. We start by discussing our e�orts to integrate ClockBound in section 3.3.1, which
ended with us porting ClockBound from a daemon to a library. Next, in section 3.3.2, we
detail how we modified the CockroachDB source code to make use our ClockBound port to
form dynamic uncertainty intervals.

3.3.1 TrueClock
Our initial plan was to use AWS ClockBound to generated bounded timestamps. Clock-
Bound uses a client-server model with a daemon running in the background that the appli-
cation communicates with over UNIX datagram sockets and a custom protocol [34]. After
implementing a client library in Go and integrating it with CockroachDB, we noticed that
the added latency from performing a datagram request had a significant impact on the la-
tency of database operations. Our testing showed that retrieving a single bounded timestamp
from ClockBound took around 50 µs, compared to around 60 ns for a system clock reading
that standard CockroachDB uses. Given that a single operation in CockroachDB results in
multiple clock readings, the added latency became significant.

To fix this issue, we ported the open-source ClockBound daemon to a Go library which al-
lowed us to include it directly in CockroachDB as it is also written in Go. This in turn
removed the need for a datagram request for each clock reading. We ended up calling the
library TrueClock and released it as an open-source project on GitHub [30]. Just like Clock-
Bound, TrueClock uses a background thread to periodically retrieve clock synchronization
data from Chrony which is stored as a shared variable protected by a mutex. When the library
is called to make a clock reading, it reads the system clock and uses the latest stored data from
Chrony to determine the maximum possible skew and drift which are added together to form
error bounds for the system clock reading. By integrating it as a library, we were able to bring
the latency of a single clock reading down to 250 ns, low enough to not have a significant
impact on database operations while yielding the same results as ClockBound.

3.3.2 CockroachDB
In CockroachDB, forming the uncertainty interval for a transaction involves multiple di�er-
ent parts of the codebase. It starts with a transaction being created, at which point a clock
reading is performed to determine the current time. The current timestamp is stored as the
transaction’s read timestamp and then another timestamp is created by adding max_o�set to
the read timestamp. This new timestamp is called the global uncertainty limit and forms the
upper bound of the transaction’s uncertainty interval. Clock readings are handled by a single-
ton structure called hlc.Clock, which returns a timestamp stored as a di�erent structure called
hlc.Timestamp. To implement our changes, we needed to update this flow to instead make use
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Transaction

create

return transaction

hlc.Clock

get current timestamp

return hlc.Timestamp

trueclock.Client

return trueclock.Bounds

get bounded timestamp

Figure 3.1: Interaction with TrueClock when a transaction is created

of TrueClock when forming the uncertainty interval for a transaction. Figure 3.1 shows a
sequence diagram describing the transaction creation process after our modifications.

The first change we had to do was update the hlc.Timestamp structure to store not just a
single clock reading, but a bounded timestamp with a lower and upper bound. Many struc-
tures in CockroachDB, including timestamps, are built using the serialization format Pro-
tocol Bu�ers (Protobuf), allowing them to be exchanged between nodes over a network. To
add support for bounded timestamps, we added a new field to the Protobuf definition for
hlc.Timestamp called WallTimeUpperBound, serving as an upper bound on the current time.
The existing WallTime field was reused to be the lower bound. CockroachDB also has an-
other structure, hlc.LegacyTimestamp, which contains the same fields as a regular timestamp
but uses a di�erent encoding. The two di�erent timestamp types can be converted between
each other so we also added the new field to the legacy model and updated the conversion
code.

Next, we needed to update hlc.Clock, which normally serves as a wrapper around the system
clock, to instead generate bounded timestamps from TrueClock. We updated hlc.Clock to
store an instance of trueclock.Client, as provided by our TrueClock library described in section
3.3.1. This client was then used to retrieve a bounded timestamp in the shape of a structure
called trueclock.Bounds, containing an upper and lower bound timestamp. From this, we gen-
erate and return a hlc.Timestamp. For these timestamps, WallTime was set to the lower bound
and WallTimeUpperBound to the upper bound.

The final part of the changes consisted of updating the transaction creation to use the
timestamp bounds rather than the static max_o�set to form uncertainty intervals. If now
is the current timestamp, then the current implementation uses global uncertainty limit =
now + max_o�set and read timestamp = now. To make use of our new bounded times-
tamp, which consists of two timestamps earliest and latest, we updated the code to use
global uncertainty limit = latest and read timestamp = earliest.

Our fork of CockroachDB with the modifications described above is available on GitHub
[29]. This also includes our custom benchmark described in section 3.4.2, which is imple-
mented in CockroachDB’s workload tool.

22



3.4 Experimental setup

3.3.3 Verification of implementation
By changing the way CockroachDB sets its uncertainty intervals, we risk breaking consis-
tency if our changes are incorrect or if our port of ClockBound does not calculate accurate
error bounds. To ensure our changes were correct and did not a�ect consistency, we ran the
automated Jepsen tests that CockroachDB uses internally with the help of Erik Grinaker [18].
Jepsen is an open-source testing framework for verifying di�erent aspects of distributed sys-
tems, including consistency guarantees [17]. Normally, Jepsen will try to take control over the
system clock in order to simulate clock skew, which it calls a nemsis. In our case, that would
remove the ability for TrueClock and Chrony to function and as we were also interested in
the correctness of our TrueClock bounds, we opted to disable the nemesis. After running the
tests, Jepsen reported that consistency was maintained which verified that our changes were
correct.

3.4 Experimental setup
In this section, we detail how we evaluated the performance impact of our changes. In section
3.4.1, we detail the work we did in evaluating existing benchmarks and how it led us to design
our own benchmark. The design of our own benchmark is then laid out in section 3.4.2
followed by a description of how the benchmark was run in section 3.4.3. Finally, in section
3.4.4, we describe another smaller experiment we performed to determine what size to expect
for our uncertainty intervals.

3.4.1 Benchmark evaluation
Our initial approach to evaluating the impact of our modifications was to find an established
benchmark designed to emulate a real life workload. The first benchmark we found which
we thought would be suitable was TPC-C, the most widely used online transaction process-
ing (OLTP) benchmark in both industry and academia [37]. The benchmark itself consists
of a set of operations designed to replicate a complex OLTP environment [12]. It simulates a
wholesale supplier where the workload consists of managing, selling and distributing a prod-
uct or service. The transactions within the benchmark are both reads and writes of vary-
ing complexity. They involve everything from customers making orders, checking the status
of already existing ones, entering payments from customers, processing orders for delivery
and examining stock levels to identify potential supply shortages. The o�cial measurement
of performance is done in transactions per minute (tpmC) [12]. The fact that TPC-C has
a diverse set of transactions with risk of contention led us to believe it could su�er from
unnecessary uncertainty restarts. This together with the fact that CockroachDB has a full
TPC-C implementation built into its workload tool, and publishes guides on how to run a
full benchmark on AWS, made it a good choice for us [24]. We ran a small 30-minute test of
TPC-C against a standard CockroachDB cluster to evaluate the benchmark and saw around
350 restarts. We deemed this as too few for our changes to have any significant impact on
performance which we confirmed by running a small test of TPC-C against a cluster with
our modifications. This test showed no impact on performance from our changes, neither
positive or negative. From this we concluded that the workload TPC-C emulates does not
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represent the sort that is most a�ected by unnecessary uncertainty restarts, the kind our
changes would be most valuable for.

