
VOICE FEATURE EXTRACTION

USING SIAMESE NEURAL

NETWORKS FOR DETECTING

IMPERSONATORS

MARLON ALMSTRÖM, HOA TRAN

Master’s thesis
2022:E35

Faculty of Science
Centre for Mathematical Sciences
Mathematical Statistics

C
EN

TR
U

M
SC

IEN
TIA

R
U

M
M

A
TH

EM
A

TIC
A

R
U

M

Abstract
Voice impersonation is a technique that has often been used by criminals whose
goal is to avoid being identified while committing a crime. There are, however,
other interesting cases where the police confronts a suspect with an incriminating
recording, and the suspect would deny being the true speaker in that recording, and
claim that it belonged to an expert impersonator. In both of these cases, it would
be very helpful for the police to be able to predict with high probability whether a
recording belongs to the true speaker or an impersonator.

This thesis aims to use neural networks to extract the most significant features
in recognizing a unique voice, and then use them to classify whether a recording
belongs to a true speaker or somebody impersonating them. In order to achieve
this, we first extract the raw audio features that are commonly used in speech
recognition, the majority of which are spectral features, then feed these features to
a Siamese Neural Network to generate an encoding that best represent a recording
of a person’s voice. The structure of a Siamese neural network is determined by
the type of loss function being used. In this project, we compare the performances
of different network structures as well as different classifiers used in classifying the
speech from the encoding.

We present our approach and results on the data consisting of recordings of promi-
nent American political figures, their impersonators, and several other individuals.

i

Acknowledgments
We would like to express our deep gratitude to our supervisor, Professor Andreas
Jakobsson, at the Centre for Mathematical Sciences, Mathematical Statistics at
Lund University. The project has been challenging but also very fun. We have
really enjoyed it and learned a lot. All of that is thanks to your guidance, support
and interesting discussions. Thank you also for the funny jokes that cracked us up
even when the thesis was not going well.

We would also like to thank Susanna Whitling for sharing her expert knowledge,
which directed us to experiment new features that we could not have come up with
ourselves.

ii

Glossary

ANN Artificial Neural Network
ASR Automatic Speech Recognition
AUC Area Under the Curve
DFT Discrete Fourier Transform

DTFT Discrete-Time Fourier Transform
F0 Fundamental Frequency

HNR Harmonic to Noise Ratio
LPC Linear Predictive Coding

MFCCs Mel Frequency Cepstral Coefficients
PSD Power Spectral Density
ROC Receiver Operating Characteristic
SNN Siamese Neural Network
STFT Short-Time Fourier Transform
t-SNE t-distributed Stochastic Neighbor Embedding

iii

Contents
1 Introduction 1

1.1 Background . 1
1.2 Problem formulation . 3

2 Theory 4
2.1 Audio features . 4

2.1.1 Spectrogram . 4
2.1.2 Mel spectrogram . 6
2.1.3 Fundamental Frequency and Formants 9
2.1.4 Sinusoidal fitting . 10
2.1.5 Other features . 11

2.2 Machine Learning . 14
2.2.1 Artificial neural networks . 14
2.2.2 Layers . 15
2.2.3 Autoencoder . 18
2.2.4 Siamese Neural Network . 19
2.2.5 Classifiers . 21

3 Method 24
3.1 Data processing and feature extraction 24

3.1.1 Data collection . 24
3.1.2 Data processing . 24
3.1.3 Feature extraction . 26

3.2 Neural Network Model and Classifier 27
3.3 Model performance evaluation . 28

4 Results 31
4.1 Speaker Donald Trump . 33
4.2 Speaker Barack Obama . 41

5 Conclusion 47

6 Further study 49

Appendix 53

1 Introduction
1.1 Background

People are most often able to tell who is present even before seeing them if their
voice is heard. Our voices are one of the most common things that help others
identify us. However, if a person does not want to be identified by their voice, they
can try to mimic a different accent or imitate another person. Therefore, voice
impersonation is a subject in voice analysis in criminal forensics.
Stemming from a real-life problem: voice impersonation has been used for the pur-
pose of faking the identity of another person when a crime is committed. Moreover,
it could also be the case that the police gets hold of an incriminating recording
which they think belongs to a suspect; however, the speaker denies owning it and
claims that it belongs to an expert impersonator [21]. In both cases, it would be
very helpful to be able to verify whether a recording belongs to its true speaker or
an expert impersonator of that speaker.
In order to answer this question, it is useful to understand what constitutes a per-
son’s unique voice. As expected, many factors are involved in the production of
a person’s unique voice. It starts in the lungs, where air is exhaled to create an
airstream in the trachea and across the larynx, i.e., the sound box. The vocal folds,
also known as vocal cords are stretched horizontally across the larynx. As air passes
over them, the vocal cords vibrate very quickly to produce sounds. This process
is illustrated in Figure 1. It is the vibration of the vocal cord that produces the
periodic structures in our voiced signals. However, since the vocal cord is an or-
ganic structure, the signals are not perfectly periodic, but contain also fluctuations.
Based on these almost periodic structures, the fundamental frequency of a person’s
voice can be computed as the average number of oscillations per second. The fun-
damental frequency, often denoted as F0, is closely related to the pitch, which is
defined as our perception of fundamental frequency [3]. This means that the F0
describes the actual physical phenomenon based on the signal, whereas pitch de-
scribes how our ears and brains interpret the signal, in terms of periodicity. While
the fundamental frequency of one’s voice is mainly influenced by the length and
tension of the vocal cords, the other parts such as the throat, nose, and mouth
act as a resonating chamber for the buzzing sounds made by the vocal cords, turn-
ing them into a unique voice. Therefore, in order to study what constitutes the
uniqueness of a person’s voice, it is natural to look into the periodic structures of
the voiced signals and extract features from there. As observed in our project, the
fundamental frequency turns out to be an integral part when computing different
features of a voiced signal.

1

Figure 1: Voice production system: thoracic cavity (airflow source), larynx
(sound box) and vocal tract (resonator). Taken from “Blausen gallery 2014".

Wikiversity Journal of Medicine.

Many of the features that were tested in our project are common features in speech
recognition such as spectrograms, Mel Frequency Cepstral Coefficients (MFCCs),
formants, formant ratios, bandwidths [26].
Machine learning is becoming more popular in many different fields for the tasks of
identification and classification. However, it often requires access to a large amount
of data in order to achieve meaningful results. In real life, for many different tasks,
the availability of the data is often the limiting factor. Moreover, even when one has
access to enough data, processing a large amount of data also poses a problem of
high computational cost. To tackle these problems, many researchers have worked
on creating machine learning models that do not require as much data but can still
deliver similar results.
An approach to structure an artificial neural network (ANN) that has shown to
perform well on a smaller amount of data is the Siamese Neural Network (SNN)
[16], introduced for the task of one-shot image recognition. One-shot learning is a
classification task where the model only uses one or a few samples in training in order
to predict the class of the test image. The name Siamese Neural Network stems
from the fact that SNN consists of two or more identical neural networks, which
are trained simultaneously. What the SNN does is to produce vector encodings of
its inputs where the goal is to separate the encodings of different classes (which
may or may not have some similarities), while simultaneously trying to cluster the
encodings of same classes. In order to determine which classes these encodings
belong to, it is common to use some similarity metric, such as the cosine similarity.
In this project, the k-Nearest Neighbor (kNN) and random forest classifiers are
used for classifying the encodings. Examples of inputs where the SNN has shown
to perform well are image classification, as well as audio classification [27]. For our
thesis, voice classification is the focus.

2

https://blausen.com

1.2 Problem formulation
We aim to answer the following questions:

• What audio features are useful in detecting a person’s unique voice?

• What network architectures are most effective in detecting an impersonator’s
voice?

The data used for the project are voices of prominent American politicians, their
impersonators, as well as some other random people. Using this data set, we inves-
tigate a number of different combinations of features from spectral analysis together
with different network architectures as well as different classification algorithms.
The structure of the thesis starts with the theory, in which, the basic theory on what
the audio features really are, is presented first, together with some important as-
pects that clarifies how some of the features are extracted. After that, more details
about the machine learning part, i.e., what is needed in order to build an artificial
neural network, as well as descriptions of the different structures of the Siamese
Neural Network, are presented. Once all the theory is presented, the methods used
in order to achieve our results, such as the data collection, data processing, model
performance evaluation are explained. Thereafter, the results are presented to show
how well the networks and classifiers manage to classify the true speaker, their im-
personator, and random people in two separate cases, one with Donald Trump as
the true speaker and the other one with Barack Obama.

3

2 Theory
2.1 Audio features
2.1.1 Spectrogram

The periodogram is an estimate of the Power Spectral Density (PSD), which is de-
fined as the discrete-time Fourier transform (DTFT) of the auto-covariance function
[14], i.e., for −π < ω ≤ π,

ϕy(ω) :=
∞∑

k=−∞

ry(k)e
−iωk. (1)

Under the assumption that limN→∞
1
N

∑N
k=−N |k||ry(k)| = 0, the PSD can be ex-

pressed as

ϕy(ω) = lim
N→∞

E

(
1

N

∣∣∣∣ N∑
t=1

yte
−iωt

∣∣∣∣2). (2)

Using the discrete Fourier transform (DFT), i.e.,

Y (k) =
N∑
t=1

yte
−i2πkt/N , (3)

suggests a natural estimator of the PSD known as the periodogram which is obtained
by the magnitude square of the DFT, i.e.,

ϕ̂y(k) =
1

N
|Y (k)|2 = 1

N

∣∣∣∣ N∑
t=1

yte
−i2πkt/N

∣∣∣∣2. (4)

It is well known that the periodogram has large variance and bias, and is therefore
not always the best choice when the goal is to obtain a spectral estimate. The
idea of filtering the periodogram through several different windows was introduced
by Thomson [29], and has been shown to outperform other methods such as pe-
riodogram and Welch method in terms of leakage, variance, and resolution. The
multiple window spectrum estimate is defined as

ϕ̂y(k) =
1

K

K∑
n=1

∣∣∣∣ N∑
t=1

ythn(t)e
−i2πkt/N

∣∣∣∣2, (5)

where hn are the specific windows one decides to use. The windows that were chosen
in this thesis were the Tukey (tapered cosine) windows [4] and sinusoidal windows
[12]. The Tukey windows are defined as

hn(t) =

1
2

(
1 + cos(2π

r
[t− r/2])

)
, 0 ≤ t < r

2

1 , r
2
≤ t < 1− r

2

1
2

(
1 + cos(2π

r
[t− 1 + r/2])

)
, 1− r

2
≤ t < 1

,

4

where the shape parameter r is chosen as r = 0.25. Unlike the Tukey windows, the
sinusoidal windows use different windows (multitapering) and are defined as

hn(t) =

√
2/Nsin

(
πn · t
N

)
.

The Tukey window together with its frequency response can be seen in Figure 2,
and an example of how three sinusoidal windows can look like together with their
corresponding frequency responses can be seen in Figure 3.

(a) Tukey window (b) Window spectrum

Figure 2: Tukey window and its frequency response.

(a) Sinusoidal windows (b) Window spectrum

Figure 3: Sinusoidal windows and their corresponding frequency responses.

When signals are time-varying or non-stationary, the spectrogram is a commonly
used tool. It is formed using the short-time Fourier transform (STFT), which is
defined as

Y (t, ω) =

∫ ∞

−∞
yt1h

∗(t1 − t)e−iωt1dt1, (6)

where h(t) is a window function centered at time t [24]. The window cuts the
signal around a small neighbourhood around t, and then the Fourier transform is
estimated around this neighbourhood. The spectrogram is then obtained by taking
the absolute value squared of the STFT, i.e.,

ϕ(t, ω) = |Y (t, k)|2. (7)

However, the signal is usually sampled with a sample distance T, i.e., yt = y(tT),
where T = 1/Fs (Fs being the sample frequency), which then gives the discrete-time

5

and discrete-frequency spectrogram as

ϕ(t, k) =

∣∣∣∣ N∑
t1=1

yt1h
∗(t1 − t+M/2)e−i2πkt1/N

∣∣∣∣2, (8)

where M is the length of the window h(·). The same idea of multitapered spec-
trums can be applied to the spectrogram, resulting in the multitapered spectrogram,
defined as:

ϕ(t, k) =
1

K

K∑
j=1

∣∣∣∣ N∑
t1=1

yt1h
∗
j(t1 − t+M/2)e−i2πkt1/N

∣∣∣∣2. (9)

An example of the spectrogram of a five-second recording split into 11 time segments
can be seen in Figure 4, where in Figure 4a the regular spectrogram using a Tukey
window is shown, and in Figure 4b the multitapered spectrogram using 8 sinusoid
windows for each time segment is shown.

