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Abstract

Ultrashort laser pulses with time-dependent polarisation states have many applic-
ations, such as the generation of isolated attosecond pulses and the study of the
optical chirality of molecules. In this project the polarisation gate, built from two
quarter-wave plates of different orders, is thoroughly characterised in experiment
and simulation. The time-dependent polarisation state is investigated with the dis-
persion scan technique (d-scan). We demonstrate that it is sufficient to measure
three different projections of the electric field with the d-scan in order to achieve its
complete reconstruction.
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Popular Science Summary

Measuring the properties of extremely short bursts of light

Did you know that we can produce light in pulses that last only a few femtoseconds
(0.000 000 000 000 001 s)? In many applications it is essential to have a precise char-
acterisation of these light pulses. Since there is no event short enough to measure
them, the solution lies in manipulating light for its own measurement.

These extremely short bursts of light are known as ultrashort laser pulses. The field
of ultrafast science has benefited greatly from them, for the following reason: in
order to observe an event, another event that can be controlled and that happens in
an even shorter time is needed. This became a problem when scientists first tried to
study the motion of atoms and molecules when a chemical reaction occurs, or the
electron dynamics in the event of photoionisation (a photon strips an electron from
an atom after collision). Fortunately, ultrashort laser pulses can be used as "flashes
of light" that last a millionth of a billionth of a second, which has opened the door to
the study of ultrafast processes. However, this is not their only application. When
a small amount of energy is put into such a short time then the generated power
(energy/time) can reach enormous values, as high as 1PW (1 000 000 000 000 000W).
This is several orders of magnitude greater than for example the power produced
in a nuclear power plant. As a consequence, shining these pulses onto matter leads
to different effects such as the nonlinear response of the medium, the generation
of a plasma, etc. These processes can be used, for example, to cut materials with
micrometer precision (0.000 001m) or to accelerate particles to almost the speed of
light (300 000 000m/s) in a space no larger than a table.

Linked to the generation of ultrashort laser pulses is the need for their characterisa-
tion. Just as in a camera it is important to control the exposure time, it is essential
to know precisely the duration of these pulses. Another property that is important
to control is the polarisation of light. Light is an electromagnetic wave and the
polarisation describes the direction it oscillates. In a similar way to how the waves
of the sea shape the medium through which they propagate, the oscillations of light
induce the movement of electrons, atoms and molecules.

Electronic instruments cannot be used to measure the properties of ultrashort laser
pulses, simply because they are not fast enough. Fortunately, there are many ways to
manipulate light using optical elements such as lenses, prisms, crystals, among other
things that do not require electronics. The key to measure pulses is to manipulate
light itself for their own measurement, which has opened the door to a series of
methods to measure their duration. In this project we have used one of these
methods, called the dispersion scan (d-scan), to measure not only the duration but
also the polarisation of ultrashort laser pulses.
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Chapter 1

Introduction

The development of chirped pulse amplification [1], passive mode locking [2] and
the availability of high-gain media over a wide frequency range such as titanium-
sapphire [3] has standardised the use of femtosecond lasers. This has opened the
doors to a great number of applications in the field of ultrafast science: from the
studies of chemical reactions [4] and the motion of electrons and molecules [5] to the
acceleration of particles [6]. In addition, femtosecond lasers have also proven to be
a very useful tool outside of fundamental science, with multiple applications such as
refractive surgery [7] and micromachining of materials [8].

In many of these applications precise knowledge of the pulse duration and the shape
of the envelope is needed. Therefore, the characterisation of ultrashort laser pulses
has become as important as the process of generation. In recent decades, a large
number of techniques have been developed for this purpose. The most well-known,
listed in chronological order, are the autocorrelation method [9], frequency-resolved
optical-gating (FROG) [10] and spectral interferometry for direct electric-field re-
construction (SPIDER) [11]. More recently, a technique called the dispersion scan
(d-scan) has been developed [12].

This thesis focuses on the characterisation of ultrashort laser pulses with the d-scan
technique.

1.1 Objective

The present project aims to include the measurement of a time-dependent polarisa-
tion state in the dispersion scan. A conventional d-scan can retrieve the spectral
phase of ultrashort laser pulses and thus together with a separately measured spec-
trum obtain the pulse profile in the time domain. The problem of reconstructing
the polarisation state can be reduced to reconstructing two linearly polarised pulses
corresponding to two different projections of the electric field and measuring their
relative phase. In principle, one could do this by measuring a total of three differ-
ent linearly polarised projections of the electric field since the third one contains
information about the relative phase difference between the other two. Although
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1.2. MOTIVATION

this has already been proven to be possible with FROG [13, 14], it has not been
demonstrated with the d-scan yet.

Three challenges are posed to achieve this goal: (i) to design an experimental method
capable of generating a time-dependent polarisation state in an accurate and repro-
ducible way, (ii) to adapt the conventional d-scan setup to measure linear projections
of the electric field, and finally (iii) to be able to accurately simulate both the time-
dependent polarisation and the d-scan measurements to evaluate the performance
of the method.

1.2 Motivation

An important property of light, which describes its vectorial nature, is polarisation.
In general, the way light interacts with matter is affected by its polarisation, which
makes it a great tool for studying the properties of matter.

The motion of atoms and molecules occurs on very short time scales. Because of
this, it has only been possible to study thanks to the development of ultrafast laser
systems. Therefore, the idea of tailoring the polarisation of ultrashort laser pulses
can allow the study of the motion and properties of atoms and molecules that are
sensitive to the polarisation of light.

Ultrashort laser pulses with a spatially or temporally varying polarisation are known
as vector pulses [15, 16]. In recent years, many methods have been devised to gen-
erate pulses with a space-dependent polarisation state, such as radially and azi-
muthally polarised beams. This has been done by means of optically active wave
plates (q-wave plate) [17], azimuth-dependent half-wave plates (s-wave plate) [16]
among other methods. One method to modulate the ellipticity of the polarisation
state as a function of time, i.e. to generate time-dependent polarisation states, con-
sists in transmitting the pulses through a combination of birefringent plates. The
polarisation state originating from this falls into the group of time-dependent po-
larisation states known as polarisation gates (PGs) [18, 19]. This type of pulse is
often used in high-order harmonic generation (HHG) to generate isolated attosecond
pulses [20, 21]. The reason for this lies in the strong dependence of the emission
efficiency of high-order harmonics on the ellipticity of the fundamental driving field
[18, 22, 23]. During the period of time, when the electric field is linear, that is,
an ellipticity angle of 0◦, the emission efficiency of higher order harmonics is much
higher than when the polarisation is elliptical. Studies have shown that for ellipt-
icities greater than 13% the emission efficiency of plateau harmonics (orders from
q = 19 to q = 27) reduces to 50% in relation to the same harmonics generated with
0% ellipticity [18]. Because the emission of XUV radiation can be confined to an
interval of time shorter than the pulse duration, this technique receives the name of
polarisation gating. Other examples of application of polarisation in the ultrafast
time scale are studies of molecular chirality [24, 25], plasmons [26] and magnetic
materials [27].

Linked to the generation of ultrashort laser pulses with a time-dependent polar-
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1.2. MOTIVATION

isation state is the need for their characterisation. One of the oldest methods to
measure the time evolution of a polarisation state was time resolved ellipsometry
(TRE) [28]. This technique is very laborious, it requires the rotation of wave plates
and polarisers to select different projections of the electric field and for each of them
to measure the cross-correlation with a reference pulse through a nonlinear process
while scanning the time of delay between the two. A simpler approach is followed in
the dual-channel spectral interferometry method [29], known as POLLIWOG, where
two orthogonal components of the pulse to be measured are characterised relative
to a well-known reference pulse using spectral interferometry [30]. A different ap-
proach is to use a common method for characterising scalar pulses, i.e. pulses with
linear polarisation constant in time, and measure the amplitude and phase of the
pulse for three different projections. Using SHG-FROG it has been shown that this
is sufficient to reconstruct both the polarisation and the temporal characteristics
of the pulse [13]. Very recently, this approach has been applied to reconstruct the
pulse from a single measurement [14], where instead of measuring three projections,
the angle of the polariser is rotated in parallel to the characterisation of the pulse.
All of these methods require a reference pulse. For this reason, it would be very
good to show that the vector reconstruction of the pulse can also be achieved using
an in-line and more stable method such as the d-scan.

Figure 1.1 aims at visualising a pulse with a time-dependent polarisation state by
showing the result of a simulation:

Figure 1.1: Simulation of a pulse with time-dependent polarisation state. The
colored line represents the evolution of the electric field endpoint as a function of
time, where the color indicates the ellipticity of the polarisation state. The lines on
the bottom and in the background represent the horizontal and vertical projections
of the electric field, respectively.
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1.3. THESIS OUTLINE

1.3 Thesis outline

With the intention of giving a theoretical framework for the project, Chapter 2 covers
a summary of polarisation, nonlinear and ultrafast optics, with special emphasise on
the concepts relevant to this work. Next, Chapter 3 covers a detailed explanation
of the experimental methods as well as how to model and simulate the experiments
conducted in the laboratory. In Chapter 4, the most important results of the work
are collected and a discussion of them is presented. The thesis concludes with
Chapter 5, where a general assessment of the work is made as well as a reflection on
possible future steps.
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Chapter 2

Theory

This section aims to provide a description of some fundamentals of optics relevant
to this work that will help understand the concept behind the d-scan technique,
how to simulate the experiments conducted in the scope of this thesis and the
interpretation of the measurements. The theoretical framework is divided into three
parts: polarisation, nonlinear and ultrafast optics. Two textbooks have frequently
been used as sources of inspiration for the theoretical derivations [31, 32].

Polarisation optics covers an introduction to the electromagnetic theory of light,
with the main goal of describing the three most common methods that can be
used to describe and represent the polarisation state of light. Nonlinear optics
is introduced with a brief description of the interaction between light and matter
based on the atomic oscillator model. Special attention is paid to the explanation
of phase-matching and second harmonic generation (SHG), as the latter process is
the means by which the d-scan setup used in the laboratory achieves sensitivity
to spectral phase. The last section is dedicated to ultrafast optics. The following
topics are discussed there: a theoretical model to describe optical pulses, the role
of dispersion in transforming pulse shape upon propagation and a summary of very
relevant techniques for the characterisation of ultrashort laser pulses, including d-
scan.

2.1 Polarisation Optics

Light is an electromagnetic wave. The wavefront and amplitude of this wave may
vary depending on the source of electromagnetic field and the observation distance
from it. For instance, a spherical wave originates from a point source and the
amplitude decays with the radial distance due to conservation of energy. Another
common example are plane waves, which have a planar wavefront and maintain
constant amplitude upon propagation.

As an electromagnetic wave, light satisfies Maxwell’s equations. In the simple case of
a plane wave, this leads to waves with mutually perpendicular electric and magnetic
fields, which lie in a plane that is normal to the direction of propagation. This type
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2.1. POLARISATION OPTICS

of wave is called transverse electromagnetic (TEM) and it is a good approximation
for the Gaussian beam. Due to the orthogonality condition it is sufficient to know
the electric field (or the magnetic field) in order to have a complete description of
the total electromagnetic field. An expression for an electromagnetic plane wave of
frequency ν, angular frequency ω = 2πν and wavenumber k = ω/c can be written
as follows:

U(r,t) = E(r) exp [i (ωt− kz)] = (Exx̂+ Eyŷ) exp [i (ωt− kz)] (2.1)

where E is the electric field complex amplitude. Ex and Ey represent the components
of the electric field complex amplitude in two orthogonal directions, respectively.
One can also rewrite this expression using the magnitude of these complex values,
the relative phase difference between each other and a global phase term:

U(r,t) = eiϕ
(
|Ex|x̂+ eiφ|Ey|ŷ

)
exp [i (ωt− kz)] (2.2)

Conventionally the polarisation of light refers to the direction of the oscillations of
the electric field. One often refers to the real part of the complex electric field U as
the electric field E . Using Equation 2.1 one can arrive to a simplified equation for
the electric field:

E(r,t) = ℜ{(Exx̂+ Eyŷ) exp [i (ωt− kz)]} = Exx̂+ Eyŷ (2.3)

where the two components can be expressed as:

Ex = ax cos (ωt− kz + φx) (2.4)
Ey = ay cos (ωt− kz + φy) (2.5)

Three of the most common methods to describe polarisation are introduced below.

2.1.1 Jones Calculus

Polarisation of light can be described using Jones calculus. In this formalism,
light is represented by a vector consisting of two components. This is called Jones
vector (J) and the two components correspond to the magnitude of the electric
field complex amplitude in two orthogonal directions, |Ex| and |Ey|, where one of
them is multiplied by the relative phase difference ejφ.

J =

[
|Ex|

|Ey|eiφ
]

(2.6)

A pure polarisation state is completely determined knowing two orthogonal amp-
litudes and their relative phase difference. Any pure state of polarisation can be said
to be elliptical and expressed as a Jones vector as shown in Equation 2.6. Two spe-
cial cases of elliptical polarisation are linearly and circularly polarised light. Below
are some examples of common polarisation states described using Jones formalism:
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2.1. POLARISATION OPTICS

Table 2.1: Jones vectors for different states of polarisation.

State of polarisation Jones vector (J)

Horizontal Linear Polarisation
[
1
0

]
Vertical Linear Polarisation

[
0
1

]
Right Circular Polarisation (RCP) 1√

2

[
1
i

]
Left Circular Polarisation (LCP) 1√

2

[
1
−i

]

Commonly, matrices are used to calculate the evolution of light through an optical
system. An optical element can be described by a Jones matrix. This is shown in
Equation 2.7, where J′′, J′ represent the Jones vector of light before and after the
optical element and MJ the Jones matrix of the latter.

J′ = MJ · J′′ (2.7)

In the following, as an example, it is detailed how to write the Jones matrix of the
optical elements used during the experiments. When light goes through a linear
polariser it gets linearly polarised along the direction defined by the polariser axis.
Therefore, vertical and horizontal polarisers will select, respectively, the first and
second components of the incoming Jones vector and cancel the other one.