We also had a look at and tested Yahoo Cloud Serving Benchmark (YCSB), another widely
used database benchmarking tool [11]. YCSB takes a di�erent approach than TPC-C. Instead
of trying to emulate a large, realistic workload, it consists of multiple smaller workloads
which are artificially designed to test one aspect of a database. Out of the available workloads,
we determined that two were of particular interest. The first one was the ”Read mostly
workload”, which consists of a set of records which are read and written to at a ratio of 95%
reads and 5% writes [8]. These operations carry a risk of read-write contention meaning there
is a risk for uncertainty restarts. However, as these read operations are short, reading only
single records, the probability of a conflict is small. The second one was the ”Read-modify-
write workload”, where a record is read, modified and then written back [8]. This workload
also runs the risk of read-write contention and the transactions also run for longer as the value
needs to be sent back to the client and modified. We hypothesised that these workloads could
be susceptible to unnecessary restarts but after running some small exploratory tests, we did
not see a significant number occurring. Just like for TPC-C, we also ran small tests comparing
standard CockroachDB with our modified version and saw no positive or negative di�erence
in performance. Based on this we concluded that neither TPC-C nor YCSB represented the
sort of workloads that were susceptible to unnecessary restarts.

After evaluating TPC-C and YCSB, we switched approach to instead determine what sort of
workload might gain most from our changes and work from that. As mentioned in section
3.2, a workload with long-running reads across multiple nodes and contending writes should
be highly susceptible to unnecessary uncertainty restarts. We decided to design our own
specialized benchmark to emulates this sort of workload, akin to the YCSB approach. This
introduces questions surrounding the validity of our results, which we discuss in section 5.3.

3.4.2 Benchmark design
The benchmark we designed emulates a simple social media application with posts and likes.
We chose this setup for simplicity and to tie back to the example given in section 2.1, although
it does not necessarily represent the kind of application where consistency is key. The most
important property of our setup is the form of workload it represents, which is not bound to
any application in particular.

title

posts

post_id

likes

1 *

Figure 3.2: Overview of the benchmark database

As depicted in figure 3.2, our benchmark uses two tables, posts and likes, where each post
has a title and each like belongs to a post. The full code for the database schema is available
in appendix A. At the start of the benchmark, 100 posts are generated with random titles
and 1000 likes are created, randomly assigned to posts with a uniform distribution. For the
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actual benchmark, there are K workers running in parallel with each worker performing one
operation at a time. The two possible operations are read and like and when a worker is going
to run a query, it randomly selects one of them with p being the probability that it will be a
read. K and p are the two parameters we control where K lets us vary the contention on our
data and p the balance between reads and writes.

Before running our benchmarks, we performed some tests and tried di�erent number of
workers, K , to find a reasonable interval for our benchmarks. We looked for values which
let us try a nice variation of latencies whilst keeping them reasonable, no larger than a few
seconds. Based on this testing, we settled on starting at 50 workers and going up to 500
workers at steps of 50. For p, the balance between reads and writes, we decided to use two
di�erent values to represent a read-heavy and a write-heavy workload. The reason we decided
this is that uncertainty restarts are a result of read-write contention and hence we wanted to
see what happens when the balance between the two changes. For the read-heavy workload
we used 95% reads and 5% writes, and for the write-heavy workload we used 50% reads and 50%
writes. These percentages were selected as they are the same used by the industry standard
YCSB benchmark [11]. We ran our benchmark for every combination of K and p. Each
test started with a 1-minute ramp up to give CockroachDB time to initialize, followed by 5
minutes of benchmarking where data was collected. This resulted in a total of 20 benchmarks.

1 SELECT posts.id , posts.title , COUNT (*)
2 FROM posts
3 LEFT JOIN likes ON posts.id = likes. post_id
4 GROUP BY posts.id
5 ORDER BY COUNT (*) DESC

Listing 3.1: Read query

1 INSERT INTO likes( post_id )
2 VALUES ($1)

Listing 3.2: Like query

The read operation represents a user loading the front page of the application which shows
all 100 posts sorted by the number of likes. The query for this is shown in listing 3.1 and
requires reading all posts and all likes. As the query performs a join using the post ID, we
added an index for the post_id column in the likes table. The like operation adds a new like to
a randomly selected post and its query is shown in listing 3.2. These are the only two queries
performed during our benchmark, meaning that posts and likes are never removed or altered
after creation.

CockroachDB stores all data in ranges and attempts to keep each range below 512 megabytes.
If a range grows larger than this limit, it is automatically split into two new ranges. This
mechanism becomes a problem for our benchmark since our data is small and will not be
automatically split, instead ending up in a single range per table. As only the leaseholder
for a range can serve reads and writes, having only a single range would utilize only a single
node, leaving unused capacity in the cluster. A solution suggested by CockroachDB, which
is depicted in figure 3.3, is to manually split the tables consisting of single ranges evenly
into three ranges and then assign a lease to every node, spreading the load evenly across the
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Figure 3.3: Before and after splitting ranges and leases

cluster. This approximates how CockroachDB would attempt to distribute a larger data set
in a production setting [27].

It is noteworthy though, in our benchmark the ID for a like entry is based on an integer
which is incremented for every insert being done. Our initial ranges are split into intervals
containing the entries with ID’s 0-333, 334-666 and 667-1000 respectively. But as new likes
are inserted, their ID’s continue to increment beyond the predefined ranges. CockroachDB
will then create a new range for all the new likes, skewing the workload of the write opera-
tion slightly as the node being the leaseholder of the new range will be the one in charge of
proposing new inserts. It is not the case for the read operation though. When we perform
the read query, a scan is performed on an index table rather than the actual likes table. This
table is based on the post’s ID which is always of fixed size. As we have split this index on the
post ID the workload will always be evenly divided.

In terms of measurements, we were most interested in latency as uncertainty restarts will
increase the latency of reads. We decided to build our benchmark on top of CockroachDB’s
workload generator [22] which automatically handles collection of metrics. These metrics
include throughput, measured as operations per second, as well as the median, 95th and
99th percentile latency. We will refer to these as the p50, p95 and p99 latencies from now
on. We chose to measure these as, according to Kleppman, percentiles are a better choice
than the arithmetic mean as they better reflect what the end user experiences. These latency
percentiles are also commonly used to define service level agreements, making them particular
interesting for some service providers [21]. Because of the way our benchmark was designed,
with parallel workers making sequential requests, the throughput and latency were directly
connected. We still opted to measure the throughput separately though to better visualise
how the cluster utilization changed with the number of workers.

We also wanted to find out whether our changes actually reduced the number of uncertainty
restarts. CockroachDB stores a number of di�erent metrics per node and exposes them as
an HTTP endpoint at /_status/vars. These metrics include the number of uncertainty restarts
that has occurred at a specific node. To get the total amount of uncertainty restarts, we
fetched these metrics from each node using the endpoint and added them up at the end of
the benchmark [23].
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The benchmark was built on top of CockroachDB built-in workload tool, which includes
support for a number of benchmarks and provides a convenient framework to implement
new ones [22]. The source code for our benchmark is available as part of our CockroachDB
fork on GitHub [29].

3.4.3 Benchmark setup

AWS instance size m5d.xlarge
vCPUs 4
Memory 16 GB
Storage 150 GB NVMe SSD
Network bandwidth Up to 10 Gbps
Operating system Ubuntu 20.04 LTS
Extra software Chrony 3.5 configured to use Amazon Time Sync Service

Table 3.1: Benchmark node specifications

To run our benchmark, we deployed two CockroachDB clusters to AWS. One of the two clus-
ters ran a standard deployment of CockroachDB 21.2.4, with a precompiled binary retrieved
from their website [26]. The cluster used all the default settings which includes a max_o�set
of 500 ms. The second cluster ran our forked version of CockroachDB 21.2.4 with the same
settings as the standard cluster. We built our fork using the provided Docker image which is
published on Docker Hub and encapsulates all dependencies needed for compilation [1]. Both
setups were configured to use Amazon Time Sync Service, meaning they both had highly syn-
chronized clocks and hence should both have a reduced risk of necessary uncertainty restarts
compared to a cluster with standard clock synchronization. For this experiment, we were
specifically interested in testing the e�ects of our modifications to reduce the size of uncer-
tainty intervals, which should only a�ect unnecessary restarts.