(a) Tukey window (b) Sinusoid windows

Figure 4: Spectrogram using Tukey window in (a), and multitapered
spectrogram using 8 sinusoid windows in (b).

Both the optimal window length and the optimal number of windows are hard to
choose, since using longer windows will result in higher resolution in frequency but
worse resolution in time, while using shorter windows will result in worse resolu-
tion in frequency but higher resolution in time. For this project, the difference in
frequency may be what distinguishes one person from another, hence, the window
length was chosen rather large to increase the frequency resolution.

2.1.2 Mel spectrogram

Mel scale
The Mel Scale is the result of a non-linear transformation of the frequency scale in
Hz in order to detect frequency differences the same way as how a human perceives
sounds. For example, the human ear can easily hear the difference between 500
and 1000 Hz, whereas the difference between 7500 and 8000 Hz is barely noticeable,
even though the absolute distance between the frequencies is the same. The mel

6

scale is used to mimic the non-linear human ear perception of sound and does so
by being more discriminative at lower frequencies and less discriminative at higher
frequencies.
The transformation going from frequency f to Mel scale fmel is

fmel = 2595log10

(
1 +

f

700

)
. (10)

The Mel spectrum is obtained by filtering the magnitude square of the DFT through
a filterbank which contains a pre-specified number of windows. The most commonly
used filterbank consists of triangular shaped windows, as shown in Figure 5 and are
defined as

Hm(k) =

0 , k < f(m− 1)

k−f(m−1)
f(m)−f(m−1)

, f(m− 1) ≤ k ≤ f(m)

f(m−1)−k
f(m+1)−f(m)

, f(m) ≤ k ≤ f(m+ 1)

0 , k > f(m+ 1)

,

for m = 1, ...,M (M being the number of filters), where f(·) are the M + 2 Mel-
spaced frequencies.

Figure 5: Filter bank on a Mel-Scale [23]

Now that the filterbank has been introduced, together with equation (3), the Mel
spectrum can be defined as

ϕmel(m) =
N∑
k=1

|Y (k)|2Hm(k), 1 ≤ m ≤ M. (11)

The same idea is used when computing the Mel spectrogram, i.e., using equation (8),
the Mel spectrogram is defined as

ϕmelS(t,m) =
N∑
k=1

ϕ(t, k)Hm(k), 1 ≤ m ≤ M. (12)

An example of how the Mel spectrogram on the same recording shown in Figure 4
can be seen in Figure 6, where the difference between the Tukey and the multita-
pered mel spectrogram is not as obvious as for the regular spectrogram.

7

(a) Tukey window (b) Sinusoid windows

Figure 6: The mel spectrogram using a Tukey window in (a), and the
multitapered mel spectrogram using 8 sinusoid windows in (b).

Another example comparing the spectrogram and mel spectrogram can be seen in
Figure 7, where a longer recording (48s) have been chosen.

(a) Spectrogram (b) Mel spectrogram

Figure 7: The spectrogram (a) and the Mel spectrogram (b) of a recording
of someone speaking for 48 seconds.

The Mel frequency cepstral coefficients (MFCCs) have been shown to be good fea-
tures for automatic speech recognition (ASR). They are obtained by computing
the discrete cosine transform (DCT) of the log filterbank energies [23], i.e., using
equation (11), the MFCCs are defined as

c(n) =
M∑

m=1

log10(ϕmel(m))cos
(
πn(m− 0.5)

M

)
, n = 1, ..., C (13)

where C are the number of MFCCs by design. Typically, for ASR, the first coef-
ficient is discarded since it represents the average log-energy of the input signal,
which does not carry very much speaker-specific information, and only the next
twelve MFCCs are used. The other higher order terms are excluded as they rep-
resent fast changes in the filter bank coefficients which do not contribute to the
performance of an ASR system.

8

2.1.3 Fundamental Frequency and Formants

To produce speech, a person tenses the vocal folds to make it oscillate in the airflow
coming from the lungs. The fundamental frequency (F0) is defined as the average
number of oscillations per second and is expressed in Hertz, often between 80 and
450 Hz, where males have lower fundamental frequencies than females and children
[3].

The fundamental frequency is the peak with the smallest frequency in the spectrum
which also has peaks located at the integer multiples of the fundamental frequency,
as seen in Figure 8. For our project, F0 is computed using the Signal_Analysis

package in Python. In this package, the fundamental frequency is estimated by
segmenting a given signal into frames, then the median of the estimated F0’s from
each frame is chosen as the final estimate of F0. The algorithm used is adapted
from [5].

Figure 8: Fundamental frequency and formants seen from spectrum of a
speech signal. The figure is reproduced from [3].

Formants, often denoted as F1, F2, F3, F4, etc., refer to the different frequency
peaks in a speech spectrum, as seen in Figure 8. To create the spectral envelope for
estimating the formant frequencies, one can use linear predictive coding (LPC) [1].
In Figure 8, under the first formant F1, a formant bandwidth is illustrated by the
green line that is marked BW for bandwidth. Specifically, the formant bandwidth
is measured, by convention, 3 dB below the peak.

9

2.1.4 Sinusoidal fitting

The phonetic definition of a vowel is a sound produced with no constriction in the
vocal tract, resulting in the periodic structures often present in a vowel. The goal
then is to capture the uniqueness of each person’s voice by extracting features from
the harmonic structures in the vowel parts of the audio. In order to capture the
harmonic structures in the audio signals, sinusoidal fitting of the signal is used to
determine if the signal is periodic enough. For fast and robust computation, the
fundamental frequency of the signal is estimated, and used as a known frequency
in the Fourier matrix (the A matrix below) for least square optimization. If the
assumption is that the frequencies are not known, a d-dimensional search is required,
which could give better fitting but also take much longer time to compute, compared
to when the fundamental frequency is assumed to be known.
To further save computational cost, the assumption that the fundamental frequency
has the highest amplitudes of all the peaks in the periodogram is made, which is
usually the case, but is not necessarily so. The sine fitting is computed for the
20- and 40-millisecond segments of the audio files. Assume the model for a 20- or
40-millisecond signal yt:

yt =
d∑

k=1

αke
iωkt+iϕk + et, t = 1, 2, ..., N,

which can be written as y = [y1, ..., yN]
T = Ax+ e, where

A =

eiω1 eiω2 eiω3 . . . eiωd

eiω1·2 eiω2·2 eiω3·2 . . . eiωd·2

...
...

...
eiω1·N eiω2·N eiω3·N . . . eiωd·N

 , and x =

α1e

iϕ1

α2e
iϕ2

...
αde

iϕd

 .

Here, it is assumed that ω1 is the estimated fundamental frequency F0 and ωk, for
k = 2, 3, ..., d are the k multiples of ω1, d = 10. The amplitudes can then be solved
for in closed form as

x̂ = argmin
x

||y − Ax||22.

After fitting the segment, the fitting is evaluated using the R2 score [10], which is
defined as the sum of squared fitted-value deviations divided by the sum of squared
original-value deviations, i.e.,

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
,

where ŷi is the sine fit at each time t, and ȳ is the mean of the signal yt. In the best
case, the fitted values exactly match the observed values, which results in R2 = 1

and in the worst case, where the predicted ŷ is just the average ȳ, R2 = 0.

10

2.1.5 Other features

The Harmonic to Noise Ratio (HNR) measures the ratio between periodic and non-
periodic components of a speech sound. A speech signal x(ω) in the frequency
domain can be modelled as:

x(ω) = h(ω) + n(ω),

where h(ω) is the harmonic component and n(ω) is the noise component. The HNR
[11] in decibels then becomes:

HNR = 10 · log10

∫
ω
|h(ω)|2∫

ω
|n(ω)|2

,

which can be computed as

HNR(dB) = 10 · log10
r′x(τmax)

1− r′x(τmax)
,

where rx(τ) is the autocorrelation function of the signal, defined as

rx(τ) =

∫
x(t)x(t+ τ)dt, r′x(τ) =

rx(τ)

rx(0)
.

Although the oscillation generated by the vocal cord is mostly periodic, the speech
production system also involves other soft-tissue components that can cause small
fluctuations to the signal. As a result, jitter and shimmer are variations in the
signal frequency and amplitude [3] caused by irregular vocal fold vibration. An
illustration of the jitter and shimmer can be seen in Figure 9.

Figure 9: The jitter and shimmer observed in the signal of a speech
recording. Taken from [3].

The jitter and shimmer are measurements of the roughness, breathiness, or hoarse-
ness in a speaker’s voice, often used to detect pathologies. Many factors can affect
these values, such as loudness of voice, gender, language, smoking or alcohol con-
sumption habits. Hence, they could be useful in speech recognition. The Jitter and

11

shimmer can be measured in several different ways.
Jitter perturbation can be measured with the absolute jitter (jitta) i.e., the abso-
lute perturbation, the local or relative jitter (jitt), the relative average perturbation
(rap), and the five points period perturbation (ppq5) [28].
The local absolute jitter is the cycle-to-cycle variation of fundamental frequency,
i.e., the average absolute difference between consecutive periods, expressed as:

jitta =
1

N − 1

N−1∑
i=1

|Ti − Ti−1|,

where Ti are the extracted F0 period lengths and N is the number of extracted F0

periods.
The local relative jitter is the average absolute difference between consecutive pe-
riods, divided by the average period, given by:

jitt =
1

N−1

∑N−1
i=1 |Ti − Ti−1|
1
N

∑N
i=1 Ti

.

The relative average perturbation (rap) jitter is the average absolute difference
between a period and the average of it and its two neighbours, divided by the
average period, given by:

rap =
1

N−1

∑N−1
i=1 |Ti − (1

3

∑i+1
k=i−1 Tk)|

1
N

∑N
i=1 Ti

.

The five-point period perturbation quotient (ppq5) jitter is the average absolute
difference between a period and the average of it and its four closest neighbours,
divided by the average period, given by:

ppq5 =
1

N−1

∑N−2
i=2 |Ti − (1

5

∑i+2
k=i−2 Tk)|

1
N

∑N
i=1 Ti

.

Shimmer is a variation of the amplitudes of consecutive periods, measured by sub-
tracting the amplitude of the fundamental frequency period sequence to its neighbor
or combinations of its neighbors. Shimmer also has four measurements: the relative
shimmer, the local shimmer in a logarithmic domain (ShdB), the three-point Am-
plitude Perturbation Quotient (apq3), and the five point Amplitude Perturbation
Quotient (apq5) [28].
The relative shimmer is the average absolute difference between the amplitudes of
consecutive periods, divided by the average amplitude, given by:

Shim =
1

N−1

∑N−1
i=1 |Ai − Ai+1|
1
N

∑N
i=1Ai

.

12

Shimmer in dB is the variability of the peak-to-peak amplitude in decibels, is the
average absolute base-10 logarithm of the difference between the amplitudes of
consecutive periods, multiplied by 20 and given in dB:

ShdB =
1

N − 1

N−1∑
i=1

|20 log(Ai+1/Ai)|.

The three-point amplitude perturbation quotient (apq3) shimmer, is the average
absolute difference between the amplitude of a period and the average of the am-
plitudes of its neighbours, divided by the average amplitude, given by:

apq3 =
1

N−1

∑N−1
i=1 |Ai − (1

3

∑i+1
k=i−1Ak)|

1
N

∑N
i=1 Ai

.

The five-point Amplitude Perturbation Quotient (apq5) Shimmer, is the average
absolute difference between the amplitude of a period and the average of the ampli-
tudes of it and its four closest neighbours, divided by the average amplitude, given
by:

apq5 =
1

N−1

∑N−2
i=2 |Ai − (1

5

∑i+2
k=i−2Ak)|

1
N

∑N
i=1 Ai

.

All these features are computed using the library parselmouth [13] in Python, which
is a Pythonic interface for the Praat software [6] that is mostly used by linguists.