Table 2.2: Jones matrices for horizontal and vertical polarisers.

Polariser Jones matrix (MJ)

Horizontal polariser
[
1 0
0 0

]
Vertical polariser

[
0 0
0 1

]

Wave plates, also known as wave retarders, are made from birefringent materials. A
medium is said to be birefringent when optical properties like the refractive index n
depend on the direction of polarisation of light. A 3-dimensional representation of
a birefringent crystal is given by the index ellipsoid, shown in Figure 2.1:
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2.1. POLARISATION OPTICS

Figure 2.1: The index ellipsoid. The index ellipsoid is a geometric representation
of a tensor whose principal axes and eigenvalues are denoted respectively by the
coordinates (x1, x2, x3) and the refractive indexes (n1, n2, n3). (a) Index ellipsoid of
a biaxial crystal. (b) Index ellipsoid of a uniaxial crystal.

The semi-axes lengths of the index ellipsoid correspond to the value of the refract-
ive index in three orthogonal directions of the crystal. Depending on the relation
between these values, three types of birefringent crystal can be defined: isotropic
when n1 = n2 = n3, uniaxial when n1 = n2 = no and n3 = ne and biaxial, when
n1 ̸= n2 ̸= n3. Uniaxial crystals are also subdivided into positive or negative crystals
depending on whether ne > no or vice versa.

For any plane wave propagating along a direction defined by a vector û the inter-
section between a plane perpendicular to this vector and the index ellipsoid forms
an ellipse, known as the index ellipse. The lengths of the semi-axes of this ellipse
represent the refractive indexes associated with the two orthogonal polarisations of
light travelling on the direction defined by û. A special case is when the polarisation
ellipse becomes a circle. This happens when light propagates along a specific direc-
tion within the birefringent crystal, which is known as the optic axis. In uniaxial
crystals, this direction is aligned with the extraordinary axis, that is, the direction
for which n = ne.

The semi-axes lengths of the polarisation ellipse in a uniaxial crystal correspond
to the ordinary no and extraordinary n(θ) refractive indexes, where θ is the angle
between û and the extraordinary axis. A simple formula, given in Equation 2.8 can
be used to calculate n(θ):

1

n2(θ)
=

cos2(θ)

n2
o

+
sin2(θ)

n2
e

(2.8)

Uniaxial crystals are typically the material from which wave plates are made. The
optic axis is parallel to the polished surface of the crystal so that different polar-
isations will sense a different refractive index. The difference in refractive index
between two orthogonal polarisations causes a phase delay between them. This rel-
ative phase shift is proportional to the propagation distance inside the crystal (d).
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2.1. POLARISATION OPTICS

Considering the extraordinary and ordinary axes, which are known as the principal
axes of the wave plate, the exact phase delay can be calculated as shown in Equa-
tion 2.9:

∆φ = ∆k · d =
2π

λ0
(ne − no) d (2.9)

In a frame of reference where horizontal and vertical polarisations are aligned with
the principal axes of the wave plate, the Jones matrix of this element becomes
diagonal and can be expressed as:

MJ =

[
1 0
0 ei∆φ

]
(2.10)

The most commonly used wave plates are quarter- and half- wave plates that add
a phase shift of π/2 and π, respectively, between the fast and slow axes. They are
frequently used to change the state of polarisation of light. For example, a quarter-
wave plate can convert circular polarisation into linear while a half-wave plate can
be used to rotate a linearly polarised state to any other angle.

Table 2.3: Jones matrices for quarter- and half-wave plates.

Waveplate Jones matrix (MJ)

Quarter-wave plate
[
1 0
0 i

]
Half-wave plate

[
1 0
0 −1

]

The elements of the Jones matrix are dependent on the coordinate system of choice.
Nevertheless, knowledge of the diagonal form of the matrix is sufficient if rotation
matrices are used to transform this matrix into another coordinate system, whose
directions make an angle θ in respect to the coordinate system where the matrix is
diagonal. This transformation is written as a matrix product in Equation 2.11:

M′
J = R(−θ)×MJ ×R(θ) (2.11)

Where R(θ) represents the rotation matrix, calculated as follows:

R(θ) =

[
cos (θ) sin (θ)
− sin (θ) cos (θ)

]
(2.12)

This is especially useful for wave plates, as they must not be aligned with the input
polarisation for them to have any effect on the polarisation state. Very often a
relative orientation of 45◦ is used, since in this case the amplitude of the electric
field is divided equally between the two principal directions of the plate.
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2.1. POLARISATION OPTICS

2.1.2 Polarisation Ellipse

On a plane perpendicular to the direction of propagation, tracing the evolution over
time of the electric field endpoint results in the drawing of an ellipse, which is known
as the ellipse of polarisation. A parametric equation of the ellipse can be derived
from Equations 2.3, 2.4 and 2.5:

E2
x

a2x
+

E2
y

a2y
− 2 cos (φy − φx)

ExEy
axay

= sin2 (φy − φx) (2.13)

An example of the polarisation ellipse is shown in Figure 2.2. Here a and b are
the lengths of the semi-major and semi-minor axes, respectively. The two angles
that define the ellipse are indicated in this figure. ψ is the angle between the x axis
and the major axis of the ellipse, that is, it measures the relative orientation of the
ellipse with respect to a fixed frame of reference defined by the x̂ and ŷ directions.
χ is the angle of ellipticity, which can be calculated as the arc-tangent of the ratio
between b and a. When χ = 0◦ the ellipse degenerates into a line. Regarding
the state of polarisation, this indicates that the electric field vibrates along a line,
which means that it is linearly polarised (LP). On the other hand, when χ = 45◦,
the ellipse degenerates into a circle. This indicates that light has a circular state
of polarisation (CP). The angle of ellipticity can take negative values to represent
the opposite direction of rotation. For example, the electric field is said to be right
circularly polarised (RCP) when χ = +45◦ while left circularly polarised (LCP)
when χ = −45◦.

Figure 2.2: The polarisation ellipse. During an optical cycle the end point of the
electric field traces an ellipse, known as polarisation ellipse.

To draw the polarization ellipse it is enough to know the angles χ and ψ. From these
two variables it is possible to determine the phase difference (φ = φy − φx) and the
amplitude ratio (R = ay/ax) between two orthogonal directions, x and y, for ex-
ample. The relationship between these variables is shown in Equations 2.14 and 2.15:
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2.1. POLARISATION OPTICS

tan 2ψ =
2R

1−R2
cosφ (2.14)

sin 2χ =
2R

1 +R2
sinφ (2.15)

Hence, from the polarisation ellipse one can reconstruct the total electric field and
vice versa.

2.1.3 Poincaré Sphere

The orientation of the polarisation ellipse can vary from ψ = 0◦ to ψ = 180◦.
Similarly, its angle of ellipticity can vary from χ = −45◦ to χ = 45◦. As represented
in Figure 2.3a, using a spherical coordinate system, where the angles 2ψ and 2χ
act as azimuthal and polar angles, respectively, one can construct a sphere with
unit radius that encodes information about polarisation since every point on its
surface will represent a pure state of polarisation. Additionally, the radius of the
sphere represents the intensity of light. This 3-dimensional representation of the
polarisation is known as the Poincaré sphere, which is depicted in Figure 2.3.

Figure 2.3: The Poincaré sphere. Any polarisation state can be represented on the
surface of the Poincaré sphere using the angles of orientation (ψ) and ellipticity (χ)
of the polarisation ellipse as spherical coordinates. (a) Coordinates. (b) Common
polarisation states.

Equations 2.17, 2.18 and 2.19 are the Cartesian coordinates (x, y and z) of the points
on the Poincaré sphere. These are also the definitions of the Stokes parameters (S1,
S2 and S3) where S0 is the intensity of light and represents the radius of the sphere.
As seen in Figure 2.3b, points along the equator correspond to linear states of polar-
isation. Each hemisphere correspond to an opposite direction of rotation (different
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2.2. NONLINEAR OPTICS

handedness) and the vertices of the sphere correspond to circularly polarised states,
right circularly polarised (RCP) and left circularly polarised (LCP) respectively.

S0 = Ix + Iy (2.16)
S1 = x = S0 cos 2χ cos 2ψ (2.17)
S2 = y = S0 cos 2χ sin 2ψ (2.18)
S3 = z = S0 sin 2χ (2.19)

Although the Poincaré sphere representation of a polarisation state requires more
calculations than the previous methods and might seem not very intuitive at first,
it has the advantage of being able to associate any state of polarisation to a point
on the same surface, which makes it a very good visualisation method.

2.2 Nonlinear Optics

When an electric field interacts with an atom, it induces a dipole moment by dinam-
ically displacing the electron cloud from the nucleus. Similarly, an EM wave induces
an oscillating dipole moment (p) proportional to the charge of the atom (q) and the
charge displacement (∆x), which in turn acts as source of a second EM wave with
the same frequency as the first one (see Figure 2.4).

Figure 2.4: Induced polarisation in a single atom.

If a group of atoms is considered, the contribution of every atomic oscillator induces
a total dipole moment, often described as polarisation density (P = Np), which can
be calculated as the sum of the individual dipoles. This magnitude is frequently
expressed in terms of the vacuum permitivity (ε0), the susceptibility of the medium
(χ) and the electric field of the incoming wave (E), as shown in Equation 2.20:

P = Np = ε0χE (2.20)

An sketch of an electric field interacting with a group of atoms is depicted in Fig-
ure 2.5.
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Figure 2.5: Induced polarisation in a group of atoms.

Equation 2.20 is only valid in linear dielectric media, which are characterised by
having a linear relation between the polarisation and the electric field. Nonlinear
dielectric media, on the other hand, are characterised by having a nonlinear relation
between them. To extend this equation to nonlinear media one can express the
polarisation density using a Taylor series expansion, as shown in Equation 2.21:

P = P(1) +P(2) +P(3) + · · · = ε0
(
χ(1)E+ χ(2)E2 + χ(3)E3 + ...

)
(2.21)

In many situations, the linear approximation (P(1)) is sufficiently precise and one
can neglect higher-order terms. However, one needs to start considering them when
the magnitude of the electric field is high enough that the medium has a significant
nonlinear response. Each high-order term of the polarisation is associated to different
frequency components. For example, expanding the second and third order terms
gives:

P(2) = ε0χ
(2)E2

0 [cos(2ωt+ 2kz) + 1] (2.22)

P(3) = ε0χ
(3)E3

0 [cos(3ωt+ 3kz) + cos(ωt+ kz)] (2.23)

Here one can see that by sending light into a nonlinear medium, it is possible to
generate EM waves oscillating at two times (2ω) and three times (3ω) the original
frequency. These are known as the second- and third-order harmonics and can
be used in multiple applications. Additionally, a DC component follows from the
expansion of the second-order nonlinearity. This is the reason why optical pulses
can create DC voltages in a process known as optical rectification. Furthermore,
the expansion of the third-order term leads to an ω oscillation of the polarisation
density. This can be interpreted as a nonlinear dependence of the refractive index
of the nonlinear medium with the intensity of light, a phenomenon known as the
Optical Kerr effect.

2.2.1 Three-Wave Mixing

It is of special interest to study what happens when an optical field with two fre-
quency components E(ω1, ω2) is sent into a nonlinear medium:
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E(ω1, ω2) = E(ω1) exp [i(ω1t− k1z)] + E(ω2) exp [i(ω2t− k2z)] (2.24)

The induced polarisation density oscillates with different frequency components:
0, 2ω1, 2ω2, ω1 + ω2 and ω1 − ω2. As a result of mixing the two waves, waves
with all these different frequencies can be generated but the conversion efficiency is
generally different. The reason for this is that a constructive phase relation between
the generated waves needs to be maintained over time and space.

For simplicity, this process can be regarded as the interaction between three waves
with frequencies ω1, ω2 and ω3. Energy can be transferred between them but ac-
cording to photon energy conservation, the total energy must be conserved. This is
referred to as the frequency-matching condition, shown in Equation 2.25:

ω1 + ω2 = ω3 (2.25)

One also needs to consider that the third wave can be generated in any point inside
the nonlinear medium. Therefore, in order to generate a strong nonlinear signal
there needs to be constructive interference between the generated waves along the
direction of propagation. As represented in Figure 2.6, a sum of phasors can be
destructive or constructive depending on the phase relation:

Figure 2.6: Schematic of destructive and constructive interference with phasors.

A mathematical expression of the phase-matching condition is shown in Equa-
tion 2.26 with the sum of the wavevectors:

k1 + k2 = k3 (2.26)

In collinear wave mixing this expression can be rewritten as:

n1k1 + n2k2 = n3k3 (2.27)

Due to the presence of chromatic dispersion (n(λ)) in the nonlinear medium, dif-
ferent wavelengths will experience a different refractive index and this needs to be
accounted in order to achieve phase-matching.
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2.2.2 Second Harmonic Generation

A degenerate case of three-wave mixing is the process of second harmonic generation
(SHG), where ω1 = ω2 = ω and ω3 = 2ω. The phase-matching condition in the
collinear case can then be simplified to:

n(ω) = n(2ω) (2.28)

Because of chromatic dispersion this condition cannot be satisfied in many optically
transparent crystals. A very common solution to compensate for dispersion is to use
birefringent media. This adds an additional degree of freedom since the refractive
index also depends on the light polarisation. There are two types of wave mix-
ing depending on whether the polarisation of ω1 and ω2 is the same (Type-I wave
mixing) or not (Type-II wave mixing). In uniaxial crystals, there are again two pos-
sibilities: either the incident beam is ordinary polarised and the second harmonic is
extraordinary polarised or vice versa. These two processes are known as ooe and eeo
SHG, respectively. Phase-matching can only be achieved in one of them and which
one will depend on whether the material is a positive or negative uniaxial crystal.
The phase-matching condition is written in Equations 2.29 and 2.30 for ooe and eeo
SHG, respectively:

no(ω) = ne(θ, 2ω) (2.29)
ne(θ, ω) = no(2ω) (2.30)

Figure 2.7 aims at visualising birefringent phase-matching. First, Figure 2.7a shows
the dependence of the refractive index on frequency for both the ordinary and the
extraordinary index. It is shown that the extraordinary index at ω is equal to the
ordinary index at 2ω, satisfying the phase-matching condition for eeo Type-I SHG.
Next to it, Figure 2.7b shows a different picture where the refractive index depend-
ence is plotted as a function of the angle θ between the direction of propagation and
the optic axis of the crystal. For the direction marked with a black line, the ellipse
described by ne(θ,ω) intersects the circle described by no(2ω). This is the direction
at which the eeo SHG phase-matching condition is met.