For our experiments, we aimed to set up clusters which were as close to a production ready
setup as possible. To achieve this, we used the recommendations published by CockroachDB
in their production checklist [25]. As recommended by the checklist for a high-availability
setup, we deployed three nodes across three availability zones in the eu-north-1 (Stockholm)
region. CockroachDB supports more than three nodes per cluster, but we opted to use three
because of cost restrictions. We used m5d.xlarge EC2 instances which include local SSD
physical disks rather than slower network-attached disks that other instance sizes rely on [6].
These instances are the minimum ones recommended by CockroachDB for production AWS
deployments, and we decided against using more powerful nodes because of cost restrictions
[25]. Table 3.1 shows more detailed hardware and software specifications for the nodes used.
The benchmark code itself was run from a fourth server in one of the availability zones, with
the same specifications as the cluster nodes.

Previous benchmarks have shown that performance varies between AWS EC2 instances of
the same type [19]. Since this could a�ect our result, we ran the benchmarks against both
regular CockroachDB and our modified version in sequence on the same instances. EC2
instance performance normally does not fluctuate too much when running for a long period
of time. There are however occasions where performance degradation may appear due to
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AWS underlying resource sharing mechanism. This can happen, for instance, when another
virtual machine is created on the same physical device. Such degradations may stay between 1
and 2 minutes [19]. To detect such degradations, we looked for outliers in the data and looked
more closely at the measurements to see if there were any shorter dips in performance during
the test. No such degradations were found.

3.4.4 Measuring timestamp bounds sizes
As mentioned in section 2.4, we were not able to find any numbers on what clock skew
to expect from Amazon Time Sync Service and ClockBound. As the size of the bounded
timestamps would directly a�ect our results, we opted to run our own tests separately from
our benchmark of CockroachDB. The test was constructed as a script written in Go which
used our port of ClockBound, called TrueClock, which is further described in section 3.3.1.
The script made a clock reading every 250 ms and saved the size of the bounded timestamp.
As TrueClock synchronizes with Chrony once a second, we chose 250 ms to ensure read-
ings were made across the entire synchronization interval. The results were then split into 5
minute buckets and for each bucket the script calculated the 50th, 95th and 99th percentile
bounds length. The script ran for a total of 12 hours on a t3.medium EC2 instance, resulting
in 144 measurements over 172 800 clock readings. The full code for the test script and the
specification for the test server are shown in appendix B.

28



Chapter 4

Experimental validation

In this chapter, we start of by presenting the results from performing our benchmark as
described in section 3.4.2. The first results are based on running the workload with 95%
reads and 5% writes, then we present results based on 50% reads and 50% writes. Finally, we
show measurements on the bounds sizes sampled from TrueClock during a 12-hour test.

4.1 Read-heavy workload
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Figure 4.1: Uncertainty restarts
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Figure 4.2: Throughput

Figure 4.1 shows the number of uncertainty restarts that occurred during our read-heavy
benchmarks (95% reads, 5% writes). We see that the modified version of CockroachDB greatly
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reduced the number of uncertainty restarts compared to the regular version. For our mod-
ified version, the number of restarts grew slightly as the number of workers increased, but
eventually reached a stable level from about 300 workers and up. For the regular version, the
restarts increased rapidly as the number of workers increased, and then the growth slowed
down a bit after 200 workers. The number of restarts kept growing with each increase in
workers, except for the last benchmark at 500 workers. Here the number of restarts dropped
slightly, breaking the previous trend. There was no similar drop at 500 workers for the mod-
ified version.

In figure 4.2, we show the throughput, measured as the total number of queries per second,
by the number of workers. From this we see that the highest throughput was achieved with
the lowest number of workers, 50, for both the regular and modified version. As the number
of workers increased, the throughput decreased. The modified version of CockroachDB con-
sistently achieved better throughput than the regular version, with the gap growing as the
number of workers increased. The exception to this were the tests at 300 and 500 workers
respectively, where the gap closed a bit. The modified version however still performed better.
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Figure 4.3: p50 latency of read operations
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Figure 4.4: p95 latency of read operations
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Figure 4.5: p99 latency for read operations

Figures 4.3 through 4.5 show the 50th, 95th and 99th percentile latencies measured for the
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read operations. Looking at the p50 latencies, in figure 4.3, we see that the latencies were
roughly the same between the regular and modified version at the lowest number of workers.
As the number of workers increased, the latencies grew at a linear pace, but the regular
version grew faster than the modified version. The di�erence topped out at 450 workers
where the modified version was roughly 47% faster than the regular version. The p95 and
p99 latencies, figures 4.4 and 4.5, show a similar pattern with the latencies growing linearly
and the modified version being consistently faster, reaching the greatest improvement at 450
workers. Here the modified version was 43% and 37% faster for the p95 and p99 latencies
respectively.

Similarly to the uncertainty restarts and throughput, the trends broke slightly when the num-
ber of workers reached 500. In the case of the p50 latencies, the modified version jumped
up whilst the regular version grew less, causing the gap between the two to shrink. The p95
and p99 figures show a similar jump but more pronounced with the modified version’s p99
latency seeing an even greater increase. The modified version stayed faster than the regular
version but comparing 500 workers to 450, the p50 latency improvement decreased from 47%
to 37% and the p99 from 37% to 19%. We also see some skews in the p95 and p99 tables at 300
workers where the latencies are slightly greater than the trend.
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Figure 4.6: p50 latency of like operations
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Figure 4.7: p95 latency of like operations
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Figure 4.8: p99 latency of like operations
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The latency measurements for the like operations, described in listing 3.2, are shown in fig-
ure 4.6, 4.7 and 4.8. These show similar trends to the read operations where the latencies
were roughly equal when starting at 50 workers and then increased linearly as the number
of workers grew. The modified version was consistently faster than the regular version, just
like the read operations, and the di�erence grew as the number of workers increased. The
improvements were generally not as large as for the read operations but topped out at a 37%
improvement for the p50 latency at 450 workers. We can also see similar skews in the graphs
at 300 and 500 workers respectively.

The full results for the read-heavy benchmark are available in appendix A.

4.2 Write-heavy workload

100 200 300 400 500

1
2
3
4
5
6

·104

Number of workers

U
nc

er
ta

in
ty

re
st

ar
ts

Regular
Modified

Figure 4.9: Uncertainty restarts
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Figure 4.10: Throughput

Figures 4.9 and 4.10 shows the uncertainty restarts and total throughput for our write-heavy
benchmark (50% reads, 50% writes). Compared to the results for the read-heavy benchmark in
section 4.1, the modified version still yielded fewer uncertainty restarts, but the di�erence is
much smaller. Regular CockroachDB generated much fewer restarts while the modified ver-
sion generated more. We also do not see the same clear trend from the read-heavy benchmark
with the regular version seeing increased restarts as the number of workers increased. The
number of restarts does seem to increase, but the trend is not as clear and the measurements
are noisy.

In figure 4.10 we see that the modified version o�ered improved throughput, just as in the
read-heavy benchmark, but the di�erence is not as great and occasionally throughput dips to
the same level as the regular version.
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Figure 4.11: p50 latency of read operations
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Figure 4.12: p95 latency of read operations
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Figure 4.13: p99 latency for read operations

Figures 4.11, 4.12 and 4.13 show the latency results from our write-heavy benchmarks. Here
we see a similar trend as in the read-heavy benchmarks with the latency growing linearly with
the number of workers. The result di�ered a bit from the read-heavy benchmark though. In
this case, the modified version generally achieved lower latencies, particularly as the workers
grew, but the di�erence was smaller. For lower number of workers, there was no discernible
di�erence between the two.
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Figure 4.14: p50 latency of like operations

100 200 300 400 500

1

2

3

4

5

Number of workers

La
te

nc
y

[s]

Regular
Modified

Figure 4.15: p95 latency of like operations
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Figure 4.16: p99 latency for like operations

The like operations showed a greater variance in the latency measurements, as can be seen
in figures 4.14 through 4.16. In terms of the p50 latency, the regular and modified versions
showed similar latencies which grew with the number of workers. The exception is an outlier
value at 450 workers, where the modified version’s latency dipped dramatically. The p95 and
p99 latencies show a bigger di�erence between the two. Here they stayed relatively equivalent
in latency until around 300 workers where the regular version’s latency increased rapidly,
making the modified version the faster of the two.