Other speech characteristics of a person’s voice that were tested in the project are
speech rate, articulation rate, and the average length of pauses. In phonetics, the
two terms, speech rate and articulation rate, were often used interchangeably to
imply speech tempo, a measure of the number of speech units of a given type pro-
duced within a given amount of time. Nowadays, it is agreed that both speech rate
and articulation rate are defined as “the number of output units per unit of time"
[30]. However, the former includes pause intervals while the latter excludes them.
While the articulation rate only focuses on the pace of speech unit production, the
speech rate does take into account a speaker’s specific communication style which
can include more or less pauses, hesitations, emotional expressions, etc. In this
project, speech rate is computed as the number of syllables divided by the time du-
ration of five seconds, and articulation rate is computed as the number of syllables
divided by the time duration of five seconds minus the pause duration. The average
length of pauses is computed by taking the average of all the pauses’ duration in
five seconds. For these feature values, the library parselmouth in Python is used,
just as for the HNR, jitter, and shimmer values.

13

2.2 Machine Learning

2.2.1 Artificial neural networks

Artificial neural networks (ANNs) consists of many artificial neurons, which loosely
model the neurons in a human brain [25]. These neurons are connected between
three types of layers: input layer, hidden layer, and output layer as illustrated
in Figure 10. Each neuron takes inputs and produces a single output which can
be inputs for the neurons in another hidden layer or the final output layer of the
network. Examples of the first layer’s inputs can be feature vectors of the data, and
final output can be the predict class if the task is a classification task.

Figure 10: Structure of an artificial neural network. Taken from [7].

The goal when training the network is to minimize a given loss function L. However,
due to the non-linearity of the network, the loss function has a non-convex surface,
which means that the networks attempt in minimizing the loss function may or
may not reach a global minima. The input to the network can be split up into
batches, which is how many samples the neural network uses before updating the
weights. In this thesis, we used the adaptive moment estimation (Adam) algorithm
[15] for the optimization. It is a stochastic gradient descent method that uses the
estimation of first- and second-order moments of the gradient to adapt the learning
rate for each weight of the neural network. After each batch for the optimization of
the loss function, the network goes backwards in each layer to update the weights.
These new weights are then used for the next batch where the network goes forward
until it reaches the loss function again, and repeat the procedure until it has run
through all the batches. That is when the network completes an epoch, and this
technique is known as Backpropagation [20]. The number of epochs is the number
of times the network goes through all the batches before stopping. To optimize
the loss function, sometimes the network requires a large number of epochs, which
could result in very long computation time.

14

2.2.2 Layers

Every layer in the ANN can be constructed differently. Examples of commonly used
layers that were tested in this thesis are dense layers, dropout layers, flatten layers,
convolutional layers, batch normalization layers, max pooling, average pooling, and
global average pooling layers.

Dense layers
The dense layers perform a simple dot product between the inputs xi and a kernel
consisting of weights wj,i, resulting in a weighted sum of the inputs. Each hidden
layer consists of a pre-specified number of neurons where each neuron then cal-
culates the weighted sum. For example, if the first hidden layer h1 consists of L
neurons, each neuron would perform the following calculations

h
(j)
1 = f

 N∑
i=1

wj,ixi + bj

 , j = 1, ..., L (14)

where the function f(·) is a pre-specified activation function and bj are bias terms.
These values are then the outputs of the first hidden layer and are used as inputs
for the next hidden layer where the procedure of calculating the weighted sum plus
some bias term in an activation function is repeated.

Activation function
The activation function is used to introduce non-linearity in the neural network and
determines the output of a neuron given the input. Activation functions used in
this project are rectified linear unit (ReLU) and sigmoid. The ReLU function is
defined as

f(x) = max(0, x),

while the sigmoid function is defined as

σ(x) =
1

1 + e−x
.

An example of how the ReLU function would look like if it received the input
x = [−3,−1, 0, 1, 2, 3] can be seen in Figure 11a, where the output would then be
f(x) = [0, 0, 0, 1, 2, 3]. Moreover, an example of how the sigmoid function would
look like for 50 values between -6 and 6 can be seen in Figure 11b

15

(a) ReLU (b) Sigmoid

Figure 11: Examples of activation functions used in a neural network

The bias terms bj are used to shift the activation function to the left or right, which
may result in more or less information depending on the activation function.

Dropout layer
The dropout layer randomly chooses some of its inputs and sets them to 0 to help
prevent a model from overfitting. The number of inputs to be set to 0, known as
rate, is commonly chosen somewhere between 20− 40%, where the inputs that are
not set to 0 are scaled up by 1/(1− rate) in order to keep the sum over all inputs
unchanged.

Flatten layer
The flatten layer takes an input and flattens it into a vector, i.e., if the input is a
matrix, the output is then a row vector resulting from concatenating all the rows
of the input matrix.

Batch normalization
The batch normalization layer applies a transformation to each batch which main-
tains the mean output close to 0 and the output standard deviation close to 1. The
transformation is done by the following calculations:

γ · batch − mean(batch)√
Var(batch) + ϵ

+ β,

where γ, ϵ and β are predetermined coefficients.

Convolutional layers
Convolution is a mathematical operation, denoted as ∗ on two functions (f and
h). In deep learning, especially in image processing, the most common type of

16

convolution is the 2D convolution layer. The function g = (f ∗ h) is defined as

g(i, j) =
∑
u

∑
v

f(i− u, j − v)h(u, v).

Here, for example, f can be an input matrix and h is a kernel. A simple example
of how the 2D convolution works can be seen in Figure 12, where the kernel is
shifted by stride = (k1, k2) along each dimension, i.e., it gets shifted k1 steps to
the right until it reaches the end of the matrix, then it gets shifted down k2 steps
and moved all the way to the left of the matrix, then the k1 shifts to the right is
repeated. In this example, the input is a 4×4 matrix (gray), the kernel is chosen as
a 3×3 matrix (blue) with stride = (1, 1), and the resulting output is a 2×2 matrix
(green). An elementwise multiplication is then performed between the kernel and
the elements in the current location of the kernel in the input. The sum of these
values constitute an element in the output matrix.

Figure 12: Example of the 2-dimensional convolution operation with an
input matrix, a kernel and the resulting output matrix.

The same idea is applied in an 1D convolution layer, where the kernel slides in one
dimension instead of two.

Max pooling, average pooling, and global average pooling layers
The max pooling operation downsamples its input by its spatial dimensions by tak-
ing the maximum value over a specified window. The average pooling operation is
similar to the max pooling but instead of taking the maximum value, it computes

17

the average over the specified window. An example of both max pooling and aver-
age pooling can be seen in Figure 13, where the window is then chosen as a 2 × 2

matrix with stride = (2, 2).

Figure 13: Example of the 2-dimensional maxpooling and average pooling.

The 2D global average pooling would compute the average of the entire input ma-
trix, it can also be a useful way when the spatial dimensions are large and we want
to downsample. For example, a tensor with the shape (batch × rows × columns ×
channels) after global average pooling would become (batch × channels).

L2 regularization penalty
The idea of the L2 regularization is to make the weights/bias/output of a layer
smaller, which may prevent the model from overfitting. The L2 regularization
penalty can be used to penalize three different things in a layer. These three pe-
nalizers are kernel regularizer, bias regularizer, and activity regularizer. The kernel
regularizer applies a penalty on the layer’s kernel weights, the bias regularizer ap-
plies a penalty on the layer’s bias, and lastly the activity regularizer applies a
penalty on the layer’s output.

2.2.3 Autoencoder

Autoencoder is a type of neural network structure that aims to compress the input
data into an encoding, then decompress the encoding into the same shape as the
input, such that the output represents the input in a different way. An example
of an autoencoder can be seen in Figure 14, where the input is an image of a cat,
which then gets compressed by the encoder up until the encoding part, where it
then runs through the decoder to decompress the encoding into an image that is as
close as possible to the original input.
In this project, the autoencoder was used for feature extraction, however, only the
"Encoder" part was implemented to get an encoding, i.e., the "Decoder" part, as
seen in Figure 14, of the network was never built or used.

18

Figure 14: Structure of an autoencoder.

2.2.4 Siamese Neural Network

A Siamese neural network is a class of neural network architectures that consists of
two or more identical neural networks, often called sister networks. "Identical" here
means that the sister networks have the same configuration, such as layer structure
and parameters. These networks take in different inputs and output their individ-
ual encodings. These encodings are then fed to a loss function for backpropagation.
The loss function comprises of distance/similarity metrics between the encodings in
order to minimize the distance between inputs from the same class, and maximizing
the distance between inputs from different classes. The final encodings from the
network with optimized weights are considered fingerprints of the corresponding in-
puts. These fingerprints are used to classify which class the original inputs belong
to.
In our project, there are two main classes: the speaker and “not the speaker” which
includes both their impersonators and other people.
The neural network structure is determined by the loss function. Our project im-
plements three types of loss functions: pair loss, triplet loss, and quadruplet loss.
The pair loss function is defined as

L(xA, xN) = max(α− d(xA, xN), 0),

where xA is the encoding of an anchor input (the speaker), xN , encoding of a
negative input (not the speaker), α a margin, and d a distance function, which in
our case is the Euclidean distance. The loss function aims to maximize the distance
between the anchor and the negative encodings. Using this pair loss function, the
Siamese neural network’s architecture can then be illustrated as in Figure 15.

19

Figure 15: Siamese neural network with pair loss function.

The triplet loss function is defined as

L(xA, xP , xN) = max(d(xA, xP)− d(xA, xN) + α, 0),

where a new variable xP is introduced, which is the encoding of a positive input (the
speaker’s recording at another time). The triplet loss function aims to maximize
the distance between the anchor and negative encodings while at the same time,
minimizing the distance between the anchor and positive encodings. Using this
triplet loss function, the Siamese neural network’s architecture can be illustrated as
in Figure 16.

Figure 16: Siamese neural network with triplet loss function.

20

The quadruplet loss function [9] is defined as

L(xA, xP , xN1 , xN2) = max(d(xA, xP)− d(xA, xN1) + α1, 0)

+ max(d(xA, xP)− d(xN1 , xN2) + α2, 0),

where two negative inputs are used, resulting in variables xN1 and xN2 , which are en-
codings of the two different negative inputs, and also α1 and α2 being the margins.
The quadruplet loss function aims to maximize the distance between the anchor
and negative encodings while at the same time, minimizing the distance between
the anchor and positive encodings as well as maximizing the distance between dif-
ferent negative encodings. Using this quadruplet loss function, the Siamese neural
network’s architecture can then be illustrated as in Figure 17.

Figure 17: Siamese neural network with quadruplet loss function.[9]

2.2.5 Classifiers

After optimizing the Siamese neural network for the speaker and not-the-speaker
classes, the outputs of this network, i.e., encodings of the feature vectors for each
voiced segment, are then used as fingerprints for each voiced segment. Using these
fingerprints, a classifier can be trained to identify the speaker. The two classifiers
that are chosen to be experimented in the project are k-nearest neighbor (kNN)
and random forest classifiers.

21

k-Nearest Neighbour Classifer
kNN is a type of supervised learning algorithm that can be used for classification.
The kNN predicts the class of a test sample by calculating the distance from the test
sample to all the training samples, then select k number of points that are closest
to the test point. The class that occurs the most frequently in these k points is
chosen as the predicted class for the test sample. This is also known as the brute
force algorithm. [2]
This project uses the ball tree algorithm which has already been implemented in
Python’s scikit-learn. The idea of the ball-tree algorithm is to partition the
data into a series of nesting hyper-spheres, each defined by a centroid and a radius.
A test sample point must end up in one of these nested balls. Points within this
nested ball are expected to be closest to the test data point. From here, instead
of computing the distance from the test point to all the training points, only the
distances from the test point to each point in the ball are computed. This makes
the algorithm much more efficient when the dimension is large. Thereafter, the
predicted class is determined by the k-nearest neighbors.

Random forest classifier
Random forest is a supervised learning algorithm that consists of a number of de-
cision trees that operates as an ensemble. Each individual decision tree outputs a
predicted class, and the class that is most frequently predicted becomes the pre-
dicted class of the whole model.

Figure 18: Example of a decision tree.

A decision tree is a machine learning algorithm that has a tree-like structure. A
decision tree typically starts with a root node, which then branches into different
outcomes, each of which can lead to smaller branches of different possibilities, and
so on. The size of the tree depends on the number of features the data has, i.e.,

22

the more features, the larger the tree. It is up to the user to decide how many
features to include, or to use pruning to reduce the size of the tree, in order to
avoid overfitting and high computational cost.
For example, given some weather data and exercising habits of some people, a
decision tree can be used to predict, whether a person is going to exercise outdoors
or not. An illustration of this can be seen in Figure 18. Based on the weather
condition, if it is cloudy, or sunny with humidity below 80%, or windy with wind
speed below 10m/s, then a person is predicted to exercise outdoors. If it is sunny
with humidity above 80%, or windy with wind speed above 10m/s, then a person
is predicted to not exercise outdoors.