Figure 2.7: Birefringent phase-matching. (a) Matching the index of the extraordin-
ary wave at ω with that of the ordinary wave at 2ω. (b) Ordinary and extraordinary
refractive indexes at ω and 2ω as a function of the angle θ between optic axis and
the direction of propagation. Adaptation from [31].
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2.3 Ultrafast Optics

The measurement of ultrashort laser pulses is of high relevance to this work. For
preparing such a setup and being able to extract useful properties from the measure-
ments, one first needs to understand what an optical pulse is and what phenomena
affects its propagation, especially through air, but also through different materials.
To provide a helpful theoretical background, here there is a brief introduction to
ultrafast optics, divided into three parts: fundamentals, propagation and character-
isation of optical pulses.

2.3.1 Fundamentals of Optical Pulses

A wave is said to be monochromatic when it oscillates sinusoidally over time with a
constant frequency. The sum of two monochromatic waves is represented in Equa-
tion 2.31, where U(t) represents the complex wave function:

U(t) =
√
I1 exp (iω1t) +

√
I2 exp (iω2t) (2.31)

The intensity that results from adding two monochromatic waves oscillates at a
frequency equal to the difference between the two original frequencies, known as the
beating frequency, as shown in Equation 2.32:

I(t) = |U(t)|2 = I1 + I2 + 2
√
I1I2 cos [(ω2 − ω1) t] (2.32)

This temporal interference is analogous to the spatial interference between two
planes waves travelling at different angles. Keep adding multiple monochromatic
waves with a constant frequency spacing gives a beating signal with a shorter tem-
poral width. Thus, the discrete sum of monochromatic light waves results in a train
of optical pulses, where each pulse has a duration that decreases with the frequency
spacing and the number of added waves (M). Equation 2.33 shows a mathematical
expression for the sum of M waves with a constant frequency spacing ωF and central
frequency ω0:

U(t) =
√
I0

L∑
q=−L

exp [i(ω0 + qωF )t] (2.33)

where M = 2L + 1. This summation can be solved analytically and Equation 2.34
shows the solution:

I(t) = |U(t)|2 = I0
sin2 (Mπt/TF )

sin2 (πt/TF )
(2.34)

where is TF = 2π/ωF .

The interference of multiple waves can be easily calculated and Figure 2.8 shows
three different examples of this:
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Figure 2.8: Intensity resulting from the superposition of monochromatic waves.
(a) Sum of 2 waves. (b) Sum of 5 waves. (c) Sum of 10 waves.

Here a total of 10 waves are simulated. The first one has a frequency of 375THz
(corresponding to a wavelength of 800 nm) while the other waves have a frequency
that is 5THz (a shift of 11 nm at 800 nm) shifted with respect to the previous one.
Clearly, the width of the pulses decreases significantly as the number of interfering
waves is increased. In other words, the more frequency components are added to
the mix the shorter the duration of the pulse will be. Although here a coherent
superposition of waves has been simulated, i.e. with a constant phase difference
between them, in reality, this is rarely the case. For example, longitudinal modes
from a laser oscillator usually have a random phase relationship. A number of
mode-locking techniques that aim at locking the phases of the longitudinal modes of
a laser, i.e. maintain a constant phase relation between them, have been developed
for this reason [33].

A very important concept that follows from this derivation is the time-bandwidth
relation of optical pulses. A full description of the complex electric field of a pulse can
be made in both the temporal and in the frequency domains. Both descriptions are
equivalent and the transition from one to the other is done by means of the Fourier
transform. Equation 2.35 shows how to calculate the spectral amplitude |Ũ(ω)| and
the spectral phase ϕ(ω) from the Fourier transform of the complex electric field in
the time domain U(t) [34].

Ũ(ω) =
∣∣∣Ũ(ω)∣∣∣ exp [iϕ(ω)] = ∫ +∞

−∞
U(t) exp (−iωt)dt (2.35)
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A direct consequence of this is that the minimum achievable temporal width of a
pulse is inversely proportional to the spectral width. Additionally, in accordance
with the properties of the Fourier transform, these two quantities must satisfy the
time-bandwidth reciprocity relation. For Gaussian-shaped pulses, this relation is
written in Equation 2.36, where the temporal (∆t) and spectral (∆ν) widths are
expressed as full-width at half-maximum (FWHM) of the intensity. This relation
states that for a given bandwidth there is a minimum pulse duration. The shortest
possible pulse is said to be transform-limited.

∆t ·∆ν ≥ 4 ln 21/2

2
≈ 0.44 (2.36)

Optical pulses can have very short duration, less than picoseconds (10−12 s), receiving
the name of ultrashort optical pulses. These pulses require light to have a broad
spectrum. As a practical example, according to Equation 2.36 the bandwidth needed
in order to generate a 5 fs transform-limited pulse is ∆ν ≈ 88.1THz. In terms of
wavelength bandwidth this value corresponds to ∆λ ≈ 188 nm around a central
wavelength of λ0 ≈ 800 nm.

2.3.2 Propagation of Optical Pulses

A pulse of light is composed of a continuum of monochromatic waves, each of them
propagating at the speed of light (c), which is often called phase velocity. The fact
that phase velocity depends on frequency is a phenomenon known as dispersion
[35]. Typically, an expression that links phase velocity to frequency is known as
dispersion relation. Waves propagating in vacuum follow quite a simple dispersion
relation, written in Equation 2.37:

c =
ω

k
(2.37)

where ω is the angular frequency and k the wavenumber. Another quantity of
interest derived from the dispersion relation is the velocity at which the envelope
of a pulse propagates, known as the group velocity (v), which is calculated as the
partial derivative ∂ω/∂k [31]. Through propagation in vacuum, both the phase and
group velocities are the same, meaning that the shape of the pulse does not change
upon propagation. However, when the pulse travels through a medium different
from vacuum the dispersion relation gets more complicated and the pulse shape
generally changes upon propagation.

A very common way to quantify the dispersion of a pulse is to look at its spectral
phase content. The spectral phase can be approximated by a polynomial expansion,
as shown in Equation 2.38:

ϕ(ω) =
∑
n

1

n!
ϕ(n)(ω0)(ω − ω0)

n (2.38)

where ϕ(n) represents the nth derivative of the spectral phase function with respect to
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the angular frequency, evaluated at a reference angular frequency ω0. Each of these
terms has an important physical meaning. The zero-order (unit-less), ϕ(0), is the
phase accumulated at the frequency ω0 and it measures what is the position of the
optical reference relative to the peak of the envelope. The first-order (in [fs]), ϕ(1),
measures the time the optical reference has propagated from where it was generated,
assuming it travelled at the vacuum speed of light. The second order (in

[
fs2

]
), ϕ(2),

is known as the group delay dispersion (GDD) and it measures the rate of change
of the pulse duration as it propagates. Furthermore, the sign of GDD determines
whether the pulse has a positive or negative chirp, that is, whether the frequency
increases or decreases with time. Regardless of whether the chirp is positive or
negative, its presence leads to an increase in the pulse duration (τ) compared to the
transform-limited case (τ0). An expression relating the two quantities is shown in
Equation 2.39 [35]:

τ = τ0

√
1 +

16(ln 2)2[ϕ(2)(ω0)]2

τ 40
(2.39)

Higher orders, like ϕ(3) which is known as third order dispersion (TOD), give addi-
tional information about the change of the pulse shape as it propagates. Figure 2.9
shows different examples of how the spectral phase affects the shape of the pulse in
the time domain.
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Figure 2.9: Simulations showing the effect of dispersion on the pulse shape. (a)-
(c) Envelope and phase of the pulse in the frequency domain. (d)-(f) Envelope and
amplitude of the pulse in the time domain.

The origin of dispersion might be attributed to three different phenomena: refrac-
tion, diffraction and interference [35]. The first one is associated with the depend-
ence of the refractive index on the frequency of light, mainly due to absorptive
resonances. The second one emerges from diffraction and the frequency dependent
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deflection that occurs at non-normal incidence between different dielectric media.
Finally the third one originates from the interference of waves due to propagation
in periodic structures.

The first of these is strongly dependent on which material light is propagating
through, which is why it is often referred to as material dispersion. When a pulse of
light traverses a medium it acquires a spectral phase that can be written as shown
in Equation 2.40:

ϕ(ω) = k0(ω)n(ω)d =
ω

c0
n(ω)d (2.40)

The frequency dependence of the refractive index has its origin in the atomic and
molecular structure of the material. Atoms and molecules have absorptive reson-
ances at certain frequencies, which causes a nonlinear relation between the refractive
index and the frequency, even in spectral regions where the medium presents low
absorption. Far away from resonances, this dependence can be easily modelled and
it is often described by the Sellmeier equations. For optically transparent materials,
these equations provide a good description of the refractive index inside the visible
region of the spectrum. The Sellmeier equations for fused silica and BK7 are plotted
as a function of frequency and wavelength in Figures 2.10a and 2.10b:
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Figure 2.10: Refractive index from Sellmeier equations for fused silica and BK7.
(a) As a function of frequency. (b) As a function of wavelength.

By plugging the value of refractive index in Equation 2.40 and numerically derivat-
ing, one can calculate the second- and third-order terms of the polynomial expansion
of the spectral phase (see Equation 2.38). An example of this calculation for two
different materials, fused silica and BK7, is shown in Figure 2.11. Here the second-
and third-order terms of the spectral phase, represented respectively by the GVD
and TVD, are plotted as a function of both frequency and wavelength. GVD is
known as group velocity dispersion and measures the GDD per unit of material in-
sertion. Similarly, the TVD, known as third-order velocity dispersion, measures the
TOD per unit of material insertion.
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Figure 2.11: Calculated GVD and TVD for fused silica and BK7. (a) As a function
of frequency. (b) As a function of wavelength.

2.3.3 Characterisation of Ultrashort Laser Pulses

Many applications of ultrashort laser pulses require their precise characterisation.
Sometimes, this means having a complete description of the oscillating electric field,
while other times it could be simply measuring the pulse duration. This has led to a
very active line of research in recent decades, whose goal has been to develop optical
pulse measurement techniques. Generally, when it comes to measuring the duration
of an event, other shorter processes are used so as to have an adequate temporal
resolution for the first one. This, however, is not possible to do when measuring
ultrashort laser pulses, since these are the shortest events that can be generated.

One way to circumvent this issue is using the pulse itself for its own measurement.
This is what the autocorrelation technique does. The pulse to be measured is splitted
into two replicas, one of which goes into a delay stage. The two pulses are then
focused into a crystal, where a nonlinear signal is generated, which is then measured
with a photodetector. An sketch of the setup of an autocorrelator using SHG as
nonlinear process is depicted in Figure 2.12:

Figure 2.12: Schematic of an autocorrelator.

The intensity of the recorded SHG signal is dependent on the temporal overlap
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between the replicas in the crystal. Increasing the overlap results in a stronger
signal and vice versa. During a measurement, the signal is recorded while scanning
the delay between the two pulses. Plotting the intensity of the SHG signal as a
function of the time delay τ yields an autocorrelation signal G(τ), which is the
convolution of the pulse intensity I(t), as shown in Equation 2.41:

G(τ) =

∫
I(t)I(t− τ)dt (2.41)

In general, measurement of the pulse autocorrelation is not sufficient to determine
the temporal profile of the pulse. As seen in Equation 2.42, from the autocorrela-
tion one can determine the square magnitude of the Fourier transform of the pulse
intensity, but knowledge of the spectral phase is needed in order to reconstruct the
pulse in the time domain:

F{G(t)} = |F{I(t)}|2 (2.42)

In some cases it is sufficient to make an estimation of the pulse parameters. This can
be done, for example, assuming that the pulse is symmetric, i.e. I(t) = I(−t), and
therefore has zero phase since the Fourier transform of a symmetric (even) function
has no imaginary part. In spite of its limitations, the autocorrelator has proven
to be a very simple and useful method to estimate pulse duration. Moreover, the
experimental method of correlation between pulses proposed here has served as a
basis for many other pulse measurement techniques.

Another well-established technique is frequency-resolved optical gating (FROG) [10].
This method needs a reference pulse, which could be, as in autocorrelation, a replica
of the measured one. The two pulses are focused into a nonlinear medium with a
controlled delay. Only during the time interval or "time gate" in which the reference
pulse passes through the nonlinear medium, the incidence of the measured pulse
produces a nonlinear signal that can be detected. Unlike the autocorrelator, FROG
additionally resolves the signal with a spectrometer. There are multiple variations
of FROG today, especially in terms of how to produce the "time gate". The use
of nonlinear processes for this purpose is very common, such as SHG or the optical
Kerr effect. Figure 2.13 shows a sketch of a FROG that uses SHG:

Figure 2.13: Schematic of SHG-FROG.
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While it is true that the spectrum recorded for a single time delay still lacks phase
sensitivity, the set of measurements obtained after scanning the time delay between
the two pulses is sensitive to the spectral phase of the pulse. Plotting the measured
spectra with delay time on the vertical axis and frequency on the horizontal results
in a spectrogram S(ν,τ) known as the FROG trace. An expression for S(ν,τ) can
be written as follows:

SFROG(ν, τ) = |Φ(ν,t)|2 Φ(ν,t) =

∫ +∞

−∞
g(t,τ)e−i2πνtdt (2.43)

Where g(t,τ) = U(t)W (t − τ) is the product between the measured optical pulse
U(t) and the time-delayed gating function W (t − τ). Knowledge of Φ(ν,t) would
be sufficient to estimate U(t). Although the problem of extracting Φ(ν,t) from the
FROG trace might seem to be unsolvable, iterative 2D phase retrieval algorithms
capable of retrieving both the phase and the amplitude of the pulse have been
successfully implemented on this technique. The algorithm converges to a pulse
that minimises the difference between the measured and simulated FROG traces.