The full results for the write-heavy benchmark are available in appendix D.
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4.3 Timestamp bounds sizes
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Figure 4.17: Size of bounds generated by TrueClock

Figure 4.17 shows the median (P50), 95th percentile (P95) and maximum size of the bounds
generated during our 12-hour test. We see that the size stays stable throughout the test with
short spikes at irregular intervals. The median size is slightly above 0.8 ms with the maxi-
mum size for each measurement varying between 0.9 ms and 1 ms. During the spikes, the
maximum measurements mostly stayed under 1.2 ms with the largest spike, at around 600
minutes in, reaching almost 1.4 ms. The results also included the 99th percentile, but we
opted not to include it in the diagram as it stayed very close to the maximum values, making
the diagram hard to read. The full results are available in appendix E.
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Chapter 5

Discussion

In this chapter, we discuss the results from our experiments, analyze them in relation to our
hypothesis, and take a look at some of the limitations and costs of our changes. We also
discuss the validity of our results from di�erent perspectives, with a particular focus on our
custom benchmark, and then finish by presenting some relevant future work.

5.1 Interpreting results
Looking at the throughput for both the read-heavy (4.1) and write-heavy workloads (4.2),
we see that the highest throughput was achieved at 50 workers and that it did not improve
with an increase in workers. This indicates that our workload saturated the database capacity
which explains the linear relationship between latency and number of workers that we saw in
all tests. This also meant that by varying the number of workers, we could vary the length of
the reads as well as the contention on the data. In section 3.2, we hypothesised that workloads
with longer reads over multiple nodes along with heavier contention would see larger gains
from shorter uncertainty intervals, which our data confirms. For the read-heavy workload
in section 4.1, we see that the latency di�erence between the regular and modified versions
grew with the number of workers. The results for the write-heavy workload, shown in section
4.2, reveal a similar although less clear trend. In general, the improvements were smaller for
the write-heavy workload compared to the read-heavy, including the number of uncertainty
restarts. We attribute this to the fact that only reads are restarted because of uncertainty and
a smaller number of reads hence results in fewer restarts. This in turn reduces the latency
improvements for reads which indirectly also a�ects the performance of writes, which we
discuss in more detail later.

Our hypothesis that reducing the uncertainty interval would improve transactional perfor-
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mance is based on the assumption that the static max_o�set which CockroachDB uses causes
unnecessary uncertainty restarts, as described in section 2.5, which results in increased la-
tency. By switching to dynamic and significantly shorter uncertainty intervals, which we
have shown in section 4.3, we believed that the number of uncertainty restarts would de-
crease but the e�ect size is dependent on how short we can get our dynamic intervals and
how stable their sizes are. To better understand this, we ran a separate test for the bounds
sizes generated by ClockBound and Amazon Time Sync Service over a 12-hour period. The
results in section 4.3 show that they stay very stable, normally below 1 ms in size. There are
occasional spikes but they are short and do not deviate drastically from the baseline. As the
sizes of these bounds directly translate to the size of our uncertainty intervals, we managed to
reduce the interval size by a factor of more than 500, compared to the standard max_o�set of
500 ms. Even when the bounds sizes spike, in our case to a maximum of 1.4 ms, our dynamic
intervals are still more than 350x shorter than standard CockroachDB’s.

Jumping back to the benchmark results, it seems that our shortened uncertainty intervals did
in fact reduce the number of restarts, particularly for the read-heavy workload. The number
of restarts were reduced by up to 9x, with the di�erence growing as the number of workers
increased. We believe the increase was caused by more workers causing more contention, in
turn heightening the risk of a read-write conflict. The number of restarts for our modified
version did not increase significantly with more contention though. This can be explained
by the length of the reads greatly exceeding the length of the uncertainty intervals, which are
around 1 ms. This places the vast majority of collisions outside the uncertainty interval and
hence they do not cause restarts.

Of course, it’s possible for read-write collisions to fall outside the uncertainty interval for the
regular version as well if the operation takes longer than 500 ms. We believe we are seeing
the e�ect of this in figure 4.1, where the growth in the number of uncertainty restarts slows
down as the workers and latency increases. If we had used a higher max_o�set, we believe
the regular version would have seen even more uncertainty restarts as fewer collisions would
have fallen outside the uncertainty interval. Interestingly, we can not see the trend from the
uncertainty restarts in the latency numbers, instead the di�erence there grows even larger
as the number of workers increases. We believe this is a result of a restart having an e�ect
on latency that is directly proportional to how slow the restarted query is, so even a lower
amount of restarts can have a growing impact on latency. If our speculations are correct, we
should eventually see the number of uncertainty restarts taper o� to a constant number, but
our tests were not large enough to show that.

In section 2.5, we established that there are two di�erent kinds of uncertainty restarts: neces-
sary and unnecessary. The necessary restarts are the ones caused by clock skew which results
in the ordering of timestamps not matching the real-time ordering. In those cases, a restart
must be performed to maintain consistency. In our experiments, we were not interested in
testing necessary restarts and hence we configured both clusters to use highly synchronized
clocks as provided by Amazon Time Sync Service. This means that both the standard and
modified version of CockroachDB should have encountered roughly an equal number of nec-
essary restarts during our experiment. With this in mind, we can conclude that the great
di�erence in restarts we saw throughout our results was composed entirely of unnecessary
restarts. These were the restarts we were interested in testing as they are dependent on the
size of the uncertainty intervals, which we aimed to shorten. Another interesting observation
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is that our modified version still saw a few thousand restarts each test. Some of these could
still be unnecessary restarts, but they might also be necessary restarts as we still have some
level of clock skew.

A very interesting outlier in our read-heavy results is the clear drop in performance for the
modified version at 500 workers. We see it in the throughput and latency measurements
but interestingly, the performance of the regular version improves slightly compared to its
previous trend. It is hard to pinpoint the reason for this outlier but the sudden decrease in
uncertainty restarts for the regular version at 500 workers might o�er a clue. One explanation
is that our tests ran into some bottleneck in CockroachDB that lay outside the path that
risks causing uncertainty restarts. With that being the main bottleneck, it could reduce the
contention that caused the restarts, in e�ect reducing them and the added latency they bring.
The same bottleneck probably a�ected the modified version as well but here it would not
have helped in reducing restarts as the modified version already sees very few. Unfortunately,
our benchmarks only went up to 500 workers, so we aren’t able to determine if the outlier is
part of a greater trend, which would have helped confirm our explanation.

We hypothesised that our modified version would reduce read latency, but we did not expect
it to also reduce write latency as only read operations are a�ected by uncertainty restarts.
Our results show a similar decrease in write latency, especially for the read-heavy benchmark,
which we have concluded is most likely caused by CockroachDB’s usage of latches. Latches
are a form of mutex which are used to achieve serialization guarantees by allowing multiple
concurrent reads, but having reads and writes block each other [28]. Because we have a high
degree of contention between our reads and writes, writes risk having to wait on latches held
by concurrent read operations. When forming latches for read operations, CockroachDB uses
the uncertainty interval as an upper limit on the length of the latch duration. This means
that the read will either hold the latch on each node until it is complete, or it has taken more
time than the uncertainty interval [16]. Given that we have drastically reduced the size of the
uncertainty intervals to around 1 ms, we may have reduced them enough to allow many more
reads to release their latches earlier than before. Shortening latch durations should reduce
both the risk for contention and the average time that writes have to wait on reads. This
is what we believe caused our modified version to improve performance of writes as well as
reads.