23

3 Method
3.1 Data processing and feature extraction

3.1.1 Data collection

The data used in this project are clips of prominent political figures such as Donald
Trump and Barack Obama giving speeches and their respective impersonators, as
well as clips of other individuals speaking. These clips are then converted to audio
files, wav format, sampling rate 16000, PCM 16-bit Mono. These audio files are
used for both our training, validation, and test data. Specifically, for each speaker,
for the training data, for the anchor and for the positive data sets, a recording or
a combination of recordings of total length around ten minutes are used, and for
the negative data sets, recordings of different people that make up a total length of
also about ten minutes are used.

3.1.2 Data processing

Before starting the sinusoidal fitting on the recordings, all the silence was removed
in order to avoid unnecessary computational power by trying to fit a sinusoid to a
straight line. In order to remove the silence from the recordings, the open source
speech recognition toolkit, Vosk [8] was used. There are probably easier ways to
remove the silence from an audio recording, but Vosk allowed us to also see what
word the person speaking was saying as well as the time period for the word. This
way, specific words that, when plotting and inspecting them, did not have a periodic
structure, could also be filtered out. These words are often function words such as
"to", "has", "have", or "were", that are often not emphasized in a sentence. The
last step before the sinusoidal fitting started was to ensure that the segment was
not the onset or the end of a consonant, which is often silence or has a sound
wave with very small amplitudes. This was done by calculating the sum of the
absolute amplitudes of the signal divided by the sampling rate. As expected, the
segments that included consonants had values that were much smaller than those of
vowel segments. By looking at multiple plots of segments and their corresponding
absolute relative amplitudes, a threshold of 5 was deemed reasonable. Any segment
with this value larger than the threshold was passed into the sinusoidal fitting, while
the others were was discarded. Of these segments that passed the threshold, only
those with a sine fitting R2 score larger than 0.5 were included in the final data set.
The threshold 0.5 was chosen after having looked at many different sine fittings of
segments, where most of the segments that lacked a periodic structure had an R2

score below 0.5.

24

An example where the sine-fitting was used in order to find periodic structures
can be seen in Figures 19 and 20, where the segments that are parts of the big
segment that contain the word "large" are fitted. The sine-fitting scheme managed
to find 8 segments of 20 ms where the R2-score was larger than the threshold of 0.5.
Figures 19a and 19b are 20-millisecond segments of the phoneme represented by
the letter "l" and Figures 19c and 19d are 20-millisecond segments of the phoneme
represented by the letter "a".

(a) Periodic structure in l (b) Periodic structure in l

(c) Periodic structure in a (d) Periodic structure in a

Figure 19: Sine fit of saved segments of two different phonemes.

Thus, our data set contains millisecond segments of both vowels and also consonants
that have periodic structures.
Figure 20 shows examples of segments that are discarded. It can be either a segment
of a consonant with no periodic structures, as in Figure 20a with an R2 score
well below the threshold, or a segment with a quite nice periodic structure as in
Figure 20b with an R2 score that is very close to the threshold.

(a) Consonant (b) Phoneme in tome

Figure 20: Sine fit of discarded segments.

25

It is understood that by using R2 as measure and setting the threshold to be 0.5,
some data of interest are thrown away. However, given the amount of data and the
computational cost, this was deemed an acceptable trade-off.

3.1.3 Feature extraction

From the data sets that contain 20-ms and 40-ms segments with periodic struc-
tures, the features that were used were MFCCs, formants F1, F2, F3, F4, formant
bandwidths for these first four formants, and formant ratios of F2 and F1. For
MFCCs, Python’s built-in mfcc function in the python_speech_features library
was used, for the formants, bandwiths and ratios, Python’s lpc function in the
librosa library was used to get the model polynomial. The formant frequencies
are then obtained by finding the roots of the prediction polynomial. The algorithm
for formant estimation with LPC coefficients was adapted from [19].
From the data set containing just the original recordings, these recordings are seg-
mented into five-second segments, from which the spectrograms are computed. To
compute the spectrograms, different parameters such as different windows, win-
dow lengths, standard or multi-taper and compare the performances were tested.
For example, when using the Tukey windows, eight overlapping windows were used,
whereas with the sine windows eight different windows were chosen. However, using
the overlapping Tukey windows seemed to perform better and was thus the method
that was used in this project. The length of the Tukey windows were chosen such
that the spectrogram was split into 11 time segments. The spectrograms were also
cut to only include frequencies between 0-1200Hz, as frequencies larger than 1200Hz
had amplitudes close to 0 and did not seem to contain much information.

For the 20-ms and 40-ms data sets, the MFCCs, formants, bandwiths and formant
ratios for each segment are computed. These values are stored as row vectors, where
50 segments of the 20-ms feature vectors were stacked into one feature matrix (which
would be one sample), and 10 segments of the 40-ms feature vectors were stacked
into another feature matrix. When computing the MFCCs on the 40-ms data,
they are segmented into two 15-ms segments and one 10-ms segment resulting in
a 3 × 12 matrix of MFCCs for each 40-ms segment. Thus, 10 stacked segments of
MFCCs, formants, bandwidths and formant ratios of the 40-ms data gives a matrix
of dimensions 30× 17, whereas the 50 stacked 20-ms segments resulted in a matrix
of dimensions 50× 17. For the five-second segment data set, the spectrograms are
computed and only the significant parts are kept as specified above. As a result,
these give a feature matrix of size 600x11 representing a sample.
From these two types of inputs, first a bi-stream neural network architecture for
the sister network was experimented. Each input is fed to a network, then the

26

outputs are concatenated and fed to another Dense Layer before returning the
final encodings. An example of a network that was experimented can be seen in
Figure 35, where input 1 (right branch) corresponds to the spectrograms from five-
second segment data and input 2 corresponds to the stacked feature vectors from
the 20-ms segment data. Another approach is to concatenate the feature matrices
from all three data sets into a single matrix, which is then used as a single input
for the sister network.

3.2 Neural Network Model and Classifier

To build the neural network models, the free open-source software library TensorFlow

and the API Keras in Python were used. However, there are many different param-
eters that one needs to decide in order to start training a model. These include how
many epochs one wants the model to have, i.e., how many iterations of the training
data set one wants the model to train on. Other parameters can be the learning
rate which determines how big of a step size one wants the optimizer to take in
each iteration, as well as what layers to use, the size of each layer, the dimension
of the kernels, and the batch size which determines the number of data points used
in each iteration in the training.
To find out which combinations of the above parameters that works well, the
HyperParameter function from the keras_tuner.engine.hyperparameters [22]
library in Python was used. The Keras Tuner helps to pick optimal set of hyper-
parameters for neural networks created with TensorFlow. One chooses the archi-
tecture of the network, i.e., what layers to use, then one decides what different
dimensions of layers that one wants the HyperParameter to try, as well as different
loss functions, different margins for the loss functions, learning rate, stride dimen-
sions etc. It then goes through all the different combinations of pre-specified hyper-
parameters and trains the network and evaluates the performance by an optional
metric. In our case, the performance is evaluated by the value of the validation loss.
The size of the dense layers, kernel dimensions, filters, learning rate, loss function,
margins, batch size, and stride dimensions that resulted in giving the smallest val-
idation loss was then used as our model. Since our input matrix of features for the
neural networks was not a square matrix, a decision to also let the HyperParameter
try non-square kernels for the Conv2D layers was made, which have been shown to
perform well for some cases [17].
Once the networks were tuned, the decision for the parameters of the classifiers,
such as the number of neighbors k in the kNN, and the number of trees in the
random forest classifier, had to be made. After trying different values of k, k = 1

and k = 3 were chosen to be experimented as they gave the most preferable results,

27

whereas the random forest classifier seemed to perform best using 100 trees with
the mean squared error as the metric measuring the quality of a split.

3.3 Model performance evaluation
Choice of negative recordings
The choice of which recordings to use as the negative (not the speaker) was also
an important aspect, since if the speaker and the negative data already have very
different voices, then the resulting model might not need to be very good. This
means that the dissimilarities may result in having a large Euclidean distance of
the encodings even before training, the networks would therefore not have to op-
timize any weights. Thus, using only recordings of females might not be a good
idea when the goal is to classify a male with a deep voice, since their voices might
already be very dissimilar. In order to achieve a good model, the goal is to make
the distance of people that sound similar to the anchor as large as possible. When
testing the trained network, with a bad choice of negative, on someone that sounds
similar to the anchor, it very often resulted in classifying it incorrectly. Therefore,
many different SNN’s using pair loss were investigated, by training them with the
anchor and one of the random people at a time as negative. This allowed us to
see the individual distance between the random person and the anchor, as well as
how hard it was for the network to separate them. The people that resulted in
giving distances of both training and test data close to 0 after training, were put as
negative. Since they either sound similar to the anchor, or the network is simply
having a hard time optimizing for the corresponding person.
In order to get an overall good separation between the anchor and the recordings
that were deemed to be good negatives, the good negatives were concatenated into
a single negative vector. However, to ensure that the recordings that were easy
for the network to separate from the anchor stayed that way, some of the easier
recordings were added to the big negative vector.

Receiver Operating Characteristic
A receiver operating characteristic (ROC) curve is a graph showing the performance
of a classification model by plotting the true positive rate against the false positive
rate. True positive (TP) is a test result that correctly indicates the presence of
a characteristic, and false positive (FP) is a test result that incorrectly indicates
that. True negative (TN) is a test result that correctly indicates the absence of
a characteristic, and false negative (FN) is a test result that incorrectly indicates
that. Using these definitions, the true positive rate (TPR) is defined as

TPR =
TP

TP + FN
,

28

and the false positive rate (FPR) is defined as

FPR =
FP

FP + TN
.

A ROC curve plots TPR vs. FPR at different classification thresholds. A perfect
classifier will have TPR=1 and FPR=0, where all the tests are correctly labeled.
The higher the curve reaching the left corner point (0,1), the better the classification
model, as illustrated in Figure 21 below.

Figure 21: ROC curve, from Wikipedia.

From the ROC curve, there is another performance measurement of a classification
model, which is the area under the ROC curve (AUC). The AUC can have values
between 0 and 1, with 1 indicating the perfect classifier. At 0.5, AUC implies a
random classifier and at 0, it means that the model predicts all the test cases wrong.

T-distributed Stochastic Neighbor Embedding
The idea behind the t-distributed Stochastic Neighbor Embedding (t-SNE) is to
visualize high-dimensional data by giving each data point a location in a two-
dimensional map [18]. It was used as a visualization tool of our encodings (fin-
gerprints) produced by the SNN’s, in order to confirm that the network was doing
what it was supposed to do. This allowed us to see if the Euclidean distance be-
tween the anchor encoding and positive encoding became smaller, as well as the
Euclidean distance between the anchor encoding and negative encoding became
larger. This can be seen in Figure 22, where in (a) the encodings produced by an
untrained SNN using triplet loss can be seen, and in (b) the results of encodings
produced by the same network but after training is shown. The red number "0" in
the plot corresponds to the anchor, the purple "1" corresponds to the positive, and
the brown "2" corresponds to the negative. The trained model does indeed seem to

29

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

(a) Untrained Siamese triplet (b) Trained Siamese triplet

Figure 22: t-SNE plot of encodings where the red "0" corresponds to the
anchor encoding, the purple "1" correspond to the positive encoding, and the

brown "2" correspond to the negative encoding.

make the distance between the anchor and positive smaller, while simultaneously
making the distance between the anchor and negative larger.

Test data and Accuracy
In order to test the performance of the model, two different types of test data were
used. Before training the model, the data are shuffled and split up into 70% train-
ing, 10% validation, and 20% test. However, even though the trained model has
never seen the 20% test data, they are segments of the same recording that the
model was trained on. This type of test data is what was used to generate the ROC
curves and AUC scores for evaluating the model. However, for the accuracy tables
reported in the Results section later, completely new recordings were used as the
second type of test data. These recordings consisted of the true speaker (anchor)
at some other time point, three random people (both male and female), and the
impersonators.
The new test data, i.e., the second type, were also put into the data processing step
before testing them in the trained model. Each recording of these individuals can
generate several sample tests (depending on the length of the data as well as how
many 20- and 40-ms segments that were found), the accuracy of the model on each
recording is measured by how many test samples were correctly classified divided
by the total number of samples from that recording.