An alternative method for measuring ultrashort laser pulses, called dispersion scan
technique (d-scan), was invented in 2011 [12]. Unlike FROG and the autocorrelator,
it does not rely on the measurement of the signal resulting from the temporal overlap
between two pulses. Similar to them, the pulse to be measured is sent to a nonlinear
medium where a nonlinear signal is generated, which is then spectrally resolved.
The idea behind d-scan is the following. Nonlinear processes can be thought of
as nonlinear functions acting on the pulse in the time domain. The amplitude in
the time domain depends both on its corresponding spectral amplitude and on the
spectral phase since the calculation to go from one domain to the other is done
by means of the Fourier transform. Thus, in principle, if one is able to record the
spectra while scanning the phase of the pulse, the resulting spectrogram should be
sensitive to the spectral phase of the incident pulse.

To perform a phase scan, d-scan needs an experimental method that manipulates
the spectral phase in a controlled way. Figure 2.14 shows a sketch of a SHG d-scan
setup.

Figure 2.14: Simplified schematic of a d-scan setup.
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As shown here, the method consists in transmitting the laser pulses through a glass
wedge pair, one of which is mounted on a motorised translation stage. These add
positive dispersion in the visible, mainly in the form of GDD although higher-orders
will be more or less present depending on the material used. The amount of dis-
persion is also dependent on the thickness of the glass that the light has to pass
through. For this reason, a simple way to perform the scan is to move one of the
wedges and record the spectrum simultaneously.

Before the wedges, negative GDD is added to the pulse to ensure that, at the be-
ginning of the measurement, the pulse is negatively chirped. Chirped mirrors, con-
sisting of two highly reflective mirrors which act as a negative dispersive element,
can be used for this purpose. Neglecting higher-order terms of dispersion (see Equa-
tion 2.38), for one certain material insertion the wedge pair compensates exactly
for the negative GDD present in the pulse, thus flattening the spectral phase and
making the pulses transform-limited. After the wedges, the high intensity pulses go
through a nonlinear crystal where a harmonic signal, in the present case the second
harmonic (SHG), is generated. Scanning (moving back and forth the wedge pair)
around the point of optimal compression allows to record a 2D spectrogram with
glass insertion on the vertical axis and frequency on the horizontal axis, which is
known as the d-scan trace. To be able to retrieve the spectral phase, one needs to
have a precise mathematical model describing the measurement of a d-scan. The
evolution of the wave function as it goes through the setup is derived in the follow-
ing. Initially, the pulse can be expressed in the frequency domain as:

Ũ(ω) =
∣∣∣Ũ(ω)∣∣∣ exp [iϕ(ω)] (2.44)

After crossing the glass wedge pair, the pulse acquires a frequency dependent phase
due to material dispersion that can be adjusted varying the amount of glass insertion,
which is introduced here in the form of the variable z:

Ũ(ω, z) =
∣∣∣Ũ(ω)∣∣∣ exp [iϕ(ω)] exp [ik0n(ω)z] (2.45)

Then SHG is performed. It can be modelled as a function that squares the electric
field in the time domain:

USHG(t, z) =

[∫
Ũ(ω, z) exp (iωt)dω

]2
(2.46)

Finally, the spectrometer measures the spectral intensity S(ω,z) of the nonlinear
signal.

S(ω, z) =

∣∣∣∣∫ USHG(t, z) exp (−iωt)dt
∣∣∣∣2 (2.47)

It has been assumed in this model that the process of SHG can be described only
as a squaring function of the electric field. This, however, is an ideal approximation
since perfect phase-matching over the whole bandwidth of the pulse is needed for
this to happen. A response function R(ω) is often included in the expression of the
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spectrometer signal to compensate for the irregular spectral response [34]:

Sreal(ω, z) = R(ω)Sideal(ω, z) (2.48)

Simulating the d-scan trace of a predefined pulse is simple and provides a lot of
information for the interpretation of measured d-scan traces of arbitrarily intricate
pulse shapes. The result obtained after simulating the d-scan trace of a Gaussian
pulse with an ideal full-width at half-maximum (FWHM) of 10 fs with a central
wavelength of 800 nm is shown in Figure 2.15a. In this simulation, the wedges are
considered to be made of BK7, whose refractive index as a function of frequency
can be calculated from the Sellmeier equation. As can be seen here, the d-scan
of a transform-limited pulse has the highest intensity at the position of zero glass
insertion, in which the pulse does not acquire GDD and therefore it is maximally
compressed. Moving up or down from this position, the intensity decreases due to
the stretching of the pulse in the time domain. To simulate the d-scan trace of a pulse
with spectral phase with higher-order terms, nonzero values must be introduced in
the higher-order terms of the spectral phase polynomial expansion of the pulse (see
Equation 2.38 ). As can be seen in Figure 2.15b, the simulated d-scan of a pulse
with positive GDD is shifted mainly downwards and otherwise appears unaffected.
The reason for this is that BK7 mainly contributes to the phase by adding positive
GDD and therefore a negative insertion, i.e. glass removal, is needed to compensate
for this and compress the pulse. When the pulse contains positive TOD, the trace
appears to be tilted, as seen in Figure 2.15c. The last example, Figure 2.15d, shows
that the presence of fourth-order dispersion (FOD) in the pulse gives a parabolic
shape to the d-scan trace.
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Figure 2.15: Simulated d-scan trace of a 10 fs Gaussian pulse for different spectral
phase functions. (a) Zero spectral phase i.e the pulse is transform-limited. (b) Spec-
tral phase with positive GDD. (c) Spectral phase with positive TOD. (d) Spectral
phase with positive FOD.

These simulations clearly show that the d-scan technique is very sensitive to the
spectral phase of the pulse, which is very important in order to retrieve it from the
recorded spectrogram. In a similar way to FROG, a 2D phase retrieval algorithm is
needed in order to retrieve the phase from the d-scan trace. The way this algorithm
works is by, iteratively, trying to minimise the error between the simulated trace
and the measured one. This error can be written as follows:

G2 =
1

NiNj

∑
i,j

Smeas(ωi,zj)− µSsim(ωi,zj) (2.49)

Where µ is the factor that minimises the error and that has to be updated in every
iteration:

µ =

∑
i,j Smeas(ωi,zj)Ssim(ωi,zj)∑

i,j S
2
sim(ωi,zj)

(2.50)

Solving optimisation problems, such as the one presented here, is a well-studied
field of mathematics. A common method is least squares routines, such as the
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Nelder-Mead algorithm. These have been successfully implemented in d-scan [36,
37]. Unfortunately, these methods tend to get stuck on local minima. A more recent
approach has been to use a differential evolution-based algorithm [38], which appears
to be less susceptible to stagnate at local minima. Another type of algorithms,
commonly used in FROG, are the constraint-based inversion algorithms that have
also been implemented in the d-scan technique [39]. In general, these algorithms
converge to a solution faster than "brute force" ones based on least squares routines
but have the disadvantage of being more sensitive to noise.

One of the strengths of d-scan is the simple in-line setup without the need of a
reference pulse and interferometric precision, which makes the technique inherently
more stable. Moreover, d-scan often manipulates dispersion using gratings or chirped
mirrors, elements which are typically found in ultrafast laser compressor systems.
This is a great advantage since it gives the possibility to compress and measure
the laser pulses simultaneously. It is also important to mention that d-scan can be
implemented using other nonlinear processes, such as third-order dispersion (TOD)
d-scan [40], but one should keep in mind that higher-order nonlinearities generate
much weaker signals.

Other pulse measurement techniques that do not require complex phase retrieval
algorithms do exist. An example of these is spectral phase interferometry by direct
reconstruction of the electric-field (SPIDER) [11], based on spectral interferometry
between two pulse replicas that are shifted in frequency in respect to one another.
These techniques, however, come at the expense of a much more complicated setup.
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Chapter 3

Methods

The aim of this project is to include the measurement of a time-dependent polarisa-
tion state in the d-scan technique. This section deals with all the methods needed
to implement this measurement, referred to in this work as polarisation d-scan. A
first step is to devise a method capable of generating a predictable time-dependent
polarisation state, which can serve as a proof of measurement. The method, detailed
during the first part of this section, consists in transmitting linearly polarised light
through a combination of two quarter-wave plates of different orders. After these
elements, light has a polarisation state that changes as a function of time. This is
known as polarisation gate. Simulations of the polarisation gate are made to serve
as comparison with the final results.

As a guarantee that d-scan provides an accurate measurement of the polarisation
gate, it is necessary that the elements used to generate it are properly characterised.
The experimental method for its characterisation as well as its subsequent analysis
is shown during the second part of this section, where an extensive study of wave
plates is compiled, via calculations and experiments.

The third section of methods deals with both the experimental setup and the meas-
urement procedure. The conventional d-scan setup needs to be redesigned and
adapted to measure a time-dependent polarisation state. Furthermore, in this work
a Matlab script is developed to simulate the d-scan measurement of such a state
in order to facilitate the evaluation of the final results.

3.1 Creating a Time-Dependent Polarisation State

3.1.1 Concept

To test the performance of the d-scan when measuring intricate vector pulses, a
method capable of generating a predictable time-dependent polarisation state is
needed. The approach used in this work to modulate the ellipticity of the femto-
second pulses consists in transmitting them through a combination of two wave
plates, as it is illustrated in Figure 3.1.

28



3.1. CREATING A TIME-DEPENDENT POLARISATION STATE

Figure 3.1: Schematic showing the generation of a time-dependent polarisation
state, known as polarisation gate, by transmitting linearly polarised light through
a combination of a third-order quarter-wave plate (QW3) and a zero-order quarter-
wave plate (QW0). The green arrows represent the polarisation in planes perpen-
dicular to the direction of propagation.

First, a linearly polarised pulse is sent through a third-order quarter-wave (1.75λ)
plate, abbreviated as QW3, made of quartz and orientated such that its principal
axes form an angle of 45◦ in respect to the incoming polarisation. This splits the
incident pulse into two orthogonally polarised pulses with equal amplitudes whose
directions of polarisation follow the principal axes of the wave plate. Each of these
pulses propagates with a different speed due to the birefringent character, which
originates a time delay as well as a dephasing of 7π/2 between the fast axis polarised
pulse and the slow axis polarised one. The time delay is such that the two pulses are
separated in the time domain but leaving a time interval in the center during which
they both overlap with a sufficiently high intensity. This condition limits the time
delay to be less than the duration of the pulse. After the wave plate, the polarisation
state changes as a function of time, going from linear polarisation (LP) at 135◦ to
circular polarisation (CP) when both pulses have the same amplitude, and back to
linear polarisation, this time at 45◦.

Technically the first plate is enough to create the time-dependent polarisation state.
However, for applications in the field of attosecond science it can be more useful
to have a confined linear polarisation state in the middle of the pulse. To do this,
the output pulse from QW3 is then transmitted through a zero-order quarter-wave
(0.25λ) plate, abbreviated as QW0, also made of quartz and whose principal axes
form an angle of 45◦ in respect to those of the higher-order plate. Again, the
incoming pulse is split into two orthogonally polarised pulses that experience a small
time delay and a dephasing of π/2. This converts linear polarisation to circular
and vice versa. The combination of these two waveplates changes an input linear
polarisation state into a time-varying polarisation pulse whose polarisation goes from
left circular polarisation (LCP) to linear polarisation at 45◦ in the middle and back
to right circular polarisation in the front (RCP).

3.1.2 Simulation of the Polarisation Gate

As discussed during section 2.1, there are different ways to describe a polarisation
state and its evolution through polarisation sensitive elements like polarisers and
wave plates. In Jones formalism, polarisation states are associated with vectors and
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polarisation elements with matrix operators. Vectors, matrices, and their respective
products can be easily implemented in a programming language like Matlab. This
allows the evolution of the polarisation state of light to be simulated as it propagates
through an optical system. In particular, it can be used to simulate the polarisation
gate. How this is done is detailed below:

A combination of two wave plates corresponding to two different orders of a
quarter-wave plate can be used to generate a time-dependent polarisation state,
referred to in this work as the polarisation gate. The Jones matrix of a quarter-wave
plate of order M is shown in Equation 3.1:

Machromatic
QWM =

[
1 0
0 ei(2M+1)π/2

]
(3.1)

This matrix, however, represents a wave plate that adds the same relative phase
shift regardless of wavelength, i.e. it assumes the plate to be achromatic. Although
wave plates built for this purpose within a given wavelength range exist, the wave
plates used in the experiments are designed for one wavelength. A more general
matrix that can be used for chromatic wave plates is given in Equation 3.2:

Mchromatic
QWM =

[
1 0
0 ei(2M+1)k0[ne(ν)−no(ν)]L0

]
(3.2)

Here, the relative phase shift is expressed in terms of the wave vector (k), the ordin-
ary no(ν) and extraordinary ne(ν) refractive indices, and the zero-order thickness of
the crystal (L0).