5.2 Limitations and costs
An important consideration for the viability of building distributed systems around highly
synchronized clocks are their availability. AWS provides them for free through Amazon Time
Sync Service but the two other major cloud platforms, Google Cloud and Azure, do not have
equivalent services. For a database like CockroachDB, which is designed to run on a wide
array of setups, it’s not currently reasonable to require access to highly synchronized clocks
but it could be exposed as a configuration option or perhaps be automatically detected. This
way, CockroachDB could continue using max_o�set as it does right now by default, but switch
to dynamically calculated uncertainty intervals when possible.

One nice aspect of Amazon Time Sync Service is that it’s entirely free [4]. There is no guar-
antee that this will be the case for other cloud providers though if they introduce a similar
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service, or that AWS will not start charging for the service eventually. Even if there was a cost
associated with accessing highly synchronized clocks, the performance benefits might make
it economical but such a cost-benefit analysis will probably have to be made on a case-by-case
basis.

Another important consideration when relying on a service like Amazon Time Sync Ser-
vice are the added failure modes. In our case, if the service were to fail, it would not cause
CockroachDB to immediately fail. Instead, the database would have to rely on the system
clock which will drift as it can not be synced against the reference. This would result in
the uncertainty intervals gradually increasing in size as the amount of time since last syn-
chronization increases, which ClockBound accounts for. A possible way to mitigate this is
to place some upper limit on the size of the uncertainty intervals, after which the node will
shut itself down. This would be useful if the problem with Amazon Time Sync Service is
limited to a single availability zone as CockroachDB can handle the failure of one availabil-
ity zone when deployed in a high-availability setup. CockroachDB already has a mechanism
where a node will shut itself down if it detects clock skew approaching the max_o�set, this is
a mitigation to avoid losing consistency in the face of degraded clock synchronization. In our
case, consistency should never be lost even if clock synchronization is temporarily degraded
as ClockBound will continue producing valid, albeit growing, timestamp bounds. Because of
this, it might be preferable to let the uncertainty intervals grow and accept any performance
degradation that causes. What we have not been able to find is any data on how reliable
Amazon Time Sync Service is or what failure modes it has, for example if it’s redundantly
deployed across availability zones. We believe such information will be needed going forward
to fully understand the reliability implications of adapting highly synchronized clocks.

As ClockBound depends on the synchronization metadata provided by Chrony to calculate
error bounds, the correctness is dependent on the accuracy of the data provided by Chrony.
Chrony calculates these values based on measurements and assumptions about various delays
between itself and the reference clock [32]. We have not been able to find much research
into how accurate the numbers are, although Facebook claims that they might not always be
reliable [32]. The question remains if this will a�ect the correctness of the bounds generated
by ClockBound and break consistency, or if the di�erences are small enough to be ignored.
The Jepsen tests we ran, described in section 3.3.3, indicates that they are correct, but that
was only for the limited time and scope of the tests. More public research would be welcome
to shed light on the challenges around establishing clock errors bounds as it will be critical to
fully utilize highly synchronized clocks. The fact that Spanner has been in production for at
least a decade though indicates that calculating accurate error bounds can be done reliably.

5.3 Validity threats
Our decision to design our own benchmark, as described in section 3.4.1, introduces many
questions in terms of validity. The most significant is the connection to the real world and
how well the benchmark will reflect the performance in a production system. As we have
not designed our benchmark around some realistic use case, like TPC-C, we can not say how
realistic our performance gains are in relation to a real workload. We also can not say that
our non-improvements on TPC-C will apply to all real workloads. Even though TPC-C is
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built to be realistic, it only represents a specific application with a narrow use case.

Our approach was instead more akin to the one taken by YCSB, with an artificial workload
designed to test a specific aspect of a database. With this in mind, we note that our results
need to be placed in context and only represents a single, narrow aspect of database per-
formance. Even a real life workload that does contain long reads and contending writes is
bound to be more diverse than our benchmark, meaning the same level of performance im-
provements that we have seen should not be expected in a production setting. We have not
been able to find public numbers on how common uncertainty restarts are but Erik Grinaker
was able to provide us with some internal metrics from their managed CockroachDB service.
These numbers show that during the period 2022-04-23 to 2022-05-23, on average 0.0152%
of transactions were restarted across all clusters. The worst a�ected cluster saw an average of
0.583%, topping out at 0.933% during the worst measured hour [16]. For comparison, our
read-heavy test with 450 workers, the one which saw the largest performance improvements,
had 58.2% of transactions restarted for the standard CockroachDB cluster. Worth noting is
that their managed databases use a max_o�set of 250 ms, compared to the 500 ms we used for
our standard cluster [16]. The great di�erence in restart susceptibility tells us that perfor-
mance gains, if any, for production workloads are bound to be much smaller than the ones
measured during our experiments. More experiments will be necessary though to fully judge
how our changes will a�ect actual performance in terms of latency and throughput.

One positive result from our evaluation of both TPC-C and YCSB is that we saw no per-
formance degradation caused by our changes, as noted in section 3.4.1. This was expected
as uncertainty intervals are only used to determine when restarts are needed, so shortening
them should not negatively a�ect performance. Our dynamic intervals could theoretically
grow past the standard 500 ms length if the clock synchronization is bad enough. Given that
the default value is already a pessimistic upper bound on clock skew though, we can expect
our dynamically calculated bounds to stay below that even when clocks are not highly syn-
chronized. If the clock synchronization were to fail, the intervals risk growing unbounded
like described in section 5.2, but this can be avoided with the discussed mitigations. The only
way we see that our changes could directly degrade performance is the added latency of a clock
reading. As mentioned in section 3.3, we ran into issues with the standard ClockBound dae-
mon as the clock readings were made over a datagram socket, which made each reading much
slower. We noticed this issue after seeing a degradation in performance when testing TPC-C
and YCSB. The issue was fixed by porting ClockBound to a Go library, removing the need to
send a datagram request. This dramatically lowered the latency of a clock reading, but it was
still slower than a normal system clock reading that standard CockroachDB uses. Judging by
the fact that the performance degradation we saw for TPC-C and YCSB disappeared though,
we believe the added latency in our implementation to be negligible.

We believe the benchmark introduces the largest threats to the validity of our results, but
there are other threats that should be discussed as well. As we have seen in the results, es-
pecially for the write-heavy workload, there are some data points that are noisy, making the
trends harder to observe. According to their own guides, CockroachDB recommends run-
ning other benchmarks for at least 30 minutes, but we only ran every individual benchmark
for 5 minutes due to cost concerns [24]. Running the benchmark for a longer duration or
several times with aggregated results could reduce the noise.
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As previously mentioned, we believe the database was fully saturated throughout all tests
based on the throughput numbers. Although this gave us good control over the latency it
also meant we could not vary the latency and contention separately. A better setup would
be to have separate parameters to vary the length of the reads, for example data size, and
another for contention, like the number of workers. With our setup, we are not able to tell if
the improvements are caused by an increase in the length of the read operations, an increase
in contention or both.

We also only ran the benchmark on the simplest setup recommended by CockroachDB, con-
sisting of only three nodes within a single region. It’s possible that our results does not trans-
late to clusters with more nodes or clusters that are distributed across multiple regions. What
these setups have in common though is that they imply increased latency, meaning our results
might actually become more significant in these setups. Because of cost and time restrictions,
experimenting with these setups is outside the scope of this thesis, but we hope more research
will be conducted in the future.