30

4 Results
After testing many different combinations of features as well as network architec-
tures, the features that performed significantly better than others were the concate-
nated MFCCs, formants, and formant ratios between second and first formants, all
on the 20-ms and 40-ms segments, as well as the spectrogram on the five-second
segments. The structure of the concatenated input feature matrix can be seen in
Figure 23, where some zero paddings were used for the spectrogram in order to get
the dimensions of the matrix to fit.

Figure 23: Input feature matrix for the SNN’s.

These features together with the network architecture presented in Figure 24 were
then used to compare the performance of the three different loss functions as well
as when having different people in the negative training data. The 2-dimensional
convolution layer had kernel dimensions 10× 2 with stride = (1, 1) and 48 output
filters, the kernel and bias also had a L2 regularization penalty equal to 0.01. The
max pooling layer had window dimensions also equal to 10 × 2 (with strides also
equal to (10, 2)). After taking the global average, the outputs were sent through
a standard dense layer, from which the outputs were normalized in the batch nor-
malization layer. After the normalization, the outputs were sent into another dense
layer, which also consisted of a L2 regularization penalty equal to 0.1, but this time
on the activation function. Lastly, the outputs were then sent into the last dense
layer, which then returned the encoding. The 2-dimensional convolution layer and
the first dense layer before the batch normalization had ReLU activation function,
whereas the second last dense layer after the batch normalization had a sigmoid
activation function. The rest of the network did not use activation functions.

31

Figure 24: Sister network architecture.

Since these features and network architecture were superior to all of the other
feature combinations and network architectures that were tested, this setup was
used in networks using the three different loss functions, i.e., pair loss, triplet loss,
and quadruplet loss for comparison. The margin α in the pair and triplet loss
function did not have a significant effect, and was thus set to α = 0.9. This was
also the case for the quadruplet loss, as long as α2 < α1 was satisfied, it did not have
a significant effect on the result. Thus, they were set to α1 = 0.9 and α2 = 0.6.
These loss functions were compared for two different true speakers, i.e., Donald
Trump as the anchor and Barack Obama as the anchor. For Donald Trump, for
the network using the pair loss function, the difference in performance when using
random people in the negative training data, compared to carefully chosen people in
the negative training data was investigated, as this turned out to be an important
factor in how well the networks performed.

32

4.1 Speaker Donald Trump
Pair loss
The performance of the network corresponding to the pair loss function is shown by
comparing the network with a negative set carefully chosen, as explained in section
3.3 (Choice of negative recordings), and the one with a randomly chosen negative
set. How the loss function behaved for each epoch can be seen in Figure 25.

(a) Chosen negatives (b) Random negatives

Figure 25: Training loss (blue) and validation loss (red) after each epoch.

For both cases, the loss function on the training data decreases somewhat steadily.
However, with the chosen negatives, it decreases much faster, already starting to
stabilize and only decreasing slightly after epoch 20. Meanwhile, for the random
negatives, it starts to look like it is stabilizing after epoch 40. On the validation
data, however, large fluctuations around epochs 40 to 50 are observed in the network
using random negatives while much more stable behavior towards larger epochs is
seen in the chosen negatives. It can be concluded that using carefully chosen data
for the negative set is likely to result in a more stable, better-performing model.
This is confirmed by looking at the ROC curves for the test data from the two cases
in Figure 26.

(a) Chosen negatives (b) Random negatives

Figure 26: ROC curves and AUC scores of the 20% test data, (a)
AUC =0.94, (b) AUC = 0.83.

The ROC curves show that using the randomly chosen data for the negative set,
in this case, results in a model with a lower AUC score. Using the carefully chosen
data, on the other hand, results in a AUC score of 0.94, which implies a quite

33

(a) Chosen negatives (b) Random negatives

Figure 27: tSNE plots of the training data encodings of the trained model.

good model. Moreover, tSNE plots are also used to show how well the data for
different classes are separated. As can be seen in Figure 27, in both cases, the true
speaker (red zeros) are clustered together more to the left, and the other speakers
or negative data (purple ones) to the right. There are several purple ones that are
clustered with red zeros but both model could separate the majority of the data.
Since it took quite long to train a network, it was decided that 100 different trained
networks with chosen negative data were generated, and the accuracies on the test
data (type 2) were computed. From these 100 accuracies from each network, the
bootstrapping with replacement 1000 times were used to generate more samples for
estimating the mean accuracies and confidence intervals. The standard deviations
of the mean accuracies were observed to determine the number of samples required
for them to start converging. As can be seen from Figure 28, already at 100 up to
200 samples, the standard deviations have become stable.

(a) kNN k = 1 (b) kNN k = 3

(c) Random Forest

Figure 28: Standard deviations of 1000 bootstrapped (with replacement)
samples of the means of the accuracies with chosen negative data, using kNN

k = 1 in (a), kNN k = 3 in (b), and random forest in (c).

34

These 1000 bootstrapped samples were then used to estimate the average accuracies
as well as their confidence intervals, which are shown in Table 1.

Speakers
kNN k = 1 kNN k = 3 Random Forest
CI Mean CI Mean CI Mean

Random male 1 [0.97, 0.99] 0.98 [0.96, 1] 0.98 [0.96, 1] 0.98
Random male 2 [0.99, 1] 1 [0.99, 1] 1 [0.99, 1] 1
Random female [0.96, 1] 0.98 [0.72, 0.82] 0.77 [0.96, 1] 0.98
Impersonator 1 [1, 1] 1 [1, 1] 1 [1, 1] 1
Impersonator 2 [0.54, 0.60] 0.57 [0.52, 0.60] 0.56 [0.54, 0.60] 0.57
Impersonator 3 [1, 1] 1 [1, 1] 1 [1, 1] 1
Impersonator 4 [0.95, 0.97] 0.96 [0.97, 0.99] 0.98 [0.95, 0.97] 0.96
Impersonator 5 [1, 1] 1 [1, 1] 1 [1, 1] 1
Impersonator 6 [0.79, 0.83] 0.81 [0.81, 0.85] 0.83 [0.79, 0.83] 0.81
True speaker [0.75, 0.77] 0.76 [0.72, 0.76] 0.74 [0.76, 0.78] 0.77

Overall accuracy 0.907 0.886 0.907

Table 1: Bootstrapped means and confidence intervals of the 100 accuracies
(1000 bootstrapped samples), using pair loss with chosen negative data, of

random people speaking as well as impersonators and different recordings of
the true speaker (Donald Trump).

As can be seen from Table 1, the accuracies by all three classifiers do not differ
significantly. Only looking at the overall mean, the kNN with k = 1 and random
forest classifiers seem to perform better than kNN with k = 3. For all three clas-
sifiers, the average accuracies were exactly equal for five out of ten recordings that
were used for testing. Both random forest and kNN with k = 1 had exactly the
same results, except for the true speaker where random forest was just 1% better.
Impersonator 2 was the hardest one for the model to predict, as all three classifiers
could only get around 56%, 57% accuracy. Moreover, the best classifier for the true
speaker recordings, random forest, could only get 77% accuracy while the other two
classifiers were only behind by 1% and 3%. However, compared to the other tests,
the accuracies for true speaker were significantly lower, for all three classifiers. This
can be observed in Table 1, where all the other tests had the accuracy of around
96% to 100%, except for impersonator 6’s , which was about 82%.
In order to show the impact of the choice of recordings in the negative data set, 100
different trained networks using randomly chosen recordings in the negative data
were also generated. From these 100 networks, again 1000 bootstrapped samples
were computed and the resulting standard deviations were plotted in Figure 29.

35

(a) kNN k = 1 (b) kNN k = 3

(c) Random forest

Figure 29: Standard deviations of 1000 bootstrapped (with replacement)
samples of the means of the accuracies with random negative data, using kNN

k = 1 in (a), kNN k = 3 in (b), and random forest in (c).

As can be seen from Figure 29, the standard deviations do converge and they
start converging after around 200 samples. From the bootstrapped samples, the
mean accuracies and their confidence intervals were then computed and presented
in Table 2.

Speakers
kNN k = 1 kNN k = 3 Random Forest
CI Mean CI Mean CI Mean

Random male 1 [0.72, 0.86] 0.79 [0.78, 0.92] 0.85 [0.72, 0.86] 0.79
Random male 2 [0.79, 0.93] 0.86 [0.78, 0.92] 0.85 [0.73, 0.89] 0.81
Random female [0.80, 0.92] 0.86 [0.64, 0.78] 0.71 [0.71, 0.87] 0.79
Impersonator 1 [0.80, 0.94] 0.87 [0.78, 0.92] 0.85 [0.73, 0.89] 0.81
Impersonator 2 [0.12, 0.26] 0.19 [0.14, 0.28] 0.21 [0.11, 0.25] 0.18
Impersonator 3 [0.79, 0.93] 0.86 [0.78, 0.92] 0.85 [0.72, 0.88] 0.80
Impersonator 4 [0.76, 0.90] 0.83 [0.79, 0.91] 0.85 [0.74, 0.88] 0.81
Impersonator 5 [0.78, 0.90] 0.84 [0.79, 0.91] 0.85 [0.75, 0.89] 0.82
Impersonator 6 [0.69, 0.79] 0.74 [0.74, 0.86] 0.80 [0.65, 0.77] 0.71
True speaker [0.62, 0.74] 0.68 [0.58, 0.70] 0.64 [0.64, 0.76] 0.70

Overall accuracy 0.752 0.746 0.732

Table 2: Bootstrapped means and confidence intervals of the 100 accuracies
(1000 bootstrapped samples), using pair loss with random negative data, of
random people speaking as well as impersonators and different recordings of

the true speaker (Donald Trump).

36

Judging from the overall accuracies, the networks using randomly chosen negative
data did not perform as well as the ones using carefully chosen negative data. There
was roughly 15% difference in the overall accuracies when using different negative
data. The best accuracy for impersonator 2, which had been the most difficult one
for the networks even when using carefully chosen negative data, was only 21% here,
compared to 57% before. Apart from the accuracy for the true speaker, which was
still 70% with the best classifier, the accuracies for all the other speakers including
random people as well as the impersonators were lower by 5% to 10 % compared
to the networks using carefully chosen negative data, which resulted in the lower
overall accuracies.
Naturally, a reasonable conclusion would be that the choice of which recordings to
be included in the negative data did make a difference in the performance of the
networks. Therefore, for the networks using triplet loss and quadruplet loss func-
tions, only carefully chosen recordings in the negative data were used.

Triplet loss
The network’s attempt in minimizing the loss function for each epoch, the ROC
curve and AUC score, and the tSNE plot of the training data encodings when using
the triplet loss can be seen in Figure 30, respectively.

(a) Loss (b) AUC (c) tSNE

Figure 30: Training loss (blue) and validation loss (red) after each epoch in
(a), ROC curve and AUC score of the 20% test data with AUC = 0.92 in (b),

and tSNE plot of the training data encodings of the trained model in (c).

In Figure 30 (a), it can be noted that the loss seems to decrease steadily for both
the training and validation set and starts to stabilize at around 30 epochs. The
ROC curve together with its AUC score of AUC = 0.92 for the 20% test data can
be seen in (b), which also indicate a decent model. Looking at the tSNE plot of the
training data encodings in (c), it does seem that the network is trying to make the
distance between the anchor (red zeros) and positive (purple ones) smaller, while
simultaneously attempting to push away the negative (brown twos), i.e., making
the distance between the anchor and negatives larger.
The standard deviations of the 1000 bootstrapped samples of the mean of the accu-

37

racies of the speakers in Table 3 and how they converged can be seen in Figure 36
in the Appendix. The standard deviations seem to somewhat stabilize at around
100-200 samples for all three cases, where the random female and impersonator 2
appear to be the ones with largest standard deviations. This can also be seen by
comparing the widths of their bootstrapped confidence intervals of Table 3 where
the bootstrapped means of the accuracies are presented.