The first step in the simulation is to define a vector that corresponds to linearly
polarised light in the vertical direction. Equation 3.3 shows the formula used for this:

J̃i(ννν) = A(ννν) ·
[
0
1

]
(3.3)

Here, the Jones vector is multiplied by a factor A(ννν), which represents the spectral
amplitude of the light before it passes through the wave plates. Therefore, the Jones
vector used in the simulations is not a vector but a matrix of dimension 2×N , where
N is the number of frequency points needed to simulate the spectrum of the incoming
pulse. For simplicity, the factor A(ννν) is calculated assuming a Gaussian-shaped pulse
with temporal width ∆t and central frequency ν0. In Equation 3.4 the formula used
for this purpose is shown:

A(ννν) = exp
[
−π2∆t2 (ννν − ν0)

2] (3.4)

The evolution of the Jones vector through the combination of wave plates is calcu-
lated using matrix multiplication, as shown in Equation 3.5:

J̃f = MQW0 ×R(−45◦)×MQW3 ×R(45◦)× J̃i (3.5)
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The Jones vector in the time domain can be calculated applying the Fourier trans-
form over the Jones vector in the frequency domain, as shown in Equation 3.6:

Jf (t) = F
{
(J̃f (ννν)

}
(3.6)

The new form of the Jones vector is shown in Equation 3.7:

Ji(t) =

[
Ax(t) e

iφx(t)

Ay(t) e
iφy(t)

]
(3.7)

The amplitude ratio and the relative phase difference between two orthogonal com-
ponents of the electric field can be calculated as a function of time from the Jones
vector. In other words, it describes the polarisation state of light as a function of
time. This can be visualised graphically by calculating the angle of ellipticity (χ) at
each time using Equation 2.15 and plotting it as function of time. Figure 3.2 shows
the result of a simulation where a 6 fs pulse with a central frequency of 0.375PHz
(800 nm) is transmitted through the combination of wave plates. This figure shows
the angle of ellipticity as a function of time after the wave plates, along with the
resulting pulse envelope:

Figure 3.2: Simulation of the polarisation gate. The angle of ellipticity of the
electric field after the combination of wave plates is plotted as a function of time.
In addition to this, the shaded area represents the envelope of the polarisation gate
pulse.

The temporal width of the pulse has increased due to the effect of the wave plates.
At the beginning of the pulse (negative time), the ellipticity angle has a value of
χ ≈ −40◦. It decreases rapidly, crossing χ = 0◦ in the middle of the pulse, and
reaches a value of χ ≈ +40◦ on the opposite side of the pulse (positive time).
In terms of polarisation states, the pulse starts left circularly polarised, becomes
linearly polarised in the middle, and is right circularly polarised at the end.

Master Thesis 31 Daniel Díaz Rivas



3.1. CREATING A TIME-DEPENDENT POLARISATION STATE

It is also interesting to look at the intensity for different projections of the electric
field, specially those at 45◦ and 135◦. As shown in Equation 3.8, first the Jones
vector is multiplied by a rotation matrix of 45◦ so that the axes of the new reference
frame are aligned with the directions at 45◦ and 135◦.

J′
f = R(45◦)× Jf (3.8)

To calculate the electric field intensity for these two projections, the Jones vector is
first projected in each of the two orthogonal directions of the new reference frame
and then squared. Mathematically this is implemented using Equations 3.9 and 3.10:

I(45◦) =
∣∣[1 0

]
× J′

f

∣∣2 (3.9)

I(135◦) =
∣∣[0 1

]
× J′

f

∣∣2 (3.10)

Figure 3.3 shows the results of these calculations. As seen in this figure, the intensity
of the projection at 45◦ follows a Gaussian distribution, slightly broader than the
input pulse and with about half the maximum intensity. In addition, the intensity
distribution of the projection at 135◦ exhibits a double peak structure with less than
a quarter of the intensity of the input pulse. The explanation for this lies in the
time-dependent polarisation state. According to the model presented in the previous
section and then verified by ellipticity angle calculation, the polarisation gate should
have linear polarisation at 45◦ in the middle of the pulse. Projecting the electric
field at 135◦ should completely cancel the intensity in the middle of the pulse, which
is observed in this calculation.
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Figure 3.3: Simulation of the polarisation gate. The envelopes of the input pulse
and the two linearly polarised projections at 45◦ and 135◦ after the combination of
the two wave plates are plotted.
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3.2 Characterisation of Wave Plates

As seen in Equation 2.9, the relative phase shift added by a wave plate depends on
wavelength. For this reason, wave plates are typically built for a central wavelength
(λ0) and their effect on the polarisation state departs from ideal behavior as soon as
the wavelength of light becomes different. In principle, one should expect the rate
of change of the polarisation state after the wave plate as a function of wavelength
to increase with wave plate order, since higher orders add more relative phase for a
given wavelength, as seen in Equation 3.1. To ensure that the wave plates used in
the experiments are the correct ones, a setup for their characterisation was mounted
in the lab.

A common method to characterise the function of a wave plate is to place it between
two polarisers, illuminate it with a broadband light source and spectrally resolve the
intensity with a spectrometer. The idea behind this configuration is as follows. The
first polariser is fixed in a given orientation and linearly polarises the incident light
in that direction. The light then passes through the wave plate to be characterised,
resulting in a change of the polarisation state. The polariser located after the plate
plays the role of the "analyser". During the characterisation process, measurements
are taken as the analyser is rotated, in order to measure the spectral intensity cor-
responding to different projections of the electric field. For this kind of experiments,
broadband light sources such as a white incandescent lamp are typically used [41].
Instead, in this work ultrashort laser pulses coming directly from the oscillator are
used for illumination. These pulses have a wide bandwidth in the spectral range
where the wave plates are used during the experiments, making them a great tool
for their characterisation. Figure 3.4 shows a sketch of the setup used in the lab for
this purpose:

Figure 3.4: Simplified schematic of the wave plate characterisation setup.

Before starting the characterisation, one needs to locate the principal axes of the
wave plate. The first step is to set the two polarisers to be cross-polarised by rotating
the second polariser until the measured intensity is at a minimum. Then, the wave
plate is inserted in between them. One of the principal axes of the wave plate is
aligned with the polarisation axis of the first polariser when the measured intensity
remains minimum. The reason for this is that in this position the electric field
only acquires an absolute phase and this has no effect on the polarisation state. A
measurement of the laser spectrum is needed to normalise the measurements. This
is done by measuring the spectrum when the two polarisers are parallel and one of
the wave plate principal axes is aligned with the input polarisation.
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To start the characterisation, the wave plate is orientated at 45◦ relative to the input
polarisation. The initial position of the analyser is cross-polarised in respect to the
first polariser. As a measurement convention, an analyser angle of 0◦ corresponds
to the initial position, where its polarisation axis is aligned with the horizontal
direction. Intensity is recorded every 10◦ as the analyser is rotated from 0◦ to 180◦,
which corresponds to one complete revolution of its polarisation axis.

A simulation of the wave plate characterisation can also be implemented with Mat-
lab. Similar to the polarisation gate simulation, which was described in subsec-
tion 3.1.2, the evolution of the Jones vector through the setup is computed using
matrix multiplication, as shown in Equation 3.11:

J̃f (ννν,θθθ) = R(θθθ)×R(−45◦)×MQW ×R(45◦)× J̃i(ννν) (3.11)

The final Jones vector is evaluated for an array of frequencies (ννν) in order to simulate
the data points measured by the spectrometer as well as for an array of angles (θθθ)
that simulates the different projections of the analyser.

The two quarter-wave plates used in the experiments to generate the polarisation
gate, QW0 and QW3, are characterised via simulations and measurements. In both
cases, the collected data can be arranged in a matrix form with 19×2838 data points
(2838 is the number of frequency points measured by the spectrometer). The spectra
obtained for each wavelength is normalised by the intensity of the input laser at that
wavelength. The resulting image of plotting this matrix for both simulations and
measurements is shown in Figure 3.5. Each pixel in these images has a value that
corresponds to the intensity of light for each wavelength and angle of the analyser,
which is represented in the color map.
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Figure 3.5: 2D plot for wave plate characterisation. (a)-(b) Measurements and
simulation of the zero-order quarter-wave plate (QW0). (c)-(d) Measurements and
simulation of the third-order quarter-wave plate (QW3). The input laser spectrum
is represented in logarithmic scale on top of the measured spectrograms.

As seen in Figures 3.5b and 3.5d the signal to noise ratio (SNR) is good inside
the wavelength range between approximately 620 nm and 900 nm which, as seen
on top of these images, correspond to the limits of the laser spectrum. Outside
this wavelength range the SNR clearly drops because fluctuations in laser intensity
become as significant as the laser intensity itself. Besides this, there is a good
agreement between simulations and measurements in both cases. From these images
it is possible to determine the polarisation state of light for different wavelengths.
This can be done by measuring for each wavelength the contrast between the regions
of higher and lower intensity of the image as a function of the angle of the analyser.
While high contrast indicates that the polarisation state is linear for that wavelength,
low contrast indicates that light is circularly polarised. This characterisation shows
that both wave plates are built for a central wavelength of 800 nm, since exactly at
this wavelength the contrast is very low and thus the polarisation state is circular.
As soon as the wavelength departs from this value the intensity begins to depend
on the analyser angle, meaning that the state of polarisation after the wave plate
is no longer circular. Additionally, one can also see that the rate of change of the
polarisation state as a function of wavelength is significantly higher for the higher-
order wave plate, which was expected.

For each wavelength, the measurements of intensity as a function of analyser angle

Master Thesis 35 Daniel Díaz Rivas



3.2. CHARACTERISATION OF WAVE PLATES

can be fitted to an oscillating function. This is chosen to be an extended version,
i.e. with more degrees of freedom, of Malus’s law, as shown in Equation 3.12:

I(θ) = a+ b cos2 (θ + c) (3.12)

Figure 3.6 shows the result of making this fit for both wave plates. Although the
fit has been made for all the wavelengths data sets (2838), only the results obtained
for 10 wavelengths that are approximately spaced by 60 nm around a wavelength of
800 nm are shown here:
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Figure 3.6: Normalised measured intensity as a function of the analyser angle. (a)
Zero-order quarter-wave plate (QW0). (b) Third-order quarter-wave plate (QW3).

From the fit parameters, the intensity for two orthogonal directions, Ix and Iy, as
well as the relative phase difference between them, φ, can be easily calculated. Next,
using the equations 2.14 and 2.15 the orientation (ψ) and ellipticity (χ) angles can be
calculated. Finally, these angles can be plugged into Equations 2.16, 2.17, 2.18 and
2.19 in order to calculate the Stokes parameters . As seen during subsection 2.1.3,
these correspond to the coordinates of a polarisation state on the Poincaré sphere.
Figure 3.7 shows the results obtained after plotting the polarisation states calculated
from the simulations and measurements using the Poincaré sphere representation:
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Simulation Measurement

QW0

QW3

Figure 3.7: Representation of the state of polarisation using the Poincaré sphere
for a total of 20 wavelengths between 620 nm and 900 nm. (a)-(b) Measurements
and simulations of QW0. (c)-(d) Measurements and simulations of QW3.

This representation serves to visualise clearly how the polarisation state changes as
a function of wavelength for each wave plate. For QW0, Figures the 3.7a and 3.7b
show that all points are close to the top vertex of the sphere, meaning that even for a
wide wavelength range of 280 nm light exhibits approximately circular polarisation.
Instead, Figures 3.7c and 3.7d show that polarisation changes quickly after QW3,
going from circular polarisation at 620 nm to linear polarisation at 700 nm, circular
at 800 nm and finally linear at 900 nm. As seen in the results from the simulations,
Figures 3.7a and 3.7c, all states of polarisation lie exactly on the surface of the
Poincaré sphere. This is not the case in the results obtained from the measurements,
Figures 3.7b and 3.7d, where the states of longer wavelengths (red colors) tend
to go under the sphere while shorter wavelengths (blue colors) above the sphere.
Measurements were normalised by the spectrum measured when one of the wave
plates principal axes is aligned with the input polarisation. A small error in this
alignment could have been the cause of the discrepancy in the radial coordinate of
the measured polarisation states.
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3.3 Measurement of a Polarisation D-Scan

This section aims to provide a description of the experimental setup, the meas-
urement method and a model to perform simulations of the measurements using
Matlab.

3.3.1 The Experimental Setup

In this segment, the experimental setup designed and built for measurement of a
time-dependent polarisation state with d-scan is described in detail. The experi-
mental design is fundamentally based on the idea of a conventional d-scan, which
has been presented during subsection 2.3.3 and represented schematically in Fig-
ure 2.14.

In the experiments performed during this work, a Titanium-Sapphire ultrafast os-
cillator delivers ultrashort laser pulses with a duration of 6 fs FWHM at a carrier
wavelength of approximately 850 nm and with a repetition rate of 80MHz [42]. In a
second stage, which consists of an optical parameter chirp pulse amplification (OP-
CPA) system, the pulses emitted by the oscillator are amplified up to an average
power of 3W and the repetition rate is reduced to 200KHz [42]. The d-scan setup
is located in line with the output of the OPCPA system. Between the OPCPA and
the d-scan setup is a beam shutter to let in or block out light when needed. A
measurement of the laser spectrum is shown in Figure 3.8:
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Figure 3.8: Measured spectrum of the laser.

A drawing of the experimental setup is presented in Figure 3.9. This configuration
has two different functions. On the one hand, the conventional design of the d-scan
technique is adapted to measure linearly polarised projections of the electric field.
On the other hand, the assembly includes the optical elements that are necessary
for the generation of the polarisation gate. A description of the role of the different
elements is presented below:
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Chirped mirrors (CMs) are used to add negative chirp to the pulses. These are part
of the pulse compression system at the output of the OPCPA. Further down in the
beam path there is a wedge pair made of BK7 glass which, as oppose to the CMs, is
responsible for adding positive chirp. One of the wedges is mounted on a motorised
translation stage so as to scan the amount of glass that light has to pass through.
The iris located after the wedges is used simply to provide the ability to manually
decrease the power of the beam, which may be necessary to avoid saturating the
fiber coupled collector (D2) or for alignment purposes. A flat mirror (M1) and a
spherical mirror with a long focal length (M2) are used to reorient and align the
beam path.

Figure 3.9: Schematic of the polarisation d-scan setup.

The elements needed to generate the polarisation gate are now introduced. Although
in principle the laser pulses are vertically polarised, the first element along this line
is a linear polariser (P1) which is used to obtain a "clean" linear polarisation state.
Once the polarisation has been cleaned, a combination of two quarter-wave plates
converts the linear polarisation into a time-dependent polarisation state, known as
the polarisation gate. This method has been explained during Section 3.1.