5.4 Future work
As mentioned earlier, the benchmark we built represents the form of workload which we
thought stood to gain most from our changes, but these gains might not appear for other
workloads. We believe one of the most interesting avenues for future research is what e�ect
highly synchronized clocks can have on other workloads. In particular, we would be inter-
ested to see numbers from the industry on how shorter and dynamic uncertainty intervals
impacts performance in production. This thesis has also been conducted as a case study on
CockroachDB but highly synchronized clocks could potentially be useful to a wide variety
of distributed systems in di�erent ways. With AWS providing free availability to highly syn-
chronized clocks on their EC2 instances, we hope to see more case studies conducted as highly
synchronized clocks are increasingly commoditized.

Throughout this project, a limiting factor has been the cost of running the benchmarks on
AWS, and we hope to see more studies performed on the subject with better funding. One
way in which costs limited our experiments was the length of the benchmarks. We noticed
that some of our results were noisy, which could be improved by running longer benchmarks.
Cost also limited us to a three node cluster and we believe it would be worth researching
how well these changes scale to a larger number of nodes. As latency increases due to extra
roundtrips between more nodes, so does the probability of uncertainty restarts occurring.
On top of that, to reduce the number of uncertainty restarts, CockroachDB implements an
optimization. When a transaction encounters a timestamp within the uncertainty interval,
it chooses the maximum value of that timestamp or the current node’s time. This is to make
sure that all data on that node is treated as past operations and resulting in each node causing
a maximum of one uncertainty restart per transaction [2]. The number of uncertainty restarts
for a transaction is thus limited by the number of nodes in the cluster and a cluster with more
nodes should theoretically risk encountering more restarts.

When investigating possible ways to adapt CockroachDB, we chose between two possible ap-
proaches. Reducing the uncertainty intervals, which is what we did, or implement commit-
wait, similar to Spanner. We opted to not implement commit-wait as the scope of that work

42



5.4 Future work

was too great for this thesis, but we would be very interested to see future work on how that
could be implemented in CockroachDB and what e�ect it would have on performance. The
commit-wait approach would eliminate the need for uncertainty restarts, which might fur-
ther reduce latency, but will also require adding some delay to write operations proportional
to the clock skew. As we saw in our results, reducing uncertainty restarts also improves the
performance of write operations, so any potential added latency from commit-wait might be
balanced out.
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Chapter 6

Conclusion

With this thesis, we aimed to investigate how distributed databases can be adapted to utilize
highly synchronized clocks. We conducted the project as a case study on CockroachDB, a dis-
tributed database which relies on clocks but does not expect them to be highly synchronized.
With our work, we wanted to answer two research questions:

Q1 How can CockroachDB be adapted to utilize high-precision clock synchronization?

Q2 What e�ect does this have on CockroachDB’s transactional performance?

In answering Q1, we arrived at two approaches. One where CockroachDB would be mod-
ified to replicate Spanner’s transactional model where each write transaction will wait for
an amount of time which matches the current clock skew, removing any uncertainty around
timestamp ordering. This model has the benefit of enabling strongly consistent reads without
locks, and it also enables global linearizability, compared to the slightly weaker causal con-
sistency o�ered by CockroachDB today. The work of implementing was deemed too large
for this project and was instead left to future research. Instead, we implemented our second
proposal which implied making CockroachDB’s uncertainty intervals shorter and dynamic.
These uncertainty intervals are used to determine when two transactions can not be ordered
by their timestamps alone because of clock skew. Unfortunately, they also risk causing un-
necessary transaction restarts and added latency. In order to make the uncertainty intervals
dynamic, we used a tool developed by AWS called ClockBound to calculate error bounds on
clock readings. We then combined this with highly synchronized clocks provided by Amazon
Time Sync Service, which we hoped would dramatically shorten the uncertainty intervals and
in turn reduce the number of unnecessary restarts and improve performance.

To test our modifications and answer Q2, we performed two di�erent experiments. The
first was designed to determine how short we could get our uncertainty intervals when using
Amazon Time Sync Service and ClockBound, as well as how stable their length would be.
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The results from this test showed that the sizes stayed very stable over a 12-hour period,
making our uncertainty intervals around 500x shorter than the default, static 500 ms used
by standard CockroachDB.

The second experiment was designed to measure the performance implications of our changes
and the shorter uncertainty intervals. We constructed a benchmark which emulated the
kind of workload which we believed would be most a�ected by unnecessary restarts, that
is workloads with long reads over multiple nodes with contending writes. After running
the benchmark in both a read-heavy and write-heavy setup and comparing it against stan-
dard CockroachDB, we found that our modifications dramatically lowered the number of
uncertainty restarts. This in turn significantly improved performance, especially for the
read-heavy benchmark, with median latencies seeing up to a 47% improvement for read op-
erations and up to 37% for write operations. These improvements also grew with the level of
contention and the length of the reads. As our benchmark was specifically focused on un-
necessary restarts, we do not expect equivalent performance improvements for production
workloads and further research will be needed to better understand the performance impli-
cations of our modifications. We do conclude though that our changes should never result in
reduced performance.

As a result of our work, we believe better support for highly synchronized clocks has poten-
tial to be a worthwhile addition to CockroachDB. We also believe that highly synchronized
clocks will play an important role in distributed systems going forward and deserves further
investment and research, especially on their reliability and availability which are the biggest
roadblocks to adoption.
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Appendix A

Benchmark database schema

The following listing shows the code used to set up the database schema for our benchmark.

1 CREATE TABLE posts(
2 id INTEGER PRIMARY KEY , title TEXT
3 );
4
5 CREATE TABLE likes(
6 id SERIAL PRIMARY KEY ,
7 post_id INTEGER ,
8 FOREIGN KEY ( post_id ) REFERENCES posts (id),
9 INDEX ( post_id )

10 );

Listing A.1: Code for setting up database schema
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Appendix B

Timestamp bounds size test setup

Listing B.1 shows the Go code used to conduct our test for the size of timestamp bounds
generated by TrueClock and Amazon Time Sync Service. The specifications for the server
used to run the test are shown in table B.1.

1 package main
2
3 import (
4 "fmt"
5 "math"
6 "sort"
7 "time"
8
9 " github .com/ fabianlindfors / trueclock "

10 )
11
12 const TestDuration = 12 * time.Hour
13 const BucketDuration = 5 * time. Minute
14 const TimeBetweenMeasurements = 250 * time. Millisecond
15
16 type Measurement struct {
17 Mean float64
18 Median float64
19 P95 float64
20 P99 float64
21 Max int64
22 }
23
24 func main () {
25 clock , err := trueclock .New ()

55



B. Timestamp bounds size test setup

26 if err != nil {
27 panic (err)
28 }
29
30 startTime := time.Now ()
31 endTime := startTime .Add( TestDuration )
32 bucketNum := 1
33
34 values := make ([] int64 , 0)
35
36 ticker := time. NewTicker ( TimeBetweenMeasurements )
37
38 for {
39 <-ticker .C
40
41 bounds := clock.Now ()
42 diff := bounds . Latest .Sub( bounds . Earliest )
43
44 values = append (values , diff. Microseconds ())
45
46 now := time.Now ()
47 if now.After( startTime .Add(time. Duration ( bucketNum ) *