Speakers
kNN k = 1 kNN k = 3 Random Forest
CI Mean CI Mean CI Mean

Random male 1 [0.94, 1] 0.97 [0.93, 0.99] 0.96 [0.90, 0.98] 0.94
Random male 2 [0.96, 1] 0.98 [0.94, 1] 0.97 [0.94, 1] 0.97
Random female [0.84, 0.92] 0.88 [0.58, 0.68] 0.63 [0.56, 0.68] 0.62
Impersonator 1 [0.95, 1] 0.98 [0.94, 1] 0.97 [0.94, 1] 0.97
Impersonator 2 [0.55, 0.63] 0.59 [0.58, 0.66] 0.62 [0.34, 0.42] 0.38
Impersonator 3 [0.96, 1] 0.98 [0.94, 1] 0.97 [0.94, 1] 0.97
Impersonator 4 [0.91, 0.97] 0.94 [0.93, 0.99] 0.96 [0.91, 0.97] 0.94
Impersonator 5 [0.95, 1] 0.98 [0.95, 1] 0.98 [0.94, 1] 0.97
Impersonator 6 [0.81, 0.87] 0.84 [0.82, 0.88] 0.85 [0.75, 0.81] 0.78
True speaker [0.80, 0.84] 0.82 [0.81, 0.85] 0.83 [0.90, 0.92] 0.91
Overall mean 0.896 0.874 0.845

Table 3: Bootstrapped means and confidence intervals of the 100 accuracies
(1000 bootstrapped samples), using triplet loss with chosen negative data, of
random people speaking as well as impersonators and different recordings of

the true speaker (Donald Trump).

The kNN, k = 1 seems to have an overall better performance compared to kNN,
k = 3 and random forest classifiers, especially when it comes to predicting the
random female speaker. Comparing these results to what was obtained with the
pair loss, it can be seen that for kNN with k = 1 and k = 3, the random female’s
accuracy decreased by 10% and 14%, respectively, whereas for the random forest
classifier, it decreased by 36%. The random forest classifier seems to have a hard
time classifying the random female and impersonator 2, which can be observed by
the significantly lower accuracies for these two speakers, compared to the other two
classifiers. However, of the three classifiers, it achieved the highest accuracy when
classifying the true speaker.

Quadruplet loss
Moving on to when the SNN used the quadruplet loss function, the network’s at-
tempt in minimizing the loss function for each epoch, the ROC curve and AUC
score, and the tSNE plot of the training data encodings can be seen in Figure 31.

38

(a) Loss (b) AUC

(c) tSNE

Figure 31: Training loss (blue) and validation loss (red) after each epoch in
(a), ROC curve and AUC score of the 20% test data with AUC = 0.94 in (b),

and tSNE plot of the training data encodings of the trained model in (c).

In Figure 31 (a), the loss seems to stabilize at around 20 epochs, and in (b), the
ROC curve and AUC score for the 20% test data with AUC = 0.94 once again in-
dicate a decent model, and the tSNE plot in (c) shows that the network’s attempt
to make the distance between the anchor and negative larger while simultaneously
making the distance between the anchor and positive smaller. The network does
not succeed entirely with the separation, as there are some anchor/negative and
positive/negative overlapping, but overall, it seems to indicate a decent model.
The standard deviations of 1000 bootstrapped samples of the means of the accura-
cies of the speakers in Table 4 and how they converged can be seen in Figure 37 in
the Appendix. The standard deviations seem to again stabilize at around 100-200
samples, but seems to overall be smaller, as only impersonator 2 has a standard
deviation at around 0.15-0.2, whereas all of the other speakers have 0.1 or less.
This can also be seen by looking at the the width of the bootstrapped confidence
intervals in Table 4, where the the bootstrapped means of the accuracies are also
presented. Similarly to the network using triplet loss function, the random forest
classifier still gave the highest accuracy for the true speaker while falling behind
in classifying impersonator 2. However, the SNN with the quadruplet loss seems
to be much better at classifying the random female speaker for all three classifiers
(98-100% accuracy), and also has an overall better performance.

39

Speakers
kNN k = 1 kNN k = 3 Random Forest
CI Mean CI Mean CI Mean

Random male 1 [0.97, 0.99] 0.98 [0.97, 0.99] 0.98 [0.93, 0.97] 0.95
Random male 2 [1, 1] 1 [1, 1] 1 [1, 1] 1
Random female [1, 1] 1 [0.97, 0.99] 0.98 [0.97, 0.99] 0.98
Impersonator 1 [1, 1] 1 [1, 1] 1 [1, 1] 1
Impersonator 2 [0.54, 0.60] 0.57 [0.55, 0.63] 0.59 [0.34, 0.42] 0.38
Impersonator 3 [1, 1] 1 [1, 1] 1 [0.99, 1] 1
Impersonator 4 [0.94, 0.96] 0.95 [0.96, 0.98] 0.97 [0.96, 0.98] 0.97
Impersonator 5 [1, 1] 1 [1, 1] 1 [1, 1] 1
Impersonator 6 [0.88, 0.92] 0.90 [0.90, 0.94] 0.92 [0.80, 0.84] 0.82
True speaker [0.78, 0.80] 0.79 [0.77, 0.79] 0.78 [0.90, 0.92] 0.91
Overall mean 0.919 0.922 0.901

Table 4: Bootstrapped means and confidence intervals of the 100 accuracies
(1000 bootstrapped samples), using quadruplet loss with chosen negative
data, of random people speaking as well as impersonators and different

recordings of the true speaker (Donald Trump).

Comparison of classifiers and network structures
To compare the performance of the three classifiers, kNN for k = 1, kNN for k = 3,
and random forest, the highest accuracies for each speaker in each of the three
network structures are presented in Table 5.

Speakers Pair loss Triplet loss Quadruplet
Random male 1 0.98∗∗∗ 0.97kNN1 0.98∗∗

Random male 2 1∗∗∗ 0.98kNN1 1∗∗∗

Random female 0.98∗∗ 0.88kNN1 1kNN1

Impersonator 1 1∗∗∗ 0.98kNN1 1∗∗∗

Impersonator 2 0.57kNN1 0.62kNN3 0.59kNN3

Impersonator 3 1∗∗∗ 0.98kNN1 1∗∗∗

Impersonator 4 0.98kNN3 0.96kNN3 0.97∗∗

Impersonator 5 1∗∗∗ 0.98kNN1 1∗∗∗

Impersonator 6 0.83kNN3 0.85kNN3 0.92kNN3

True speaker 0.77RF 0.91RF 0.91RF

Best Overall 0.907∗∗ 0.896kNN1 0.922kNN3

Table 5: Best accuracies from network structures corresponding to three loss
functions. ∗∗∗/∗∗ means three/two classifiers got the same best results.

As seen from Table 5, the network structure with quadruplet loss function seems
to perform the best, with eight out of ten best scores. Of all the best scores in the
network structure using quadruplet loss, classifier kNN, k = 3 seems to perform the
best with the highest overall mean accuracy as well as highest accuracies for the

40

majority of the test cases. The network structure that has the lowest overall mean
accuracy is the one using triplet loss. However, it also has the best accuracy for
impersonator 2, at 62%. The network structure using pair loss function has very
similar performance to the one using quadruplet loss, the best overall average is
only about 2% lower. In conclusion, the network structure using quadruplet loss
and classifier kNN, k = 3 gives the best results for speaker Donald Trump.

4.2 Speaker Barack Obama

Repeating the procedure as in section 4.1, now with Barack Obama as the true
speaker, and only using chosen recordings in the negative data, in this section, the
results for SNN using different loss functions are presented.

Pair loss
In Figure 32, the network’s attempt in minimizing the loss function for each epoch
when using the pair loss function, the ROC curve, AUC score, as well as the tSNE
plot of the training data encodings can be observed.

(a) Loss (b) AUC (c) tSNE

Figure 32: Training loss (blue) and validation loss (red) after each epoch in
(a), ROC curve and AUC score of the 20% test data with AUC = 0.95 in (b),

and tSNE plot of the training data encodings of the trained model in (c).

The minimization of the loss seems to first run in to some troubles at around epoch
15, but quickly recovers and seems to stabilize at around 30 epochs, as can be seen in
Figure 32 (a). The ROC curve and AUC score in (b) also seem to indicate a decent
model with AUC = 0.95. Moreover, from the tSNE plot in (c) of the training data
encodings, it seems as if the network managed to separate the anchor (red zeros)
and negative (purple ones) quite well.
The standard deviations of the 1000 bootstrapped samples of the means of the
accuracies of the speakers in Table 6 and how they converged can be seen in Figure
38 in the Appendix. The standard deviations seem to need around 300 samples
before it starts to stabilize. However, there does not seem to be any clear difference
for the three classifiers as they behave quite similarly and have roughly the same

41

standard deviations.
This can also be seen from the width of the bootstrapped confidence intervals in
Table 6, where the bootstrapped means of the accuracies are also presented.

Speakers
kNN k = 1 kNN k = 3 Random Forest
CI Mean CI Mean CI Mean

Random male 1 [0.85, 0.97] 0.91 [0.91, 0.99] 0.95 [0.85, 0.97] 0.91
Random male 2 [0.77, 0.89] 0.83 [0.42, 0.54] 0.48 [0.77, 0.89] 0.83
Random female [0.85, 0.97] 0.91 [0.91, 0.99] 0.95 [0.85, 0.97] 0.91
Impersonator 1 [0.86, 0.96] 0.91 [0.88, 0.96] 0.92 [0.88, 0.96] 0.92
Impersonator 2 [0.87, 0.97] 0.92 [0.88, 0.98] 0.93 [0.88, 0.98] 0.93
Impersonator 3 [0.85, 0.97] 0.91 [0.89, 0.99] 0.94 [0.87, 0.97] 0.92
Impersonator 4 [0.85, 0.97] 0.91 [0.89, 0.99] 0.94 [0.87, 0.97] 0.92
Impersonator 5 [0.85, 0.97] 0.91 [0.89, 0.99] 0.94 [0.87, 0.97] 0.92
Impersonator 6 [0.87, 0.97] 0.92 [0.88, 0.98] 0.93 [0.88, 0.98] 0.93
True speaker [0.50, 0.58] 0.54 [0.51, 0.59] 0.55 [0.50, 0.56] 0.53
Overall mean 0.867 0.853 0.872

Table 6: Bootstrapped means and confidence intervals of the 100 accuracies
(1000 bootstrapped samples), using quadruplet loss, of random people

speaking as well as impersonators and different recordings of the true speaker.

At first the accuracies look rather promising, except for random male 2 for the
classifier kNN k = 3. The accuracy of the true speaker, i.e., Barack Obama, was
also not very promising. It seems as if the network, no matter the classifier, is more
happy to predict that the speaker is not Obama, even when the speaker is Obama.

Triplet loss
Figure 33 shows the networks attempt in minimizing the loss function for each epoch
when using the triplet loss function, as well as the ROC curve and AUC score, and
the tSNE plot of the training data encodings.

(a) Loss (b) AUC (c) tSNE

Figure 33: Training loss (blue) and validation loss (red) after each epoch in
(a), ROC curve and AUC score of the 20% test data with AUC = 0.99 in (b),

and tSNE plot of the training data encodings of the trained model in (c).

42

Just as before, the minimization of the loss in Figure 33 (a) seems to be rather
smooth for both the training and the validation data. Other than a small bump at
epoch 30, it quickly recovers and stabilizes. The ROC curve and AUC score in (b)
with AUC = 0.99 also seem to indicate a decent model. Furthermore, the tSNE
plot in (c) also shows that the network managed to separate the anchor from the
negative to some degree.
The standard deviations of the 1000 bootstrapped samples of the means of the
accuracies of the speakers in Table 7 and how they converged can be seen in Figure
39 in the Appendix. The standard deviations for the classifier kNN k = 1 seem to
be most stable out of the three classifiers, but they all seem to somewhat stabilize
at around 300-400 samples. The standard deviations are also smaller for all three
classifiers compared to the standard deviations of the pair loss.
This can also be seen from the width of the bootstrapped confidence intervals in
Table 7, where the the bootstrapped means of the accuracies are also presented.