A second linear polariser (P2) is used to project the electric field of the pulses in
a certain direction which can be turned by rotating the polariser. A BBO crystal
is precisely placed in the focal plane of M2, where the laser intensity is highest, to
generate the second harmonic through SHG. Two orientations of the SHG crystal
relative to the incident polarisation maximise the intensity of the second harmonic
signal, the explanation is as follows. Because ooe phase matching takes place in the
BBO crystal (see subsection 2.2.2), the intensity of the second harmonic is maximised
when the polarisation of the incident laser beam aligns with the ordinary direction
in the crystal. In a 360◦ rotation this condition is met twice, due to the 180◦

rotation symmetry. In the experimental setup, the SHG crystal is mounted on a
rotation mount to rotate it to find the orientation for which the nonlinear signal is
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maximised. A third polariser (P3) is oriented perpendicular (cross-polarised) to the
second polariser (P2) to cancel the fundamental radiation as well as the residual
second harmonic that might be present before the SHG crystal.

As seen in this setup, two devices are used to collect light and transmit it to the
spectrometer: an integrating sphere (D1) and a fiber coupled collector (D2), which
have different roles in the measurement process. The integrating sphere consists
of a spherical diffusing cavity that is attached to a fiber. This is placed after the
second polariser and must be manually removed when not needed. The fiber coupled
collector is fixed to the optical table and it is located after the third polariser. Due
to its higher sensitivity, it is used to collect the nonlinear signal generated in the
SHG crystal. As opposed to the large aperture area of the integrating sphere, it has
a very small effective area, requiring a careful alignment. Both instruments collect
light and transmit their signals to a fiber-coupled spectrometer (Avantes) that can
operate in the spectral range between 200 nm and 1100 nm.

Compared to a conventional d-scan setup, this setup allows reconstruction of lin-
early polarised pulses corresponding to different projections of the electric field. As
mentioned above, one of the complexities of these measurements is that the SHG
crystal must be rotated each time the second polariser is rotated due to the need
to maximise the efficiency of second harmonic generation. Similarly, the third po-
lariser must remain cross-polarised and therefore must be rotated when the second
is rotated and by the same amount. A schematic description of the measurement
procedure is detailed below.

3.3.2 Measurement Procedure

Before starting to measure, it is necessary to calibrate the wave plates and the
polarisers so as to find their initial orientations. Polariser 1 can be set at any angle
whereas polariser 2 determines the angle of the linearly polarised projection. To do
so, the following steps are followed:

1. The integrating sphere is placed after polariser 2 and connected to the spec-
trometer.

2. Polariser 1 is added to the setup with an arbitrary orientation.

3. Polariser 2 is added to the setup. By turning this polariser we look for the
position at which the intensity recorded with the spectrometer reaches a min-
imum. Here polariser 2 is cross-polarised with respect to polariser 1. This
position corresponds to an angle of 0◦.

As for the wave plates, QW3 must be oriented so that its principal axes form an angle
of 45 ◦ with respect to the incoming polarisation, set by the polarisation axis of P1.
This ensures that when light hits the wave plate, the amplitude of the electric field
is split equally between the two principal directions. On the other hand, QW0 must
be oriented such that its principal axes form an angle of 45 ◦ with respect to those
of QW3, meaning that one of the principal axes is aligned with the polarisation axis
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of P1. Each wave plate is calibrated separately and then recombined in the setup
with their new orientations. How to locate the principal axes of a wave plate has
already been explained in section 3.2.

To perform the d-scan measurement for a linearly polarised projection of the electric
field defined by the orientation of polariser 2, one needs to follow a series of steps:

1. The beam shutter is closed. The integrating sphere is inserted after polariser
2. The recorded spectrum is saved as a background to be subtracted from
subsequent measurements.

2. The shutter opens again. The iris opens fully for maximum laser power. The
spectrum is measured and saved as the fundamental spectrum.

3. The iris closes completely. The integrating sphere is removed from the setup.
The iris is adjusted until the intensity measured with the fiber detector reaches
a high enough value without saturating.

4. Polariser 3 is now added to the setup. Rotating polariser 3, we look for the
position where the intensity reaches a minimum. Here polariser 3 is cross-
polarised with respect to polariser 2.

5. The SHG crystal is added to the setup, in a position that would ideally cor-
respond to the focal plane. Rotating the SHG crystal we look for the position
at which the second harmonic signal is maximised while the fundamental is
minimised.

6. The nonlinear signal is optimised by finely opening the iris, without reaching
saturation. Now, we proceed to measure the spectrum while scanning the
position of the wedge around the point of optimal compression. The resulting
spectrogram constitutes the measured d-scan trace for the projection of choice.

7. The same procedure must be repeated again for a different projection.

The measurements are then processed with a software developed for the d-scan tech-
nique. This program uses the measured d-scan trace together with the fundamental
spectrum to retrieve the spectral phase of the pulse. The program uses the funda-
mental spectrum to make an initial guess of the spectral phase. By simulating the
d-scan trace for that spectral phase, the program obtains a parameter that reflects
the difference between the measured trace and the simulated one. Through a series
of iterations, the algorithm is able to find a spectral phase that minimises such para-
meter and converges to a solution. From this solution, the program calculates the
Fourier transform and reconstructs the pulse profile in the time domain.

3.3.3 Simulation of a Polarisation D-Scan

The problem of simulating a polarisation sensitive d-scan trace can be reduced to
being able to simulate two different effects caused by the propagation of the pulses
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through the optical system, one is the evolution of the polarisation state and the
other is the effect of dispersion on the complex amplitude of the pulses.

How to model polarisation has already been explained during subsection 3.1.2. Dis-
persion is modeled in the simulations considering only the effect of material disper-
sion. The refractive index is simply calculated from the Sellmeier equation of the
material in question and evaluated on a specific array of frequencies (ννν), used to
simulate the spectrum of the laser. these values are used to calculate the acquired
spectral phase using Equation 2.40. To calculate the dispersion added by the wedge
pair as a function of glass insertion, an array of glass insertion points (z) is created
and included in the calculation of the spectral phase. This yields a two-dimensional
matrix, where each value represents the spectral phase for a given value of frequency
and glass insertion. The precise formula used for this calculation is written in Equa-
tion 3.13.

ψ(ννν, z) =
2πν

c0
n(ννν)× z (3.13)

A general expression for the Jones vector is shown in Equation 3.14. In the
simulation this is not treated as a vector but as 2 × N × P matrix where N and
P correspond to the number of simulated frequency and glass insertion points,
respectively.

J̃(ννν, z) =

[
Ex(ννν, z)
Ey(ννν, z)

]
(3.14)

Linearly polarised light is simulated by setting to zero one of the components of
the Jones Vector, as shown in Equation 3.15. Here, the complex electric field is
expressed in the frequency domain and calculated as the product between a real
spectral amplitude A(ννν,z) that gives shape to the pulse and a spectral phase ψ(ννν,z).

J̃i(ννν, z) =

[
0

A(ννν, z) eiψ(ννν, z)

]
(3.15)

The evolution of the Jones vector as light propagates through the wave plates is
computed using matrix multiplication, as shown in Equation 3.16. Here, the rotation
matrix R(θ) is included in order to be able to rotate the reference frame and thus
be able to project the electric field in any direction.

J̃f = R(θ)×MQW0 ×R(−45◦)×MQW3 ×R(45◦)× J̃i (3.16)

The corresponding Jones vector in the time domain can be calculated making the
Fourier transform of the Jones vector in the frequency domain.

Jf (t, z) = F
{
(J̃f (ννν, z)

}
(3.17)
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As shown in Equation 3.18, now the amplitude and phase are time-dependent.

J̃i(t, z) =

[
Ax(t, z) e

iφx(t, z)

Ay(t, z) e
iφy(t, z)

]
(3.18)

The generation of the second harmonic is calculated squaring the complex electric
field in the time domain. To go back to to frequency domain the inverse Fourier
transform is applied over the complex amplitude of the SHG signal.

J̃SHG(ννν, z) = F−1
{
[(Jf (t, z)]

2} (3.19)

Finally, the second-harmonic multidimensional Jones vector is converted to a two-
dimensional matrix S(ννν, z) after projecting it in one of the two orthogonal directions.
Then each value in this matrix is squared to calculate the intensity of the nonlinear
signal. An image plot of this matrix corresponds to the simulation of the measured
d-scan trace for a given projection of the electric field.

Sx, y(ννν, z) = |Jx,y × J̃SHG(ννν, z)|2 (3.20)

The developed MATLAB code allows simulating a d-scan measurement for any
projection of the electric field, producing a simulated d-scan trace. In addition
to this, the code allows the possibility of adding any pulse shape, from a simple
Gaussian shape to importing the spectrum measured during the experiments, as
well as changing the type of material from which the optical elements are made. An
example code of the polarisation d-scan simulation can be found in Appendix A.
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Chapter 4

Results and Discussion

The objective of this section is to present and discuss the main results obtained
during the realisation of this project. It is divided into three parts consisting of the
polarisation gate characterisation, d-scan measurements and reconstruction of the
electric field.

A continuation of the wave plate characterisation presented during section 3.2 is the
characterisation of the combination of wave plates used to generate the polarisation
gate. The results of this are shown during the first part of this section.

The d-scan measurements of four linearly polarised projections of the electric field
are presented during the second part. For comparison, these measurements are
accompanied by their respective simulations as well as the retrieved d-scans.

The third part of this section deals with the method used to go from experimental
results to reconstructing the electric field. Each of the steps is accompanied by
representative figures. In the last segment, a figure showing the reconstruction of
the electric field is presented.

4.1 Characterisation of the Polarisation Gate

Figure 4.1 shows the 2D characterisation plot of the polarisation gate. A good
agreement between the simulation and the measurements is observed. In this figure,
a high intensity contrast is observed as a function of the polariser angle throughout
the entire represented spectrum. This serves as an indication that the polarisation
state associated with each of these wavelengths is approximately linear. It is also
observed that the position of the intensity maximum shifts at different angles of the
polariser when measuring different wavelengths. This indicates that the direction of
the polarisation state rotates with wavelength.
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4.1. CHARACTERISATION OF THE POLARISATION GATE

Figure 4.1: Characterisation of the polarisation gate. 2D plot showing the value
of intensity as a function of analyser angle and wavelength. (a) Simulation. (b)
Measurement.

In Figure 4.2 the state the polarisation state for different wavelengths is plotted on
the Poincaré sphere. Except for the shortest wavelengths, around 620 nm, which
exhibit elliptical polarisation states, all other wavelengths have a polarisation state
located near the equator of the sphere, which means they are linearly polarised. It
is also observed that the linear polarisation changes direction rapidly since it goes
from 90◦ for short wavelengths to 0◦ for the longest ones.

Simulation Measurement

Figure 4.2: Characterisation of the polarisation gate. The state of polarisation
for a total of 20 wavelengths between 620 nm and 900 nm is represented using the
Poincaré sphere. (a) Simulation. (b) Measurement.
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4.2. D-SCAN OF THE POLARISATION GATE

4.2 D-Scan of the Polarisation Gate

Figure 4.3 shows the measured d-scan trace of the input pulse, together with its sim-
ulation and retrieval, when no time-dependent polarisation is induced in the pulses.
This is achieved by aligning the two wave plates with the initial polarisation direc-
tion so that the polarisation state of the laser is not affected when passing through
them. This measurement provides the laser pulse parameters on the measurement
day, as these ones are subject to change from day to day.

Simulation Measurement Retrieval

(a)

350 400 450 500

Wavelength (nm)

-3

-2

-1

0

1

In
s
e
rt

io
n
 l
e

n
g

th
 (

m
m

)

0

0.5

1
(b)

350 400 450 500

Wavelength (nm)

-3

-2

-1

0

1

In
s
e
rt

io
n
 l
e

n
g

th
 (

m
m

)

0

0.5

1
(c)

350 400 450 500

Wavelength (nm)

-3

-2

-1

0

1

In
s
e
rt

io
n
 l
e

n
g

th
 (

m
m

)

0

0.5

1

Figure 4.3: D-scan of the reference pulse.

By comparing the simulated and measured d-scan, it can already be observed that
the simulation of a d-scan accurately reproduces the trace of the experimental one.
Likewise, the retrieval algorithm is also able to find the correct spectral phase, since
the retrieved d-scan trace looks again very similar to the measured one.

The profile of the pulse in the time domain can be obtained from the retrieval, as it
is shown in Figure 4.4. According to this, the pulses used during the measurement
day had a temporal width of 5.8 fs FWHM.
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Figure 4.4: Reference pulse in the time domain.

Four d-scan measurements are made when the pulses have a time-dependent polar-
isation state, known in this work as the polarisation gate. The difference between
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4.2. D-SCAN OF THE POLARISATION GATE

each of them is the orientation of the second polariser in the experimental setup (see
Figure 3.9) so that each of the measurements corresponds to a different projection
of the electric field. Figure 4.5 shows the simulated, measured and retrieved d-scan
traces for each of the measurements:

Simulation Measurement Retrieval
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Figure 4.5: D-scan of four linearly polarised projections of the electric field. (a)-(c)
0◦. (d)-(f) 45◦. (g)-(i) 90◦. (j)-(l) 135◦.

A good agreement is observed between simulation, measurements and retrievals,
which demonstrates the robustness of the simulations.

Comparing the results between the different projections, it can be seen that the
spectral content varies a lot between them. This can be explained by looking at
Figures 3.8 and 4.1. The second harmonic is the result of doubling the frequency
of the fundamental spectrum, shown in Figure 3.8. Therefore, only the wavelengths
contained in this window can contribute to the generation of the second harmonic
signal. Also, each of the measurements shown in Figure 4.5 corresponds to a different
projection of the electric field. As seen in Figure 4.1, the intensity distribution of
the fundamental spectrum after the polariser clearly depends on its orientation. In
other words, since different wavelengths of the spectrum are associated with different

Master Thesis 47 Daniel Díaz Rivas
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polarisation states (see Figure 4.2), different projections made with the polariser
result in different parts of the spectrum being cut off.