BucketDuration )) {
48 measurement := calculateMeasurement ( values )
49 sinceStart := now.Sub( startTime )
50 fmt. Printf (
51 "[%s]\t%d\t%v\t%v\t%v\t%v\t%d\n",
52 sinceStart ,
53 bucketNum ,
54 measurement .Mean ,
55 measurement .Median ,
56 measurement .P95 ,
57 measurement .P99 ,
58 measurement .Max ,
59 )
60
61 values = make ([] int64 , 0)
62 bucketNum += 1
63 }
64
65 if now.After( endTime ) {
66 return
67 }
68 }
69 }
70
71 func calculateMeasurement ( values [] int64 ) Measurement {
72 total := int64 (0)
73 max := int64 (0)
74 for _, value := range values {
75 total += value
76
77 if value > max {
78 max = value
79 }
80 }
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81
82 mean := float64 (total) / float64 (len( values ))
83
84 sort. Slice(values , func(i, j int) bool { return values [i] <

values [j] })
85
86 return Measurement {
87 Mean: mean ,
88 Median : calculatePercentile (values , 0.5) ,
89 P95: calculatePercentile (values , 0.95) ,
90 P99: calculatePercentile (values , 0.99) ,
91 Max: max ,
92 }
93 }
94
95 // Ported from https :// code. activestate .com/ recipes /511478 - finding -

the -percentile -of -the - values /
96 // Author : Wai Yip Tung
97 // License : Python Software Foundation License (PSF)
98 func calculatePercentile ( sortedValues [] int64 , percentile float64 )

float64 {
99 index := float64 (len( sortedValues ) -1) * percentile

100
101 floor := math.Floor(index)
102 ceil := math.Ceil(index)
103
104 if floor == ceil {
105 return float64 ( sortedValues [int(index)])
106 }
107
108 d0 := float64 ( sortedValues [int(floor)]) * (ceil - index)
109 d1 := float64 ( sortedValues [int(ceil)]) * (index - floor)
110 return d0 + d1
111 }

Listing B.1: Script used to measure sizes of bounds generated by
TrueClock

AWS instance size t3.large
vCPUs 2
Memory 8 GB
Storage 30 GB network-attached EBS volume
Network bandwidth Up to 5 Gbps
Operating system Ubuntu 20.04 LTS
Extra software Chrony 3.5 configured to use Amazon Time Sync Service

Table B.1: Server specifications for the timestamp bounds size test
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Appendix C

Read-heavy benchmark results

Table C.1 through C.5 shows the full results of our read-heavy benchmark, on which the
diagrams in 4.1 are based.

Workers Regular Modified
50 17344 3023
100 29694 3768
150 36959 4846
200 41519 5063
250 44351 5159
300 47256 5825
350 49731 5262
400 51150 5647
450 52875 5840
500 47594 5826

Table C.1: Uncertainty restarts
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Workers Regular Modified
50 370.8 421.7
100 316.7 409.4
150 291.8 399.1
200 258.8 386.2
250 243.8 373.4
300 227.1 337.2
350 221.9 360.5
400 208.7 357.1
450 200.8 354.2
500 211.0 310.2

Table C.2: Throughput (ops/sec)

Read operations Like operations
Workers Regular Modified Regular Modified

50 125.8 113.2 50.3 46.1
100 302.0 234.9 96.5 83.9
150 503.3 369.1 151.0 113.2
200 771.8 520.1 201.3 151.0
250 1040.2 704.6 251.7 184.5
300 1342.2 872.4 318.8 201.3
350 1610.6 1006.6 369.1 251.7
400 2013.3 1140.9 419.4 285.2
450 2415.9 1275.1 503.3 318.8
500 2550.1 1610.6 503.3 285.2

Table C.3: P50 latency (ms)

Read operations Like operations
Workers Regular Modified Regular Modified

50 285.2 218.1 151.0 134.2
100 637.5 453.0 285.2 251.7
150 973.1 671.1 436.2 352.3
200 1409.3 872.4 604.0 469.8
250 1811.9 1140.9 771.8 570.4
300 2415.9 1543.5 973.1 771.8
350 2684.4 1610.6 1140.9 838.9
400 3221.2 1879.0 1342.2 939.5
450 3623.9 2080.4 1543.5 1140.9
500 3758.1 2818.6 1811.9 1140.9

Table C.4: P95 latency (ms)
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Read operations Like operations
Workers Regular Modified Regular Modified

50 369.1 285.2 184.5 167.8
100 838.9 570.4 352.3 318.8
150 1208.0 805.3 536.9 469.8
200 1744.8 1073.7 805.3 604.0
250 2281.7 1342.2 1006.6 771.8
300 2952.8 1879.0 1409.3 1140.9
350 3087.0 1946.2 1543.5 1140.9
400 3892.3 2281.7 1744.8 1275.1
450 4295.0 2684.4 2281.7 1409.3
500 4295.0 3489.7 2684.4 1677.7

Table C.5: P99 latency (ms)
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Appendix D

Write-heavy benchmark results

Table D.1 through D.5 shows the full results of our write-heavy benchmark, on which the
diagrams in 4.2 are based.

Workers Regular Modified
50 19272 8715
100 25476 10783
150 18227 8615
200 30926 12166
250 33457 12485
300 27152 13132
350 27204 13509
400 37418 12448
450 33806 8893
500 30387 13565

Table D.1: Uncertainty restarts
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Workers Regular Modified
50 214.0 226.6
100 193.6 195.6
150 180.5 209.7
200 181.3 228.7
250 181.5 181.0
300 154.8 220.1
350 154.6 200.1
400 158.5 218.1
450 154.7 187.2
500 150.0 215.4

Table D.2: Throughput (ops/sec)

Read operations Like operations
Workers Regular Modified Regular Modified

50 385.9 335.5 62.9 67.1
100 872.4 805.3 113.2 109.1
150 1409.3 1275.1 109.1 109.1
200 1946.2 1409.3 260.0 218.1
250 2415.9 2281.7 302.0 243.3
300 3355.4 2281.7 285.2 352.3
350 3892.3 2952.8 302.0 352.3
400 4295.0 3087.0 469.8 419.4
450 5100.3 4563.4 486.5 184.5
500 5637.1 4026.5 436.2 503.3

Table D.3: P50 latency (ms)

Read operations Like operations
Workers Regular Modified Regular Modified

50 671.1 604.0 176.2 260.0
100 1409.3 1476.4 335.5 637.5
150 2281.7 1879.0 637.5 604.0
200 2550.1 2281.7 704.6 906.0
250 3221.2 4026.5 906.0 1744.8
300 5368.7 3355.4 2281.7 1342.2
350 6174.0 4563.4 2818.6 1811.9
400 6442.5 4563.4 2550.1 1610.6
450 7516.2 5905.6 2952.8 1744.8
500 9126.8 5637.1 4026.5 2013.3

Table D.4: P95 latency (ms)
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Read operations Like operations
Workers Regular Modified Regular Modified

50 805.3 738.2 243.3 453.0
100 1610.6 1744.8 453.0 1073.7
150 2818.6 2281.7 1208.0 872.4
200 3087.0 2818.6 973.1 1543.5
250 3623.9 4831.8 1208.0 2952.8
300 6442.5 3892.3 4160.7 2281.7
350 7247.8 5368.7 4831.8 3087.0
400 7516.2 5368.7 4831.8 2684.4
450 9126.8 6979.3 5905.6 2281.7
500 10200.5 6442.5 6979.3 3087.0

Table D.5: P99 latency (ms)
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Appendix E

Timestamp bounds size test results

The following table, E.1, contains the full data collected during our test of the timestamp
bounds sizes generated by TrueClock and Amazon Time Sync Service. The data was used for
the diagram in 4.3.