Speakers
kNN k = 1 kNN k = 3 Random Forest
CI Mean CI Mean CI Mean

Random male 1 [0.97, 1] 0.99 [0.96, 1] 0.98 [0.94, 1] 0.97
Random male 2 [0.98, 1] 0.99 [0.88, 0.94] 0.91 [0.88, 0.96] 0.92
Random female [0.95, 0.99] 0.97 [0.96, 1] 0.98 [0.92, 0.98] 0.95
Impersonator 1 [0.69, 0.73] 0.71 [0.70, 0.74] 0.72 [0.66, 0.72] 0.69
Impersonator 2 [0.95, 1] 0.98 [0.97, 1] 0.99 [0.95, 1] 0.98
Impersonator 3 [0.93, 0.99] 0.96 [0.93, 0.99] 0.96 [0.90, 0.98] 0.94
Impersonator 4 [1, 1] 1 [1, 1] 1 [0.95, 1] 0.98
Impersonator 5 [0.99, 1] 1 [0.99, 1] 1 [0.95, 1] 0.98
Impersonator 6 [0.95, 1] 0.98 [0.95, 1] 0.98 [0.95, 1] 0.98
True speaker [0.79, 0.83] 0.81 [0.78, 0.82] 0.80 [0.83, 0.85] 0.84
Overall mean 0.939 0.932 0.923

Table 7: Bootstrapped means and confidence intervals of the 100 accuracies
(1000 bootstrapped samples), using quadruplet loss, of random people

speaking as well as impersonators and different recordings of the true speaker.

As seen from Table 7, the accuracies for both random male 2 as well as the true
speaker have increased, and the overall results for all three classifiers look rather
promising. However, compared with the results from the SNN using pair loss, im-
personator 1 has gotten worse by 20%, which seems like decent trade-off considering
the 26%, 53% and 9% increase for random male 2 for kNN k = 1, k = 3, and ran-
dom forest, respectively. Moreover, there are 27%, 25%, and 31% increases on the
true speaker, increasing the overall performance for all three classifiers.

43

Quadruplet loss
Lastly, the network’s attempt in minimizing the loss function for each epoch, the
ROC curve and AUC score, and tSNE plot of the training data encodings for the
SNN using the quadruplet loss can be seen in Figure 34, respectively.

(a) Loss (b) AUC

(c) tSNE

Figure 34: Training loss (blue) and validation loss (red) for each epoch in
(a), ROC curve and AUC score of the 20% test data with AUC = 1 in (b),
and tSNE plot of the training data encodings of the trained model in (c).

Other than the sudden increase of the loss in Figure 34 (a) at around epoch 18 of the
validation data, the minimization seems smooth, and stabilized at around 20 epochs.
The ROC curve and AUC score of AUC = 1 indicate a very good model. Looking
at the tSNE plot of the training data encodings, the network seemed to succeed
in separating the anchor (red zeros) and positive (purple ones) from the negative
(brown twos). However, there are still quite a lot of overlapping anchor/negatives
as well as overlapping positive/negatives.
The standard deviations of the 1000 bootstrapped samples of the means of the
accuracies of the speakers in Table 8 and how they converged can be seen in Figure
40 in the Appendix. The main difference of the standard deviations for the three
classifiers are observed with random male 2 and impersonator 2. Other than that,
the other speakers have standard deviations of around 0.1. Moreover, they all seem
to start converging at around 200 samples.
The bootstrapped means and confidence intervals of the accuracies can be seen in
Table 8.

44

Speakers
kNN k = 1 kNN k = 3 Random Forest
CI Mean CI Mean CI Mean

Random male 1 [0.97, 1] 0.99 [0.97, 1] 0.99 [0.97, 1] 0.99
Random male 2 [0.97, 1] 0.99 [0.88, 0.94] 0.91 [0.92, 0.98] 0.95
Random female [0.97, 1] 0.99 [0.97, 1] 0.99 [0.97, 1] 0.99
Impersonator 1 [0.74, 0.78] 0.76 [0.74, 0.78] 0.76 [0.74, 0.78] 0.76
Impersonator 2 [0.94, 1] 0.97 [0.95, 1] 0.98 [0.95, 1] 0.98
Impersonator 3 [0.96, 1] 0.98 [0.96, 1] 0.98 [0.96, 1] 0.98
Impersonator 4 [0.97, 1] 0.99 [0.97, 1] 0.99 [0.97, 1] 0.99
Impersonator 5 [0.97, 1] 0.99 [0.97, 1] 0.99 [0.97, 1] 0.99
Impersonator 6 [0.97, 1] 0.99 [0.97, 1] 0.99 [0.97, 1] 0.99
True speaker [0.58, 0.60] 0.59 [0.58, 0.60] 0.59 [0.69, 0.71] 0.7
Overall mean 0.924 0.917 0.932

Table 8: Bootstrapped means and confidence intervals of the 100 accuracies
(1000 bootstrapped samples), using quadruplet loss, of random people

speaking as well as impersonators and different recordings of the true speaker.

All three classifiers have very similar result, where they mainly differ on the true
speaker. Compared to the SNN using triplet loss function, impersonator 1 got a
slight increase (5% with kNN k = 1, 4% with kNN k = 3, 7% with RF); however,
at the cost of the true speaker’s decrease by 14% for the random forest and 21-22%
for the kNN classifiers. This also leads to the slightly worse overall mean.

Comparison of classifiers and network structures
To compare the performance of the three classifiers, kNN for k = 1, kNN for k = 3

and random forest, the highest accuracies for each speaker in each of the three
network structures are taken out and presented in Table 9.

Speakers Pair loss Triplet loss Quadruplet
Random male 1 0.95kNN3 0.99kNN1 0.99∗∗

Random male 2 0.83∗∗ 0.99kNN1 0.99kNN1

Random female 0.95kNN3 0.98kNN3 0.99∗∗∗

Impersonator 1 0.92∗∗ 0.72kNN3 0.76∗∗∗

Impersonator 2 0.93∗∗ 0.99kNN3 0.98∗∗

Impersonator 3 0.94kNN3 0.96kNN3 0.98∗∗∗

Impersonator 4 0.98kNN3 1∗∗ 0.99∗∗∗

Impersonator 5 0.94kNN3 1∗∗ 0.99∗∗∗

Impersonator 6 0.93∗∗ 0.98∗∗ 0.99∗∗∗

True speaker 0.55kNN3 0.84RF 0.70RF

Best Overall 0.872RF 0.939kNN1 0.932RF

Table 9: Best accuracies from network structures corresponding to three loss
functions. ∗∗∗/∗∗ means three/two classifiers got the same best results.

45

By looking at Table 9, the performances of different network structures can also be
compared. Only comparing the best overall mean accuracy, the network structure
using triplet loss function seems to be the best. However, the one with quadruplet
loss is really not far behind, the best overall is lower by only less than 1%, and
for impersonator 1, the accuracy is better by 4%. Meanwhile, for the majority of
all the tests, the network with triplet loss is always slightly better, and for the
true speaker, it is significantly better than the other network structures with 14%
higher mean accuracy than that of the network structure with quadruplet loss.
The network structure that has the lowest overall score is the one with pair loss
function. For nine out of ten test speakers, it performs slightly worse or much
worse (the true speaker test) than the other two network structures. Nevertheless,
it surprisingly did really well on impersonator 1, with an accuracy of 92%, 20%
higher than the network with triplet loss. For the performance of the classifiers, for
network structures with pair loss and quadruplet loss, random forest classifier seem
to perform the best in overall. For the network structure with triplet loss, kNN,
k = 1 seems to perform the best, with kNN, k = 3 not so far behind. In conclusion,
it can be said that the network structure with triplet loss function, and classifier
kNN, k = 1 gives us the best results for speaker Barack Obama.

46

5 Conclusion
The goal of this thesis was to classify a person’s voice and their impersonators. In
order to achieve that, audio features from the voice recordings were extracted and
fed into a Siamese Neural Network to generate encodings. These encodings were
then used as inputs for the random forest and kNN classifiers to predict whether
the corresponding recordings belonged to the true speaker or not.

For each recording, we studied different audio features extracted from the five-
second segments as well as the 20- and 40-millisecond segments containing periodic
structures, and the different combinations of these features. The results showed
that concatenating features from the harmonic 20- and 40-millisecond segments
with those from the five-second segments into a single feature matrix was prefer-
able. For the millisecond segments, the MFCCs, the first four formants, and the
formant ratios between the second and first formants were extracted. At the same
time, for the five-second segments, the spectrograms with higher resolution in fre-
quency were computed. Moreover, of the network architectures that were tested,
the one that performed the best consisted of a two-dimensional convolution layer
with a non-square kernel, a two-dimensional max pooling layer, a two-dimensional
global average pooling layer, three dense layers, and a batch normalization layer.

The model was tested on two speakers, Donald Trump and Barack Obama, and
evaluated by computing the accuracy, i.e., how many samples were correctly clas-
sified out of all the samples for each speaker, including both the true speakers and
their impersonators. In the first case, with Donald Trump as the true speaker, the
loss function and classifier that resulted in giving the overall highest accuracies was
the quadruplet loss function with classifier kNN with k = 3 neighbors. In the sec-
ond case, with Barack Obama as the true speaker, the loss function and classifier
that resulted in giving the overall highest accuracies was the triplet loss function
with classifier kNN with k = 1 neighbors. The different results for the two different
true speakers could be explained by different reasons. One reason could be that
the recordings that were tested and picked out for the chosen negative data set
were better suited for either of the two cases. Another reason could be due to the
fact that within the scope of this thesis, more data of Trump’s impersonators were
gathered, as compared to Obama. This makes it more likely that some of Trump’s
impersonators were better and thus, harder to classify.

For both Trump and Obama, the classifiers that gave the highest accuracies, no
matter the loss function, did not seem to have any major difficulties classifying the

47

random males and female correctly. Furthermore, some impersonators were easier
to classify than the others. We suspect that the dissimilarities between these people
and the true speaker already resulted in the different values in the spectrograms,
MFCCs, and other features in the raw feature matrix. For the impersonators that
sounded very similar to the true speakers, they also had similar feature values,
which made it harder for the network to separate them.

48

6 Further study
For further study, to evaluate the model’s performance, it would be a good idea
to collect more data from other speakers and their impersonators. There are other
prominent political figures in the U.S. that also have been impersonated for comedic
purposes, such as Hilary Clinton, Joe Biden, and George W. Bush. Additionally, it
would be interesting to test the model on data from people speaking other languages
than American English and their impersonators. Another data set of interest could
be recordings from twins where the classification task then is to differentiate be-
tween them.

Furthermore, what could improve the performance lies in the extraction of peri-
odic structures from an audio recording. Our current method discards a number of
segments that have perfectly periodic structures, which could result in us missing
important unique features for each speaker. A better method to ensure all peri-
odic structures are kept and used in the training could affect the results positively.
Moreover, if specific vowels for each speaker could be extracted and tagged, one
could build the raw feature matrix in a different way, for example, each column
can be features extracted from one specific vowel. Our thought is that it might be
easier for the network to distinguish between speakers when they say the same thing.

Finally, as choosing a negative data set can impact the performance of the net-
work quite significantly, it might also be a good idea to investigate other functions
one could use in measuring the distances between voices, and also different types of
inputs for the distance function. For example, if specific vowels can be extracted as
explained above, one could immediately compute the distance from the raw feature
matrix, instead of computing the distance between the encodings as in our current
method. Moreover, for computing the distance between speakers saying the same
vowels, there are other distance functions one can look into.

49

References
[1] N. Almaadeed, A. Aggoun, and A. Amira. “Text-Independent Speaker Iden-

tification Using Vowel Formants.” In: J Signal Processing System 82 (2016),
pp. 345–356. doi: 10.1007/s11265-015-1005-5.

[2] N.S. Altman. “An Introduction to Kernel and Nearest-Neighbor Nonparamet-
ric Regression”. In: The American Statistician 46.3 (1992), pp. 175–185. doi:
10.1080/00031305.1992.10475879. eprint: https://www.tandfonline.
com/doi/pdf/10.1080/00031305.1992.10475879. url: https://www.
tandfonline.com/doi/abs/10.1080/00031305.1992.10475879.

[3] T. Bäckström et al. Introduction to Speech Processing. Aalto University Wiki,
2022. url: https://wiki.aalto.fi/display/ITSP/Introduction+to+
Speech+Processing.

[4] P. Bloomfield. Fourier Analysis of Time Series: An Introduction. New York:
Wiley-Interscience, 2000. isbn: 0-471-88948-2.

[5] P. Boersma. “Accurate Short-term Analysis of the Fundamental Frequency
and the Harmonics-to-noise Ratio of a Sample Sound.” In: Proceedings 17
(1993), pp. 97–110. url: https://www.fon.hum.uva.nl/david/ba_shs/
2010/Boersma_Proceedings_1993.pdf.