4.3 Reconstruction of the Electric Field

The retrieval algorithm obtains the spectral phase for each of the four linearly polar-
ised projections of the electric field. Knowing the spectrum and the spectral phase
one can calculate the profile of the pulse in the time domain via the Fourier trans-
form. Figure 4.6 shows the calculated envelope of the pulse in the time domain in
the transform-limited case for the four projections of the electric field.

In subsection 3.1.1 a method was detailed to generate a polarisation gate, in which
the pulse becomes left circularly polarised in the front, linearly polarised in the
middle with an orientation of 45◦ and right circularly polarised in the back. In that
case, the exact position of the fast and slow axes on each waveplate was specified,
allowing exact determination of the polarisation state after the wave plates. In
experiments, however, it is not known which of the principal axes is which, that
is, the fast and slow axes are indistinguishable. As a consequence of this, it is not
possible to determine whether the polarisation in the middle of the pulse will be
45◦ or 135◦ and if the polarisation in the front and back of the pulse will be RCP
and LCP or vice versa. In either case, one of the envelopes, either at 45◦ or 135◦,
should exhibit an intensity drop in the center of the pulse indicating what it is the
polarisation of the middle of the pulse.

As seen in Figure 4.6b, the electric field envelope at 135◦ exhibits a double-peaked
structure, meaning that the pulse is linearly polarised at 45◦. This is a good in-
dication that the d-scan is sensitive to variation of the polarisation state over time.
The results obtained for the projections at 0◦, 45◦ and 90◦ show pulse envelopes
with a single peak whose width is similar to that of the input pulse. The reason is
that neither of these projections is orthogonal to the pulse polarisation at any time,
resulting in a pulse envelope with lower intensity but similar shape to the input.
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Figure 4.6: Reconstruction from retrievals of four linearly polarised projections of
the pulse envelope in the time domain. (a) 0◦. (b) 45◦. (c). 90◦. (d) 135◦.

The objective of this work is to reconstruct the total electric field. As shown in Equa-
tion 2.2, this can be calculated as the sum of the complex amplitude of the electric
field in two orthogonal directions. These could be, for example, the projections at
0◦ and 90◦.

Figure 4.7a shows the calculated electric field for the projections at 0◦ and 90◦.
Figure 4.7b shows the envelope of the total electric field that results from squaring
the sum of the two projections. In principle, the sum of the electric fields at 0◦ and
90◦ should reproduce the electric field at 135◦ since the latter can be calculated as
the superposition of the other two. As seen in Figure 4.7b, this is clearly not the
case since the envelope resulting from this calculation does not give the experimental
result obtained after measuring the projection of the electric field at 135◦, shown
in Figure 4.6b. There is a good reason behind this disagreement. As noted during
subsection 2.3.3, d-scan is insensitive to absolute phase and time delay. To calculate
the total electric field, knowledge of both the amplitudes in two orthogonal directions
and their relative phase is needed. Therefore, the sum of the fields at 0◦ and 90◦ will
not give the correct result for the field a 135◦ since it does not consider the relative
phase.

Fortunately, the relative phase between two orthogonal projections can be calculated
from a third projection, for example the 135◦ one. To do so, the electric field
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4.3. RECONSTRUCTION OF THE ELECTRIC FIELD

at 90◦ is multiplied by a phase factor until the envelope of the sum matches the
experimental result obtained at 135◦. Good agreement is found when multiplying
by a phase factor of exp (−i 1.96π), as shown in Figure 4.7d. This phase factor is
specific to each measurement and cannot be determined from the setup. Its origin
lies fundamentally in the insensitivity of the d-scan to time delay.
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Figure 4.7: Calculation of the envelope at 135◦ calculated as I135(t) = |E0(t) −
E90(t) exp (i∆φ)|2 (a) ∆φ = 0. (a) ∆φ = π/2. (a) ∆φ = π. (a) ∆φ = 1.96π.

Now all the elements necessary to determine the total electric field are known. An
expression for this is shown in Equation 4.1:

E(t) = E0(t) x̂+ ei 1.96πE90(t) ŷ (4.1)

The pulse envelope, calculated as:

I(t) = |E0(t)|2 + |E90(t)|2 (4.2)

and the angle of ellipticity, calculated using Equation 2.15 are plotted In Figure 4.8.
The simulation uses the spectrum of the input laser together with retrieved phase
of the d-scan of the input laser. Comparing the results of the simulation and the ex-
periment, it can be seen that the simulated pulse is slightly wider than the measured
one. In addition to this, the ellipticity of the measured pulse is reversed compared
to the simulated one. The reason for this is that it is not possible to identify which
axis of the wave plates is the fast and which is the slow. This makes it impossible
to predict the measurement with complete certainty.
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Simulation Measurement

Figure 4.8: (a) Simulation of the envelope and ellipticity of the polarisation gate
pulse. (b) Reconstruction from the measurements of the envelope and ellipticity of
the polarisation gate pulse.

Finally, Figure 4.9 shows a three-dimensional representation of the measured electric
field, where the color of the line indicates the angle of ellipticity, which can be simply
observed by looking at the direction of oscillation of the electric field. Initially
(negative time), the pulse is right circularly polarised, in the middle it is linearly
polarised at about 45◦, and in the end (positive time) it is left circularly polarised.

Figure 4.9: Reconstruction of the polarisation gate electric field. The line on the
ground represents the projection of the electric field at 0◦ whereas the line in the
background represents the projection of the electric field at 90◦ multiplied by the
phase factor. The colored line in the middle of the image represents the total electric
field, calculated as the sum of the two projections.
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Chapter 5

Conclusion and Outlook

The results of this work have shown that to reconstruct a pulse with a time-
dependent polarisation state, it is sufficient to measure the temporal characteristics
of three linearly polarised projections of the electric field with the d-scan technique.
The method used to generate pulses with a specific time-dependent polarisation
state known as a polarisation gate was straight forward. It consisted of transmitting
linearly polarised pulses through a combination of two quarter-wave plates of dif-
ferent order. The results have served to characterise this special polarisation state,
which is commonly used in the field of attosecond science. One can calculate the
polarisation gate knowing the pulse and the wave plate, but measuring it in the time
domain is something totally different.

In parallel to the laboratory work, a complete framework has been developed in
Matlab to simulate and analyse the measurement of a polarisation d-scan. The
modelling of polarisation and dispersion has been done using Jones matrices and
vectors. A remarkable feature of the script is that it allows to include any pulse
shape, wave plate and material characteristics. The ultimate goal was to simulate the
polarisation d-scan as accurately as possible to obtain a d-scan trace that resembled
the measurement for a given projection of the electric field. The final results have
demonstrated the robustness of the simulations since the simulated and measured
d-scan traces are practically indistinguishable.

In a continuation of this project, the polarisation d-scan measurement is intended
to be upgraded to a single-shot configuration, for the following reason. Recording a
d-scan trace can take up to a few tens of seconds, depending on the repetition rate
of the laser. The realisation of the polarisation d-scan increases this time even more
since three different projections must be measured. Because of this, this method
only provides reliable measurements when there is sufficient pulse-to-pulse stabil-
ity. Two different single-shot d-scan approaches have already been demonstrated to
measure scalar pulses [34], i.e. with constant linear polarisation over time. Both
include an imaging spectrometer to resolve frequency in one dimension and spatial
position in the other. While one of the approaches uses a prism [43, 44], the other
uses a transverse SHG crystal [45]. In both cases, there is no need to scan, since dif-
ferent positions in space correspond to a different glass insertion, and therefore the
dispersion along with the frequency will be encoded in the spectrogram. However,
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these methods cannot measure the polarisation state of light and so far no design
has been proposed for such a purpose. One possible idea is to place a birefringent
wedge in the setup so that different points in space also correspond to a different
polarisation state. A drawing of this possible setup is shown in Figure 5.1.

Figure 5.1: Simplified schematic of a single-shot polarisation d-scan setup.

All the elements necessary to build the single-shot polarisation d-scan setup are
already in the laboratory, so it is only a matter of time before this new method can
be tested.

Contribution statement

With initial supervision, I independently performed the experiments of wave plate
characterisation and polarisation d-scan. I have used an existing software to obtain
the d-scan retrievals. The Matlab code for simulating polarisation d-scan was ad-
apted from earlier scripts to include any type of material and calculate the evolution
of the Jones vector through wave plates and polarisers. Other calculations, such as
the wave plate characterisation analysis and polarisation gate reconstruction, were
performed by me.
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Appendix A

Matlab Scripts

Below is an example of the Matlab code used to simulate the measurement of a
polarisation d-scan:

1 % Simulation of polarisation d−scan
2

3 %% Constants
4

5 % Speed of light in vacuum m/s
6 c0 = 299792458;
7

8 %% Select parameters for the simulation
9

10 % Number of frequency points
11 N1 = 2^14;
12

13 % Number of points for Fast Fourier Transformation (FFT)
14 N2=2^16;
15

16 % Input pulse duration (fs)
17 tau = 6;
18

19 % Frequency array (PHz)
20 f0=linspace(0.25,1,N1);
21 f=permute(f0,[1,3,2]);
22 f_central=f0(1)+(f0(end)−f0(1))/2; % central frequency
23

24 % Wavelength (um)
25 wl=0.3./f0;
26

27 % Wavenumber (um−1)
28 k=2*pi./wl;
29

30 % Angular frequency (rad*PHz)
31 w0=2*pi*f0;
32

33 % Material insertion array from the wedges (m)
34 l=linspace(−2e−3,3e−3,201)';
35

36 %thickness zero−order quarter wave plate (um)
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37 L0=22.4856;
38

39 %% Import refractive index from Sellmeier equations
40

41 % BK7 refractive index
42 n_BK7=nBK7(f0*1e15);
43

44 % Quartz ordinary refractive index
45 no=qzo(wl);
46

47 % Quartz extraordinary refractive index
48 ne=qze(wl);
49

50 %% Define Jones matrices of optical elements
51

52 % Rotation matrices for 45 degree frame rotation
53 R1=[cos(pi/4),sin(pi/4);−sin(pi/4),cos(pi/4)];
54 R2=[cos(pi/4),−sin(pi/4);sin(pi/4),cos(pi/4)];
55

56 % Zero−order quarter−wave plate (QW0)
57 M1=zeros(2,2,N1);
58 M1(1,1,:)=exp(0*k); %1
59 M1(2,2,:)=exp(1i*k.*(ne−no)*L0); % wave retardence
60

61 % Third−order quarter−wave plate (QW3)
62 M2=zeros(2,2,N1);
63 M2(1,1,:)=exp(0*k);
64 M2(2,2,:)=exp(1i*7*k.*(ne−no)*L0);
65

66 %% Select input spectral amplitude
67

68 % Use Gaussian arbitrary spectrum
69

70 %amp = exp(−pi^2*tau^2*(f0−f_central).^2)';
71 %I_spectrum = abs(amp).^2;
72

73 % Import measured fundamental spectrum on 2022−03−07
74

75 data_spectrum = load('0703_0_0_gate_reference_spectrum.txt');
76

77 f_spectrum = 1e−6*c0./data_spectrum(:,1); % frequency axis in PHz
78 I_spectrum = data_spectrum(:,2).*(data_spectrum(:,1).^2)./c0; % ...

the wavelength spectrum is multiplied by a scaling factor to ...
obtain the frequency spectrum

79 I_spectrum(2611:end) = 0; % set noise to zero
80

81 I_spectrum_new = ...
interp1(flip(f_spectrum),flip(I_spectrum),f0,'spline','extrap')';

82

83 I_spectrum_new(I_spectrum_new<0)=0; % set noise to zero
84 amp=sqrt(I_spectrum_new); % convert intensity into amplitude
85

86 %% Select input spectral phase
87

88 % Use arbitrary phase
89

90 % ph2 = 0 *(f0−f_central)'.^2; %some quadratic phase around ...
central frequency
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91 % ph3 = 0 *(f0−f_central)'.^3; %some 3rd order phase around ...
central frequency

92 % phase=ph2+ph3;
93

94 % Import retrieved phase from reference d−scan: 2022−03−07
95

96 data_phase=load('0703_ref.txt');
97

98 f_phase = 1e−6*c0./data_phase(:,1); % frequency axis in PHz
99 phase_data = data_phase(:,3); % from 600 nm to 1100 nm

100

101 phase=interp1(flip(f_phase),flip(phase_data),f0,'linear','extrap')';
102

103

104 %% Resulting complex spectral amplitude of the incoming beam
105

106 amp = amp.*exp(1i*phase); % spectral amplitude and phase of the ...
incoming pulses

107

108 %% Polarisation state of the incoming pulses before the waveplates
109

110 % Jones vector of vertically polarised light
111 v=[0;1];
112

113 %% Creating a time dependent polarisation state
114

115 % Initialisation output, wavelength vs amplitude
116 u=zeros(2,N1);
117

118 % Iteration over all wavelengths: propagation through first and ...
second

119 % waveplate. Polarisation gate is QW3 at 45deg −− QW0 at 0deg
120

121 % The angle \theta inside rotation_matrix(\theta) selects the ...
projection of

122 % electric field
123

124 for i=1:N1
125 %u(:,i)=rotation_matrix(0)*M1(:,:,i)*M2(:,:,i)*v; % ...

Reference. QW3 wave plate at 0, QW0 wave plate at 0.
126 u(:,i)=rotation_matrix(0)*M1(:,:,i)*R2*M2(:,:,i)*R1*v; % ...

Polarisation gate. QW3 wave plate at 45, QW0 wave plate ...
at 0.