Time [min] P50 [ms] P95 [ms] P99 [ms] Max [ms]
5 841.00 966.30 1070.06 1096
10 828.00 859.00 864.00 870
15 840.00 895.05 926.02 938
20 861.00 938.05 966.00 982
25 786.00 823.05 862.03 875
30 798.00 855.05 871.01 874
35 826.00 861.00 902.03 915
40 841.00 889.00 898.01 906
45 842.00 901.05 926.00 935
50 849.00 930.05 954.00 961
55 831.00 897.05 926.03 939
60 837.00 892.10 918.00 926
65 871.00 934.00 963.00 972
70 863.00 914.05 990.03 1004
75 850.00 949.00 969.03 982
80 844.00 947.05 992.03 1005
85 846.00 920.00 972.03 986
90 840.00 904.05 926.01 936
95 858.00 946.05 973.03 989
100 848.00 949.05 995.03 1008
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105 824.00 870.10 914.03 928
110 845.00 933.00 953.00 960
115 814.00 872.00 883.00 892
120 840.00 937.00 972.04 992
125 788.00 907.00 954.04 972
130 812.00 898.05 925.01 932
135 794.50 827.00 833.01 837
140 973.00 1099.00 1148.06 1176
145 850.00 929.00 961.03 979
150 803.00 857.00 887.02 899
155 846.00 889.00 910.04 927
160 844.00 888.00 925.03 938
165 839.50 909.05 949.03 967
170 846.00 925.00 947.03 963
175 832.00 905.00 918.00 927
180 860.00 975.00 993.00 1006
185 834.00 947.15 990.03 1006
190 793.00 836.10 883.03 896
195 882.00 972.00 1001.01 1012
200 854.00 1007.00 1048.02 1059
205 842.00 942.00 970.03 986
210 841.00 970.20 1053.05 1075
215 843.00 942.00 959.01 967
220 878.00 936.05 975.03 990
225 803.00 874.05 891.00 901
230 819.00 971.05 1011.01 1022
235 787.00 823.00 843.02 856
240 860.00 1039.20 1125.05 1147
245 872.00 985.00 1026.04 1040
250 838.00 913.00 935.03 949
255 834.00 913.00 964.04 983
260 837.00 885.00 897.00 905
265 903.00 1015.00 1030.01 1038
270 829.00 887.15 942.03 956
275 841.00 907.00 931.03 946
280 838.00 893.00 910.02 916
285 885.00 1050.25 1142.05 1166
290 834.00 959.05 999.02 1015
295 821.00 909.00 931.01 941
300 873.00 944.05 959.02 967
305 856.00 932.05 962.01 973
310 877.50 989.00 1003.04 1022
315 871.00 943.00 963.02 976
320 859.00 897.00 908.01 914
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325 790.00 841.00 863.03 875
330 827.50 935.00 948.01 965
335 884.50 971.05 1001.03 1017
340 862.00 960.00 1004.05 1026
345 826.00 870.00 896.03 914
350 810.00 871.15 926.03 940
355 849.50 1016.05 1052.01 1061
360 853.00 1048.05 1111.05 1137
365 816.00 1000.15 1074.05 1099
370 824.00 928.00 951.03 969
375 804.00 887.10 908.04 925
380 826.00 953.05 988.00 998
385 852.00 972.10 1003.01 1011
390 883.00 958.00 988.01 1002
395 835.00 906.00 932.00 941
400 853.00 960.00 977.00 984
405 841.00 945.15 977.00 995
410 859.00 956.05 989.04 1009
415 801.00 867.10 884.02 891
420 795.00 864.00 880.00 885
425 820.00 867.00 883.01 890
430 806.00 880.00 891.01 900
435 852.00 936.00 986.04 1003
440 794.00 879.00 893.03 907
445 907.50 1093.05 1164.07 1199
450 836.00 902.00 932.03 946
455 823.00 891.00 913.01 928
460 788.00 858.00 890.03 903
465 770.00 834.00 859.01 865
470 796.00 849.00 895.05 916
475 789.50 877.00 916.02 927
480 851.00 931.00 948.01 960
485 844.00 873.05 887.01 897
490 806.00 875.10 897.06 912
495 837.00 919.10 948.03 963
500 810.00 932.15 987.03 1000
505 762.00 816.00 842.02 854
510 784.00 816.00 823.00 825
515 818.00 907.05 942.03 960
520 873.00 940.05 973.02 995
525 833.00 914.05 963.03 976
530 814.00 867.10 911.03 923
535 830.00 990.20 1064.03 1082
540 883.00 947.00 976.03 990
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545 897.00 1032.20 1118.05 1140
550 860.00 1011.05 1059.05 1080
555 798.00 884.05 904.01 913
560 799.00 868.00 893.00 899
565 890.00 964.00 982.01 993
570 791.00 895.00 907.00 911
575 791.00 852.00 876.01 883
580 786.00 823.05 865.02 877
585 803.00 874.00 889.01 894
590 809.00 895.00 951.04 968
595 798.00 891.00 911.02 921
600 895.00 1179.35 1319.07 1354
605 868.00 930.05 954.03 969
610 832.00 938.10 970.02 983
615 836.00 889.05 931.03 944
620 808.00 845.05 895.02 907
625 821.00 883.00 903.01 909
630 824.00 874.00 881.01 883
635 803.00 869.10 893.00 898
640 848.00 947.05 979.03 997
645 858.00 974.00 1003.03 1017
650 835.50 882.00 921.03 934
655 842.00 910.00 937.01 949
660 875.00 990.00 1013.02 1022
665 846.00 941.05 1004.06 1034
670 879.00 951.00 963.01 972
675 851.00 903.00 922.03 937
680 844.00 931.00 972.04 990
685 815.00 851.15 900.03 913
690 810.00 853.05 900.03 912
695 815.00 923.00 974.03 987
700 862.50 947.10 992.04 1009
705 842.00 884.00 926.02 938
710 831.00 919.10 964.02 976
715 783.00 873.00 922.03 935
720 786.00 816.00 821.00 825

Table E.1: Results from timestamp bounds size test
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Kan högsynkroniserade klockor
förbättra prestandan hos distribuerade
databaser?

POPULÄRVETENSKAPLIG SAMMANFATTNING Jacob Gunnarsson, Fabian Lindfors

Klockor har länge spelat en central roll i många distribuerade system men svårigheterna
med att hålla dem synkroniserade har begränsat deras användbarhet. På senare år har
dock högsynkroniserade klockor blivit mer tillgängliga och vårt arbete har utforskat
hur dessa kan utnyttjas för att förbättra prestandan hos distribuerade databaser.

I distribuerade databaser sprids kopior av all
data ut över flera servrar för att förbättra pre-
standa och bättre kunna hantera störningar.
Detta skapar svårigheter när data ska ändras då
även kopiorna måste ändras på flera olika ställen.
Om data läses från en kopia samtidigt som origi-
nalet ändras finns det risk att läsningen ger gam-
mal information efter att ändringen har gjorts.
Vissa databaser garanterar dock att detta inte kan
hända och att när en ändring har gjorts så syns
den för alla framtida läsningar, en egenskap som
kallas konsistens.
För detta krävs det att databasen kan avgöra i

vilken ordning läsningar och ändringar görs även
om de hanteras av olika servrar. Ett enkelt sätt
att åstadkomma detta är att förknippa en hän-
delse i databasen med en tidsstämpel från serverns
klocka. Svårigheter med att hålla servrarnas
klockor synkroniserade har dock länge varit be-
gränsande. På senare år har det skett en utveck-
ling i tillgängligheten på bättre klocksynkroniser-
ing. AWS har exempelvis introducerat en gratis
tjänst som ger tillgång till högsynkroniserade
klockor i sina datacenter.
I detta arbete modifierade vi databasen Cock-

roachDB för att utnyttja dessa högsynkroniserade

klockor på AWS. CockroachDB använder redan
klockor idag men kräver inte god synkronisering
vilket leder till att vissa operationer måste star-
tas om i onödan. Genom att anpassa databasen
till bättre klockor hoppades vi minska dessa om-
starter och på så vis förbättra prestanda.
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r

Figure 1: Omstarter för vanliga CockroachDB
(röd) och modifierade CockroachDB (blå)

För att se inverkan av våra ändringar byggde
och körde vi ett test anpassat för dessa omstarter.
Våra ändringar resulterade i 9 gånger färre om-
starter vilket gav upp till 1,9 gånger snabbare läs-
ningar och 1,5 gånger snabbare skrivningar.
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