[6] P. Boersma and D. Weenink. Praat: doing phonetics by computer (Version
5.1.13). 2009. url: http://www.praat.org.

[7] F. Bre, J. M. Gimenez, and V. D. Fachinotti. “Prediction of wind pressure
coefficients on building surfaces using artificial neural networks.” In: Energy
and Buildings 158 (2018), pp. 1429–1441. url: https://doi.org/10.1016/
j.enbuild.2017.11.045.

[8] A. Cephei. Vosk Speech Recognition Toolkit. Version 0.3.31. url: https://
alphacephei.com/vosk/.

[9] W. Chen et al. “Beyond triplet loss: a deep quadruplet network for person re-
identification”. In: CoRR abs/1704.01719 (2017). url: http://arxiv.org/
abs/1704.01719.

[10] “Coefficient of Determination”. In: The Concise Encyclopedia of Statistics.
New York, NY: Springer New York, 2008, pp. 88–91. isbn: 978-0-387-32833-
1. doi: 10.1007/978-0-387-32833-1_62. url: https://doi.org/10.
1007/978-0-387-32833-1_62.

50

https://doi.org/10.1007/s11265-015-1005-5
https://doi.org/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/pdf/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
https://wiki.aalto.fi/display/ITSP/Introduction+to+Speech+Processing
https://wiki.aalto.fi/display/ITSP/Introduction+to+Speech+Processing
https://www.fon.hum.uva.nl/david/ba_shs/2010/Boersma_Proceedings_1993.pdf
https://www.fon.hum.uva.nl/david/ba_shs/2010/Boersma_Proceedings_1993.pdf
http://www.praat.org
https://doi.org/10.1016/j.enbuild.2017.11.045
https://doi.org/10.1016/j.enbuild.2017.11.045
https://alphacephei.com/vosk/
https://alphacephei.com/vosk/
http://arxiv.org/abs/1704.01719
http://arxiv.org/abs/1704.01719
https://doi.org/10.1007/978-0-387-32833-1_62
https://doi.org/10.1007/978-0-387-32833-1_62
https://doi.org/10.1007/978-0-387-32833-1_62

[11] J. Fernandes et al. “Harmonic to Noise Ratio Measurement - Selection of
Window and Length.” In: Procedia Technology 138 (2018), pp. 280–285. url:
https://doi.org/10.1016/j.procs.2018.10.040.

[12] M. Hansson. “Optimized Weighted Averaging of Peak Matched Multiple Win-
dow Spectrum Estimates”. In: IEEE Transactions on Signal Processing 47.4
(1999), pp. 1141–1146. issn: 1941-0476. doi: 10 .1109 /78 .752613. url:
https://ieeexplore.ieee.org/document/752613.

[13] Y. Jadoul, B. Thompson, and de Boer B. “Introducing Parselmouth: A Python
interface to Praat”. In: Journal of Phonetics 71 (2018), pp. 1–15. doi: https:
//doi.org/10.1016/j.wocn.2018.07.001.

[14] A. Jakobsson. An Introduction to Time Series Modeling. Studentlitteratur,
2013, pp. 53–54. isbn: 978-91-44-13403-1. url: https://www.studentlitteratur.
se/kurslitteratur/matematik-och-statistik/matematisk-statistik/

an-introduction-to-time-series-modeling.

[15] D.P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2014.
doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.org/abs/1412.
6980.

[16] G. Koch, R. Zemel, and R. Salakhutdinov. “Siamese Neural Networks for
One-shot Image Recognition”. In: (2015). url: https://www.cs.cmu.edu/
~rsalakhu/papers/oneshot1.pdf.

[17] J. Luo, J. Zhang W. an Su, and F. Xiang. “Hexagonal Convolutional Neural
Networks for Hexagonal Grids”. In: IEEE Access PP (Sept. 2019), pp. 1–1.
doi: 10.1109/ACCESS.2019.2944766. url: https://ieeexplore.ieee.
org/stamp/stamp.jsp?arnumber=8853238.

[18] L. van der Maaten and G. Hinton. “Visualizing Data using t-SNE”. In: Journal
of Machine Learning Research 9.86 (2008), pp. 2579–2605. url: http://
jmlr.org/papers/v9/vandermaaten08a.html.

[19] MATLAB. Formant Estimation with LPC Coefficients. Version R2022a. url:
https://se.mathworks.com/help/signal/ug/formant- estimation-

with-lpc-coefficients.html.

[20] P. Munro. “Backpropagation”. In: Encyclopedia of Machine Learning. Ed.
by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, 2010,
pp. 73–73. isbn: 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_51.
url: https://doi.org/10.1007/978-0-387-30164-8_51.

51

https://doi.org/10.1016/j.procs.2018.10.040
https://doi.org/10.1109/78.752613
https://ieeexplore.ieee.org/document/752613
https://doi.org/https://doi.org/10.1016/j.wocn.2018.07.001
https://doi.org/https://doi.org/10.1016/j.wocn.2018.07.001
https://www.studentlitteratur.se/kurslitteratur/matematik-och-statistik/matematisk-statistik/an-introduction-to-time-series-modeling
https://www.studentlitteratur.se/kurslitteratur/matematik-och-statistik/matematisk-statistik/an-introduction-to-time-series-modeling
https://www.studentlitteratur.se/kurslitteratur/matematik-och-statistik/matematisk-statistik/an-introduction-to-time-series-modeling
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://doi.org/10.1109/ACCESS.2019.2944766
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853238
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8853238
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://se.mathworks.com/help/signal/ug/formant-estimation-with-lpc-coefficients.html
https://se.mathworks.com/help/signal/ug/formant-estimation-with-lpc-coefficients.html
https://doi.org/10.1007/978-0-387-30164-8_51
https://doi.org/10.1007/978-0-387-30164-8_51

[21] S. Murray et al. “Donald Trump on recording: Not me”. In: (2016). url:
https : / / edition . cnn . com / 2016 / 05 / 13 / politics / donald - trump -

recording-john-miller-barron-fake-press/.

[22] T. O’Malley et al. KerasTuner. https://github.com/keras-team/keras-
tuner. 2019.

[23] K. Rao and K. E. Manjunath. Speech Recognition Using Articulatory and Ex-
citation Source Features. Jan. 2017. isbn: 978-3-319-49219-3. doi: 10.1007/
978-3-319-49220-9.

[24] M. Sandsten. Time-Frequency Analysis of Time-Varying Signals and Non-
Stationary Processes: An Introduction. 2022.

[25] J. Schmidhuber. “Deep learning in neural networks: An overview.” In: Neural
Networks 61 (2015), pp. 85–117. url: https://doi.org/10.1016/j.

neunet.2014.09.003.

[26] U. Shrawankar and V. M. Thakare. “Techniques for Feature Extraction In
Speech Recognition System : A Comparative Study”. In: (2013). doi: 10.
48550/ARXIV.1305.1145. url: https://arxiv.org/abs/1305.1145.

[27] V. Stenvall. “Detection of Relapsing Vocal Cord Cancer Using Siamese Neural
Networks.” In: (2021). url: http://lup.lub.lu.se/student-papers/
record/9045289.

[28] J.P. Teixeira and A. Goncalves. “Accuracy of Jitter and Shimmer Measure-
ments.” In: Procedia Technology 16 (2014), pp. 1190–1199. url: https://
doi.org/10.1016/j.protcy.2014.10.134.

[29] D.J. Thomson. “Spectrum estimation and harmonic analysis”. In: IEEE 70.9
(1982), pp. 1055–1096. issn: 1558-2256. doi: 10.1109/PROC.1982.12433.
url: https://ieeexplore.ieee.org/document/1456701.

[30] Y.C. Tsao, G. Weismer, and K. Iqbal. “Interspeaker variation in habitual
speaking rate: Additional evidence.” In: Journal of Speech, Language, and
Hearing Research (2006), pp. 1156–1164. doi: 10.1044/1092-4388(2006/
083). url: https://pubs.asha.org/doi/10.1044/1092-4388%5C%282006/
083%5C%29.

52

https://edition.cnn.com/2016/05/13/politics/donald-trump-recording-john-miller-barron-fake-press/
https://edition.cnn.com/2016/05/13/politics/donald-trump-recording-john-miller-barron-fake-press/
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://doi.org/10.1007/978-3-319-49220-9
https://doi.org/10.1007/978-3-319-49220-9
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.48550/ARXIV.1305.1145
https://doi.org/10.48550/ARXIV.1305.1145
https://arxiv.org/abs/1305.1145
http://lup.lub.lu.se/student-papers/record/9045289
http://lup.lub.lu.se/student-papers/record/9045289
https://doi.org/10.1016/j.protcy.2014.10.134
https://doi.org/10.1016/j.protcy.2014.10.134
https://doi.org/10.1109/PROC.1982.12433
https://ieeexplore.ieee.org/document/1456701
https://doi.org/10.1044/1092-4388(2006/083)
https://doi.org/10.1044/1092-4388(2006/083)
https://pubs.asha.org/doi/10.1044/1092-4388%5C%282006/083%5C%29
https://pubs.asha.org/doi/10.1044/1092-4388%5C%282006/083%5C%29

Appendix

Figure 35: Example of two input sister network architecture, left branch
takes the 20ms features, right branch takes 5s features

53

Speaker Target Name
Impersonator 1 Trump Anthony Atamanuik
Impersonator 2 Trump Austin Nasso
Impersonator 3 Trump Bob DiBuono
Impersonator 4 Trump J-L Cauvin
Impersonator 5 Trump John Di Domenico
Impersonator 6 Trump Thomas Mundy
Impersonator 1 Obama Jordan Peele
Impersonator 2 Obama Jordan Peele
Impersonator 3 Obama Jordan Peele
Impersonator 4 Obama Trevor Noah
Impersonator 5 Obama Reggie Brown
Impersonator 6 Obama Steve Bridge

Table 10: True names of the impersonators of Trump and Obama.

(a) kNN k = 1 (b) kNN k = 3

(c) Random forest

Figure 36: Standard deviations of 1000 bootstrapped (with replacement)
samples of the means of the accuracies, using kNN k = 1 in (a), kNN k = 3 in
(b), and random forest in (c). Triplet loss for Donald Trump as true speaker.

54

(a) kNN k = 1 (b) kNN k = 3

(c) Random forest

Figure 37: Standard deviations of 1000 bootstrapped (with replacement)
samples of the means of the accuracies, using kNN k = 1 in (a), kNN k = 3 in

(b), and random forest in (c). Quadruplet loss for Donald Trump as true
speaker.

(a) kNN k = 1 (b) kNN k = 3

(c) Random forest

Figure 38: Standard deviations of 1000 bootstrapped (with replacement)
samples of the means of the accuracies, using kNN k = 1 in (a), kNN k = 3 in

(b), and random forest in (c). Pair loss for Barack Obama as true speaker.

55

(a) kNN k = 1 (b) kNN k = 3

(c) Random forest

Figure 39: Standard deviations of 1000 bootstrapped (with replacement)
samples of the means of the accuracies, using kNN k = 1 in (a), kNN k = 3 in
(b), and random forest in (c). Triplet loss for Barack Obama as true speaker.

(a) kNN k = 1 (b) kNN k = 3

(c) Random forest

Figure 40: Standard deviations of 1000 bootstrapped (with replacement)
samples of the means of the accuracies, using kNN k = 1 in (a), kNN k = 3 in

(b), and random forest in (c). Quadruplet loss for Barack Obama as true
speaker.

56

Master’s Theses in Mathematical Sciences 2022:E35
ISSN 1404-6342

LUNFMS-3109-2022

Mathematical Statistics
Centre for Mathematical Sciences

Lund University
Box 118, SE-221 00 Lund, Sweden

http://www.maths.lu.se/

	Introduction
	Background
	Problem formulation

	Theory
	Audio features
	Spectrogram
	Mel spectrogram
	Fundamental Frequency and Formants
	Sinusoidal fitting
	Other features

	Machine Learning
	Artificial neural networks
	Layers
	Autoencoder
	Siamese Neural Network
	Classifiers

	Method
	Data processing and feature extraction
	Data collection
	Data processing
	Feature extraction

	Neural Network Model and Classifier
	Model performance evaluation

	Results
	Speaker Donald Trump
	Speaker Barack Obama

	Conclusion
	Further study
	Appendix