127

128 end
129

130

131 %% Propagation through BK7 wedges
132

133 % Wavenumber in BK7
134 ke = ((1/pi)*w0*1e15/c0).*n_BK7; % m−1
135

136 ampS1 = amp.*u(1,:)'.*exp(1i*pi*ke.*l)';
137 ampS2 = amp.*u(2,:)'.*exp(1i*pi*ke.*l)';
138

139 %% Calculate Jones vector in the time domain
140

141 df=mean(diff(f)); % Frequency spacing
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142 t=linspace(0.5/df,−0.5/df,N2); % Corresponding time spacing
143

144 ampT1=fftshift(fft(ampS1,N2)); % Horizontal projection
145 ampT2=fftshift(fft(ampS2,N2)); % Vertical projection
146

147 %% Second harmonic generation (SHG)
148

149 % Frequency axis for second harmonic
150 fshg = df*[0:N2−1]+2*min(f0);
151

152 % Get SHG spectra: FT spectrum with multiplied phase, square it ...
(shg is

153 % intensity dependend), then IFT it back
154 ampSHG1=ifft(fft(ampS1,N2).^2); % d−scan trace horizontal projection
155 ampSHG2=ifft(fft(ampS2,N2).^2); % d−scan trace vertical projection
156

157 % These are the spectrograms (d−scan traces) with material ...
insertion in one axis and

158 % frequency in the other axis.

Below is an example of the Matlab code used to calculate the polarisation gate
pulse:

1 % calculation polarisation gate
2

3 % calculation polarisation gate
4

5 %% Constants
6

7 % speed of light in vacuum (m/s)
8 c0 = 299792458;
9

10 %% Select parameters for the simulation
11

12 % Number of points in frequency array
13 N1 = 10000;
14

15 % Number of points for Fast Fourier Transform (FFT)
16 N2 = 2^16;
17

18 % Input pulse duration (fs)
19 tau = 6;
20

21 % Frequency (PHz)
22 f0=linspace(0.25,0.5,N1);
23 f=permute(f0,[1,3,2]);
24 f_central=f0(1)+(f0(end)−f0(1))/2; % central frequency
25

26 % Wavelength (um)
27 wl=0.3./f0;
28

29 % Wavenumber (um−1)
30 k=2*pi./wl;
31

32 % Angular frequency (rad*PHz)
33 w0=2*pi*f0;
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34

35 % Thickness zero−order quarter wave plate (um)
36 L0=22.4856;
37

38 %% Refractive index from Sellmeier equations
39

40 % Quartz ordinary refractive index
41 no=qzo(wl);
42

43 % Quartz extraordinary refractive index
44 ne=qze(wl);
45

46 %% Define Jones matrices of optical elements
47

48 % Rotation matrices for 45 degree frame rotation
49 R1=[cos(pi/4),sin(pi/4);−sin(pi/4),cos(pi/4)];
50 R2=[cos(pi/4),−sin(pi/4);sin(pi/4),cos(pi/4)];
51

52 % Zero−order quarter−wave plate (QW0)
53 M1=zeros(2,2,N1);
54 M1(1,1,:)=exp(0*k); %1
55 M1(2,2,:)=exp(1i*k.*(ne−no)*L0); % wave retardence
56

57 % Third−order quarter−wave plate (QW3)
58 M2=zeros(2,2,N1);
59 M2(1,1,:)=exp(0*k);
60 M2(2,2,:)=exp(1i*7*k.*(ne−no)*L0);
61

62 %% Select input spectral amplitude
63

64 % Use Gaussian arbitrary spectrum
65

66 amp = exp(−pi^2*tau^2*(f0−f_central).^2)';
67 I_spectrum = abs(amp).^2;
68

69 % Import measured fundamental spectrum on 2022−03−07
70

71 % data_spectrum = load('0703_0_0_gate_reference_spectrum.txt');
72 %
73 % f_spectrum = 1e−6*c0./data_spectrum(:,1); % frequency axis in PHz
74 % I_spectrum = data_spectrum(:,2).*(data_spectrum(:,1).^2)./c0; ...

% the wavelength spectrum is multiplied by a scaling factor ...
to obtain the frequency spectrum

75 % I_spectrum(2611:end) = 0; % set noise to zero
76 %
77 % I_spectrum_new = ...

interp1(flip(f_spectrum),flip(I_spectrum),f0,'spline','extrap')';
78 %
79 % I_spectrum_new(I_spectrum_new<0)=0; % set noise to zero
80 % amp=sqrt(I_spectrum_new); % convert intensity into amplitude
81

82 %% Select input spectral phase
83

84 % Use arbitrary phase
85

86 ph2 = 0 *(f0−f_central)'.^2; %some quadratic phase around ...
central frequency

87 ph3 = 0 *(f0−f_central)'.^3; %some 3rd order phase around ...
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central frequency
88 phase = ph2+ph3;
89

90 % Import retrieved phase from reference d−scan: 2022−03−07
91

92 % data_phase=load('0703_ref.txt');
93 %
94 % f_phase = 1e−6*c0./data_phase(:,1); % frequency axis in PHz
95 % phase_data = data_phase(:,3); % from 600 nm to 1100 nm
96 %
97 % ...

phase=interp1(flip(f_phase),flip(phase_data),f0,'linear','extrap')';
98

99 %% Resulting complex spectral amplitude of the incoming beam
100

101 amp = amp.*exp(1i*phase); % spectral amplitude and phase of the ...
incoming pulses

102 I_spectrum = abs(amp).^2;
103

104 %% Calculation of the temporal profile of the incoming pulse
105

106 df=mean(diff(f)); % Frequency spacing
107 t=linspace(0.5/df,−0.5/df,N2); % Corresponding time spacing
108

109 ampT=fftshift(fft(amp,N2));
110

111 %% Polarisation state of the incoming pulses before the waveplates
112

113 % Jones vector of vertically polarised light
114 v=[0;1];
115

116 %% Creating a time−dependent polarisation state
117

118 % Initialisation output Jones vector, wavelength vs amplitude
119 u=zeros(2,N1);
120

121 % Iteration over all wavelengths
122 for i=1:N1
123

124 u(:,i)=R1*M1(:,:,i)*R2*M2(:,:,i)*R1*v; % Polarisation ...
gate. QW3 wave plate at 45, QW0 wave plate at 0.

125

126 end
127

128 %% Spectral intensity after waveplate
129

130 ampS1 = amp'.*u(1,:); % Horizontal projection
131 ampS2 = amp'.*u(2,:); % Vertical projection
132

133 %% Calculation of the time−dependent Jones vector
134

135 df=mean(diff(f)); % Frequency spacing (PHz)
136 t=linspace(0.5/df,−0.5/df,N2); % Corresponding time spacing (fs)
137

138 ampT1=fftshift(fft(ampS1,N2)); % Horizontal projection
139 ampT2=fftshift(fft(ampS2,N2)); % Vertical projection
140

141 % Time−dependent Jones vector

Master Thesis 62 Daniel Díaz Rivas



142 u_t=[ampT1;ampT2];
143

144 %% Calculation of amplitude ratio, relative phase and ellipticity
145

146 % Amplitude ratio
147 ampRatio=abs(u_t(2,:))./abs(u_t(1,:));
148

149 % Relative phase
150 relPhase=angle(u_t(2,:))−angle(u_t(1,:));
151

152 % Ellipticity from amplitude ratio and relative phase
153 chi=(1/2)*asin((2*ampRatio./(1+ampRatio.^2)).*sin(relPhase)); % ...

ellipticity angle (rad)
154 chi=chi*(180/pi); % ellipticity angle (degrees)
155

156 %% Intensity envelope of the polarisation gate
157

158 iT_new = abs(u_t(1,:)).^2 + abs(u_t(2,:)).^2;

Below is an example of the Matlab code used to simulate the wave plate charac-
terisation measurements:

1 % simulation of wave plate characterisation
2

3 %% Constants
4

5 % speed of light in vacuum (m/s)
6 c0 = 299792458;
7

8 %% Select parameters for the simulation
9

10 %number of frequency points
11 N1 = 2048;
12

13 % Input pulse duration (fs)
14 tau = 6;
15

16 % Frequency (PHz)
17 f0=linspace(0.25,0.5,N1);
18 f=permute(f0,[1,3,2]);
19 f_central=f0(1)+(f0(end)−f0(1))/2; % central frequency
20

21 % Wavelength (um)
22 wl=0.3./f0;
23 wl_new = linspace(0.5,1.1,N1); % for interpolation
24

25 % Wavenumber (um−1)
26 k=2*pi./wl;
27

28 % Angular frequency (rad*PHz)
29 w0=2*pi*f0;
30

31 % Thickness zero−order quarter wave plate (um)
32 L0=22.4856;
33

34 %% Refractive index from Sellmeier equations
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35

36 % Quartz ordinary refractive index
37 no=qzo(wl);
38

39 % Quartz extraordinary refractive index
40 ne=qze(wl);
41

42 %% Define Jones matrices of optical elements
43

44 % Rotation matrices for 45 degree frame rotation
45 R1=[cos(pi/4),sin(pi/4);−sin(pi/4),cos(pi/4)];
46 R2=[cos(pi/4),−sin(pi/4);sin(pi/4),cos(pi/4)];
47

48 % Zero−order quarter−wave plate (QW0)
49 M1=zeros(2,2,N1);
50 M1(1,1,:)=exp(0*k); %1
51 M1(2,2,:)=exp(1i*k.*(ne−no)*L0); % wave retardence
52

53 % Third−order quarter−wave plate (QW3)
54 M2=zeros(2,2,N1);
55 M2(1,1,:)=exp(0*k);
56 M2(2,2,:)=exp(1i*7*k.*(ne−no)*L0);
57

58 %% Select input spectral amplitude
59

60 % Use Gaussian arbitrary spectrum
61

62 amp = exp(−pi^2*tau^2*(f0−f_central).^2)';
63 I_spectrum = abs(amp).^2;
64

65 %% Select input spectral phase
66

67 % Use arbitrary phase
68

69 ph2 = 0 *(f0−f_central)'.^2; %some quadratic phase around ...
central frequency

70 ph3 = 0 *(f0−f_central)'.^3; %some 3rd order phase around ...
central frequency

71 phase = ph2+ph3;
72

73 %% Resulting complex spectral amplitude of the incoming beam
74

75 amp = amp.*exp(1i*phase); % spectral amplitude and phase of the ...
incoming pulses

76 I_spectrum = abs(amp).^2;
77

78 %% Normalise spectrum
79

80 I_spectrum_norm=I_spectrum.*0+1;
81 amp_norm=amp.*0+1;
82

83 I_spectrum_norm=interp1(flip(wl),flip(I_spectrum_norm),wl_new,'spline');
84 amp_norm=interp1(flip(wl),flip(amp_norm),wl_new,'spline');
85

86 %% Polarisation state of the incoming pulses before the waveplates
87

88 % Jones vector of vertically polarised light
89 v=[0;1];
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90

91 %% Evolution of the Jones vector through the wave plates
92

93

94 wl = flip(wl);
95

96 % Initialisation output, wavelength vs amplitude
97 u=zeros(2,N1,18);
98

99 % Iteration over 19 projections
100 theta=linspace(0,170,18);
101 theta_rad=theta.*(pi/180);
102

103 % Iteration over all analyser projections
104 for j=1:18
105

106 R=rotation_matrix(theta_rad(j));
107

108 % iteration over all wavelengths
109 for i=1:N1
110

111 u(:,i,j)=R*R2*M1(:,:,i)*R1*v; % QW0 at 45 degrees
112 %u(:,i,j)=R*R2*M2(:,:,i)*R1*v; % QW3 at 45 degrees
113 %u(:,i,j)=R*M1(:,:,i)*R2*M2(:,:,i)*R1*v; % Polarisation ...

gate. QW3
114 %at 45 degrees and QW0 at 0 degrees
115

116 end
117

118 end
119

120

121

122 %% Spectral intensity after waveplate
123

124 ampS1_norm=amp_norm.*u(1,:,:);
125 ampS2_norm=amp_norm.*u(2,:,:);
126

127 S1_norm=squeeze(ampS1_norm);
128 S2_norm=squeeze(ampS2_norm);
129

130 %% Define fit parameters
131

132 lambdai = 0.620; % start wavelength
133 lambdaf = 0.900; % end wavelength
134

135 N = 20; % number of wavelengths to fit
136 step = (lambdaf−lambdai)/(N−1); % spacing between fitted wavelengths
137 lambda1 = lambdai + step;
138

139 [minval,lambdai_ind]=min(abs(wl_new−lambdai));
140 [minval,lambda1_ind]=min(abs(wl_new−lambda1));
141 step=lambda1_ind−lambdai_ind;
142

143

144 %% Fit each wavelength data to an oscillating function and ...
calculate Stokes paramters from it

145
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146 % Initialise lists to store the calculated Stokes parameters
147 s0=[];
148 s1=[];
149 s2=[];
150 s3=[];
151

152 array_theta = linspace(0,170*pi/180,1e5);
153

154 for n = 1:N
155 myfittype = fittype('a + ...

b*cos(x+c)^2','dependent',{'y'},'independent',{'x'},'coefficients',{'a','b','c'});
156 myfit = ...

fit(theta_rad(:),abs(S1_norm(lambdai_ind+step*(n−1),:)).^2',myfittype);
157

158 % Calculate parameters of the polarisation ellipse
159 Imax=myfit.a+myfit.b;
160 Imin=myfit.a;
161 chi=atan(sqrt(Imin/Imax));
162 Ix=myfit.a+myfit.b*cos(0+myfit.c)^2;
163 Iy=myfit.a+myfit.b*cos(pi/2+myfit.c)^2;
164 R=sqrt(Ix/Iy);
165 phi=asin(((1+R^2)/(2*R))*sin(2*chi));
166

167 % Calculate Stokes parameters
168 s0_val=Ix+Iy;
169 s1_val=Ix−Iy;
170 s2_val=2*sqrt(Ix)*sqrt(Iy)*cos(phi);
171 s3_val=2*sqrt(Ix)*sqrt(Iy)*sin(phi);
172

173 s0(n)=s0_val;
174 s1(n)=s1_val;
175 s2(n)=s2_val;
176 s3(n)=s3_val;
177

178 end
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